Temperature lapse rate as an adjunct to wind shear detection
NASA Technical Reports Server (NTRS)
Zweifil, Terry
1991-01-01
Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.
Late Pleistocene temperature, hydrology, and glaciation in equatorial East Africa
NASA Astrophysics Data System (ADS)
Russell, J. M.; Verschuren, D.; Kelly, M. A.; Loomis, S. E.; Jackson, M. S.; Morrill, C.; S Sinninghe Damsté, J.; Doughty, A. M.; De Cort, G.; Olago, D.; Street-Perrott, F. A.
2016-12-01
In the coming century the world's high tropical mountains are predicted to experience a magnitude of climate change second only to the Arctic due to amplification of warming with elevation in the tropics. Proxy data suggest that substantial changes in tropical temperature and hydroclimate also occurred during the last deglaciation, the most recent time period when rising atmospheric CO2 concentrations caused large changes in global climate. Determining whether the rate of temperature change with elevation (the lapse rate) was different from today during the Last Glacial Maximum (LGM) is therefore critical to understanding the future of tropical mountain environments and resources. Here we present a new 25,000-year temperature reconstruction based upon organic geochemical analyses of sediment cores from Lake Rutundu (3,078 m asl), Mount Kenya, East Africa. Through comparison with regional reconstructions of lower elevation temperature, we show that LGM cooling was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our lapse rate reconstructions with equilibrium line altitude reconstructions from glacial moraines indicates that temperature, rather than precipitation, was the dominant control on tropical alpine glacier fluctuations at this time scale. Nevertheless, our results have important implications for the tropical hydrological cycle, as changes in the lapse rate are intimately linked with changes in atmospheric water vapour concentrations. Indeed, we attribute the steeper lapse rate to drying of the tropical ice-age atmosphere, a hypothesis supported by palaeoclimate models. However, comparison of our data to these simulations indicates that state-of-the-art models significantly underestimate tropical temperature changes at high elevation and therefore the lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than currently predicted.
Lapse of time effects on tax evasion in an agent-based econophysics model
NASA Astrophysics Data System (ADS)
Seibold, Götz; Pickhardt, Michael
2013-05-01
We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.
Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort
NASA Astrophysics Data System (ADS)
López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.
2018-03-01
A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < - 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from December to March during three consecutive ski seasons (2012-2013, 2013-2014, and 2014-2015). The Tair and Twb lapse rates showed strong hourly and daily variability, with both exhibiting almost identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.
Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.
2013-05-01
Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).
Analytical Evaluation of ILM Sensors. Volume 2
1975-09-01
up to 2 seconds, except that those functions, actively In use to determine flare altitude ,shall be limited to 0.5 seconds coasting time. Bias The...and specified flight speed and altitude , the model automatically determines and assesses sensor performance at only those aircraft-to-target offset...Is the altitude (Km) k Is the temperature/lapse rate T0 is the ground level temperature ( 0K) T -3 a * (24 -_o) Pw x 10 is the ground
Lee, Kyong-Hwan; Shin, Dae-Hyun
2007-01-01
Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the characteristics of liquid product on the pyrolysis of plastic mixtures were strongly influenced by lapse time of reaction and degradation temperature.
NASA Astrophysics Data System (ADS)
Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.
2014-12-01
The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
Near-surface air temperature lapse rates in Xinjiang, northwestern China
NASA Astrophysics Data System (ADS)
Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun
2018-02-01
Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature ( T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the minimum medians all concentrate in July. (3) The seasonality of T min, T ave, and T max in Xinjiang is also observed. An increasing trend from summer to winter and a decreasing trend from winter to next summer can be seen clearly. (4) The inversion phenomenon is obvious in the Urumqi River Basin and appears in March, November, December, January, and February. The great inversion phenomenon days (24 days) and persistent inversion phenomenon days (12 days) present in January. The influences of elevation and aspect are complex. Lapse rates for T ave, T min, and T max are steeper under humid air conditions, while dry air conditions lead to shallower lapse rates.
NASA Astrophysics Data System (ADS)
Loomis, S. E.; Russell, J. M.; Kelly, M. A.; Eggermont, H.; Verschuren, D.
2013-12-01
Tropical lapse rate variability on glacial/interglacial time scales has been hotly debated since the publication of CLIMAP in 1976. Low-elevation paleotemperature reconstructions from the tropics have repeatedly shown less warming from the Last Glacial Maximum (LGM) to present than reconstructions from high elevations, leading to widespread difficulty in estimating the true LGM-present temperature change in the tropics. This debate is further complicated by the fact that most paleotemperature estimates from high elevations in the tropics are derived from pollen- and moraine-based reconstructions of altitudinal shifts in vegetation belts and glacial equilibrium line altitudes (ELAs). These traditional approaches rely on the assumption that lapse rates have remained constant through time. However, this assumption is problematic in the case of the LGM, when pervasive tropical aridity most likely led to substantial changes in lapse rates. Glycerol dialkyl glycerol tetraethers (GDGTs) can be used to reconstruct paleotemperatures independent of hydrological changes, making them the ideal proxy to reconstruct high elevation temperature change and assess lapse rate variability through time. Here we present two new equatorial paleotemperature records from high elevations in East Africa (Lake Rutundu, Mt. Kenya and Lake Mahoma, Rwenzori Mountains, Uganda) based on branched GDGTs. Our record from Lake Rutundu shows deglacial warming starting near 17 ka and a mid-Holocene thermal maximum near 5 ka. The overall amplitude of warming in the Lake Rutundu record is 6.8×1.0°C from the LGM to the present, with mid-Holocene temperatures 1.6×0.9°C warmer than modern. Our record from Lake Mahoma extends back to 7 ka and shows similar temperature trends to our record from Lake Rutundu, indicating similar temporal resolution of high-elevation temperature change throughout the region. Combining these new records with three previously published GDGT temperature records from different elevations in East Africa (Sacred Lake, Lake Tanganyika, and Lake Malawi), we are able to reconstruct a continuous record of lapse rates and freezing level heights (FLHs) back to the LGM. We find that tropical lapse rates have varied widely over the last 22 ky, with the largest (lowest) lapse rate (FLH) around the LGM, while the smallest (highest) