Sample records for determining protein complex

  1. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  2. Modeling the assembly order of multimeric heteroprotein complexes

    PubMed Central

    Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Shin, Woong-Hee

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes. PMID:29329283

  3. Modeling the assembly order of multimeric heteroprotein complexes.

    PubMed

    Peterson, Lenna X; Togawa, Yoichiro; Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Roy, Amitava; Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes.

  4. In Silico Analysis for the Study of Botulinum Toxin Structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomonori; Miyazaki, Satoru

    2010-01-01

    Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.

  5. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  6. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes.

    PubMed

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G; Qin, Ling; Zheng, Yi; Handel, Tracy M

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. © 2016 Elsevier Inc. All rights reserved.

  7. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.

  8. Quantitation of proteins using a dye-metal-based colorimetric protein assay.

    PubMed

    Antharavally, Babu S; Mallia, Krishna A; Rangaraj, Priya; Haney, Paul; Bell, Peter A

    2009-02-15

    We describe a dye-metal (polyhydroxybenzenesulfonephthalein-type dye and a transition metal) complex-based total protein determination method. The binding of the complex to protein causes a shift in the absorption maximum of the dye-metal complex from 450 to 660 nm. The dye-metal complex has a reddish brown color that changes to green on binding to protein. The color produced from this reaction is stable and increases in a proportional manner over a broad range of protein concentrations. The new Pierce 660 nm Protein Assay is very reproducible, rapid, and more linear compared with the Coomassie dye-based Bradford assay. The assay reagent is room temperature stable, and the assay is a simple and convenient mix-and-read format. The assay has a moderate protein-to-protein variation and is compatible with most detergents, reducing agents, and other commonly used reagents. This is an added advantage for researchers needing to determine protein concentrations in samples containing both detergents and reducing agents.

  9. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  10. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  11. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    PubMed

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  13. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  14. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  15. Lesson from the stoichiometry determination of the cohesin complex: a short protease mediated elution increases the recovery from cross-linked antibody-conjugated beads.

    PubMed

    Holzmann, Johann; Fuchs, Johannes; Pichler, Peter; Peters, Jan-Michael; Mechtler, Karl

    2011-02-04

    Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes.

  16. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    PubMed

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-10-01

    Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.

  18. A Quantitative Microscopy Technique for Determining the Number of Specific Proteins in Cellular Compartments

    PubMed Central

    Mutch, Sarah A.; Gadd, Jennifer C.; Fujimoto, Bryant S.; Kensel-Hammes, Patricia; Schiro, Perry G.; Bajjalieh, Sandra M.; Chiu, Daniel T.

    2013-01-01

    This protocol describes a method to determine both the average number and variance of proteins in the few to tens of copies in isolated cellular compartments, such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number but lack information on the variance or are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling the cellular compartment with fluorescent primary-secondary antibody complexes, TIRF (total internal reflection fluorescence) microscopy imaging of the cellular compartment, digital image analysis, and deconvolution of the fluorescence intensity data. A minimum of 2.5 days is required to complete the labeling, imaging, and analysis of a set of samples. As an illustrative example, we describe in detail the procedure used to determine the copy number of proteins in synaptic vesicles. The same procedure can be applied to other organelles or signaling complexes. PMID:22094731

  19. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate. PMID:26650466

  20. Sequence-Based Prediction of RNA-Binding Residues in Proteins.

    PubMed

    Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.

  1. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  2. Optimization of protein-protein docking for predicting Fc-protein interactions.

    PubMed

    Agostino, Mark; Mancera, Ricardo L; Ramsland, Paul A; Fernández-Recio, Juan

    2016-11-01

    The antibody crystallizable fragment (Fc) is recognized by effector proteins as part of the immune system. Pathogens produce proteins that bind Fc in order to subvert or evade the immune response. The structural characterization of the determinants of Fc-protein association is essential to improve our understanding of the immune system at the molecular level and to develop new therapeutic agents. Furthermore, Fc-binding peptides and proteins are frequently used to purify therapeutic antibodies. Although several structures of Fc-protein complexes are available, numerous others have not yet been determined. Protein-protein docking could be used to investigate Fc-protein complexes; however, improved approaches are necessary to efficiently model such cases. In this study, a docking-based structural bioinformatics approach is developed for predicting the structures of Fc-protein complexes. Based on the available set of X-ray structures of Fc-protein complexes, three regions of the Fc, loosely corresponding to three turns within the structure, were defined as containing the essential features for protein recognition and used as restraints to filter the initial docking search. Rescoring the filtered poses with an optimal scoring strategy provided a success rate of approximately 80% of the test cases examined within the top ranked 20 poses, compared to approximately 20% by the initial unrestrained docking. The developed docking protocol provides a significant improvement over the initial unrestrained docking and will be valuable for predicting the structures of currently undetermined Fc-protein complexes, as well as in the design of peptides and proteins that target Fc. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The Prediction of Botulinum Toxin Structure Based on in Silico and in Vitro Analysis

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomonori; Miyazaki, Satoru

    2011-01-01

    Many of biological system mediated through protein-protein interactions. Knowledge of protein-protein complex structure is required for understanding the function. The determination of huge size and flexible protein-protein complex structure by experimental studies remains difficult, costly and five-consuming, therefore computational prediction of protein structures by homolog modeling and docking studies is valuable method. In addition, MD simulation is also one of the most powerful methods allowing to see the real dynamics of proteins. Here, we predict protein-protein complex structure of botulinum toxin to analyze its property. These bioinformatics methods are useful to report the relation between the flexibility of backbone structure and the activity.

  4. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  5. Sequence co-evolution gives 3D contacts and structures of protein complexes

    PubMed Central

    Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S

    2014-01-01

    Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213

  6. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    PubMed

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  7. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    NASA Astrophysics Data System (ADS)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  8. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-04-12

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  9. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  10. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  11. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  12. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  13. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.

    PubMed

    Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien

    2017-06-05

    Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    PubMed

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Systematic analysis of protein turnover in primary cells.

    PubMed

    Mathieson, Toby; Franken, Holger; Kosinski, Jan; Kurzawa, Nils; Zinn, Nico; Sweetman, Gavain; Poeckel, Daniel; Ratnu, Vikram S; Schramm, Maike; Becher, Isabelle; Steidel, Michael; Noh, Kyung-Min; Bergamini, Giovanna; Beck, Martin; Bantscheff, Marcus; Savitski, Mikhail M

    2018-02-15

    A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.

  16. Survey of large protein complexes D. vulgaris reveals great structural diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, B.-G.; Dong, M.; Liu, H.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions,more » can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.« less

  17. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.

    PubMed

    Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D

    2011-01-01

    The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes.

  18. Gi- and Gs-coupled GPCRs show different modes of G-protein binding.

    PubMed

    Van Eps, Ned; Altenbach, Christian; Caro, Lydia N; Latorraca, Naomi R; Hollingsworth, Scott A; Dror, Ron O; Ernst, Oliver P; Hubbell, Wayne L

    2018-03-06

    More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G s , and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G i , using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-G i complex, G i engages rhodopsin in a manner distinct from previous GPCR-G s structures, providing insight into specificity determinants. Copyright © 2018 the Author(s). Published by PNAS.

  19. Crystallization of Proteins from Crude Bovine Rod Outer Segments☆

    PubMed Central

    Baker, Bo Y.; Gulati, Sahil; Shi, Wuxian; Wang, Benlian; Stewart, Phoebe L.; Palczewski, Krzysztof

    2015-01-01

    Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012). As exemplified by RPE65 (Kiser, Golczak, Lodowski, Chance, & Palczewski, 2009), there also are cases of mammalian proteins crystallized from less purified samples. To test whether this phenomenon can be applied more broadly to the study of proteins from higher organisms, we investigated the protein crystallization profile of bovine rod outer segment (ROS) crude extracts. Interestingly, multiple protein crystals readily formed from such extracts, some of them diffracting to high resolution that allowed structural determination. A total of seven proteins were crystallized, one of which was a membrane protein. Successful crystallization of proteins from heterogeneous ROS extracts demonstrates that many mammalian proteins also have an intrinsic propensity to crystallize from complex biological mixtures. By providing an alternative approach to heterologous expression to achieve crystallization, this strategy could be useful for proteins and complexes that are difficult to purify or obtain by recombinant techniques. PMID:25950977

  20. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  1. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  2. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes

    PubMed Central

    Yesudhas, Dhanusha; Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Durai, Prasannavenkatesh; Shah, Masaud; Choi, Sangdun

    2016-01-01

    The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox20bp) or 3 base pairs (Oct4/Sox23bp) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox20bp and Oct4/Sox23bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming. PMID:26790000

  3. Computational modeling of carbohydrate recognition in protein complex

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2017-11-01

    To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.

  4. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  5. Sequence-Based Prediction of RNA-Binding Residues in Proteins

    PubMed Central

    Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829

  6. Prolonged leucine infusion differentially affects tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine (Leu) acutely stimulates protein synthesis by activating the mammalian target of rapamycin complex 1 (mTORC1) pathway. To determine whether Leu can stimulate protein synthesis in muscles of different fiber types and visceral tissues of the neonate for a prolonged period and to determine the ...

  7. Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I.

    PubMed

    Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2016-09-01

    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Stoichiometry for binding and transport by the twin arginine translocation system.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2012-05-14

    Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.

  9. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  10. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.

    PubMed

    Liu, Zhiming; Luo, Jiawei

    2017-08-01

    Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.

  11. Modeling complexes of modeled proteins.

    PubMed

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. A complex solution to a sexual dilemma.

    PubMed

    Kuwabara, Patricia E

    2007-07-01

    The C. elegans male sex-determining protein, FEM-1, has been identified as a substrate recognition subunit of a Cullin-2 ubiquitin ligase complex. This complex controls the level of TRA-1A, a Ci/Gli homolog and master regulator of sex determination, by ubiquitin-mediated proteolysis.

  13. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex

    PubMed Central

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I.; Blackledge, Martin; van Nuland, Nico A. J.

    2009-01-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes. PMID:19359362

  14. Compatible topologies and parameters for NMR structure determination of carbohydrates by simulated annealing.

    PubMed

    Feng, Yingang

    2017-01-01

    The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.

  15. Compatible topologies and parameters for NMR structure determination of carbohydrates by simulated annealing

    PubMed Central

    2017-01-01

    The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy. PMID:29232406

  16. Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles

    PubMed Central

    Schneidman-Duhovny, Dina; Hammel, Michal

    2018-01-01

    Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933

  17. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore.

    PubMed

    Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko; Sawin, Kenneth E

    2018-05-29

    Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe , the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the g-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. © 2018, Bao et al.

  18. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore

    PubMed Central

    Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-01-01

    Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. PMID:29809148

  19. Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel

    PubMed Central

    Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

    2014-01-01

    Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698

  20. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    PubMed

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  1. Direct Determination of Vibrational Density of States Change on Ligand Binding to a Protein

    NASA Astrophysics Data System (ADS)

    Balog, Erika; Becker, Torsten; Oettl, Martin; Lechner, Ruep; Daniel, Roy; Finney, John; Smith, Jeremy C.

    2004-07-01

    The change in the vibrational density of states of a protein (dihydrofolate reductase) on binding a ligand (methotrexate) is determined using inelastic neutron scattering. The vibrations of the complex soften significantly relative to the unbound protein. The resulting free-energy change, which is directly determined by the density of states change, is found to contribute significantly to the binding equilibrium.

  2. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  3. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  4. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  5. Structural determination of intact proteins using mass spectrometry

    DOEpatents

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  6. Protein determination by microchip capillary electrophoresis using an asymmetric squarylium dye: noncovalent labeling and nonequilibrium measurement of association constants.

    PubMed

    Sloat, Amy L; Roper, Michael G; Lin, Xiuli; Ferrance, Jerome P; Landers, James P; Colyer, Christa L

    2008-08-01

    In response to a growing interest in the use of smaller, faster microchip (mu-chip) methods for the separation of proteins, advancements are proposed that employ the asymmetric squarylium dye Red-1c as a noncovalent label in mu-chip CE separations. This work compares on-column and precolumn labeling methods for the proteins BSA, beta-lactoglobulin B (beta-LB), and alpha-lactalbumin (alpha-LA). Nonequilibrium CE of equilibrium mixtures (NECEEM) represents an efficient method to determine equilibrium parameters associated with the formation of intermolecular complexes, such as those formed between the dye and proteins in this work, and it allows for the use of weak affinity probes in protein quantitation. In particular, nonequilibrium methods employing both mu-chip and conventional CE systems were implemented to determine association constants governing the formation of noncovalent complexes of the red luminescent squarylium dye Red-1c with BSA and beta-LB. By our mu-chip NECEEM method, the association constants K(assoc) for beta-LB and BSA complexes with Red-1c were found to be 3.53 x 10(3) and 1.65 x 10(5) M(-1), respectively, whereas association constants found by our conventional CE-LIF NECEEM method for these same protein-dye systems were some ten times higher. Despite discrepancies between the two methods, both confirmed the preferential interaction of Red-1c with BSA. In addition, the effect of protein concentration on measured association constant was assessed by conventional CE methods. Although a small decrease in K(assoc) was observed with the increase in protein concentration, our studies indicate that absolute protein concentration may affect the equilibrium determination less than the relative concentration of protein-to-dye.

  7. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  8. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    PubMed

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  10. Over-expression and purification strategies for recombinant multi-protein oligomers: a case study of Mycobacterium tuberculosis σ/anti-σ factor protein complexes.

    PubMed

    Thakur, Krishan Gopal; Jaiswal, Ravi Kumar; Shukla, Jinal K; Praveena, T; Gopal, B

    2010-12-01

    The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the σ factor/anti-σ factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of σ factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    PubMed

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  12. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quantization of bovine serum albumin by fluorescence enhancement effects and corresponding binding of macrocyclic host-protein assembly.

    PubMed

    Bardhan, Munmun; Misra, Tapas; Ganguly, Tapan

    2012-01-05

    The present paper reports the investigations on the spectroscopic behavior of the binary complexes of the dye aurintricarboxylic acid (ATA) with protein bovine serum albumin (BSA) and 18-crown 6 (CW) (ATA·BSA, ATA·CW) and the ternary complex ATA·CW·BSA by using UV-vis steady state and time resolved fluorescence spectroscopy. The primary aim of the work is to determine the protein (BSA) quantization by fluorescence enhancement method and investigate the 'enhancer' activity of crown ether (CW) on it to increase the resolution. Steady state and time resolved fluorescence measurements demonstrated how fluorescence intensity of ATA could be used for the determination of the protein BSA in aqueous solution. The binding of dye (probe/fluorescent medicinal molecule) with protein and the denaturing effect in the polar environment of acetonitrile of the dye protein complex act as drug binding as well as drug release activity. Apart from its basic research point of view, the present study also possesses significant importance and applications in the field of medicinal chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes.

    PubMed

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-07-05

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.

  15. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes

    PubMed Central

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-01-01

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt–Ada–Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants. PMID:21734642

  16. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  17. Symmetric and asymmetric squarylium dyes as noncovalent protein labels: a study by fluorimetry and capillary electrophoresis.

    PubMed

    Welder, Frank; Paul, Beverly; Nakazumi, Hiroyuki; Yagi, Shigeyuki; Colyer, Christa L

    2003-08-05

    Noncovalent interactions between two squarylium dyes and various model proteins have been explored. NN127 and SQ-3 are symmetric and asymmetric squarylium dyes, respectively, the fluorescence emissions of which have been shown to be enhanced upon complexation with proteins such as bovine serum albumin (BSA), human serum albumin (HSA), beta-lactoglobulin A, and trypsinogen. Although these dyes are poorly soluble in aqueous solution, they can be dissolved first in methanol followed by dilution with aqueous buffer without precipitation, and are then suitable for use as fluorescent labels in protein determination studies. The nature of interactions between these dyes and proteins was studied using a variety of buffer systems, and it was found that electrostatic interactions are involved but not dominant. Dye/protein stoichiometries in the noncovalent complexes were found to be 1:1 for SQ-3, although various possible stoichiometries were found for NN127 depending upon pH and protein. Association constants on the order of 10(5) and 10(7) were found for noncovalent complexes of SQ-3 and NN127, respectively, with HSA, indicating stronger interactions of the symmetric dye with proteins. Finally, HSA complexes with NN127 were determined by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). In particular, NN127 shows promise as a reagent capable of fluorescently labeling analyte proteins for analysis by CE-LIF without itself being significantly fluorescent under the aqueous solution conditions studied herein.

  18. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    PubMed

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  19. Experimental and Theoretical Study of the Movement of the Wpd Flexible Loop of Human Protein Tyrosine Phosphatase PTP1B in Complex with Halide Ions

    NASA Astrophysics Data System (ADS)

    Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.

    2012-11-01

    Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.

  20. Structural Assembly of Multidomain Proteins and Protein Complexes Guided by the Overall Rotational Diffusion Tensor

    PubMed Central

    Ryabov, Yaroslav; Fushman, David

    2008-01-01

    We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252

  1. Molecular Assembly of Clostridium botulinum progenitor M complex of type E.

    PubMed

    Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin; Singh, Bal Ram; Swaminathan, Subramanyam

    2015-12-07

    Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.

  2. A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins?

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS –PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230–180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110–85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, “protein-type” complexes were formed by protein cross-linking, while in the smaller, “polyphenol-type” complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones with proteins and polyphenols could possibly be under assumed guidance of dirigent proteins. PMID:24023654

  3. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones with proteins and polyphenols could possibly be under assumed guidance of dirigent proteins.

  4. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  5. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  6. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  7. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    PubMed

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  8. Molecular architecture of protein-RNA recognition sites.

    PubMed

    Barik, Amita; C, Nithin; Pilla, Smita P; Bahadur, Ranjit Prasad

    2015-01-01

    The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2' position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.

  9. Vladimir V. Lunin | NREL

    Science.gov Websites

    Protein crystallization X-ray diffraction data collection Protein structure determination Obtaining structures of protein-ligand complexes Site-directed mutagenesis Structure-function relationship Enzymatic CelA," Science (2013) "Sequence, Structure, and Evolution of Cellulases in Glycoside

  10. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette

    2007-11-01

    The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.

  11. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  12. MALDI mass spectrometry of dye-peptide and dye-protein complexes.

    PubMed

    Salih, B; Zenobi, R

    1998-04-15

    Immobilized sulfonate dyes are widely used for protein separation and purification, but the mode of interaction between the dye molecules and the proteins is largely unknown. Here we show that specific noncovalent dye-protein and dye-peptide complexes can be observed using MALDI mass spectrometry. We prove that the interaction is prodominantly electrostatic and that it involves protonated sites of the peptides and proteins, including the NH2 terminus, and deprotonated SO3 groups of the dyes. Furthermore, we show that MALDI-MS of such complexes with a nonacidic matrix, p-nitro-aniline, can be used to determine the number of accessible basic sites of a protein or peptide in its folded structure. Our results are in good agreement with measurements of the same property done with electrospray ionization.

  13. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  14. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  15. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-01

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  16. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.

    PubMed

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-07

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  17. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.

    PubMed

    Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R

    2005-02-01

    The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.

  18. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  19. Visualizing ligand molecules in Twilight electron density.

    PubMed

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.

  20. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  1. Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling

    PubMed Central

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-01-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714

  2. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Debora Lika, E-mail: dmakino@biochem.mpg.de; Conti, Elena

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryoticmore » exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.« less

  3. Measurement of protein HC (alpha 1 microglobulin) and protein HC-IgA complex in different body fluids.

    PubMed Central

    Fernández-Luna, J L; Leyva-Cobián, F; Méndez, E

    1988-01-01

    Protein HC and protein HC-IgA complex were measured in 18 different types of fluid sample from healthy subjects and patients with different illnesses to determine if the concentrations of protein HC and protein HC-IgA complexes could be used to monitor certain diseases, when measured separately. The normal values for HC ranged from between 0.30 mg/l in saliva and 11.7 mg/l in blood plasma. HC-IgA complex has a greater range, from undetectable concentrations (urine, colostrum, and cervical mucus) up to 59.2 mg/l in blood plasma. Undetectable concentrations of HC-IgA complex were also shown in serum from patients with IgA immune deficiency and in cerebrospinal fluid from patients with multiple sclerosis. Increased concentrations of HC were noted in bronchoalveolar fluid from a patient with pulmonary alveolar proteinosis, serum from patients with Behcet's syndrome, and in synovial fluid from patients with gout, chondrocalcinosis, and rheumatoid arthritis. On the other hand, the concentrations of HC-IgA complex were raised only in those patients with pulmonary alveolar proteinosis or rheumatoid arthritis. PMID:2463270

  4. The influence of different cucumariosides on immunogenicity of OmpF porin from Yersinia pseudotuberulosis as a model protein antigen of tubular immunostimulating complex

    NASA Astrophysics Data System (ADS)

    Sanina, N. M.; Chopenko, N. S.; Davydova, L. A.; Mazeika, A. N.; Portnyagina, O. Yu.; Kim, N. Yu.; Golotin, V. A.; Kostetsky, E. Y.; Shnyrov, V. L.

    2017-09-01

    Nanoparticulate tubular immunostimulating complex (TI-complex) is a novel promising adjuvant carrier of antigens allowing to create safe and effective vaccines of new generation. The adjuvant activity of TI-complexes based on monogalactosyldyacylglycerol (MGDG) from the sea alga Ulva lactuca and different triterpene glycosides cucumariosides (CDs) from marine invertebrate Cucumaria japonica and their fractions was studied to assess effects of different CDs on the immunogenicity of porin OmpF from Yersinia pseudotuberculosis (YOmpF). TI-complexes with cucumarioside A2-2 (CDA2-2) maximally stimulated anti-porin antibody production. Studies of protein intrinsic fluorescence showed that all CDs had a relaxing effect on the conformation of YOmpF, loosening peripheral region of protein and promoting exposure of the protein antigenic determinants to the water environment. The greatest immunostimulating effect of TI-complexes comprising CDA2-2 was accompanied by mild effect of this CD on the tertiary structure of protein antigen YOmpF, whereas cucumarioside E (CDE) and cucumarioside A2-4 (CDA2-4) caused especially sharp redistribution of spectral form of the YOmpF corresponding to the emission of an intrinsic protein fluorophore tryptophan.

  5. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  6. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    PubMed Central

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  7. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development[OPEN

    PubMed Central

    Nelson, Clark J.; Castleden, Ian

    2017-01-01

    We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. PMID:28138016

  8. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    PubMed

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  9. Molecular assembly of Clostridium botulinum progenitor M complex of type E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin

    2015-12-07

    Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. Furthermore, the similarity of the general architecture betweenmore » the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.« less

  10. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    PubMed

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  11. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    PubMed Central

    2011-01-01

    Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. Conclusions In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction. PMID:21241518

  12. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less

  13. Protein structure determination by exhaustive search of Protein Data Bank derived databases.

    PubMed

    Stokes-Rees, Ian; Sliz, Piotr

    2010-12-14

    Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.

  14. ABRF-PRG07: advanced quantitative proteomics study.

    PubMed

    Falick, Arnold M; Lane, William S; Lilley, Kathryn S; MacCoss, Michael J; Phinney, Brett S; Sherman, Nicholas E; Weintraub, Susan T; Witkowska, H Ewa; Yates, Nathan A

    2011-04-01

    A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups.

  15. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins.

    PubMed

    Porter, Morwenna Y; Xie, Keqiang; Pozharski, Edwin; Koelle, Michael R; Martemyanov, Kirill A

    2010-12-24

    Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.

  16. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat.

    PubMed

    Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu

    2017-05-01

    WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Membrane protein stoichiometry studied in intact mammalian cells using liquid-phase electron microscopy.

    PubMed

    DE Jonge, N

    2018-02-01

    Receptor membrane proteins in the plasma membranes of cells respond to extracellular chemical signals by conformational changes, spatial redistribution, and (re-)assembly into protein complexes, for example, into homodimers (pairs of the same protein type). The functional state of the proteins can be determined from information about how subunits are assembled into protein complexes. Stoichiometric information about the protein complex subunits, however, is generally not obtained from intact cells but from pooled material extracted from many cells, resulting in a lack of fundamental knowledge about the functioning of membrane proteins. First, functional states may dramatically differ from cell to cell on account of cell heterogeneity. Second, extracting the membrane proteins from the plasma membrane may lead to many artefacts. Liquid-phase scanning transmission electron microscopy (STEM), in short liquid STEM, is a new technique capable of determining the locations of individual membrane proteins within the intact plasma membranes of cells in liquid. Many tens of whole cells can readily be imaged. It is possible to analyse the stoichiometry of membrane proteins in single cells while accounting for heterogenic cell populations. Liquid STEM was used to image epidermal growth factor receptors in whole COS7 cells. A study of the dimerisation of the HER2 protein in breast cancer cells revealed the presence of rare cancer cells in which HER2 was in a different functional state than in the bulk cells. Stoichiometric information about receptors is essential not only for basic science but also for biomedical application because they present many important pharmaceutical targets. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. Characterization, stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS.

    PubMed

    Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale

    2009-12-01

    Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.

  19. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  20. Insight into the structure of photosynthetic LH2 aggregate from spectroscopy simulations.

    PubMed

    Rancova, Olga; Sulskus, Juozas; Abramavicius, Darius

    2012-07-12

    Using the electrostatic model of intermolecular interactions, we obtain the Frenkel exciton Hamiltonian parameters for the chlorophyll Qy band of a photosynthetic peripheral light harvesting complex LH2 of a purple bacteria Rhodopseudomonas acidophila from structural data. The intermolecular couplings are mostly determined by the chlorophyll relative positions, whereas the molecular transition energies are determined by the background charge distribution of the whole complex. The protonation pattern of titratable residues is used as a tunable parameter. By studying several protonation state scenarios for distinct protein groups and comparing the simulated absorption and circular dichroism spectra to experiment, we determine the most probable configuration of the protonation states of various side groups of the protein.

  1. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae

    PubMed Central

    Chen, Zhiqiang; Speck, Christian; Wendel, Patricia; Tang, Chunyan; Stillman, Bruce; Li, Huilin

    2008-01-01

    The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC–Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1–5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit–subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1–DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. PMID:18647841

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core tomore » position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.« less

  3. Production, crystallization and preliminary X-ray diffraction of the Gαs α-helical domain in complex with a nanobody.

    PubMed

    Triest, Sarah; Wohlkönig, Alexandre; Pardon, Els; Steyaert, Jan

    2014-11-01

    GPCR-G-protein complexes are one of the most important components of cell-signalling cascades. Extracellular signals are sensed by membrane-associated G-protein-coupled receptors (GPCRs) and transduced via G proteins towards intracellular effector molecules. Structural studies of these transient complexes are crucial to understand the molecular details of these interactions. Although a nucleotide-free GPCR-G-protein complex is stable, it is not an ideal sample for crystallization owing to the intrinsic mobility of the Gαs α-helical domain (AHD). To stabilize GPCR-G-protein complexes in a nucleotide-free form, nanobodies were selected that target the flexible GαsAHD. One of these nanobodies, CA9177, was co-crystallized with the GαsAHD. Initial crystals were obtained using the sitting-drop method in a sparse-matrix screen and further optimized. The crystals diffracted to 1.59 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=44.07, b=52.55, c=52.66 Å, α=90.00, β=107.89, γ=90.00°. The structure of this specific nanobody reveals its binding epitope on GαsAHD and will help to determine whether this nanobody could be used as crystallization chaperone for GPCR-G-protein complexes.

  4. Building a pseudo-atomic model of the anaphase-promoting complex.

    PubMed

    Kulkarni, Kiran; Zhang, Ziguo; Chang, Leifu; Yang, Jing; da Fonseca, Paula C A; Barford, David

    2013-11-01

    The anaphase-promoting complex (APC/C) is a large E3 ubiquitin ligase that regulates progression through specific stages of the cell cycle by coordinating the ubiquitin-dependent degradation of cell-cycle regulatory proteins. Depending on the species, the active form of the APC/C consists of 14-15 different proteins that assemble into a 20-subunit complex with a mass of approximately 1.3 MDa. A hybrid approach of single-particle electron microscopy and protein crystallography of individual APC/C subunits has been applied to generate pseudo-atomic models of various functional states of the complex. Three approaches for assigning regions of the EM-derived APC/C density map to specific APC/C subunits are described. This information was used to dock atomic models of APC/C subunits, determined either by protein crystallography or homology modelling, to specific regions of the APC/C EM map, allowing the generation of a pseudo-atomic model corresponding to 80% of the entire complex.

  5. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    PubMed

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  6. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  7. Time to face the fats: what can mass spectrometry reveal about the structure of lipids and their interactions with proteins?

    PubMed

    Brown, Simon H J; Mitchell, Todd W; Oakley, Aaron J; Pham, Huong T; Blanksby, Stephen J

    2012-09-01

    Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

  8. Time to Face the Fats: What Can Mass Spectrometry Reveal about the Structure of Lipids and Their Interactions with Proteins?

    NASA Astrophysics Data System (ADS)

    Brown, Simon H. J.; Mitchell, Todd W.; Oakley, Aaron J.; Pham, Huong T.; Blanksby, Stephen J.

    2012-09-01

    Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.

  9. Determining Protein Complex Structures Based on a Bayesian Model of in Vivo Förster Resonance Energy Transfer (FRET) Data*

    PubMed Central

    Bonomi, Massimiliano; Pellarin, Riccardo; Kim, Seung Joong; Russel, Daniel; Sundin, Bryan A.; Riffle, Michael; Jaschob, Daniel; Ramsden, Richard; Davis, Trisha N.; Muller, Eric G. D.; Sali, Andrej

    2014-01-01

    The use of in vivo Förster resonance energy transfer (FRET) data to determine the molecular architecture of a protein complex in living cells is challenging due to data sparseness, sample heterogeneity, signal contributions from multiple donors and acceptors, unequal fluorophore brightness, photobleaching, flexibility of the linker connecting the fluorophore to the tagged protein, and spectral cross-talk. We addressed these challenges by using a Bayesian approach that produces the posterior probability of a model, given the input data. The posterior probability is defined as a function of the dependence of our FRET metric FRETR on a structure (forward model), a model of noise in the data, as well as prior information about the structure, relative populations of distinct states in the sample, forward model parameters, and data noise. The forward model was validated against kinetic Monte Carlo simulations and in vivo experimental data collected on nine systems of known structure. In addition, our Bayesian approach was validated by a benchmark of 16 protein complexes of known structure. Given the structures of each subunit of the complexes, models were computed from synthetic FRETR data with a distance root-mean-squared deviation error of 14 to 17 Å. The approach is implemented in the open-source Integrative Modeling Platform, allowing us to determine macromolecular structures through a combination of in vivo FRETR data and data from other sources, such as electron microscopy and chemical cross-linking. PMID:25139910

  10. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  11. Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinase 2 by a Co(III) Schiff base complex

    PubMed Central

    Harney, Allison S.; Sole, Laura B.

    2012-01-01

    Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH3)2Cl [Co(acacen); where H2acacen is bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase 2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors. PMID:22729838

  12. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  13. Protein stains to detect antigen on membranes.

    PubMed

    D'souza, Anil; Scofield, R Hal

    2009-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after electrophoresis. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. Detection is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  14. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  15. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    PubMed

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cranberry Proanthocyanidins - Protein complexes for macrophage activation.

    PubMed

    Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D

    2017-09-20

    In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas the PAC-HEL complex had already reached the maximum IL-2 expression. Cranberry PAC may increase the rate of endocytosis of HEL and subsequent expression of IL-2 by the T-cell hybridomas. These results suggest that PAC-protein complexes modulate aspects of innate and acquired immune responses in macrophages.

  17. A combination of spin diffusion methods for the determination of protein-ligand complex structural ensembles.

    PubMed

    Pilger, Jens; Mazur, Adam; Monecke, Peter; Schreuder, Herman; Elshorst, Bettina; Bartoschek, Stefan; Langer, Thomas; Schiffer, Alexander; Krimm, Isabelle; Wegstroth, Melanie; Lee, Donghan; Hessler, Gerhard; Wendt, K-Ulrich; Becker, Stefan; Griesinger, Christian

    2015-05-26

    Structure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures. Applications are shown on the model system protein kinase A and the drug targets glycogen phosphorylase and soluble epoxide hydrolase (sEH). Multiplexing of several ligands improves the reliability of the scoring function further. The new score allows in the case of sEH detecting two binding modes of the ligand in its binding site, which was corroborated by X-ray analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative assessment of copper proteinates used as animal feed additives using ATR-FTIR spectroscopy and powder X-ray diffraction (PXRD) analysis.

    PubMed

    Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A

    2017-08-01

    The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2  > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperonemore » Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.« less

  20. Impact of Detergents on Membrane Protein Complex Isolation.

    PubMed

    Lee, Yu-Chen; Bååth, Jenny Arnling; Bastle, Ryan M; Bhattacharjee, Sonali; Cantoria, Mary Jo; Dornan, Mark; Gamero-Estevez, Enrique; Ford, Lenzie; Halova, Lenka; Kernan, Jennifer; Kürten, Charlotte; Li, Siran; Martinez, Jerahme; Sachan, Nalani; Sarr, Medoune; Shan, Xiwei; Subramanian, Nandhitha; Rivera, Keith; Pappin, Darryl; Lin, Sue-Hwa

    2018-01-05

    Detergents play an essential role during the isolation of membrane protein complexes. Inappropriate use of detergents may affect the native fold of the membrane proteins, their binding to antibodies, or their interaction with partner proteins. Here we used cadherin-11 (Cad11) as an example to examine the impact of detergents on membrane protein complex isolation. We found that mAb 1A5 could immunoprecipitate Cad11 when membranes were solubilized by dodecyl maltoside (DDM) but not by octylglucoside, suggesting that octylglucoside interferes with Cad11-mAb 1A5 interaction. Furthermore, we compared the effects of Brij-35, Triton X-100, cholate, CHAPSO, Zwittergent 3-12, Deoxy BIG CHAP, and digitonin on Cad11 solubilization and immunoprecipitation. We found that all detergents except Brij-35 could solubilize Cad11 from the membrane. Upon immunoprecipitation, we found that β-catenin, a known cadherin-interacting protein, was present in Cad11 immune complex among the detergents tested except Brij-35. However, the association of p120 catenin with Cad11 varied depending on the detergents used. Using isobaric tag for relative and absolute quantitation (iTRAQ) to determine the relative levels of proteins in Cad11 immune complexes, we found that DDM and Triton X-100 were more efficient than cholate in solubilization and immunoprecipitation of Cad11 and resulted in the identification of both canonical and new candidate Cad11-interacting proteins.

  1. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    PubMed

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.

    PubMed

    Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz

    2014-09-01

    Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.

  3. Mitochondrial Dysfunction in Schizophrenia: Determination of Mitochondrial Respiratory Activity in a Two-Hit Mouse Model.

    PubMed

    Monpays, Cécile; Deslauriers, Jessica; Sarret, Philippe; Grignon, Sylvain

    2016-08-01

    Schizophrenia is a chronic mental illness in which mitochondrial dysfunction has been suggested. Our laboratory recently developed a juvenile murine two-hit model (THM) of schizophrenia based on the combination of gestational inflammation, followed by juvenile restraint stress. We previously reported that relevant behaviors and neurochemical disturbances, including oxidative stress, were reversed by the antioxidant lipoic acid (LA), thereby pointing to the central role played by oxidative abnormalities and prompting us to investigate mitochondrial function. Mitochondrial activity was determined with the MitoXpress® commercial kit in two schizophrenia-relevant regions (prefrontal cortex (PFC) and striatum). Measurements were performed in state 3, with substrates for complex I- and complex II-induced respiratory activity (IRA). We observed an increase in complex I IRA in the PFC and striatum in both sexes but an increase in complex II activity only in males. LA treatment prevented this increase only in complex II IRA in males. Expression levels of the different respiratory chain complexes, as well as fission/fusion proteins and protein carbonylation, were unchanged. In conclusion, our juvenile schizophrenia THM shows an increase in mitochondrial activity reversed by LA, specifically in complex II IRA in males. Further investigations are required to determine the mechanisms of these modifications.

  4. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  5. The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry.

    PubMed

    Williams, Jason G; Tomer, Kenneth B; Hioe, Catarina E; Zolla-Pazner, Susan; Norris, Philip J

    2006-11-01

    In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.

  6. Specific antibody for pesticide residue determination produced by antibody-pesticide complex

    USDA-ARS?s Scientific Manuscript database

    A new method for specific antibody production was developed using antibody (Ab)-pesticide complex as a unique immunogen. Parathion (PA) was the targeted pesticide, and rabbit polyclonal antibody (Pab) and mouse monoclonal antibody (Mab) were used as carrier proteins. The Ab-PA complexes were genera...

  7. Effects of protein-pheromone complexation on correlated chemical shift modulations.

    PubMed

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-12-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand).

  8. Developing advanced X-ray scattering methods combined with crystallography and computation.

    PubMed

    Perry, J Jefferson P; Tainer, John A

    2013-03-01

    The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered as being part of one's repertoire of biophysical analyses, when conducting characterizations of protein and other macromolecular interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations†

    PubMed Central

    Liang, Shide; Li, Liwei; Hsu, Wei-Lun; Pilcher, Meaghan N.; Uversky, Vladimir; Zhou, Yaoqi; Dunker, A. Keith; Meroueh, Samy O.

    2009-01-01

    The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes. PMID:19113835

  10. Subunit mass fingerprinting of mitochondrial complex I.

    PubMed

    Morgner, Nina; Zickermann, Volker; Kerscher, Stefan; Wittig, Ilka; Abdrakhmanova, Albina; Barth, Hans-Dieter; Brutschy, Bernhard; Brandt, Ulrich

    2008-10-01

    We have employed laser induced liquid bead ion desorption (LILBID) mass spectrometry to determine the total mass and to study the subunit composition of respiratory chain complex I from Yarrowia lipolytica. Using 5-10 pmol of purified complex I, we could assign all 40 known subunits of this membrane bound multiprotein complex to peaks in LILBID subunit fingerprint spectra by comparing predicted protein masses to observed ion masses. Notably, even the highly hydrophobic subunits encoded by the mitochondrial genome were easily detectable. Moreover, the LILBID approach allowed us to spot and correct several errors in the genome-derived protein sequences of complex I subunits. Typically, the masses of the individual subunits as determined by LILBID mass spectrometry were within 100 Da of the predicted values. For the first time, we demonstrate that LILBID spectrometry can be successfully applied to a complex I band eluted from a blue-native polyacrylamide gel, making small amounts of large multiprotein complexes accessible for subunit mass fingerprint analysis even if they are membrane bound. Thus, the LILBID subunit mass fingerprint method will be of great value for efficient proteomic analysis of complex I and its assembly intermediates, as well as of other water soluble and membrane bound multiprotein complexes.

  11. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  12. F2Dock: Fast Fourier Protein-Protein Docking

    PubMed Central

    Bajaj, Chandrajit; Chowdhury, Rezaul; Siddavanahalli, Vinay

    2009-01-01

    The functions of proteins is often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination and understanding function and structure relationships. In this paper we extend our non-uniform fast Fourier transform docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F2Dock (F2 = Fast Fourier). We have calibrated F2Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F2Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F2Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy. PMID:21071796

  13. Proteomic Analysis of Mitotic RNA Polymerase II Reveals Novel Interactors and Association With Proteins Dysfunctional in Disease*

    PubMed Central

    Möller, André; Xie, Sheila Q.; Hosp, Fabian; Lang, Benjamin; Phatnani, Hemali P.; James, Sonya; Ramirez, Francisco; Collin, Gayle B.; Naggert, Jürgen K.; Babu, M. Madan; Greenleaf, Arno L.; Selbach, Matthias; Pombo, Ana

    2012-01-01

    RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology. PMID:22199231

  14. Accounting for observed small angle X-ray scattering profile in the protein-protein docking server ClusPro.

    PubMed

    Xia, Bing; Mamonov, Artem; Leysen, Seppe; Allen, Karen N; Strelkov, Sergei V; Paschalidis, Ioannis Ch; Vajda, Sandor; Kozakov, Dima

    2015-07-30

    The protein-protein docking server ClusPro is used by thousands of laboratories, and models built by the server have been reported in over 300 publications. Although the structures generated by the docking include near-native ones for many proteins, selecting the best model is difficult due to the uncertainty in scoring. Small angle X-ray scattering (SAXS) is an experimental technique for obtaining low resolution structural information in solution. While not sufficient on its own to uniquely predict complex structures, accounting for SAXS data improves the ranking of models and facilitates the identification of the most accurate structure. Although SAXS profiles are currently available only for a small number of complexes, due to its simplicity the method is becoming increasingly popular. Since combining docking with SAXS experiments will provide a viable strategy for fairly high-throughput determination of protein complex structures, the option of using SAXS restraints is added to the ClusPro server. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Insights into the Specificity of Lysine Acetyltransferases

    DOE PAGES

    Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; ...

    2014-11-07

    Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. In this paper, we report the structure of a GNATmore » in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Finally, our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.« less

  16. Visualizing chaperone-assisted protein folding

    DOE PAGES

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; ...

    2016-05-30

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperonemore » Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.« less

  17. Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design

    PubMed Central

    Singh, Onkar; Shillings, Anthony; Craggs, Peter; Wall, Ian; Rowland, Paul; Skarzynski, Tadeusz; Hobbs, Clare I; Hardwick, Phil; Tanner, Rob; Blunt, Michelle; Witty, David R; Smith, Kathrine J

    2013-01-01

    ASK1, a member of the MAPK Kinase Kinase family of proteins has been shown to play a key role in cancer, neurodegeneration and cardiovascular diseases and is emerging as a possible drug target. Here we describe a ‘replacement-soaking’ method that has enabled the high-throughput X-ray structure determination of ASK1/ligand complexes. Comparison of the X-ray structures of five ASK1/ligand complexes from 3 different chemotypes illustrates that the ASK1 ATP binding site is able to accommodate a range of chemical diversity and different binding modes. The replacement-soaking system is also able to tolerate some protein flexibility. This crystal system provides a robust platform for ASK1/ligand structure determination and future structure based drug design. PMID:23776076

  18. Improved Accuracy of Low Affinity Protein-Ligand Equilibrium Dissociation Constants Directly Determined by Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (KD) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of KD are compounded in the case of low affinity complexes. Here we present a KD measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (fsat) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the KD values determined by this method with in-solution KD literature values. The influence of the type of molecular interactions and instrumental setup on fsat is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  19. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex.

    PubMed

    Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh

    2016-01-01

    Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.

  20. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology.

    PubMed

    Horiuchi, Shohei; Winter, Gerhard

    2015-05-01

    Biological products often contain surfactants as stabilizers in their formulations to avoid surface adsorption, interfacial denaturation and aggregation of the protein drug and thereby improve the overall pharmaceutical quality of the product. On the other hand, when the surfactant concentration exceeds the critical micelle concentration (CMC) in a protein formulation, protein-loaded micelles could be formed which could potentially be the cause of immunogenicity. Therefore, the actual CMC and the presence of micelles generally need to be confirmed for each protein formulation because the CMC is affected by the presence of protein and other formulation factors. In this study, the ultrasonic resonance technology (URT) was applied to determine CMC of surfactants in pharmaceutical protein solutions in comparison with surface tensiometry (TE) and dynamic light scattering (DLS). According to our results, the ultrasonic resonance technology can easily and precisely provide CMCs of surfactants in protein formulations while it is not working for protein-free formulations. This indicates that the signal we measure with ultrasonic velocity comes from complex micelles composed of surfactant and protein molecules. DLS did not provide reliable data for protein/surfactant systems. Interestingly, a protein formulation with arginine and polysorbate 20 behaved differently when studied with TE and URT allowing us to see that arginine is bound to protein and that the complex interacts with the surfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units

    PubMed Central

    2011-01-01

    Background The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. Methods The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Results Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 μg, range 0 - 5705 μg) than local reprocessing (median 111.9 μg, range 0 - 6344 μg). Conclusions Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency. PMID:21219613

  2. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units.

    PubMed

    Smith, Gordon Wg; Goldie, Frank; Long, Steven; Lappin, David F; Ramage, Gordon; Smith, Andrew J

    2011-01-10

    The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p < 0.001) was recovered from instruments reprocessed centrally (median 20.62 μg, range 0 - 5705 μg) than local reprocessing (median 111.9 μg, range 0 - 6344 μg). Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  3. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.

    PubMed

    Rhinehardt, Kristen L; Vance, Stephen A; Mohan, Ram V; Sandros, Marinella; Srinivas, Goundla

    2018-06-01

    Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (R g ), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.

  4. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.

  5. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    PubMed

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  7. Structural changes induced by binding of the high-mobility group I protein to a mouse satellite DNA sequence.

    PubMed Central

    Slama-Schwok, A; Zakrzewska, K; Léger, G; Leroux, Y; Takahashi, M; Käs, E; Debey, P

    2000-01-01

    Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation. PMID:10777751

  8. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    PubMed

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  9. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks

    PubMed Central

    Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin

    2017-01-01

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211

  10. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes.

    PubMed

    Husbands, Aman Y; Aggarwal, Vasudha; Ha, Taekjip; Timmermans, Marja C P

    2016-08-01

    Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies. © 2016 American Society of Plant Biologists. All rights reserved.

  11. MobB protein stimulates nicking at the R1162 origin of transfer by increasing the proportion of complexed plasmid DNA.

    PubMed Central

    Perwez, T; Meyer, R

    1996-01-01

    An essential early step in conjugal mobilization of R1162, nicking of the DNA strand that is subsequently transferred, is carried out in the relaxosome, a complex of two plasmid-encoded proteins and DNA at the origin of transfer (oriT). A third protein, MobB, is also required for efficient mobilization. We show that in the cell this protein increases the proportion of molecules specifically nicked at oriT, resulting in lower yields of covalently closed molecules after alkaline extraction. These nicked molecules largely remain supercoiled, with unwinding presumably constrained by the relaxosome. MobB enhances the sensitivity of the oriT DNA to oxidation by permanganate, indicating that the protein acts by increasing the fraction of complexed molecules. Mutations that significantly reduce the amount of complexed DNA in the cell were isolated. However, plasmids with these mutations were mobilized at nearly the normal frequency, were nicked at a commensurate level, and still required MobB. Our results indicate that the frequency of transfer is determined both by the amount of time each molecule is in the nicked form and by the proportion of complexed molecules in the total population. PMID:8824623

  12. Oligomerization of G protein-coupled receptors: computational methods.

    PubMed

    Selent, J; Kaczor, A A

    2011-01-01

    Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.

  13. Active-State Model of a Dopamine D2 Receptor - Gαi Complex Stabilized by Aripiprazole-Type Partial Agonists

    PubMed Central

    Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter

    2014-01-01

    Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547

  14. Characterization of brightness and stoichiometry of bright particles by flow-fluorescence fluctuation spectroscopy.

    PubMed

    Johnson, Jolene; Chen, Yan; Mueller, Joachim D

    2010-11-03

    Characterization of bright particles at low concentrations by fluorescence fluctuation spectroscopy (FFS) is challenging, because the event rate of particle detection is low and fluorescence background contributes significantly to the measured signal. It is straightforward to increase the event rate by flow, but the high background continues to be problematic for fluorescence correlation spectroscopy. Here, we characterize the use of photon-counting histogram analysis in the presence of flow. We demonstrate that a photon-counting histogram efficiently separates the particle signal from the background and faithfully determines the brightness and concentration of particles independent of flow speed, as long as undersampling is avoided. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used to determine stoichiometry of protein complexes in vivo and in vitro. We apply flow-FFS to determine the stoichiometry of the group specific antigen protein within viral-like particles of the human immunodeficiency virus type-1 from the brightness. Our results demonstrate that flow-FFS is a sensitive method for the characterization of complex macromolecular particles at low concentrations. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations

    PubMed Central

    Seeliger, Daniel; de Groot, Bert L.

    2010-01-01

    Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034

  16. Papillomavirus E6 oncoproteins

    PubMed Central

    Vande Pol, Scott B.; Klingelhutz, Aloysius J.

    2013-01-01

    Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on the associated cellular proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression. PMID:23711382

  17. Challenging Residual Contamination of Instruments for Robotic Surgery in Japan.

    PubMed

    Saito, Yuhei; Yasuhara, Hiroshi; Murakoshi, Satoshi; Komatsu, Takami; Fukatsu, Kazuhiko; Uetera, Yushi

    2017-02-01

    BACKGROUND Recently, robotic surgery has been introduced in many hospitals. The structure of robotic instruments is so complex that updating their cleaning methods is a challenge for healthcare professionals. However, there is limited information on the effectiveness of cleaning for instruments for robotic surgery. OBJECTIVE To determine the level of residual contamination of instruments for robotic surgery and to develop a method to evaluate the cleaning efficacy for complex surgical devices. METHODS Surgical instruments were collected immediately after operations and/or after in-house cleaning, and the level of residual protein was measured. Three serial measurements were performed on instruments after cleaning to determine the changes in the level of contamination and the total amount of residual protein. The study took place from September 1, 2013, through June 30, 2015, in Japan. RESULTS The amount of protein released from robotic instruments declined exponentially. The amount after in-house cleaning was 650, 550, and 530 µg/instrument in the 3 serial measurements. The overall level of residual protein in each measurement was much higher for robotic instruments than for ordinary instruments (P<.0001). CONCLUSIONS Our data demonstrated that complete removal of residual protein from surgical instruments is virtually impossible. The pattern of decline differed depending on the instrument type, which reflected the complex structure of the instruments. It might be necessary to establish a new standard for cleaning using a novel classification according to the structural complexity of instruments, especially for those for robotic surgery. Infect Control Hosp Epidemiol 2017;38:143-146.

  18. EARP, a multisubunit tethering complex involved in endocytic recycling

    PubMed Central

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S.

    2015-01-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061

  19. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  20. Experimental Methods for Protein Interaction Identification and Characterization

    NASA Astrophysics Data System (ADS)

    Uetz, Peter; Titz, Björn; Cagney, Gerard

    There are dozens of methods for the detection of protein-protein interactions but they fall into a few broad categories. Fragment complementation assays such as the yeast two-hybrid (Y2H) system are based on split proteins that are functionally reconstituted by fusions of interacting proteins. Biophysical methods include structure determination and mass spectrometric (MS) identification of proteins in complexes. Biochemical methods include methods such as far western blotting and peptide arrays. Only the Y2H and protein complex purification combined with MS have been used on a larger scale. Due to the lack of data it is still difficult to compare these methods with respect to their efficiency and error rates. Current data does not favor any particular method and thus multiple experimental approaches are necessary to maximally cover the interactome of any target cell or organism.

  1. Moonlighting proteins in cancer.

    PubMed

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.

    PubMed

    Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J

    2014-07-15

    Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.

  3. Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex.

    PubMed

    Nakanishi, Osamu; Suetsugu, Shiro; Yamazaki, Daisuke; Takenawa, Tadaomi

    2007-03-01

    Members of the family of WASP-family Verprolin homologous proteins (WAVEs) activate the Arp2/3 complex to induce actin polymerization. The WAVE family comprises three proteins, namely, WAVE1, WAVE2 and WAVE3. Among them, WAVE2 is crucial for activation of the Arp2/3 complex for the formation of branched actin filaments in lamellipodia. Activation of mitogen-activated protein (MAP) kinase signalling results in the phosphorylation of the WAVE family proteins; however, which of the three WAVE proteins is phosphorylated is unclear. We found that in vitro WAVE2 is directly phosphorylated by a MAP kinase, i.e. extracellular signal-regulated kinase (ERK) 2. The proline-rich region and the verprolin, cofilin and acidic (VCA) region of WAVE2 were phosphorylated. Interestingly, the phosphorylated VCA region had a higher affinity for the Arp2/3 complex. However, the phosphorylation of the VCA region resulted in reduced induction of Arp2/3-mediated actin polymerization in vitro. The role of the phosphorylation of the proline-rich region was not determined.

  4. Elucidating complicated assembling systems in biology using size-and-shape analysis of sedimentation velocity data

    PubMed Central

    Chaton, Catherine T.

    2017-01-01

    Sedimentation velocity analytical ultracentrifugation (SV-AUC) has seen a resurgence in popularity as a technique for characterizing macromolecules and complexes in solution. SV-AUC is a particularly powerful tool for studying protein conformation, complex stoichiometry, and interacting systems in general. Deconvoluting velocity data to determine a sedimentation coefficient distribution c(s) allows for the study of either individual proteins or multi-component mixtures. The standard c(s) approach estimates molar masses of the sedimenting species based on determination of the frictional ratio (f/f0) from boundary shapes. The frictional ratio in this case is a weight-averaged parameter, which can lead to distortion of mass estimates and loss of information when attempting to analyze mixtures of macromolecules with different shapes. A two-dimensional extension of the c(s) analysis approach provides size-and-shape distributions that describe the data in terms of a sedimentation coefficient and frictional ratio grid. This allows for better resolution of species with very distinct shapes that may co-sediment and provides better molar mass determinations for multi-component mixtures. An example case is illustrated using globular and non-globular proteins of different masses with nearly identical sedimentation coefficients that could only be resolved using the size-and-shape distribution. Other applications of this analytical approach to complex biological systems are presented, focusing on proteins involved in the innate immune response to cytosolic microbial DNA. PMID:26412652

  5. LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate

    PubMed Central

    Won, Seoung Youn; Kim, Cha Yeon; Kim, Doyoun; Ko, Jaewon; Um, Ji Won; Lee, Sung Bae; Buck, Matthias; Kim, Eunjoon; Heo, Won Do; Lee, Jie-Oh; Kim, Ho Min

    2017-01-01

    The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network. PMID:29081732

  6. BLOC-1 Interacts with BLOC-2 and the AP-3 Complex to Facilitate Protein Trafficking on Endosomes

    PubMed Central

    Di Pietro, Santiago M.; Falcón-Pérez, Juan M.; Tenza, Danièle; Setty, Subba R.G.; Marks, Michael S.; Raposo, Graça

    2006-01-01

    The adaptor protein (AP)-3 complex is a component of the cellular machinery that controls protein sorting from endosomes to lysosomes and specialized related organelles such as melanosomes. Mutations in an AP-3 subunit underlie a form of Hermansky-Pudlak syndrome (HPS), a disorder characterized by abnormalities in lysosome-related organelles. HPS in humans can also be caused by mutations in genes encoding subunits of three complexes of unclear function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2, and -3. Here, we report that BLOC-1 interacts physically and functionally with AP-3 to facilitate the trafficking of a known AP-3 cargo, CD63, and of tyrosinase-related protein 1 (Tyrp1), a melanosomal membrane protein previously thought to traffic only independently of AP-3. BLOC-1 also interacts with BLOC-2 to facilitate Tyrp1 trafficking by a mechanism apparently independent of AP-3 function. Both BLOC-1 and -2 localize mainly to early endosome-associated tubules as determined by immunoelectron microscopy. These findings support the idea that BLOC-1 and -2 represent hitherto unknown components of the endosomal protein trafficking machinery. PMID:16837549

  7. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  8. Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men.

    PubMed

    Brinkmann, Christian; Przyklenk, Axel; Metten, Alexander; Schiffer, Thorsten; Bloch, Wilhelm; Brixius, Klara; Gehlert, Sebastian

    2017-11-01

    Mitophagy is a form of autophagy for the elimination of mitochondria. Mitochondrial content and function are reduced in the skeletal muscle of patients with type 2 diabetes mellitus (T2DM). Physical training has been shown to restore mitochondrial capacity in T2DM patients, but the role of mitophagy has not been examined in this context. This study analyzes the impact of a 3-month endurance training on important skeletal muscle mitophagy regulatory proteins and oxidative phosphorylation (OXPHOS) complexes in T2DM patients. Muscle biopsies were obtained from eight overweight/obese T2DM men (61±10 years) at T1 (6 weeks pre-training), T2 (1 week pre-training), and T3 (3 to 4 days post-training). Protein contents were determined by Western blotting. The training increased mitochondrial complex II significantly (T2-T3: +29%, p = 0.037). The protein contents of mitophagy regulatory proteins (phosphorylated form of forkhead box O3A (pFOXO3A), mitochondrial E3 ubiquitin protein ligase-1 (MUL1), Bcl-2/adenovirus E1B 19-kD interacting protein-3 (BNIP3), microtubule-associated protein 1 light chain-3B (the ratio LC3B-II/LC3B-I was determined)) did not differ significantly between T1, T2, and T3. The results imply that training-induced changes in OXPHOS subunits (significant increase in complex II) are not accompanied by changes in mitophagy regulatory proteins in T2DM men. Future studies should elucidate whether acute exercise might affect mitophagic processes in T2DM patients (and whether a transient regulation of mitophagy regulatory proteins is evident) to fully clarify the role of physical activity and mitophagy for mitochondrial health in this particular patient group.

  9. Filamin 2 (Fln2)

    PubMed Central

    Thompson, Terri G.; Chan, Yiu-Mo; Hack, Andrew A.; Brosius, Melissa; Rajala, Michael; Lidov, Hart G.W.; McNally, Elizabeth M.; Watkins, Simon; Kunkel, Louis M.

    2000-01-01

    Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin–glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin–glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a γ- and δ-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy. PMID:10629222

  10. Fluorescence turn-on responses of anionic and cationic conjugated polymers toward proteins: effect of electrostatic and hydrophobic interactions.

    PubMed

    Pu, Kan-Yi; Liu, Bin

    2010-03-11

    Cationic and anionic poly(fluorenyleneethynylene-alt-benzothiadiazole)s (PFEBTs) are designed and synthesized via Sonagashira coupling reaction to show light-up signatures toward proteins. Due to the charge transfer character of the excited states, the fluorescence of PFEBTs is very weak in aqueous solution, while their yellow fluorescence can be enhanced by polymer aggregation. PFEBTs show fluorescence turn-on rather than fluorescence quenching upon complexation with proteins. Both electrostatic and hydrophobic interactions between PFEBTs and proteins are found to improve the polymer fluorescence, the extent of which is dependent on the nature of the polymer and the protein. Changes in solution pH adjust the net charges of proteins, providing an effective way to manipulate electrostatic interactions and in turn the increment in the polymer fluorescence. In addition, the effect of protein digestion on the fluorescence of polymer/protein complexes is probed. The results indicate that electrostatic interaction induced polymer fluorescence increase cannot be substantially reduced through cleaving protein into peptide fragments. In contrast, hydrophobic interactions, mainly determined by the hydrophobicity of proteins, can be minimized by digestion, imparting a light-off signature for the polymer/protein complexes. This study thus not only highlights the opportunities of exerting nonspecific interactions for protein sensing but also reveals significant implications for biosensor design.

  11. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  12. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Thompson, Vicki S; Lacey, Jeffrey A; Gentillon, Cynthia A; Apel, William A

    2015-03-03

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  13. DockTrina: docking triangular protein trimers.

    PubMed

    Popov, Petr; Ritchie, David W; Grudinin, Sergei

    2014-01-01

    In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein-protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three-dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair-wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair-wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano-d.inrialpes.fr/software/docktrina. Copyright © 2013 Wiley Periodicals, Inc.

  14. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGES

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  15. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'.

    PubMed

    Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter

    2010-10-01

    Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  16. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    USDA-ARS?s Scientific Manuscript database

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  17. Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.

    PubMed

    Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu

    2013-05-01

    The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.

  18. Elucidating Proteoform Families from Proteoform Intact-Mass and Lysine-Count Measurements

    PubMed Central

    2016-01-01

    Proteomics is presently dominated by the “bottom-up” strategy, in which proteins are enzymatically digested into peptides for mass spectrometric identification. Although this approach is highly effective at identifying large numbers of proteins present in complex samples, the digestion into peptides renders it impossible to identify the proteoforms from which they were derived. We present here a powerful new strategy for the identification of proteoforms and the elucidation of proteoform families (groups of related proteoforms) from the experimental determination of the accurate proteoform mass and number of lysine residues contained. Accurate proteoform masses are determined by standard LC–MS analysis of undigested protein mixtures in an Orbitrap mass spectrometer, and the lysine count is determined using the NeuCode isotopic tagging method. We demonstrate the approach in analysis of the yeast proteome, revealing 8637 unique proteoforms and 1178 proteoform families. The elucidation of proteoforms and proteoform families afforded here provides an unprecedented new perspective upon proteome complexity and dynamics. PMID:26941048

  19. Differential Dynamic Engagement within 24 SH3 Domain: Peptide Complexes Revealed by Co-Linear Chemical Shift Perturbation Analysis

    PubMed Central

    Stollar, Elliott J.; Lin, Hong; Davidson, Alan R.; Forman-Kay, Julie D.

    2012-01-01

    There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences. PMID:23251481

  20. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin

    NASA Astrophysics Data System (ADS)

    Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.

    2016-11-01

    An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.

  1. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and their Complexes with Proteins

    PubMed Central

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2016-01-01

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software. PMID:26574454

  2. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    PubMed

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  3. Split green fluorescent protein as a modular binding partner for protein crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.

    2013-12-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was testedmore » by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.« less

  4. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  5. Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1.

    PubMed

    Lalev, A I; Abeyrathne, P D; Nazar, R N

    2000-09-08

    The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed. Copyright 2000 Academic Press.

  6. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia

    2008-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage andmore » its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins.« less

  7. The network organization of protein interactions in the spliceosome is reproduced by the simple rules of food-web models

    PubMed Central

    Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.

    2015-01-01

    The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080

  8. A Viral Pilot for HCMV Navigation?

    PubMed

    Adler, Barbara

    2015-07-15

    gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host.

  9. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New strategy for protein interactions and application to structure-based drug design

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoqin

    One of the greatest challenges in computational biophysics is to predict interactions between biological molecules, which play critical roles in biological processes and rational design of therapeutic drugs. Biomolecular interactions involve delicate interplay between multiple interactions, including electrostatic interactions, van der Waals interactions, solvent effect, and conformational entropic effect. Accurate determination of these complex and subtle interactions is challenging. Moreover, a biological molecule such as a protein usually consists of thousands of atoms, and thus occupies a huge conformational space. The large degrees of freedom pose further challenges for accurate prediction of biomolecular interactions. Here, I will present our development of physics-based theory and computational modeling on protein interactions with other molecules. The major strategy is to extract microscopic energetics from the information embedded in the experimentally-determined structures of protein complexes. I will also present applications of the methods to structure-based therapeutic design. Supported by NSF CAREER Award DBI-0953839, NIH R01GM109980, and the American Heart Association (Midwest Affiliate) [13GRNT16990076].

  11. Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly.

    PubMed

    Bogenhagen, Daniel F; Ostermeyer-Fay, Anne G; Haley, John D; Garcia-Diaz, Miguel

    2018-02-13

    Mammalian mtDNA encodes only 13 proteins, all essential components of respiratory complexes, synthesized by mitochondrial ribosomes. Mitoribosomes contain greatly truncated RNAs transcribed from mtDNA, including a structural tRNA in place of 5S RNA as a scaffold for binding 82 nucleus-encoded proteins, mitoribosomal proteins (MRPs). Cryoelectron microscopy (cryo-EM) studies have determined the structure of the mitoribosome, but its mechanism of assembly is unknown. Our SILAC pulse-labeling experiments determine the rates of mitochondrial import of MRPs and their assembly into intact mitoribosomes, providing a basis for distinguishing MRPs that bind at early and late stages in mitoribosome assembly to generate a working model for mitoribosome assembly. Mitoribosome assembly is a slow process initiated at the mtDNA nucleoid driven by excess synthesis of individual MRPs. MRPs that are tightly associated in the structure frequently join the complex in a coordinated manner. Clinically significant MRP mutations reported to date affect proteins that bind early on during assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Molecular cloning and expression of a gene for a factor which stabilizes formation of inhibitor-mitochondrial ATPase complex from Saccharomyces cerevisiae.

    PubMed

    Akashi, A; Yoshida, Y; Nakagoshi, H; Kuroki, K; Hashimoto, T; Tagawa, K; Imamoto, F

    1988-10-01

    Stabilizing factor, a 9 kDa protein, stabilizes and facilitates formation of the complex between mitochondrial ATP synthase and its intrinsic inhibitor protein. A clone containing the gene encoding the 9 kDa protein was selected from a yeast genomic library to determine the structure of its precursor protein. As deduced from the nucleotide sequence, the precursor of the yeast 9 kDa stabilizing factor contains 86 amino acid residues and has a molecular weight of 10,062. From the predicted sequence we infer that the stabilizing factor precursor contains a presequence of 23 amino acid residues at its amino terminus. We also used S1 mapping to determine the initiation site of transcription under glucose-repressed or derepressed conditions. These experiments suggest that transcription of this gene starts at three different sites and that only one of them is not affected by the presence of glucose.

  13. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of hostmore » range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies. IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and provide a well-characterized tool to further study them.« less

  14. Emulsifying and foaming properties of amaranth seed protein isolates.

    PubMed

    Fidantsi, A; Doxastakis, G

    2001-07-01

    The emulsifying and foaming properties of amaranth seed protein isolates prepared by wet extraction methods, such as isoelectric precipitation and dialysis, were investigated. The various isolates differ from each other in many ways. The isolate prepared by isoelectric precipitation mainly contains the globulin but not the albumin fraction and a considerable amount of polysaccharides, while the other isolate prepared by the dialysis method contains all the globulin and albumin fractions. The protein-polysaccharide complexes enhance emulsion stability due to steric repulsion effects. Measurements of the emulsion stability show that the studied protein isolates act as effective stabilizing agents. Foam expansion is dominated by the surface activity and availability of protein in the solution, while foam stability is determined by the properties of the interfacial layer. The results show that amaranth protein isolates act as an effective foaming agent. Both foaming properties intensified from the presence of protein-polysaccharide complexes.

  15. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  16. Interdependency of formation and localisation of the Min complex controls symmetric plastid division.

    PubMed

    Maple, Jodi; Møller, Simon G

    2007-10-01

    Plastid division represents a fundamental biological process essential for plant development; however, the molecular basis of symmetric plastid division is unclear. AtMinE1 plays a pivotal role in selection of the plastid division site in concert with AtMinD1. AtMinE1 localises to discrete foci in chloroplasts and interacts with AtMinD1, which shows a similar localisation pattern. Here, we investigate the importance of Min protein complex formation during the chloroplast division process. Dissection of the assembly of the Min protein complex and determination of the interdependency of complex assembly and localisation in planta allow us to present a model of the molecular basis of selection of the division site in plastids. Moreover, functional analysis of AtMinE1 in bacteria demonstrates the level of functional conservation and divergence of the plastidic MinE proteins.

  17. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  18. Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1.

    PubMed

    Hufnagel, Peter; Rabus, Ralf

    2006-01-01

    The rapidly developing proteomics technologies help to advance the global understanding of physiological and cellular processes. The lifestyle of a study organism determines the type and complexity of a given proteomic project. The complexity of this study is characterized by a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of the aromatic-degrading, denitrifying bacterium 'Aromatoleum' sp. strain EbN1. Differences in protein profiles were determined using a gel-based approach. Protein identification was based on a progressive application of MALDI-TOF-MS, MALDI-TOF-MS/MS and LC-ESI-MS/MS. This progression was result-driven and automated by software control. The identification rate was increased by the assembly of a project-specific list of background signals that was used for internal calibration of the MS spectra, and by the combination of two search engines using a dedicated MetaScoring algorithm. In total, intelligent bioinformatics could increase the identification yield from 53 to 70% of the analyzed 5,050 gel spots; a total of 556 different proteins were identified. MS identification was highly reproducible: most proteins were identified more than twice from parallel 2DE gels with an average sequence coverage of >50% and rather restrictive score thresholds (Mascot >or=95, ProFound >or=2.2, MetaScore >or=97). The MS technologies and bioinformatics tools that were implemented and integrated to handle this complex proteomic project are presented. In addition, we describe the basic principles and current developments of the applied technologies and provide an overview over the current state of microbial proteome research. Copyright (c) 2006 S. Karger AG, Basel.

  19. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs).

    PubMed

    Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun

    2015-01-23

    Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Identifying Protein-protein Interaction in Drosophila Adult Heads by Tandem Affinity Purification (TAP)

    PubMed Central

    Tian, Xiaolin; Zhu, Mingwei; Li, Long; Wu, Chunlai

    2013-01-01

    Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond. PMID:24335807

  1. Protein Determinants of Meiotic DNA Break Hotspots

    PubMed Central

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  2. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  3. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  4. Toroidal surface complexes of bacteriophage {phi}12 are responsible for host-cell attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui

    2011-06-05

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage {phi}12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of {phi}12 demonstrates that the gene for the hexameric spike is located in {phi}12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimatesmore » derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: > Subtomogram averaging reveals enhanced detail of a {phi}12 cystovirus surface protein complex. > The surface protein complex has a toroidal shape and six-fold symmetry. > It is encoded by the medium-size genome segment. > The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.« less

  5. Identification of protein–protein interfaces by decreased amide proton solvent accessibility

    PubMed Central

    Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.

    1998-01-01

    Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953

  6. Energetics and Dynamics Across the Bcl-2-Regulated Apoptotic Pathway Reveal Distinct Evolutionary Determinants of Specificity and Affinity.

    PubMed

    Ivanov, Stefan M; Huber, Roland G; Warwicker, Jim; Bond, Peter J

    2016-11-01

    Critical regulatory pathways are replete with instances of intra- and interfamily protein-protein interactions due to the pervasiveness of gene duplication throughout evolution. Discerning the specificity determinants within these systems has proven a challenging task. Here, we present an energetic analysis of the specificity determinants within the Bcl-2 family of proteins (key regulators of the intrinsic apoptotic pathway) via a total of ∼20 μs of simulation of 60 distinct protein-protein complexes. We demonstrate where affinity and specificity of protein-protein interactions arise across the family, and corroborate our conclusions with extensive experimental evidence. We identify energy and specificity hotspots that may offer valuable guidance in the design of targeted therapeutics for manipulating the protein-protein interactions within the apoptosis-regulating pathway. Moreover, we propose a conceptual framework that allows us to quantify the relationship between sequence, structure, and binding energetics. This approach may represent a general methodology for investigating other paralogous protein-protein interaction sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  8. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  9. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  10. The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control

    PubMed Central

    Halter, David; Collart, Martine A.; Panasenko, Olesya O.

    2014-01-01

    Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968

  11. Hot spot computational identification: Application to the complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10

    NASA Astrophysics Data System (ADS)

    Moreira, I. S.; Fernandes, P. A.; Ramos, M. J.

    The definition and comprehension of the hot spots in an interface is a subject of primary interest for a variety of fields, including structure-based drug design. Therefore, to achieve an alanine mutagenesis computational approach that is at the same time accurate and predictive, capable of reproducing the experimental mutagenesis values is a major challenge in the computational biochemistry field. Antibody/protein antigen complexes provide one of the greatest models to study protein-protein recognition process because they have three fundamentally features: specificity, high complementary association and a small epitope restricted to the diminutive complementary determining regions (CDR) region, while the remainder of the antibody is largely invariant. Thus, we apply a computational mutational methodological approach to the study of the antigen-antibody complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10. A critical evaluation that focuses essentially on the limitations and advantages between different computational methods for hot spot determination, as well as between experimental and computational methodological approaches, is presented.

  12. Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appolaire, Alexandre; Girard, Eric; Colombo, Matteo

    2014-11-01

    The present work illustrates that small-angle neutron scattering, deuteration and contrast variation, combined with in vitro particle reconstruction, constitutes a very efficient approach to determine subunit architectures in large, symmetric protein complexes. In the case of the 468 kDa heterododecameric TET peptidase machine, it was demonstrated that the assembly of the 12 subunits is a highly controlled process and represents a way to optimize the catalytic efficiency of the enzyme. The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexesmore » is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.« less

  13. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie

    2004-12-05

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95%more » of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells.« less

  14. Where to attach dye molecules to a protein: lessons from the computer program WHAT IF

    NASA Astrophysics Data System (ADS)

    Altenberg-Greulich, B.; Vriend, G.

    2001-10-01

    Genomic and proteomic projects are producing a flood of data that all require interpretation which often is best performed based on a three dimensional structure of the molecule(s) involved. These structures can be determined experimentally, or modelled by homology. Because of the complexity of the questions and the heterogeneity of the data, the software used for modelling proteins must become even more versatile. We describe several case studies in which the questions asked, the data, and the requirements on the software all are very different. It is shown how structural knowledge about a protein helps to determine the best place to bind a fluorescent dye. Such dyes are needed to determine protein-protein, protein-DNA interactions or intrinsic fluorescence microscopy. Further, using dyes you can trace molecules in the cell and thus get a handle on subcellular localisation. The first example (OCT-1) involves the search for free amino groups in a protein-DNA complex. The second example (BPTI) is a case, in which the amino acid distribution shows that amino groups are spread all over the structure, so that the natural structure has to be modified to get an answer. The third example (HFE) involves a model built by homology. In this case the amino group distribution can also be predicted. All these studies were performed using the WHAT IF software package. This package is available including source code, documentation, etc. See http://www.cmbi.kun.nl/whatif/

  15. The Biophysics Microgravity Initiative

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  16. Visual Reading Method for Detection of Bacterial Tannase

    PubMed Central

    Osawa, R.; Walsh, T. P.

    1993-01-01

    Tannase activity of bacteria capable of degrading tannin-protein complexes was determined by a newly developed visual reading method. The method is based on two phenomena: (i) the ability of tannase to hydrolyze methyl gallate to release free gallic acid and (ii) the green to brown coloration of gallic acid after prolonged exposure to oxygen in an alkaline condition. The method has been successfully used to detect the presence of tannase in the cultures of bacteria capable of degrading tannin-protein complexes. PMID:16348918

  17. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  18. Microgravity

    NASA Image and Video Library

    2000-05-05

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  20. Multiple scales and phases in discrete chains with application to folded proteins

    NASA Astrophysics Data System (ADS)

    Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.

    2018-05-01

    Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.

  1. Insights into the Phosphoryl Transfer Catalyzed by cAMP-Dependent Protein Kinase: An X-ray Crystallographic Study of Complexes with Various Metals and Peptide Substrate SP20

    PubMed Central

    2013-01-01

    X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg2+, Ca2+, Sr2+, and Ba2+ metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg2+, nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5′-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues. PMID:23672593

  2. Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering.

    PubMed

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-02-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.

  3. Determination of the Topological Shape of Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacteria in the Detergent Solution by Small-Angle X-Ray Scattering

    PubMed Central

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-01-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 Å, a long axis of 110 Å, and a short axis of 85 Å . After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 Å, a long axis of 80 Å, and a short axis of 55 Å. In contrast to the cylindrical crystal structure with a height of 40 Å and a diameter of 68 Å, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59—consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules. PMID:14747343

  4. Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex.

    PubMed

    Rodnick-Smith, Max; Luan, Qing; Liu, Su-Ling; Nolen, Brad J

    2016-07-05

    The Arp2/3 (Actin-related proteins 2/3) complex is activated by WASP (Wiskott-Aldrich syndrome protein) family proteins to nucleate branched actin filaments that are important for cellular motility. WASP recruits actin monomers to the complex and stimulates movement of Arp2 and Arp3 into a "short-pitch" conformation that mimics the arrangement of actin subunits within filaments. The relative contribution of these functions in Arp2/3 complex activation and the mechanism by which WASP stimulates the conformational change have been unknown. We purified budding yeast Arp2/3 complex held in or near the short-pitch conformation by an engineered covalent cross-link to determine if the WASP-induced conformational change is sufficient for activity. Remarkably, cross-linked Arp2/3 complex bypasses the need for WASP in activation and is more active than WASP-activated Arp2/3 complex. These data indicate that stimulation of the short-pitch conformation is the critical activating function of WASP and that monomer delivery is not a fundamental requirement for nucleation but is a specific requirement for WASP-mediated activation. During activation, WASP limits nucleation rates by releasing slowly from nascent branches. The cross-linked complex is inhibited by WASP's CA region, even though CA potently stimulates cross-linking, suggesting that slow WASP detachment masks the activating potential of the short-pitch conformational switch. We use structure-based mutations and WASP-Arp fusion chimeras to determine how WASP stimulates movement toward the short-pitch conformation. Our data indicate that WASP displaces the autoinhibitory Arp3 C-terminal tail from a hydrophobic groove at Arp3's barbed end to destabilize the inactive state, providing a mechanism by which WASP stimulates the short-pitch conformation and activates Arp2/3 complex.

  5. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  6. Rescore protein-protein docked ensembles with an interface contact statistics.

    PubMed

    Mezei, Mihaly

    2017-02-01

    The recently developed statistical measure for the type of residue-residue contact at protein complex interfaces, based on a parameter-free definition of contact, has been used to define a contact score that is correlated with the likelihood of correctness of a proposed complex structure. Comparing the proposed contact scores on the native structure and on a set of model structures the proposed measure was shown to generally favor the native structure but in itself was not able to reliably score the native structure to be the best. Adjusting the scores of redocking experiments with the contact score showed that the adjusted score was able to move up the ranking of the native-like structure among the proposed complexes when the native-like was not ranked the best by the respective program. Tests on docking of unbound proteins compared the contact scores of the complexes with the contact score of the crystal structure again showing the tendency of the contact score to favor native-like conformations. The possibility of using the contact score to improve the determination of biological dimers in a crystal structure was also explored. Proteins 2017; 85:235-241. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    PubMed

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy. PMID:26098630

  9. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif.

    PubMed

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  10. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD.

    PubMed

    White, Courtney L; Kitich, Aleksandar; Gober, James W

    2010-05-01

    In Caulobacter crescentus, intact cables of the actin homologue, MreB, are required for the proper spatial positioning of MurG which catalyses the final step in peptidoglycan precursor synthesis. Similarly, in the periplasm, MreC controls the spatial orientation of the penicillin binding proteins and a lytic transglycosylase. We have now found that MreB cables are required for the organization of several other cytosolic murein biosynthetic enzymes such as MraY, MurB, MurC, MurE and MurF. We also show these proteins adopt a subcellular pattern of localization comparable to MurG, suggesting the existence of cytoskeletal-dependent interactions. Through extensive two-hybrid analyses, we have now generated a comprehensive interaction map of components of the bacterial morphogenetic complex. In the cytosol, this complex contains both murein biosynthetic enzymes and morphogenetic proteins, including RodA, RodZ and MreD. We show that the integral membrane protein, MreD, is essential for lateral peptidoglycan synthesis, interacts with the precursor synthesizing enzymes MurG and MraY, and additionally, determines MreB localization. Our results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidoglycan synthesis.

  11. Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome.

    PubMed

    Balek, Lukas; Nemec, Pavel; Konik, Peter; Kunova Bosakova, Michaela; Varecha, Miroslav; Gudernova, Iva; Medalova, Jirina; Krakow, Deborah; Krejci, Pavel

    2018-01-01

    Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assembly of the Herpes Simplex Virus Capsid: Preformed Triplexes Bind to the Nascent Capsid

    PubMed Central

    Spencer, Juliet V.; Newcomb, William W.; Thomsen, Darrell R.; Homa, Fred L.; Brown, Jay C.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid. PMID:9557680

  13. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II.

    PubMed Central

    Lee, A I; Thornber, J P

    1995-01-01

    The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems. PMID:7724673

  14. Quantitative Analysis of Endocytic Recycling of Membrane Proteins by Monoclonal Antibody-Based Recycling Assays.

    PubMed

    Blagojević Zagorac, Gordana; Mahmutefendić, Hana; Maćešić, Senka; Karleuša, Ljerka; Lučin, Pero

    2017-03-01

    In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons

    USDA-ARS?s Scientific Manuscript database

    The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...

  16. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  17. Transformation of the US bread wheat Butte 86 and silencing of omega-5 gliadin genes

    USDA-ARS?s Scientific Manuscript database

    Complex groups of proteins determine the unique functional properties of wheat flour and are sometimes responsible for food intolerances and allergies in individuals that consume wheat products. Transgenic approaches can be used to explore the functions of different flour proteins, but are limited t...

  18. Surflex-Dock: Docking benchmarks and real-world application

    NASA Astrophysics Data System (ADS)

    Spitzer, Russell; Jain, Ajay N.

    2012-06-01

    Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.

  19. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    PubMed

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  1. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  2. Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

    PubMed

    O'Neill, Sharon; Mathis, Magalie; Kovačič, Lidija; Zhang, Suisheng; Reinhardt, Jürgen; Scholz, Dimitri; Schopfer, Ulrich; Bouhelal, Rochdi; Knaus, Ulla G

    2018-06-08

    Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements

    PubMed Central

    Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649

  4. Direct Maximization of Protein Identifications from Tandem Mass Spectra*

    PubMed Central

    Spivak, Marina; Weston, Jason; Tomazela, Daniela; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18–34% more protein identifications than the current state of the art approaches. PMID:22052992

  5. Immersion freezing of ice nucleation active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached to the outer membrane of intact bacteria or membrane fragments, (c) the temperature range in which heterogeneous droplet freezing occurs, and the fraction of droplets being able to freeze, both depend on the actual number of INA protein complexes present in the droplet ensemble, and (d) possible artifacts suspected to occur in connection with the drop freezing method, i.e., the method frequently used by biologist for quantifying ice nucleation behaviour, are of minor importance, at least for substances such as P. syringae, which induce freezing at comparably high temperatures. The last statement implies that for single ice nucleation entities such as INA protein complexes, it is the number of entities present in the droplet population, and the entities' nucleation rate, which control the freezing behaviour of the droplet population. Quantities such as ice active surface site density are not suitable in this context. The results obtained in this study allow a different perspective on the quantification of the immersion freezing behaviour of bacterial ice nucleation.

  6. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    PubMed Central

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  7. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis

    PubMed Central

    Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.

    2013-01-01

    Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689

  8. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain.

    PubMed

    Bryant, Anne-Marie; Davis, Jenny; Cai, Shuowei; Singh, Bal Ram

    2013-02-01

    Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)(-1)cm(-1). These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.

  9. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  10. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  11. A novel inert crystal delivery medium for serial femtosecond crystallography

    DOE PAGES

    Conrad, Chelsie E.; Basu, Shibom; James, Daniel; ...

    2015-06-30

    Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less

  12. Split green fluorescent protein as a modular binding partner for protein crystallization.

    PubMed

    Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-12-01

    A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.

  13. Assay Development for the Determination of Phosphorylation Stoichiometry using MRM methods with and without Phosphatase Treatment: Application to Breast Cancer Signaling Pathways

    PubMed Central

    Domanski, Dominik; Murphy, Leigh C.; Borchers, Christoph H.

    2010-01-01

    We have developed a phosphatase-based phosphopeptide quantitation (PPQ) method for determining phosphorylation stoichiometry in complex biological samples. This PPQ method is based on enzymatic dephosphorylation, combined with specific and accurate peptide identification and quantification by multiple reaction monitoring (MRM) detection with stable-isotope-labeled standard peptides. In contrast with the classical MRM methods for the quantitation of phosphorylation stoichiometry, the PPQ-MRM method needs only one non-phosphorylated SIS (stable isotope-coded standard) and two analyses (one for the untreated and one for the phosphatase-treated sample), from which the expression and modification levels can accurately be determined. From these analyses, the % phosphorylation can be determined. In this manuscript, we compare the PPQ-MRM method with an MRM method without phosphatase, and demonstrate the application of these methods to the detection and quantitation of phosphorylation of the classic phosphorylated breast cancer biomarkers (ERα and HER2), and for phosphorylated RAF and ERK1, which also contain phosphorylation sites with important biological implications. Using synthetic peptides spiked into a complex protein digest, we were able to use our PPQ-MRM method to accurately determine the total phosphorylation stoichiometry on specific peptides, as well as the absolute amount of the peptide and phosphopeptide present. Analyses of samples containing ERα protein revealed that the PPQ-MRM is capable of determining phosphorylation stoichiometry in proteins from cell lines, and is in good agreement with determinations obtained using the direct MRM approach in terms of phosphorylation and total protein amount. PMID:20524616

  14. Computing approximate solutions of the protein structure determination problem using global constraints on discrete crystal lattices.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Pontelli, Enrico

    2010-01-01

    Crystal lattices are discrete models of the three-dimensional space that have been effectively employed to facilitate the task of determining proteins' natural conformation. This paper investigates alternative global constraints that can be introduced in a constraint solver over discrete crystal lattices. The objective is to enhance the efficiency of lattice solvers in dealing with the construction of approximate solutions of the protein structure determination problem. Some of them (e.g., self-avoiding-walk) have been explicitly or implicitly already used in previous approaches, while others (e.g., the density constraint) are new. The intrinsic complexities of all of them are studied and preliminary experimental results are discussed.

  15. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Exocyst Complex Protein Expression in the Human Placenta

    PubMed Central

    Gonzalez, I.M.; Ackerman, W.E.; Vandre, D.D.; Robinson, J.M.

    2014-01-01

    Introduction Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. Objective While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. Methods A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. Results The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion Discussion/Conclusion Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst’s regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion PMID:24856041

  17. Characterization of highly concentrated antibody solution - A toolbox for the description of protein long-term solution stability

    PubMed Central

    Schermeyer, Marie-Therese; Wöll, Anna K.; Eppink, Michel; Hubbuch, Jürgen

    2017-01-01

    ABSTRACT High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability. PMID:28617076

  18. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds.

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds are known to form soluble and insoluble complexes with proteins. The objective of this study was to determine if phenolics, such as, caffeic, chlorogenic, and ferulic acids form insoluble and irreversible complexes with major peanut allergens. We also tested whether such complexat...

  19. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Langmuir-Blodgett and X-ray diffraction studies of isolated photosystem II reaction centers in monolayers and multilayers: physical dimensions of the complex.

    PubMed

    Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M

    1997-04-01

    The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.

  1. A Viral Pilot for HCMV Navigation?

    PubMed Central

    Adler, Barbara

    2015-01-01

    gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein–Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host. PMID:26184287

  2. Corolla Is a Novel Protein That Contributes to the Architecture of the Synaptonemal Complex of Drosophila

    PubMed Central

    Collins, Kimberly A.; Unruh, Jay R.; Slaughter, Brian D.; Yu, Zulin; Lake, Cathleen M.; Nielsen, Rachel J.; Box, Kimberly S.; Miller, Danny E.; Blumenstiel, Justin P.; Perera, Anoja G.; Malanowski, Kathryn E.; Hawley, R. Scott

    2014-01-01

    In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females. PMID:24913682

  3. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells.

    PubMed

    Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung

    2015-01-01

    Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.

  4. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach

    PubMed Central

    P., Sneha; D., Thirumal Kumar; C., George Priya Doss; R., Siva; Zayed, Hatem

    2017-01-01

    Maturity-onset diabetes of the young type 3 (MODY3) is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A) with MODY3. Missense mutations in the POU homeodomain (POUH) of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203) in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD) simulations (50ns) revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important tool for elucidating the impact and affinity of mutations in DNA-protein interactions and understanding their function. PMID:28410371

  5. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli.

    PubMed

    He, Xuesong; Cao, Xiaolong; He, Yan; Bhattarai, Krishna; Rogers, Janet; Hartson, Steve; Jiang, Haobo

    2017-09-01

    Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Co-complex protein membership evaluation using Maximum Entropy on GO ontology and InterPro annotation.

    PubMed

    Armean, Irina M; Lilley, Kathryn S; Trotter, Matthew W B; Pilkington, Nicholas C V; Holden, Sean B

    2018-06-01

    Protein-protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi-a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. https://github.com/ima23/maxent-ppi. sbh11@cl.cam.ac.uk. Supplementary data are available at Bioinformatics online.

  7. Entropy in molecular recognition by proteins.

    PubMed

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  8. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Integrative structure and functional anatomy of a nuclear pore complex

    NASA Astrophysics Data System (ADS)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  10. Integrative structure and functional anatomy of a nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  11. Factor VIII organisation on nanodiscs with different lipid composition.

    PubMed

    Grushin, Kirill; Miller, Jaimy; Dalm, Daniela; Stoilova-McPhie, Svetla

    2015-04-01

    Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.

  12. Selected reaction monitoring as an effective method for reliable quantification of disease-associated proteins in maple syrup urine disease.

    PubMed

    Fernández-Guerra, Paula; Birkler, Rune I D; Merinero, Begoña; Ugarte, Magdalena; Gregersen, Niels; Rodríguez-Pombo, Pilar; Bross, Peter; Palmfeldt, Johan

    2014-09-01

    Selected reaction monitoring (SRM) mass spectrometry can quantitatively measure proteins by specific targeting of peptide sequences, and allows the determination of multiple proteins in one single analysis. Here, we show the feasibility of simultaneous measurements of multiple proteins in mitochondria-enriched samples from cultured fibroblasts from healthy individuals and patients with mutations in branched-chain α-ketoacid dehydrogenase (BCKDH) complex. BCKDH is a mitochondrial multienzyme complex and its defective activity causes maple syrup urine disease (MSUD), a rare but severe inherited metabolic disorder. Four different genes encode the catalytic subunits of BCKDH: E1α (BCKDHA), E1β (BCKDHB), E2 (DBT), and E3 (DLD). All four proteins were successfully quantified in healthy individuals. However, the E1α and E1β proteins were not detected in patients carrying mutations in one of those genes, whereas mRNA levels were almost unaltered, indicating instability of E1α and E1β monomers. Using SRM we elucidated the protein effects of mutations generating premature termination codons or misfolded proteins. SRM is a complement to transcript level measurements and a valuable tool to shed light on molecular mechanisms and on effects of pharmacological therapies at protein level. SRM is particularly effective for inherited disorders caused by multiple proteins such as defects in multienzyme complexes.

  13. Selected reaction monitoring as an effective method for reliable quantification of disease-associated proteins in maple syrup urine disease

    PubMed Central

    Fernández-Guerra, Paula; Birkler, Rune I D; Merinero, Begoña; Ugarte, Magdalena; Gregersen, Niels; Rodríguez-Pombo, Pilar; Bross, Peter; Palmfeldt, Johan

    2014-01-01

    Selected reaction monitoring (SRM) mass spectrometry can quantitatively measure proteins by specific targeting of peptide sequences, and allows the determination of multiple proteins in one single analysis. Here, we show the feasibility of simultaneous measurements of multiple proteins in mitochondria-enriched samples from cultured fibroblasts from healthy individuals and patients with mutations in branched-chain α-ketoacid dehydrogenase (BCKDH) complex. BCKDH is a mitochondrial multienzyme complex and its defective activity causes maple syrup urine disease (MSUD), a rare but severe inherited metabolic disorder. Four different genes encode the catalytic subunits of BCKDH: E1α (BCKDHA), E1β (BCKDHB), E2 (DBT), and E3 (DLD). All four proteins were successfully quantified in healthy individuals. However, the E1α and E1β proteins were not detected in patients carrying mutations in one of those genes, whereas mRNA levels were almost unaltered, indicating instability of E1α and E1β monomers. Using SRM we elucidated the protein effects of mutations generating premature termination codons or misfolded proteins. SRM is a complement to transcript level measurements and a valuable tool to shed light on molecular mechanisms and on effects of pharmacological therapies at protein level. SRM is particularly effective for inherited disorders caused by multiple proteins such as defects in multienzyme complexes. PMID:25333063

  14. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces

    PubMed Central

    Szent-Gyorgyi, Chris; Stanfield, Robyn L.; Andreko, Susan; Dempsey, Alison; Ahmed, Mushtaq; Capek, Sara; Waggoner, Alan; Wilson, Ian A.; Bruchez, Marcel P.

    2013-01-01

    We report that a symmetric small molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* Fluorogen Activating Protein (FAP) is a VL domain that binds malachite green dye (MG) to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity determining regions (CDRs) are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1,000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high affinity protein tags and capture reagents. PMID:23978698

  15. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  16. Effects of Cavities at the Nicotinamide Binding Site of Liver Alcohol Dehydrogenase on Structure, Dynamics and Catalysis

    PubMed Central

    2015-01-01

    A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with “protein-promoting vibrations” (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.2 Å for the complex with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to support a role for Val-207 in the dynamics of catalysis. The protein structures and ligand geometries (including donor–acceptor distances) in the V203A enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined at 1.1 Å) are very similar to those for the wild-type enzyme, except that the introduced cavity accommodates a new water molecule that contacts the nicotinamide ring. The structures of the V203A enzyme complexes suggest, in contrast to previous studies, that the diminished tunneling and decreased rate of hydride transfer (16-fold, relative to that of the wild-type enzyme) are not due to differences in ground-state ligand geometries. The V203A substitution may alter the PPV and the reorganization energy for hydrogen transfer, but the protein scaffold and equilibrium thermal motions within the Michaelis complex may be more significant for enzyme catalysis. PMID:24437493

  17. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    PubMed Central

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  18. Hidden complexity of free energy surfaces for peptide (protein) folding.

    PubMed

    Krivov, Sergei V; Karplus, Martin

    2004-10-12

    An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they could mask the complexity of the unprojected surface. Here we introduce an approach to determine the actual (unprojected) free energy surface and apply it to the second beta-hairpin of protein G, which has been used as a model system for protein folding. The surface is represented by a disconnectivity graph calculated from a long equilibrium folding-unfolding trajectory. The denatured state is found to have multiple low free energy basins. Nevertheless, the peptide shows exponential kinetics in folding to the native basin. Projected surfaces obtained from the present analysis have a simple form in agreement with other studies of the beta-hairpin. The hidden complexity found for the beta-hairpin surface suggests that the standard funnel picture of protein folding should be revisited.

  19. The λ Integrase Site-specific Recombination Pathway

    PubMed Central

    LANDY, ARTHUR

    2017-01-01

    The site-specific recombinase encoded by bacteriophage λ (Int) is responsible for integrating and excising the viral chromosome into and out of the chromosome of its Escherichia coli host. Int carries out a reaction that is highly directional, tightly regulated, and depends upon an ensemble of accessory DNA bending proteins acting on 240 bp of DNA encoding 16 protein binding sites. This additional complexity enables two pathways, integrative and excisive recombination, whose opposite, and effectively irreversible, directions are dictated by different physiological and environmental signals. Int recombinase is a heterobivalent DNA binding protein and each of the four Int protomers, within a multiprotein 400 kDa recombinogenic complex, is thought to bind and, with the aid of DNA bending proteins, bridge one arm- and one core-type DNA site. In the 12 years since the publication of the last review focused solely on the λ site-specific recombination pathway in Mobile DNA II, there has been a great deal of progress in elucidating the molecular details of this pathway. The most dramatic advances in our understanding of the reaction have been in the area of X-ray crystallography where protein-DNA structures have now been determined for of all of the DNA-protein interfaces driving the Int pathway. Building on this foundation of structures, it has been possible to derive models for the assembly of components that determine the regulatory apparatus in the P-arm, and for the overall architectures that define excisive and integrative recombinogenic complexes. The most fundamental additional mechanistic insights derive from the application of hexapeptide inhibitors and single molecule kinetics. PMID:26104711

  20. Antibacterial properties and atomic resolution X-ray complex crystal structure of a ruthenocene conjugated β-lactam antibiotic

    DOE PAGES

    Lewandowski, Eric M.; Skiba, Joanna; Torelli, Nicholas J.; ...

    2015-03-02

    We have determined a 1.18 Å resolution X-ray crystal structure of a novel ruthenocenyle-6-aminopenicillinic acid in complex with CTX-M β-lactamase, showing unprecedented details of interactions between ruthenocene and protein. As the first product complex with an intact catalytic serine, the structure also offers insights into β-lactamase catalysis and inhibitor design.

  1. Identification of Novel Mitochondrial Protein Components of Chlamydomonas reinhardtii. A Proteomic Approach1

    PubMed Central

    van Lis, Robert; Atteia, Ariane; Mendoza-Hernández, Guillermo; González-Halphen, Diego

    2003-01-01

    Pure mitochondria of the photosynthetic alga Chlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F1F0-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F1F0-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F1F0-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii. PMID:12746537

  2. Development of a Multi-Point Quantitation Method to Simultaneously Measure Enzymatic and Structural Components of the Clostridium thermocellum Cellulosome Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, Andrew B; St. Brice, Lois; Rodriguez, Jr., Miguel

    2014-01-01

    Clostridium thermocellum has emerged as a leading bioenergy-relevant microbe due to its ability to solubilize cellulose into carbohydrates, mediated by multi-component membrane-attached complexes termed cellulosomes. To probe microbial cellulose utilization rates, it is desirable to be able to measure the concentrations of saccharolytic enzymes and estimate the total amount of cellulosome present on a mass basis. Current cellulase determination methodologies involve labor-intensive purification procedures and only allow for indirect determination of abundance. We have developed a method using multiple reaction monitoring (MRM-MS) to simultaneously quantitate both enzymatic and structural components of the cellulosome protein complex in samples ranging in complexitymore » from purified cellulosomes to whole cell lysates, as an alternative to a previously-developed enzyme-linked immunosorbent assay (ELISA) method of cellulosome quantitation. The precision of the cellulosome mass concentration in technical replicates is better than 5% relative standard deviation for all samples, indicating high precision for determination of the mass concentration of cellulosome components.« less

  3. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function

    PubMed Central

    Ungar, Daniel; Oka, Toshihiko; Brittle, Elizabeth E.; Vasile, Eliza; Lupashin, Vladimir V.; Chatterton, Jon E.; Heuser, John E.; Krieger, Monty; Waters, M. Gerard

    2002-01-01

    Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function. PMID:11980916

  4. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  5. Mapping Protein-Protein Interactions of the Resistance-Related Bacterial Zeta Toxin-Epsilon Antitoxin Complex (ε₂ζ₂) with High Affinity Peptide Ligands Using Fluorescence Polarization.

    PubMed

    Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg

    2016-07-16

    Toxin-antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta-Epsilon toxin-antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε₂ζ₂ complex. Three α helices of Zeta forming the protein-protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε₂ζ₂ complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay.

  6. RNA protects a nucleoprotein complex against radiation damage.

    PubMed

    Bury, Charles S; McGeehan, John E; Antson, Alfred A; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B; Garman, Elspeth F

    2016-05-01

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.

  7. Evaluation of Software for Introducing Protein Structure: Visualization and Simulation

    ERIC Educational Resources Information Center

    White, Brian; Kahriman, Azmin; Luberice, Lois; Idleh, Farhia

    2010-01-01

    Communicating an understanding of the forces and factors that determine a protein's structure is an important goal of many biology and biochemistry courses at a variety of levels. Many educators use computer software that allows visualization of these complex molecules for this purpose. Although visualization is in wide use and has been associated…

  8. Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students

    ERIC Educational Resources Information Center

    Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel

    2012-01-01

    Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…

  9. Influence of energy supply on expression of genes encoding for lipogenic enzymes and regulatory proteins in growing beef steers

    USDA-ARS?s Scientific Manuscript database

    Forty crossbred beef steers were used to determine the effects metabolizable energy (ME) intake and of site and complexity of carbohydrate (CHO) infusion on expression of genes encoding lipogenic enzymes and regulatory proteins in subcutaneous (SC), mesenteric (MES) and omental (OM) adipose. Treatm...

  10. Fluorimetric determination of proteins using 4-chloro-(2'-hydroxylophenylazo)rhodanine-Ti(IV) complex as a spectral probe.

    PubMed

    Sun, Shuting; Ma, Hongmin; Chen, Xin; Zhang, Nuo; Wu, Dan; Du, Bin; Wei, Qin

    2008-01-01

    A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4-chloro-(2'-hydroxylophenylazo)rhodanine-Ti(IV) [ClHARP-Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2-ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and gamma-globin (gamma-G) were studied. The detection limits were 0.182 microg/mL for BSA, 0.0788 microg/mL for HSA, 0.216 microg/mL for Ova and 0.484 microg/mL for gamma-G. The linear ranges of the calibration were 0-12.0, 0-10.0, 0-18.0 and 0-18.0 microg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results.

  11. Simple Mechanisms for Broadspectrum Color Control in Aquatic Organisms

    DTIC Science & Technology

    2012-02-28

    astaxanthin accumulation, esterification, and cellular distribution in determining pigment intensity. (2) Determine the biological mechanisms behind...from predominantly red pigmentation to blue pigmentation. Approach: Isolate and identify caroteno-protein complexes which alter the astaxanthin ...below). Approach 2: Investigate the roles of astaxanthin accumulation, esterification, and cellular distribution in determining pigment intensity

  12. Relative Sizes of Organic Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  14. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    PubMed

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Resolution and identification of the protein components of the photosystem II antenna system of higher plants by reversed-phase liquid chromatography with electrospray-mass spectrometric detection.

    PubMed

    Corradini, D; Huber, C G; Timperio, A M; Zolla, L

    2000-07-21

    Reversed-phase liquid chromatography (RPLC) was interfaced to mass spectrometry (MS) with an electrospray ion (ESI) source for the separation and accurate molecular mass determination of the individual intrinsic membrane proteins that comprise the photosystem II (PS II) major light-harvesting complex (LHC II) and minor (CP24, CP26 and CP29) antenna system, whose molecular masses range between 22,000 and 29,000. PS II is a supramolecular complex intrinsic of the thylacoid membrane, which plays the important role in photosynthesis of capturing solar energy, and transferring it to photochemical reaction centers where energy conversion occurs. The protein components of the PS II major and minor antenna systems were extracted from spinach thylacoid membranes and separated using a butyl-silica column eluted by an acetonitrile gradient in 0.05% (v/v) aqueous trifluoroacetic acid. On-line electrospray MS allowed accurate molecular mass determination and identification of the protein components of PS II major and minor antenna system. The proposed RPLC-ESI-MS method holds several advantages over sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the conventional technique for studying membrane proteins, including a better protein separation, mass accuracy, speed and efficiency.

  16. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition.

    PubMed

    Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang

    2018-01-24

    The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.

  17. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry.

    PubMed

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-05-02

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray ionization (ESI)-mass spectrometry does not provide a direct solution as this approach is hindered by extensive interference of ion signals caused by closely spaced charge states of broadly distributed glycoforms. Here, we introduce a native tandem MS-based approach, enabling charge-state resolution and charge assignment of protein ions including those that escape mass analysis under standard MS conditions. Using this method, we determined the MW of two model glycoproteins, the extra-cellular domains of the highly and heterogeneously glycosylated proteins CD38 and epidermal growth factor receptor (EGFR), as well as the overall MW and binding stoichiometries of these proteins in complex with a specific antibody.

  18. Structural Basis for the Interaction of the Golgi-Associated Retrograde Protein (GARP) Complex with the t-SNARE Syntaxin 6

    PubMed Central

    Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor

    2016-01-01

    Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592

  19. Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    PubMed Central

    Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric

    2015-01-01

    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974

  20. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes

    PubMed Central

    Reis, Helena; Schwebs, Marie; Dietz, Sabrina; Janzen, Christian J; Butter, Falk

    2018-01-01

    Abstract During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation. PMID:29385523

  1. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA

    PubMed Central

    Gully, Benjamin S.; Cowieson, Nathan; Stanley, Will A.; Shearston, Kate; Small, Ian D.; Barkan, Alice; Bond, Charles S.

    2015-01-01

    The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts. Zea mays PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, atpH and psaJ, has been demonstrated to follow a recognition code where the identity of two amino acids per repeat determines the base-specificity. A recently solved ZmPPR10:psaJ complex crystal structure suggested a homodimeric complex with considerably fewer sequence-specific protein–RNA contacts than inferred previously. Here we describe the solution structure of the ZmPPR10:atpH complex using size-exclusion chromatography-coupled synchrotron small-angle X-ray scattering (SEC-SY-SAXS). Our results support prior evidence that PPR10 binds RNA as a monomer, and that it does so in a manner that is commensurate with a canonical and predictable RNA-binding mode across much of the RNA–protein interface. PMID:25609698

  2. Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.

    PubMed

    Qi, Shiqian; Kim, Do Jin; Stjepanovic, Goran; Hurley, James H

    2015-10-06

    The ULK1 complex, consisting of the ULK1 protein kinase itself, FIP200, Atg13, and Atg101, controls the initiation of autophagy in animals. We determined the structure of the complex of the human Atg13 HORMA (Hop1, Rev7, Mad2) domain in complex with the full-length HORMA domain-only protein Atg101. The two HORMA domains assemble with an architecture conserved in the Mad2 conformational heterodimer and the S. pombe Atg13-Atg101 HORMA complex. The WF finger motif that is essential for function in human Atg101 is sequestered in a hydrophobic pocket, suggesting that the exposure of this motif is regulated. Benzamidine molecules from the crystallization solution mark two hydrophobic pockets that are conserved in, and unique to, animals, and are suggestive of sites that could interact with other proteins. These features suggest that the activity of the animal Atg13-Atg101 subcomplex is regulated and that it is an interaction hub for multiple partners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain.

    PubMed

    Christensen, Inga Baasch; Mogensen, Esben Nees; Damkier, Helle Hasager; Praetorius, Jeppe

    2018-05-01

    The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na + -K + -ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP 2 ) staining was most prominent in the luminal membrane domain along with the PIP 3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.

  4. NH2-Terminal Residues of Neurospora crassa Proteins

    PubMed Central

    Rho, Hyune Mo; DeBusk, A. Gib

    1971-01-01

    The NH2-terminal amino acid composition of the soluble and ribosomal proteins from Neurospora crassa mycelia and conidia was determined by the dinitrophenyl method. A nonrandom distribution of NH2-terminal amino acids was observed in the complex protein mixtures. Glycine, alanine, and serine accounted for 75% of the NH2-terminal amino acids, and glycine appeared most frequently in mature proteins of mycelia. The appearance of phenylalanine as one of the major NH2-termini in crude conidial fraction suggests that the composition of proteins may vary in different developmental stages. PMID:5095291

  5. Assays for the determination of the activity of DNA nucleases based on the fluorometric properties of the YOYO dye.

    PubMed

    Fernández-Sierra, Mónica; Quiñones, Edwin

    2015-03-15

    Here we characterize the fluorescence of the YOYO dye as a tool for studying DNA-protein interactions in real time and present two continuous YOYO-based assays for sensitively monitoring the kinetics of DNA digestion by λ-exonuclease and the endonuclease EcoRV. The described assays rely on the different fluorescence intensities between single- and double-stranded DNA-YOYO complexes, allowing straightforward determination of nuclease activity and quantitative determination of reaction products. The assays were also employed to assess the effect of single-stranded DNA-binding proteins on the λ-exonuclease reaction kinetics, showing that the extreme thermostable single-stranded DNA-binding protein (ET-SSB) significantly reduced the reaction rate, while the recombination protein A (RecA) displayed no effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer

    PubMed Central

    Liu, Ping; Jia, Ming-zhu; Zhou, X Edward; De Waal, Parker W; Dickson, Bradley M; Liu, Bo; Hou, Li; Yin, Yan-ting; Kang, Yan-yong; Shi, Yi; Melcher, Karsten; Xu, H Eric; Jiang, Yi

    2016-01-01

    Aim: Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1β1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1β1γ2. Methods: The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography. Results: The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gβγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gβ and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer. Conclusion: Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gβγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations. PMID:27498775

  7. Quantitative In Vivo Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions

    PubMed Central

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki

    2014-01-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104

  8. Functional capabilities of an N-formyl peptide receptor-G(alpha)(i)(2) fusion protein: assemblies with G proteins and arrestins.

    PubMed

    Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R

    2003-06-24

    G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.

  9. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome.

    PubMed

    Magro, Massimiliano; Zaccarin, Mattia; Miotto, Giovanni; Da Dalt, Laura; Baratella, Davide; Fariselli, Piero; Gabai, Gianfranco; Vianello, Fabio

    2018-05-01

    Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of a S1 -casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the determination of a biomarker for cow mastitis in milk by MALDI-TOF mass spectrometry.

  10. Defining protein electrostatic recognition processes

    NASA Astrophysics Data System (ADS)

    Getzoff, Elizabeth D.; Roberts, Victoria A.

    The objective is to elucidate the nature of electrostatic forces controlling protein recognition processes by using a tightly coupled computational and interactive computer graphics approach. The TURNIP program was developed to determine the most favorable precollision orientations for two molecules by systematic search of all orientations and evaluation of the resulting electrostatic interactions. TURNIP was applied to the transient interaction between two electron transfer metalloproteins, plastocyanin and cytochrome c. The results suggest that the productive electron-transfer complex involves interaction of the positive region of cytochrome c with the negative patch of plastocyanin, consistent with experimental data. Application of TURNIP to the formation of the stable complex between the HyHEL-5 antibody and its protein antigen lysozyme showed that long-distance electrostatic forces guide lysozyme toward the HyHEL-5 binding site, but do not fine tune its orientation. Determination of docked antigen/antibody complexes requires including steric as well as electrostatic interactions, as was done for the U10 mutant of the anti-phosphorylcholine antibody S107. The graphics program Flex, a convenient desktop workstation program for visualizing molecular dynamics and normal mode motions, was enhanced. Flex now has a user interface and was rewritten to use standard graphics libraries, so as to run on most desktop workstations.

  11. Insight into the Structure of Light Harvesting Complex II and its Stabilization in Detergent Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T

    2009-01-01

    The structure of spinach light-harvesting complex II (LHC II), stabilized in a solution of the detergent n-octyl-{beta}-d-glucoside (BOG), was investigated by small-angle neutron scattering (SANS). Physicochemical characterization of the isolated complex indicated that it was pure (>95%) and also in its native trimeric state. SANS with contrast variation was used to investigate the properties of the protein-detergent complex at three different H{sub 2}O/D{sub 2}O contrast match points, enabling the scattering properties of the protein and detergent to be investigated independently. The topological shape of LHC II, determined using ab initio shape restoration methods from the SANS data at the contrastmore » match point of BOG, was consistent with the X-ray crystallographic structure of LHC II (Liu et al. Nature 2004 428, 287-292). The interactions of the protein and detergent were investigated at the contrast match point for the protein and also in 100% D{sub 2}O. The data suggested that BOG micelle structure was altered by its interaction with LHC II, but large aggregate structures were not formed. Indirect Fourier transform analysis of the LHC II/BOG scattering curves showed that the increase in the maximum dimension of the protein-detergent complex was consistent with the presence of a monolayer of detergent surrounding the protein. A model of the LHC II/BOG complex was generated to interpret the measurements made in 100% D{sub 2}O. This model adequately reproduced the overall size of the LHC II/BOG complex, but demonstrated that the detergent does not have a highly regular shape that surrounds the hydrophobic periphery of LHC II. In addition to demonstrating that natively structured LHC II can be produced for functional characterization and for use in artificial solar energy applications, the analysis and modeling approaches described here can be used for characterizing detergent-associated {alpha}-helical transmembrane proteins.« less

  12. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    PubMed

    Collinson, Ian; Corey, Robin A; Allen, William J

    2015-10-05

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation--the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. © 2015 The Authors.

  13. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    PubMed

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  14. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    PubMed Central

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  15. Selenoprotein K Binds Multiprotein Complexes and Is Involved in the Regulation of Endoplasmic Reticulum Homeostasis*

    PubMed Central

    Shchedrina, Valentina A.; Everley, Robert A.; Zhang, Yan; Gygi, Steven P.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Selenoprotein K (SelK) is an 11-kDa endoplasmic reticulum (ER) protein of unknown function. Herein, we defined a new eukaryotic protein family that includes SelK, selenoprotein S (SelS), and distantly related proteins. Comparative genomics analyses indicate that this family is the most widespread eukaryotic selenoprotein family. A biochemical search for proteins that interact with SelK revealed ER-associated degradation (ERAD) components (p97 ATPase, Derlins, and SelS). In this complex, SelK showed higher affinity for Derlin-1, whereas SelS had higher affinity for Derlin-2, suggesting that these selenoproteins could determine the nature of the substrate translocated through the Derlin channel. SelK co-precipitated with soluble glycosylated ERAD substrates and was involved in their degradation. Its gene contained a functional ER stress response element, and its expression was up-regulated by conditions that induce the accumulation of misfolded proteins in the ER. Components of the oligosaccharyltransferase complex (ribophorins, OST48, and STT3A) and an ER chaperone, calnexin, were found to bind SelK. A glycosylated form of SelK was also detected, reflecting its association with the oligosaccharyltransferase complex. These data suggest that SelK is involved in the Derlin-dependent ERAD of glycosylated misfolded proteins and that the function defined by the prototypic SelK is the widespread function of selenium in eukaryotes. PMID:22016385

  16. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.

    PubMed

    Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude

    2009-01-01

    Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.

  17. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1*

    PubMed Central

    Musayev, Faik N.; Zarate-Perez, Francisco; Bishop, Clayton; Burgner, John W.; Escalante, Carlos R.

    2015-01-01

    Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains. PMID:26370092

  18. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  19. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk; Schrøder, Tenna Juul; Christensen, Søren

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained bymore » co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.« less

  20. Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex*

    PubMed Central

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P.; Chait, Brian T.

    2014-01-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. PMID:25161197

  1. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet

    PubMed Central

    2010-01-01

    Background Previous studies suggested that dietary tannin ingestion may induce changes in mouse salivary proteins in addition to the primarily studied proline-rich proteins (PRPs). The aim of the present study was to determine the protein expression changes induced by condensed tannin intake on the fraction of mouse whole salivary proteins that are unable to form insoluble tannin-protein complexes. Two-dimensional polyacrylamide gel electrophoresis protein separation was used, followed by protein identification by mass spectrometry. Results Fifty-seven protein spots were excised from control group gels, and 21 different proteins were identified. With tannin consumption, the expression levels of one α-amylase isoform and one unidentified protein increased, whereas acidic mammalian chitinase and Muc10 decreased. Additionally, two basic spots that stained pink with Coomassie Brilliant Blue R-250 were newly observed, suggesting that some induced PRPs may remain uncomplexed or form soluble complexes with tannins. Conclusion This proteomic analysis provides evidence that other salivary proteins, in addition to tannin-precipitating proteins, are affected by tannin ingestion. Changes in the expression levels of the acidic mammalian chitinase precursor and in one of the 14 salivary α-amylase isoforms underscores the need to further investigate their role in tannin ingestion. PMID:21159160

  2. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    NASA Astrophysics Data System (ADS)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  3. Isolation of integrin-based adhesion complexes.

    PubMed

    Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J

    2015-03-02

    The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.

  4. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis.

    PubMed

    Choi, Eunyoung; Han, Cecil; Park, Inju; Lee, Boyeon; Jin, Sora; Choi, Heejin; Kim, Do Han; Park, Zee Yong; Eddy, Edward M; Cho, Chunghee

    2008-12-12

    To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.

  5. Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons.

    PubMed

    Maffie, Jonathon; Rudy, Bernardo

    2008-12-01

    The subthreshold-operating A-type K(+) current in neurons (I(SA)) has important roles in the regulation of neuronal excitability, the timing of action potential firing and synaptic integration and plasticity. The channels mediating this current (Kv4 channels) have been implicated in epilepsy, the control of dopamine release, and the regulation of pain plasticity. It has been proposed that Kv4 channels in neurons are ternary complexes of three types of protein: pore forming subunits of the Kv4 subfamily and two types of auxiliary subunits, the Ca(2+) binding proteins KChIPs and the dipeptidyl peptidase-like proteins (DPPLs) DPP6 (also known as DPPX) and DPP10 (4 molecules of each per channel for a total of 12 proteins in the complex). Here we consider the evidence supporting this hypothesis. Kv4 channels in many neurons are likely to be ternary complexes of these three types of protein. KChIPs and DPPLs are required to efficiently traffic Kv4 channels to the plasma membrane and regulate the functional properties of the channels. These proteins may also be important in determining the localization of the channels to specific neuronal compartments, their dynamics, and their response to neuromodulators. A surprisingly large number of additional proteins have been shown to modify Kv4 channels in heterologous expression systems, but their association with native Kv4 channels in neurons has not been properly validated. A critical consideration of the evidence suggests that it is unlikely that association of Kv4 channels with these additional proteins is widespread in the CNS. However, we cannot exclude that some of these proteins may associate with the channels transiently or in specific neurons or neuronal compartments, or that they may associate with the channels in other tissues.

  6. Structural basis for spectrin recognition by ankyrin.

    PubMed

    Ipsaro, Jonathan J; Mondragón, Alfonso

    2010-05-20

    Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.

  7. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry.

    PubMed

    Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C

    2012-02-07

    Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. © 2011 American Chemical Society

  8. Structure of the apo form of the catabolite control protein A (CcpA) from Bacillus megaterium with a DNA-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh

    2007-04-01

    Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less

  9. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.

    PubMed

    Peters, Katrin; Niessen, Markus; Peterhänsel, Christoph; Späth, Bettina; Hölzle, Angela; Binder, Stefan; Marchfelder, Anita; Braun, Hans-Peter

    2012-06-01

    In most studies, amounts of protein complexes of the oxidative phosphorylation (OXPHOS) system in different organs or tissues are quantified on the basis of isolated mitochondrial fractions. However, yield of mitochondrial isolations might differ with respect to tissue type due to varying efficiencies of cell disruption during organelle isolation procedures or due to tissue-specific properties of organelles. Here we report an immunological investigation on the ratio of the OXPHOS complexes in different tissues of Arabidopsis thaliana which is based on total protein fractions isolated from five Arabidopsis organs (leaves, stems, flowers, roots and seeds) and from callus. Antibodies were generated against one surface exposed subunit of each of the five OXPHOS complexes and used for systematic immunoblotting experiments. Amounts of all complexes are highest in flowers (likewise with respect to organ fresh weight or total protein content of the flower fraction). Relative amounts of protein complexes in all other fractions were determined with respect to their amounts in flowers. Our investigation reveals high relative amounts of complex I in green organs (leaves and stems) but much lower amounts in non-green organs (roots, callus tissue). In contrast, complex II only is represented by low relative amounts in green organs but by significantly higher amounts in non-green organs, especially in seeds. In fact, the complex I-complex II ratio differs by factor 37 between callus and leaf, indicating drastic differences in electron entry into the respiratory chain in these two fractions. Variation in amounts concerning complexes III, IV and V was less pronounced in different Arabidopsis tissues (quantification of complex V in leaves was not meaningful due to a cross-reaction of the antibody with the chloroplast form of this enzyme). Analyses were complemented by in gel activity measurements for the protein complexes of the OXPHOS system and comparative 2D blue native/SDS PAGE analyses using isolated mitochondria. We suggest that complex I has an especially important role in the context of photosynthesis which might be due to its indirect involvement in photorespiration and its numerous enzymatic side activities in plants.

  10. A Critical Assessment of the Performance of Protein-ligand Scoring Functions Based on NMR Chemical Shift Perturbations

    PubMed Central

    Wang, Bing; Westerhoff, Lance M.; Merz, Kenneth M.

    2008-01-01

    We have generated docking poses for the FKBP-GPI complex using eight docking programs, and compared their scoring functions with scoring based on NMR chemical shift perturbations (NMRScore). Because the chemical shift perturbation (CSP) is exquisitely sensitive on the orientation of ligand inside the binding pocket, NMRScore offers an accurate and straightforward approach to score different poses. All scoring functions were inspected by their abilities to highly rank the native-like structures and separate them from decoy poses generated for a protein-ligand complex. The overall performance of NMRScore is much better than that of energy-based scoring functions associated with docking programs in both aspects. In summary, we find that the combination of docking programs with NMRScore results in an approach that can robustly determine the binding site structure for a protein-ligand complex, thereby, providing a new tool facilitating the structure-based drug discovery process. PMID:17867664

  11. Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons.

    PubMed

    Shinohara, K; Murakami, A; Fujita, Y

    1992-01-01

    Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b([ill])/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.

  12. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats.

    PubMed

    Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul

    2011-01-01

    Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.

  13. Allosteric Regulation of the Hsp90 Dynamics and Stability by Client Recruiter Cochaperones: Protein Structure Network Modeling

    PubMed Central

    Blacklock, Kristin; Verkhivker, Gennady M.

    2014-01-01

    The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins. PMID:24466147

  14. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.

    PubMed

    Blacklock, Kristin; Verkhivker, Gennady M

    2014-01-01

    The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.

  15. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression.

    PubMed

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-04-15

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.

  16. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.

    PubMed

    Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J

    1999-06-11

    In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.

  17. Avidin-biotin-PEG-CPA complexes as potential EPR-directed therapeutic protein carriers: preparation and characterization.

    PubMed

    Ke, Shan; Wright, John C; Kwon, Glen S

    2007-01-01

    Bovine carboxypeptidase A (CPA) conjugated with biotinylated poly(ethylene glycol) (PEG) has been synthesized and characterized in terms of stoichiometry and half-life of the avidin-biotin-PEG(s)-CPA complex. The half-lives for dissociation are 3.34 days for the avidin-biotin-PEG(3400)-CPA 1:1 complex, 3.65 days for the avidin-biotin-PEG(5000)-CPA 1:1 complex, 3.91 days for the avidin-biotin-PEG(3400)-CPA-PEG(2000) 1:1 complex, and 2.74 days for the avidin-biotin-PEG(5000)-CPA-PEG(2000) 1:1 complex. The slow dissociation demonstrates the stability of complexes using a PEGylated biotin terminus as a linker with avidin. The stoichiometry of the biotin-PEGylated CPA with avidin was determined by the 2,6-ANS method, and the results are consistent with measurements of the stoichiometry using size exclusion chromatography. The stoichiometries are 1:2 for the avidin-biotin-PEG(3400)-CPA complex and the avidin-biotin-PEG(3400)-CPA-PEG(2000) complex, 1:1 for the avidin-biotin-PEG(5000)-CPA complex, and 1:4 for the avidin-biotin-PEG(5000)-CPA-PEG(2000) complex. These findings stress both the importance of the length of a PEG chain as an appropriate spacer between the biotin terminus and a functional group, and the great potential of the avidin-biotin-PEGylated-protein complex as a therapeutic protein delivery system for solid tumor prodrug targeting.

  18. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  19. Site-directed DNA crosslinking of large multisubunit protein-DNA complexes.

    PubMed

    Persinger, Jim; Bartholomew, Blaine

    2009-01-01

    Several methods have been developed to site-specifically incorporate photoreactive nucleotide analogs into DNA for the purpose of identifying the proteins and their domains that are in contact with particular regions of DNA. The synthesis of several deoxynucleotide analogs that have a photoreactive group tethered to the nucleotide base and the incorporation of these analogs into DNA are described. In a second approach, oligonucleotide with a photoreactive group attached to the phosphate backbone is chemically synthesized. The photoreactive oligonucleotide is then enzymatically incorporated into DNA by annealing it to a complementary DNA template and extending with DNA polymerase. Both approaches have been effectively used to map protein-DNA interactions in large multisubunit complexes such as the eukaryotic transcription or ATP-dependent chromatin remodeling complexes. Not only do these techniques map the binding sites of the various subunits in these complexes, but when coupled with peptide mapping also determine the protein domain that is in close proximity to the different DNA sites. The strength of these techniques is the ability to scan a large number of potential sites by making combinations of different DNA probes and is facilitated by using an immobilized DNA template for synthesis.

  20. [Pigment-protein complexes nd the number of the reaction photosystem centers in pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2004-01-01

    We studied fluorescent and absorption properties of the chloroplasts and pigment-protein complexes isolated by gel electrophoresis from the leaves of pea, the initial cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific maxima of fluorescence and chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their secondary derivatives at 23 and -196 degrees C. Chlorotica 2004 mutant proved to have an increased intensity of a long-wave band at both 23 degrees C (745 nm) and -196 degrees C (728 nm) of the light-harvesting complex I. At the same time, this mutant featured a decreased accumulation of chlorophyll forms at 690, 697, and 708 nm forming the nearest-neighbor antenna of PSI reaction center. No spectral differences have been revealed between chlorotica 2014 mutant and the initial cultivar. Gel electrophoresis demonstrated synthesis of all chlorophyll-protein complexes in both mutants. At the same time, analysis of photochemical activity of PSI and PSII reaction centers and evaluation of the light-harvesting antenna as well as the number of reaction centers of the photosystems suggest that chlorotica 2004 mutant has 1.7 times less PSI reaction centers due to a mutation-disturbed chlorophyll a-protein complex of PSI. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.

  1. Comparison of oral toxicological properties of botulinum neurotoxin serotypes A and B.

    PubMed

    Cheng, Luisa W; Henderson, Thomas D

    2011-07-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated proteins (NAPs), forming large complexes that have been shown to play important roles in oral toxicity. Using mouse intraperitoneal and oral models of botulism, we determined the dose response to both BoNT/B holotoxin and complex toxins, and compared the toxicities of BoNT/B and BoNT/A complexes. Although serotype A and B complexes have similar NAP composition, BoNT/B formed larger-sized complexes, and was approximately 90 times more lethal in mouse oral intoxications than BoNT/A complexes. When normalized by mean lethal dose, mice orally treated with high doses of BoNT/B complex showed a delayed time-to-death when compared with mice treated with BoNT/A complex. Furthermore, we determined the effect of various food matrices on oral toxicity of BoNT/A and BoNT/B complexes. BoNT/B complexes showed lower oral bioavailability in liquid egg matrices when compared to BoNT/A complexes. In summary, our studies revealed several factors that can either enhance or reduce the toxicity and oral bioavailability of BoNTs. Dissecting the complexities of the different BoNT serotypes and their roles in foodborne botulism will lead to a better understanding of toxin biology and aid future food risk assessments. Published by Elsevier Ltd.

  2. Characterization of known protein complexes using k-connectivity and other topological measures

    PubMed Central

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  3. The bacterial flagellar switch complex is getting more complex

    PubMed Central

    Cohen-Ben-Lulu, Galit N; Francis, Noreen R; Shimoni, Eyal; Noy, Dror; Davidov, Yaacov; Prasad, Krishna; Sagi, Yael; Cecchini, Gary; Johnstone, Rose M; Eisenbach, Michael

    2008-01-01

    The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions. PMID:18337747

  4. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease.

    PubMed

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro

    2016-06-12

    Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  5. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    PubMed

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  7. Identification of host factors potentially involved in RTM-mediated resistance during potyvirus long distance movement.

    PubMed

    Sofer, Luc; Cabanillas, Daniel Garcia; Gayral, Mathieu; Téplier, Rachèle; Pouzoulet, Jérôme; Ducousso, Marie; Dufin, Laurène; Bréhélin, Claire; Ziegler-Graff, Véronique; Brault, Véronique; Revers, Frédéric

    2017-07-01

    The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.

  8. The Mr 140,000 Intermediate Chain of Chlamydomonas Flagellar Inner Arm Dynein Is a WD-Repeat Protein Implicated in Dynein Arm Anchoring

    PubMed Central

    Yang, Pinfen; Sale, Winfield S.

    1998-01-01

    Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo. PMID:9843573

  9. Investigating the binding behaviour of two avidin-based testosterone binders using molecular recognition force spectroscopy.

    PubMed

    Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas

    2014-02-01

    Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    DOE PAGES

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...

    2015-01-30

    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less

  11. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.

    PubMed

    Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun

    2014-10-20

    Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure of D-AKAP2:PKA RI complex: Insights into AKAP specificity and selectivity

    PubMed Central

    Sarma, Ganapathy N.; Kinderman, Francis S.; Kim, Choel; von Daake, Sventja; Chen, Lirong; Wang, Bi-Cheng; Taylor, Susan S.

    2011-01-01

    Summary A-kinase anchoring proteins (AKAPs) regulate cyclic AMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP 2 (D-AKAP2) binds to the dimerization/docking (D/D) domain of both RI and RII regulatory subunits of PKA with high affinity. Here, we have determined the structures of the RIα D/D domain alone and in complex with D-AKAP2. The D/D domain presents an extensive surface for binding through a well-formed N-termina helix and this surface restricts the diversity of AKAPs that can interact. The structures also underscore the importance of a redox-sensitive disulfide in affecting AKAP binding. An unexpected shift in the helical register of D-AKAP2 compared to the RIIα:D-AKAP2 complex structure makes the mode of binding to RIα novel. Finally, the comparison allows us to deduce a molecular explanation for the sequence and spatial determinants of AKAP specificity. PMID:20159461

  13. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase†

    PubMed Central

    Deng, Hua; Vu, Dung V.; Clinch, Keith; Desamero, Ruel; Dyer, R. Brian; Callender, Robert

    2011-01-01

    A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C2=O band of bound substrate mimic and the C4-H stretch of NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong ‘anchor’ within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme. PMID:21568287

  14. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibodymore » combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.« less

  15. CORUM: the comprehensive resource of mammalian protein complexes

    PubMed Central

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090

  16. Nanoscale Dewetting Transition in Protein Complex Folding

    PubMed Central

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  17. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers.

    PubMed

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-05-19

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction.

  18. CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres.

    PubMed

    Hoischen, Christian; Yavas, Sibel; Wohland, Thorsten; Diekmann, Stephan

    2018-01-01

    Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.

  19. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles.

    PubMed

    Hadjidemetriou, Marilena; Al-Ahmady, Zahraa; Kostarelos, Kostas

    2016-04-07

    Nanoparticles (NPs) are instantly modified once injected in the bloodstream because of their interaction with the blood components. The spontaneous coating of NPs by proteins, once in contact with biological fluids, has been termed the 'protein corona' and it is considered to be a determinant factor for the pharmacological, toxicological and therapeutic profile of NPs. Protein exposure time is thought to greatly influence the composition of protein corona, however the dynamics of protein interactions under realistic, in vivo conditions remain unexplored. The aim of this study was to quantitatively and qualitatively investigate the time evolution of in vivo protein corona, formed onto blood circulating, clinically used, PEGylated liposomal doxorubicin. Protein adsorption profiles were determined 10 min, 1 h and 3 h post-injection of liposomes into CD-1 mice. The results demonstrated that a complex protein corona was formed as early as 10 min post-injection. Even though the total amount of protein adsorbed did not significantly change over time, the fluctuation of protein abundances observed indicated highly dynamic protein binding kinetics.

  20. Network representation of protein interactions: Theory of graph description and analysis.

    PubMed

    Kurzbach, Dennis

    2016-09-01

    A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. © 2016 The Protein Society.

  1. Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex

    PubMed Central

    Rodnick-Smith, Max; Luan, Qing; Liu, Su-Ling; Nolen, Brad J.

    2016-01-01

    The Arp2/3 (Actin-related proteins 2/3) complex is activated by WASP (Wiskott–Aldrich syndrome protein) family proteins to nucleate branched actin filaments that are important for cellular motility. WASP recruits actin monomers to the complex and stimulates movement of Arp2 and Arp3 into a “short-pitch” conformation that mimics the arrangement of actin subunits within filaments. The relative contribution of these functions in Arp2/3 complex activation and the mechanism by which WASP stimulates the conformational change have been unknown. We purified budding yeast Arp2/3 complex held in or near the short-pitch conformation by an engineered covalent cross-link to determine if the WASP-induced conformational change is sufficient for activity. Remarkably, cross-linked Arp2/3 complex bypasses the need for WASP in activation and is more active than WASP-activated Arp2/3 complex. These data indicate that stimulation of the short-pitch conformation is the critical activating function of WASP and that monomer delivery is not a fundamental requirement for nucleation but is a specific requirement for WASP-mediated activation. During activation, WASP limits nucleation rates by releasing slowly from nascent branches. The cross-linked complex is inhibited by WASP’s CA region, even though CA potently stimulates cross-linking, suggesting that slow WASP detachment masks the activating potential of the short-pitch conformational switch. We use structure-based mutations and WASP–Arp fusion chimeras to determine how WASP stimulates movement toward the short-pitch conformation. Our data indicate that WASP displaces the autoinhibitory Arp3 C-terminal tail from a hydrophobic groove at Arp3′s barbed end to destabilize the inactive state, providing a mechanism by which WASP stimulates the short-pitch conformation and activates Arp2/3 complex. PMID:27325766

  2. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    PubMed

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Quantitative analyses of bifunctional molecules.

    PubMed

    Braun, Patrick D; Wandless, Thomas J

    2004-05-11

    Small molecules can be discovered or engineered to bind tightly to biologically relevant proteins, and these molecules have proven to be powerful tools for both basic research and therapeutic applications. In many cases, detailed biophysical analyses of the intermolecular binding events are essential for improving the activity of the small molecules. These interactions can often be characterized as straightforward bimolecular binding events, and a variety of experimental and analytical techniques have been developed and refined to facilitate these analyses. Several investigators have recently synthesized heterodimeric molecules that are designed to bind simultaneously with two different proteins to form ternary complexes. These heterodimeric molecules often display compelling biological activity; however, they are difficult to characterize. The bimolecular interaction between one protein and the heterodimeric ligand (primary dissociation constant) can be determined by a number of methods. However, the interaction between that protein-ligand complex and the second protein (secondary dissociation constant) is more difficult to measure due to the noncovalent nature of the original protein-ligand complex. Consequently, these heterodimeric compounds are often characterized in terms of their activity, which is an experimentally dependent metric. We have developed a general quantitative mathematical model that can be used to measure both the primary (protein + ligand) and secondary (protein-ligand + protein) dissociation constants for heterodimeric small molecules. These values are largely independent of the experimental technique used and furthermore provide a direct measure of the thermodynamic stability of the ternary complexes that are formed. Fluorescence polarization and this model were used to characterize the heterodimeric molecule, SLFpYEEI, which binds to both FKBP12 and the Fyn SH2 domain, demonstrating that the model is useful for both predictive as well as ex post facto analytical applications.

  4. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits.

    PubMed Central

    Fearnley, I M; Finel, M; Skehel, J M; Walker, J E

    1991-01-01

    The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859

  5. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less

  6. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    PubMed

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  7. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    PubMed Central

    Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.

    2008-01-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538

  8. Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding

    PubMed Central

    2017-01-01

    ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU. PMID:28691114

  9. RNA protects a nucleoprotein complex against radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less

  10. Structure of the Regulator of G Protein Signaling 8 (RGS8)-Gαq Complex: MOLECULAR BASIS FOR Gα SELECTIVITY.

    PubMed

    Taylor, Veronica G; Bommarito, Paige A; Tesmer, John J G

    2016-03-04

    Regulator of G protein signaling (RGS) proteins interact with activated Gα subunits via their RGS domains and accelerate the hydrolysis of GTP. Although the R4 subfamily of RGS proteins generally accepts both Gαi/o and Gαq/11 subunits as substrates, the R7 and R12 subfamilies select against Gαq/11. In contrast, only one RGS protein, RGS2, is known to be selective for Gαq/11. The molecular basis for this selectivity is not clear. Previously, the crystal structure of RGS2 in complex with Gαq revealed a non-canonical interaction that could be due to interfacial differences imposed by RGS2, the Gα subunit, or both. To resolve this ambiguity, the 2.6 Å crystal structure of RGS8, an R4 subfamily member, was determined in complex with Gαq. RGS8 adopts the same pose on Gαq as it does when bound to Gαi3, indicating that the non-canonical interaction of RGS2 with Gαq is due to unique features of RGS2. Based on the RGS8-Gαq structure, residues in RGS8 that contact a unique α-helical domain loop of Gαq were converted to those typically found in R12 subfamily members, and the reverse substitutions were introduced into RGS10, an R12 subfamily member. Although these substitutions perturbed their ability to stimulate GTP hydrolysis, they did not reverse selectivity. Instead, selectivity for Gαq seems more likely determined by whether strong contacts can be maintained between α6 of the RGS domain and Switch III of Gαq, regions of high sequence and conformational diversity in both protein families. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. RNA protects a nucleoprotein complex against radiation damage

    DOE PAGES

    Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.; ...

    2016-04-26

    Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less

  12. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    PubMed

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Busch, Nathan Adams

    1995-01-01

    The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.

  14. A simple elution strategy for biotinylated proteins bound to streptavidin conjugated beads using excess biotin and heat.

    PubMed

    Cheah, Joleen S; Yamada, Soichiro

    2017-12-02

    Protein-protein interactions are the molecular basis of cell signaling. Recently, proximity based biotin identification (BioID) has emerged as an alternative approach to traditional co-immunoprecipitation. In this protocol, a mutant biotin ligase promiscuously labels proximal binding partners with biotin, and resulting biotinylated proteins are purified using streptavidin conjugated beads. This approach does not require preservation of protein complexes in vitro, making it an ideal approach to identify transient or weak protein complexes. However, due to the high affinity bond between streptavidin and biotin, elution of biotinylated proteins from streptavidin conjugated beads requires harsh denaturing conditions, which are often incompatible with downstream processing. To effectively release biotinylated proteins bound to streptavidin conjugated beads, we designed a series of experiments to determine optimal binding and elution conditions. Interestingly, the concentrations of SDS and IGEPAL-CA630 during the incubation with streptavidin conjugated beads were the key to effective elution of biotinylated proteins using excess biotin and heating. This protocol provides an alternative method to isolate biotinylated proteins from streptavidin conjugated beads that is suitable for further downstream analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  16. Crystal structures of the archaeal RNase P protein Rpp38 in complex with RNA fragments containing a K-turn motif.

    PubMed

    Oshima, Kosuke; Gao, Xuzhu; Hayashi, Seiichiro; Ueda, Toshifumi; Nakashima, Takashi; Kimura, Makoto

    2018-01-01

    A characteristic feature of archaeal ribonuclease P (RNase P) RNAs is that they have extended helices P12.1 and P12.2 containing kink-turn (K-turn) motifs to which the archaeal RNase P protein Rpp38, a homologue of the human RNase P protein Rpp38, specifically binds. PhoRpp38 from the hyperthermophilic archaeon Pyrococcus horikoshii is involved in the elevation of the optimum temperature of the reconstituted RNase P by binding the K-turns in P12.1 and P12.2. Previously, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was determined at 3.4 Å resolution. In this study, the crystal structure of PhoRpp38 in complex with the K-turn in P12.2 was improved to 2.1 Å resolution and the structure of PhoRpp38 in complex with the K-turn in P12.1 was also determined at a resolution of 3.1 Å. Both structures revealed that Lys35, Asn38 and Glu39 in PhoRpp38 interact with characteristic G·A and A·G pairs in the K-turn, while Thr37, Asp59, Lys84, Glu94, Ala96 and Ala98 in PhoRpp38 interact with the three-nucleotide bulge in the K-turn. Moreover, an extended stem-loop containing P10-P12.2 in complex with PhoRpp38, as well as PhoRpp21 and PhoRpp29, which are the archaeal homologues of the human proteins Rpp21 and Rpp29, respectively, was affinity-purified and crystallized. The crystals thus grown diffracted to a resolution of 6.35 Å. Structure determination of the crystals will demonstrate the previously proposed secondary structure of stem-loops including helices P12.1 and P12.2 and will also provide insight into the structural organization of the specificity domain in P. horikoshii RNase P RNA.

  17. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    PubMed

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  19. Protein Models Docking Benchmark 2

    PubMed Central

    Anishchenko, Ivan; Kundrotas, Petras J.; Tuzikov, Alexander V.; Vakser, Ilya A.

    2015-01-01

    Structural characterization of protein-protein interactions is essential for our ability to understand life processes. However, only a fraction of known proteins have experimentally determined structures. Such structures provide templates for modeling of a large part of the proteome, where individual proteins can be docked by template-free or template-based techniques. Still, the sensitivity of the docking methods to the inherent inaccuracies of protein models, as opposed to the experimentally determined high-resolution structures, remains largely untested, primarily due to the absence of appropriate benchmark set(s). Structures in such a set should have pre-defined inaccuracy levels and, at the same time, resemble actual protein models in terms of structural motifs/packing. The set should also be large enough to ensure statistical reliability of the benchmarking results. We present a major update of the previously developed benchmark set of protein models. For each interactor, six models were generated with the model-to-native Cα RMSD in the 1 to 6 Å range. The models in the set were generated by a new approach, which corresponds to the actual modeling of new protein structures in the “real case scenario,” as opposed to the previous set, where a significant number of structures were model-like only. In addition, the larger number of complexes (165 vs. 63 in the previous set) increases the statistical reliability of the benchmarking. We estimated the highest accuracy of the predicted complexes (according to CAPRI criteria), which can be attained using the benchmark structures. The set is available at http://dockground.bioinformatics.ku.edu. PMID:25712716

  20. Stacking and T-shape competition in aromatic-aromatic amino acid interactions.

    PubMed

    Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo

    2002-05-29

    The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.

  1. Radiation damage to DNA in DNA-protein complexes.

    PubMed

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  2. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex.

    PubMed

    Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda

    2012-04-01

    Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.

  3. Recent advances in automated protein design and its future challenges.

    PubMed

    Setiawan, Dani; Brender, Jeffrey; Zhang, Yang

    2018-04-25

    Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.

  4. Breakdown of the Debye polarization ansatz at protein-water interfaces

    NASA Astrophysics Data System (ADS)

    Fernández Stigliano, Ariel

    2013-06-01

    The topographical and physico-chemical complexity of protein-water interfaces scales down to the sub-nanoscale range. At this level of confinement, we demonstrate that the dielectric structure of interfacial water entails a breakdown of the Debye ansatz that postulates the alignment of polarization with the protein electrostatic field. The tendencies to promote anomalous polarization are determined for each residue type and a particular kind of structural defect is shown to provide the predominant causal context.

  5. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.

    PubMed

    Sanders, C R; Oxenoid, K

    2000-11-23

    Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.

  6. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  7. The cubicon method for concentrating membrane proteins in the cubic mesophase.

    PubMed

    Ma, Pikyee; Weichert, Dietmar; Aleksandrov, Luba A; Jensen, Timothy J; Riordan, John R; Liu, Xiangyu; Kobilka, Brian K; Caffrey, Martin

    2017-09-01

    The lipid cubic phase (in meso) method is an important approach for generating crystals and high-resolution X-ray structures of integral membrane proteins. However, as a consequence of instability, it can be impossible-using traditional methods-to concentrate certain membrane proteins and complexes to values suitable for in meso crystallization and structure determination. The cubicon method described here exploits the amphiphilic nature of membrane proteins and their natural tendency to partition preferentially into lipid bilayers from aqueous solution. Using several rounds of reconstitution, the protein concentration in the bilayer of the cubic mesophase can be ramped up stepwise from less than a milligram per milliliter to tens of milligrams per milliliter for crystallogenesis. The general applicability of the method is demonstrated with five integral membrane proteins: the β 2 -adrenergic G protein-coupled receptor (β 2 AR), the peptide transporter (PepT St ), diacylglycerol kinase (DgkA), the alginate transporter (AlgE) and the cystic fibrosis transmembrane conductance regulator (CFTR). In the cases of β 2 AR, PepT St , DgkA and AlgE, an effective 20- to 45-fold concentration was realized, resulting in a protein-laden mesophase that allowed the formation of crystals using the in meso method and structure determination to resolutions ranging from 2.4 Å to 3.2 Å. In addition to opening up in meso crystallization to a broader range of integral membrane protein targets, the cubicon method should find application in situations that require membrane protein reconstitution in a lipid bilayer at high concentrations. These applications include functional and biophysical characterization studies for ligand screening, drug delivery, antibody production and protein complex formation. A typical cubicon experiment can be completed in 3-5 h.

  8. Topology of RNA–protein nucleobase–amino acid π–π interactions and comparison to analogous DNA–protein π–π contacts

    PubMed Central

    Wilson, Katie A.; Holland, Devany J.; Wetmore, Stacey D.

    2016-01-01

    The present work analyzed 120 high-resolution X-ray crystal structures and identified 335 RNA–protein π-interactions (154 nonredundant) between a nucleobase and aromatic (W, H, F, or Y) or acyclic (R, E, or D) π-containing amino acid. Each contact was critically analyzed (including using a visual inspection protocol) to determine the most prevalent composition, structure, and strength of π-interactions at RNA–protein interfaces. These contacts most commonly involve F and U, with U:F interactions comprising one-fifth of the total number of contacts found. Furthermore, the RNA and protein π-systems adopt many different relative orientations, although there is a preference for more parallel (stacked) arrangements. Due to the variation in structure, the strength of the intermolecular forces between the RNA and protein components (as determined from accurate quantum chemical calculations) exhibits a significant range, with most of the contacts providing significant stability to the associated RNA–protein complex (up to −65 kJ mol−1). Comparison to the analogous DNA–protein π-interactions emphasizes differences in RNA– and DNA–protein π-interactions at the molecular level, including the greater abundance of RNA contacts and the involvement of different nucleobase/amino acid residues. Overall, our results provide a clearer picture of the molecular basis of nucleic acid–protein binding and underscore the important role of these contacts in biology, including the significant contribution of π–π interactions to the stability of nucleic acid–protein complexes. Nevertheless, more work is still needed in this area in order to further appreciate the properties and roles of RNA nucleobase–amino acid π-interactions in nature. PMID:26979279

  9. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Systematic analysis of protein–detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Arne; Dierks, Karsten; XtalConcepts, Marlowring 19, 22525 Hamburg

    Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 µl in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advancedmore » hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-β-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of protein–detergent complexes for crystallization applications.« less

  11. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    PubMed

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane

    PubMed Central

    Mu, Zongkai; Wang, Lei; Deng, Wei; Wang, Jiawei; Wu, Geng

    2017-01-01

    The mechanistic target of rapamycin (mTOR) signal-transduction pathway plays a key role in regulating many aspects of metabolic processes. The central player of the mTOR signaling pathway, mTOR complex 1 (mTORC1), is recruited by the pentameric Ragulator complex and the heterodimeric Rag GTPase complex to the lysosomal membrane and thereafter activated. Here, we determined the crystal structure of the human Ragulator complex, which shows that Lamtor1 possesses a belt-like shape and wraps the other four subunits around. Extensive hydrophobic interactions occur between Lamtor1 and the Lamtor2-Lamtor3, Lamtor4-Lamtor5 roadblock domain protein pairs, while there is no substantial contact between Lamtor2-Lamtor3 and Lamtor4-Lamtor5 subcomplexes. Interestingly, an α-helix from Lamtor1 occupies each of the positions on Lamtor4 and Lamtor5 equivalent to the α3-helices of Lamtor2 and Lamtor3, thus stabilizing Lamtor4 and Lamtor5. Structural comparison between Ragulator and the yeast Ego1-Ego2-Ego3 ternary complex (Ego-TC) reveals that Ego-TC only corresponds to half of the Ragulator complex. Coupling with the fact that in the Ego-TC structure, Ego2 and Ego3 are lone roadblock domain proteins without another roadblock domain protein pairing with them, we suggest that additional components of the yeast Ego complex might exist. PMID:29285400

  13. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-09-11

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity.

  14. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed Central

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-01-01

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity. Images PMID:8414971

  15. Structural Analysis of Der p 1–Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osinski, Tomasz; Pomés, Anna; Majorek, Karolina A.

    Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1–specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partialmore » overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1–10B9 and Der p 1–5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab–protein or Fab–peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen–Ab interactions in group 1 mite allergens. The surface data of Fab–protein and Fab–peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.« less

  16. Proteomic analysis highlights the molecular complexities of native Kv4 channel macromolecular complexes.

    PubMed

    Marionneau, Céline; Townsend, R Reid; Nerbonne, Jeanne M

    2011-04-01

    Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Ubiquitin dynamics in complexes reveal molecular recognition mechanisms beyond induced fit and conformational selection.

    PubMed

    Peters, Jan H; de Groot, Bert L

    2012-01-01

    Protein-protein interactions play an important role in all biological processes. However, the principles underlying these interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin to investigate the principles of their interaction and determine the influence of complex formation on the dynamic properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost complete coverage of bound by unbound ensembles was observed. The significant differences between bound and unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension and shift, which describes the full range of observed effects.

  18. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes.

    PubMed

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-10-18

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  19. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa).

    PubMed

    Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida

    2017-04-01

    Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    PubMed

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  1. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daughaday, W.H.; Kapadia, M.

    1989-09-01

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex ofmore » 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.« less

  2. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay

    PubMed Central

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu1+-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu1+-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration. PMID:21625379

  3. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    PubMed

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  4. Determination of the Stoichiometry between α- and γ1 Subunits of the BK Channel Using LRET.

    PubMed

    Carrasquel-Ursulaez, Willy; Alvarez, Osvaldo; Bezanilla, Francisco; Latorre, Ramon

    2018-06-05

    Two families of accessory proteins, β and γ, modulate BK channel gating and pharmacology. Notably, in the absence of internal Ca 2+ , the γ1 subunit promotes a large shift of the BK conductance-voltage curve to more negative potentials. However, very little is known about how α- and γ1 subunits interact. In particular, the association stoichiometry between both subunits is unknown. Here, we propose a method to answer this question using lanthanide resonance energy transfer. The method assumes that the kinetics of lanthanide resonance energy transfer-sensitized emission of the donor double-labeled α/γ1 complex is the linear combination of the kinetics of the sensitized emission in single-labeled complexes. We used a lanthanide binding tag engineered either into the α- or the γ1 subunits to bind Tb +3 as the donor. The acceptor (BODIPY) was attached to the BK pore-blocker iberiotoxin. We determined that γ1 associates with the α-subunit with a maximal 1:1 stoichiometry. This method could be applied to determine the stoichiometry of association between proteins within heteromultimeric complexes. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.

    PubMed

    Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi

    2013-01-01

    Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.

  6. Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches

    PubMed Central

    Mao, Shu; Benninger, Richard K. P.; Yan, Yuling; Petchprayoon, Chutima; Jackson, David; Easley, Christopher J.; Piston, David W.; Marriott, Gerard

    2008-01-01

    The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. PMID:18281383

  7. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx.

    PubMed

    Schwefel, David; Boucherit, Virginie C; Christodoulou, Evangelos; Walker, Philip A; Stoye, Jonathan P; Bishop, Kate N; Taylor, Ian A

    2015-04-08

    The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal "degron" sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex.

    PubMed

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P; Chait, Brian T

    2014-11-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Human Cytomegalovirus Protein US2 Interferes with the Expression of Human HFE, a Nonclassical Class I Major Histocompatibility Complex Molecule That Regulates Iron Homeostasis

    PubMed Central

    Ben-Arieh, Sayeh Vahdati; Zimerman, Baruch; Smorodinsky, Nechama I.; Yaacubovicz, Margalit; Schechter, Chana; Bacik, Igor; Gibbs, Jim; Bennink, Jack R.; Yewdell, Jon W.; Coligan, John E.; Firat, Hüseyin; Lemonnier, François; Ehrlich, Rachel

    2001-01-01

    HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/β2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses. PMID:11581431

  10. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.

    PubMed

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro

    2014-09-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  12. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion

    PubMed Central

    Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A.; Gates, Fred K.; Wickham, Martin S. J.; Shewry, Peter R.; Bakalis, Serafim; Padfield, Philip; Mills, E. N. Clare

    2015-01-01

    Scope Resistance of proteins to gastrointestinal digestion may play a role in determining immune‐mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Methods and results Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS‐PAGE and immunoblotting using monoclonal antibodies specific for celiac‐toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. Conclusion The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten‐starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. PMID:26202208

  13. Investigation of the pH-dependence of dye-doped protein-protein interactions.

    PubMed

    Nudelman, Roman; Gloukhikh, Ekaterina; Rekun, Antonina; Richter, Shachar

    2016-11-01

    Proteins can dramatically change their conformation under environmental conditions such as temperature and pH. In this context, Glycoprotein's conformational determination is challenging. This is due to the variety of domains which contain rich chemical characters existing within this complex. Here we demonstrate a new, straightforward and efficient technique that uses the pH-dependent properties of dyes-doped Pig Gastric Mucin (PGM) for predicting and controlling protein-protein interaction and conformation. We utilize the PGM as natural host matrix which is capable of dynamically changing its conformational shape and adsorbing hydrophobic and hydrophilic dyes under different pH conditions and investigate and control the fluorescent properties of these composites in solution. It is shown at various pH conditions, a large variety of light emission from these complexes such as red, green and white is obtained. This phenomenon is explained by pH-dependent protein folding and protein-protein interactions that induce different emission spectra which are mediated and controlled by means of dye-dye interactions and surrounding environment. This process is used to form the technologically challenging white light-emitting liquid or solid coating for LED devices. © 2016 The Protein Society.

  14. Structural assembly of the signaling competent ERK2–RSK1 heterodimeric protein kinase complex

    PubMed Central

    Alexa, Anita; Gógl, Gergő; Glatz, Gábor; Garai, Ágnes; Zeke, András; Varga, János; Dudás, Erika; Jeszenői, Norbert; Bodor, Andrea; Hetényi, Csaba; Reményi, Attila

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase–kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 “docking” groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they “readjust,” whereas generic kinase domain surface contacts bring them into a catalytically competent state. PMID:25730857

  15. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The structure and protein binding of amyloid-specific dye reagents.

    PubMed

    Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin

    2003-01-01

    The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.

  17. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR.

    PubMed

    Horváth, Gergő; Bencsura, Ákos; Simon, Ágnes; Tochtrop, Gregory P; DeKoster, Gregory T; Covey, Douglas F; Cistola, David P; Toke, Orsolya

    2016-02-01

    Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3. © 2015 FEBS.

  18. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  19. Native PAGE to study the interaction between the oncosuppressor p53 and its protein ligands.

    PubMed

    Lamberti, Anna; Sgammato, Roberta; Desiderio, Doriana; Punzo, Chiara; Raimo, Gennaro; Novellino, Ettore; Carotenuto, Alfonso; Masullo, Mariorosario

    2015-02-01

    In the present study, we investigated a new approach for studying the interaction between p53 and MDM2/X (where MDM is murine double minute protein). The method is based on the different mobility between the interacting domains of the oncosuppressor p53 and its protein ligands MDM2/X on polyacrylamide gels under native conditions. While the two proteins MDM2/X alone were able to enter the gel, the formation of a binary complex between p53 and MDM2/X prevented the gel entry. The novel technique is reliable for determining the different affinity elicited by MDM2 or MDMX toward p53, and can be useful for analyzing the dissociation power exerted by other molecules on the p53-MDM2/X complex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of ancillary ligands on selectivity of protein labeling with platinum(II) chloro complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xia-Ying.

    1990-02-01

    Potassium (2,6-pyridinedicarboxylato)chloroplatinate(II) was synthesized. The molecular structure of the complex in (n-Bu){sub 4}N(Pt(dipic)Cl){center dot}0.5H{sub 2}O was determined by x-ray crystallography. The (Pt(dipic)Cl){sup {minus}} is essentially planar and contains a Pt(II) atom, a tridentate dipicolinate dianion ligand, and a unidentate Cl{sup {minus}} ligand. The bis(bidentate) complex trans-(Pt(dipic){sub 2}){sup 2{minus}} was also observed by {sup 1}H NMR. A red gel-like substance was observed when the yellow aqueous solution of K(Pt(dipic)Cl) was cooled or concentrated. The K(Pt(dipic)Cl) molecules form stacks in the solid state and gel-like substance but remain monomeric over a wide range of concentrations and temperatures. The reactivity and selectivity of(Pt(dipic)Cl){supmore » {minus}} toward cytochromes c from horse and tuna were studied. The new transition-metal reagent is specific for methionine residues. Di(2-pyridyl-{beta}-ethyl)sulfidochloroplatinum(II) chloride dihydrate was also synthesized. This complex labels histidine and methionine residues in cytochrome c. The ancillary ligands in these platinum(II) complexes clearly determine the selectivity of protein labeling. 106 refs., 10 figs., 11 tabs.« less

  1. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene.

    PubMed

    Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa

    2006-08-01

    Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.

  2. Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides.

    PubMed

    Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej

    2017-03-01

    Shelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate the molecular basis of these interactions, we employed molecular dynamics (MD) simulations of TRF1 TRFH -TIN2 TBM and TRF2 TRFH -TIN2 TBM /Apollo TBM complexes and of the isolated proteins. MD enabled a structural and dynamical comparison of protein-peptide complexes including H-bond interactions and interfacial residues that may regulate TRF protein binding to the given peptides, especially focusing on interactions described in crystallographic data. Residues with a selective function in both TRF1 TRFH and TRF2 TRFH and forming a stable hydrogen bond network with TIN2 TBM or Apollo TBM peptides were traced. Our study revealed that TIN2 TBM forms a well-defined binding mode with TRF1 TRFH as compared to TRF2 TRFH , and that the binding pocket of TIN2 TBM is deeper for TRF2 TRFH protein than Apollo TBM . The MD data provide a basis for the reinterpretation of mutational data obtained in crystallographic work for the TRF proteins. Together, the previously determined X-ray structure and our MD provide a detailed view of the TRF-peptide binding mode and the structure of TRF1/2 binding pockets. Particular TRF-peptide interactions are very specific for the formation of each protein-peptide complex, identifying TRF proteins as potential targets for the design of inhibitors/drugs modulating telomere machinery for anticancer therapy.

  3. Heat Shock Protein 90 Inhibitor Decreases Collagen Synthesis of Keloid Fibroblasts and Attenuates the Extracellular Matrix on the Keloid Spheroid Model.

    PubMed

    Lee, Won Jai; Lee, Ju Hee; Ahn, Hyo Min; Song, Seung Yong; Kim, Yong Oock; Lew, Dae Hyun; Yun, Chae-Ok

    2015-09-01

    The 90-kDa heat-shock protein (heat-shock protein 90) is an abundant cytosolic chaperone, and inhibition of heat-shock protein 90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) compromises transforming growth factor (TGF)-β-mediated transcriptional responses by enhancing TGF-β receptor I and II degradation, thus preventing Smad2/3 activation. In this study, the authors evaluated whether heat-shock protein 90 regulates TGF-β signaling in the pathogenesis and treatment of keloids. Keloid fibroblasts were treated with 17-AAG (10 μM), and mRNA levels of collagen types I and III were determined by real-time reverse- transcriptase polymerase chain reaction. Also, secreted TGF-β1 was assessed by enzyme-linked immunosorbent assay. The effect of 17-AAG on protein levels of Smad2/3 complex was determined by Western blot analysis. In addition, in 17-AAG-treated keloid spheroids, the collagen deposition and expression of major extracellular matrix proteins were investigated by means of Masson trichrome staining and immunohistochemistry. The authors found that heat-shock protein 90 is overexpressed in human keloid tissue compared with adjacent normal tissue, and 17-AAG decreased mRNA levels of type I collagen, secreted TGF-ß1, and Smad2/3 complex protein expression in keloid fibroblasts. Masson trichrome staining revealed that collagen deposition was decreased in 17-AAG-treated keloid spheroids, and immunohistochemical analysis showed that expression of collagen types I and III, elastin, and fibronectin was markedly decreased in 17-AAG-treated keloid spheroids. These results suggest that the antifibrotic action of heat-shock protein 90 inhibitors such as 17-AAG may have therapeutic effects on keloids.

  4. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279

  5. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes

    PubMed Central

    Boeri Erba, Elisabetta; Petosa, Carlo

    2015-01-01

    Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes. PMID:25676284

  6. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression

    PubMed Central

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845

  7. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  8. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.

    PubMed

    Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P

    2015-06-30

    Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.

  9. Network biology discovers pathogen contact points in host protein-protein interactomes.

    PubMed

    Ahmed, Hadia; Howton, T C; Sun, Yali; Weinberger, Natascha; Belkhadir, Youssef; Mukhtar, M Shahid

    2018-06-13

    In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1 MAIN ). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI LRR ) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.

  10. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development.

    PubMed

    Martín, Iker; Ruiz, María F; Sánchez, Lucas

    2011-03-15

    The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila Transformer protein that controls the female-specific splicing of the Drosophila doublesex pre-mRNA. However, it appears that the complex formed between the Drosophila Transformer protein and the Sciara Transformer-2 protein is less effective at inducing the female-specific splicing of the endogenous Drosophila doublesex pre-mRNA than the DrosophilaTransformer-Transformer2 complex. This suggests the existence of species-specific co-evolution of the Transformer and Transformer-2 proteins.

  11. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development

    PubMed Central

    2011-01-01

    Background The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. Results The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. Conclusions The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila Transformer protein that controls the female-specific splicing of the Drosophila doublesex pre-mRNA. However, it appears that the complex formed between the Drosophila Transformer protein and the Sciara Transformer-2 protein is less effective at inducing the female-specific splicing of the endogenous Drosophila doublesex pre-mRNA than the DrosophilaTransformer-Transformer2 complex. This suggests the existence of species-specific co-evolution of the Transformer and Transformer-2 proteins. PMID:21406087

  12. The role of non-covalent protein binding in skin sensitisation potency of chemicals.

    PubMed

    Aleksic, Maja; Thain, Emma; Gutsell, Stephen J; Pease, Camilla K; Basketter, David A

    2007-01-01

    Skin sensitisation is a delayed hypersensitivity reaction caused by repeated exposure to common natural and synthetic chemical allergens. It is thought that small chemical sensitisers (haptens) are required to form a strong irreversible bond with a self protein/peptide and generate an immunogenic hapten-protein complex in order to be recognised by the immune system and stimulate T cell proliferation. The sensitisers are usually electrophilic chemicals that are directly reactive with proteins or reactive intermediates (metabolites) of chemically inert compounds (prohaptens). Sensitising chemicals are also capable of weak, non-covalent association with proteins and there is an ongoing debate about the role of weak interactions of chemicals and proteins in the chemistry of allergy. The non-covalent interactions are reversible and thus have a major impact on skin/epidermal bioavailability of chemical/reactive metabolites. We investigated the relationship between the relative level of non-covalent association to a model protein and their relative potencies as determined by the EC3 values in the murine local lymph node assay (LLNA) for a number of chemicals. Using human serum albumin as a model protein, we determined that no observable relationship exists between the two parameters for the chemicals tested. Therefore, at least for this model protein, non-covalent interactions appear not to be a key determinant of allergen potency.

  13. Antigenic Determinants of Alpha-Like Proteins of Streptococcus agalactiae

    PubMed Central

    Maeland, Johan A.; Bevanger, Lars; Lyng, Randi Valsoe

    2004-01-01

    The majority of group B streptococcus (GBS) isolates express one or more of a family of surface-anchored proteins that vary by strain and that form ladder-like patterns on Western blotting due to large repeat units. These proteins, which are important as GBS serotype markers and as inducers of protective antibodies, include the alpha C (Cα) and R4 proteins and the recently described alpha-like protein 2 (Alp2), encoded by alp2, and Alp3, encoded by alp3. In this study, we examined antigenic determinants possessed by Alp2 and Alp3 by testing of antibodies raised in rabbits, mainly by using enzyme-linked immunosorbent assays (ELISA) and an ELISA absorption test. The results showed that Alp2 and Alp3 shared an antigenic determinant, which may be a unique immunological marker of the Alp variants of GBS proteins. Alp2, in addition, possessed an antigenic determinant which showed specificity for Alp2 and a third determinant which showed serological cross-reactivity with Cα. Alp3, in addition to the determinant common to Alp2 and Alp3, harbored an antigenic site which also was present in the R4 protein, whereas no Alp3-specific antigenic site was detected. These ELISA-based results were confirmed by Western blotting and a fluorescent-antibody test. The results are consistent with highly complex antigenic structures of the alpha-like proteins in a fashion which is in agreement with the recently described structural mosaicism of the alp2 and alp3 genes. The results are expected to influence GBS serotyping, immunoprotection studies, and GBS vaccine developments. PMID:15539502

  14. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome

    PubMed Central

    Vorobyeva, Nadezhda E.; Mazina, Marina U.; Golovnin, Anton K.; Kopytova, Daria V.; Gurskiy, Dmitriy Y.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Georgiev, Pavel G.; Krasnov, Aleksey N.

    2013-01-01

    Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein. PMID:23609538

  15. Quaternary Structure of the Oxaloacetate Decarboxylase Membrane Complex and Mechanistic Relationships to Pyruvate Carboxylases*

    PubMed Central

    Balsera, Monica; Buey, Ruben M.; Li, Xiao-Dan

    2011-01-01

    The oxaloacetate decarboxylase primary Na+ pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ′) binds tightly to Oad-α; and Oad-β, a multispan transmembrane α-helical protein that constitutes the Na+ channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ′) by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided. PMID:21209096

  16. A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasriani, Houman; Fernlund, Per; Udby, Lene

    2009-01-09

    {beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less

  17. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  18. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  19. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE PAGES

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.; ...

    2017-08-16

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  20. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  1. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    PubMed Central

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; Hancock, William O.

    2014-01-01

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. These procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry. PMID:25232006

  2. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    DOE PAGES

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; ...

    2014-09-17

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells usingmore » variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. In conclusion, these procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry.« less

  3. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  4. Novel Function of the Fanconi Anemia Group J or RECQ1 Helicase to Disrupt Protein-DNA Complexes in a Replication Protein A-stimulated Manner*

    PubMed Central

    Sommers, Joshua A.; Banerjee, Taraswi; Hinds, Twila; Wan, Bingbing; Wold, Marc S.; Lei, Ming; Brosh, Robert M.

    2014-01-01

    Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism. PMID:24895130

  5. Crystal structure of the Msx-1 homeodomain/DNA complex.

    PubMed

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  6. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC).

    PubMed

    Niere, Farr; Namjoshi, Sanjeev; Song, Ehwang; Dilly, Geoffrey A; Schoenhard, Grant; Zemelman, Boris V; Mechref, Yehia; Raab-Graham, Kimberly F

    2016-02-01

    Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR)more » domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.« less

  9. Single molecule super-resolution imaging of proteins in living Salmonella enterica using self-labelling enzymes

    PubMed Central

    Barlag, Britta; Beutel, Oliver; Janning, Dennis; Czarniak, Frederik; Richter, Christian P.; Kommnick, Carina; Göser, Vera; Kurre, Rainer; Fabiani, Florian; Erhardt, Marc; Piehler, Jacob; Hensel, Michael

    2016-01-01

    The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells. PMID:27534893

  10. Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications.

    PubMed

    Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A

    1999-06-11

    The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.

  11. Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein

    PubMed Central

    Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian

    2015-01-01

    Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661

  12. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia

    PubMed Central

    2017-01-01

    Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium. PMID:28576874

  13. Taking structure searches to the next dimension.

    PubMed

    Schafferhans, Andrea; Rost, Burkhard

    2014-07-08

    Structure comparisons are now the first step when a new experimental high-resolution protein structure has been determined. In this issue of Structure, Wiederstein and colleagues describe their latest tool for comparing structures, which gives us the unprecedented power to discover crucial structural connections between whole complexes of proteins in the full structural database in real time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cell proteins bind to multiple sites within the 5' untranslated region of poliovirus RNA.

    PubMed Central

    del Angel, R M; Papavassiliou, A G; Fernández-Tomás, C; Silverstein, S J; Racaniello, V R

    1989-01-01

    The 5' noncoding region of poliovirus RNA contains sequences necessary for translation and replication. These functions are probably carried out by recognition of poliovirus RNA by cellular and/or viral proteins. Using a mobility-shift electrophoresis assay and 1,10-phenanthroline/Cu+ footprinting, we demonstrate specific binding of cytoplasmic factors with a sequence from nucleotides 510-629 within the 5' untranslated region (UTR). Complex formation was also observed with a second sequence (nucleotides 97-182) within the 5' UTR. These two regions of the 5' UTR appear to be recognized by distinct cell factors as determined by competition analysis and the effects of ionic strength on complex formation. However, both complexes contain eukaryotic initiation factor 2 alpha, as revealed by their reaction with specific antibody. Images PMID:2554308

  15. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC)*

    PubMed Central

    Niere, Farr; Namjoshi, Sanjeev; Song, Ehwang; Dilly, Geoffrey A.; Schoenhard, Grant; Zemelman, Boris V.; Mechref, Yehia; Raab-Graham, Kimberly F.

    2016-01-01

    Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder—neurological disorders that exhibit elevated mTORC1 activity. Through a protein–protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states. PMID:26419955

  16. Prochloron research

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.

    1983-01-01

    The purpose was to prepare Prochloron photosynthetic membranes for the isolation of the two major chlorophyll-proteins, the P700-chlorophyll a-protein and the light-harvesting chlorophyll a/b-protein, using SDS-polyacrylamide gel electrophoresis. The prepared proteins (purified) were examined for their cross-reactivity to polyclonal antibodies prepared from higher plant proteins. In addition, material was prepared for electron microscopy, and isolation of the DNA for determination of its general complexity (COT analysis) and similarity to barley chloroplast DNA and Anabaena DNA by using restriction-endonuclease analysis. Kleinschmidt spreads of the DNA were in the electron microscope to identify and measure the extent and size of the circlar DNA.

  17. Navigating ligand protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms

    NASA Astrophysics Data System (ADS)

    Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.

    2001-03-01

    Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.

  18. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification.

    PubMed

    Yu, Bowen; Lin, Yu An; Parhad, Swapnil S; Jin, Zhaohui; Ma, Jinbiao; Theurkauf, William E; Zhang, Zz Zhao; Huang, Ying

    2018-06-01

    PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level. © 2018 The Authors.

  19. The Yeast Nuclear Pore Complex

    PubMed Central

    Rout, Michael P.; Aitchison, John D.; Suprapto, Adisetyantari; Hjertaas, Kelly; Zhao, Yingming; Chait, Brian T.

    2000-01-01

    An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport. PMID:10684247

  20. Molecular Dynamics Simulation of Telomere and TRF1

    NASA Astrophysics Data System (ADS)

    Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru

    Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.

  1. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The neutralizing antibody response to the vaccinia virus A28 protein is specifically enhanced by its association with the H2 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinoda, Kaori; Wyatt, Linda S.; Moss, Bernard, E-mail: bmoss@niaid.nih.go

    2010-09-15

    The vaccinia virus (VACV) entry-fusion complex (EFC) is composed of at least nine membrane proteins. Immunization of mice with individual EFC genes induced corresponding protein-binding antibody but failed to protect against VACV intranasal challenge and only DNA encoding A28 elicited low neutralizing antibody. Because the A28 and H2 proteins interact, we determined the effect of immunizing with both genes simultaneously. This procedure greatly enhanced the amount of antibody that bound intact virions, neutralized infectivity, and provided partial protection against respiratory challenge. Neither injection of A28 and H2 plasmids at different sites or mixing A28 and H2 sera enhanced neutralizing antibody.more » The neutralizing antibody could be completely removed by binding to the A28 protein alone and the epitope was located in the C-terminal segment. These data suggest that the interaction of H2 with A28 stabilizes the immunogenic form of A28, mimicking an exposed region of the entry-fusion complex on infectious virions.« less

  3. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  4. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  5. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change.

    PubMed

    Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J

    2013-05-23

    Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. DOCKSCORE: a webserver for ranking protein-protein docked poses.

    PubMed

    Malhotra, Sony; Mathew, Oommen K; Sowdhamini, Ramanathan

    2015-04-24

    Proteins interact with a variety of other molecules such as nucleic acids, small molecules and other proteins inside the cell. Structure-determination of protein-protein complexes is challenging due to several reasons such as the large molecular weights of these macromolecular complexes, their dynamic nature, difficulty in purification and sample preparation. Computational docking permits an early understanding of the feasibility and mode of protein-protein interactions. However, docking algorithms propose a number of solutions and it is a challenging task to select the native or near native pose(s) from this pool. DockScore is an objective scoring scheme that can be used to rank protein-protein docked poses. It considers several interface parameters, namely, surface area, evolutionary conservation, hydrophobicity, short contacts and spatial clustering at the interface for scoring. We have implemented DockScore in form of a webserver for its use by the scientific community. DockScore webserver can be employed, subsequent to docking, to perform scoring of the docked solutions, starting from multiple poses as inputs. The results, on scores and ranks for all the poses, can be downloaded as a csv file and graphical view of the interface of best ranking poses is possible. The webserver for DockScore is made freely available for the scientific community at: http://caps.ncbs.res.in/dockscore/ .

  7. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis.

    PubMed

    Kumar, Manoj; Mishra, Laxmi; Carr, Paul; Pilling, Michael; Gardner, Peter; Mansfield, Shawn D; Turner, Simon

    2018-05-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis ( Arabidopsis thaliana ) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  8. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis1[OPEN

    PubMed Central

    Mishra, Laxmi; Carr, Paul; Gardner, Peter

    2018-01-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. PMID:29523715

  9. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.

    PubMed

    Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong

    2017-06-01

    Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Enhance tumor radiosensitivity by intracellular delivery of eukaryotic translation initiation factor 4E binding proteins.

    PubMed

    Tian, Shuang; Li, Xiu-Li; Shi, Mei; Yao, Yuan-Qing; Li, Li-Wen; Xin, Xiao-Yan

    2011-02-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten)/PI3K (phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signaling pathway, which is commonly dysregulated in a broad array of human malignancies, controls the assembly of eukaryotic translation initiation factor 4F (eIF4F) complex through regulation of eIF4E binding proteins (4E-BPs) phosphorylation. And accumulated data over the past two decades implicated eIF4F complex as one of the promising targets for anticancer therapy. It has been confirmed that the translation initiation of mRNA coding for hypoxia-inducible factor-1α (HIF-1α) and survivin, which had been considered as the two major determinants of tumor radiosensitivity, are both controlled by eIF4F complex. Also, eIF4F complex controls the expression of VEGF and bFGF, the two well-known pro-angiogenic factors involved in developing radioresistance. Therefore eIF4F complex plays a pivotal role in regulation of radiosensitivity. In this article, we postulate that cell-permeable, phosphorylation-defective 4E-BP fusion proteins, which could be prepared by substituting the mTOR recognition motif located in N-terminal of 4E-BPs with protein transduction domain from HIV-1 TAT, HSV-1 VP22 or PTD4, could not only inhibit tumor growth but also enhance tumor response to radiation therapy through disruption of eIF4F complex assembly. In our opinion, the recombinant fusion proteins are superior to mTOR inhibitors for they do not cause immunosuppression, do not lead to Akt activation, and could be easily prepared by prokaryotic expression. If the hypothesis was proved to be practical, the cell-permeable, phosphorylation-defective 4E-BP fusion proteins would be widely used in clinical settings to improve tumor response to radiotherapy in the near future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dietary adequacy of Indian children residing in an urban slum--analysis of proximal and distal determinants.

    PubMed

    Kulsum, Asma; A, Jyothi Lakshmi; Prakash, Jamuna

    2009-01-01

    The influences of proximal and distal determinants of dietary adequacy of children from an urban slum in India were analyzed. Children numbering 271 (5-14 years) and their mothers were enrolled for the study. Intake of all nutrients except protein was inadequate in the dietaries of children. Among distal determinants, associations were found between (i) calorie intake and maternal nutritional status; (ii) protein, iron and B-complex intakes and economic status, and (iii) retinol, calcium and fat intakes and family size. Literacy status was not associated with dietary adequacy. Age of children and economic status of family were important determinants of dietary adequacy of children from slum area. Copyright © Taylor & Francis Group, LLC

  12. Short- and long-term effects of leucine and branched-chain amino acid supplementation of a protein- and energy-reduced diet on muscle protein metabolism in neonatal pigs.

    PubMed

    Manjarín, Rodrigo; Columbus, Daniel A; Solis, Jessica; Hernandez-García, Adriana D; Suryawan, Agus; Nguyen, Hanh V; McGuckin, Molly M; Jimenez, Rafael T; Fiorotto, Marta L; Davis, Teresa A

    2018-05-04

    The objective of this study was to determine if enteral leucine or branched-chain amino acid (BCAA) supplementation increases muscle protein synthesis in neonates who consume less than their protein and energy requirements, and whether this increase is mediated via the upregulation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway or the decrease in muscle protein degradation signaling. Neonatal pigs were fed milk replacement diets containing reduced energy and protein (R), R supplemented with BCAA (RBCAA), R supplemented with leucine (RL), or complete protein and energy (CON) at 4-h intervals for 9 (n = 24) or 21 days (n = 22). On days 9 and 21, post-prandial plasma amino acids and insulin were measured at intervals for 4 h; muscle protein synthesis rate and activation of mTOR-related proteins were determined at 120 min post-feeding in muscle. For all parameters measured, the effects of diet were not different between day 9 or day 21. Compared to CON and R, plasma leucine and BCAA were higher (P ≤ 0.01) in RL- and RBCAA-fed pigs, respectively. Body weight gain, protein synthesis, and activation of S6 kinase (S6K1), 4E-binding protein (4EBP1), and eukaryotic initiation factor 4 complex (eIF4E·eIF4G) were decreased in RBCAA, RL, and R relative to CON (P < 0.01). RBCAA and RL upregulated (P ≤ 0.01) S6K1, 4EBP1, and eIF4E·eIF4G compared to R. In conclusion, when protein and energy are restricted, both leucine and BCAA supplementation increase mTOR activation, but do not enhance skeletal muscle protein synthesis and muscle growth in neonatal pigs.

  13. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.

    PubMed

    Majeran, Wojciech; Zybailov, Boris; Ytterberg, A Jimmy; Dunsmore, Jason; Sun, Qi; van Wijk, Klaas J

    2008-09-01

    Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.

  14. Improved colorimetric determination of serum zinc.

    PubMed

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  15. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography.

    PubMed

    Bhardwaj, Anshul; Casjens, Sherwood R; Cingolani, Gino

    2014-02-01

    Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.

  16. Structure of the Polycomb Group protein PCGF1 (NSPC1) in complex with BCOR reveals basis for binding selectivity of PCGF homologs

    PubMed Central

    Junco, Sarah E.; Wang, Renjing; Gaipa, John C.; Taylor, Alexander B.; Schirf, Virgil; Gearhart, Micah D.; Bardwell, Vivian J.; Demeler, Borries; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    Summary Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and 6) are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes. Here we identify a protein interaction domain in BCL6 co-repressor, BCOR, which binds the ubiquitin-like RAWUL domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold Discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals 1. that PUFD binds to the same surfaces as observed for a different Polycomb Group RAWUL domain and 2. the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data are the first to show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly. PMID:23523425

  17. Visualizing ligand molecules in twilight electron density

    PubMed Central

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    Three-dimensional models of protein structures determined by X-ray crystallo­graphy are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  18. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA

    PubMed Central

    Kassem, Sari; Villanyi, Zoltan

    2017-01-01

    Abstract Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4–Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4–Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4–Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4–Not-dependent co-translational SAGA assembly and functions as a chaperone. PMID:28180299

  19. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

    PubMed

    Bartesaghi, Alberto; Merk, Alan; Banerjee, Soojay; Matthies, Doreen; Wu, Xiongwu; Milne, Jacqueline L S; Subramaniam, Sriram

    2015-06-05

    Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM. Copyright © 2015, American Association for the Advancement of Science.

  20. Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.

    PubMed

    Khoo, Y; Singer, A; Cowburn, D

    2017-07-01

    We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithms-RDC-SOS and RDC-NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramér-Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are corrupted by Gaussian noise of realistic variance, both SOS based algorithms attain the CRB. We successfully apply our method in a divide-and-conquer fashion to determine the structure of ubiquitin from experimental NOE and RDC measurements obtained in two alignment media, achieving more accurate and faster reconstructions compared to the current state of the art.

Top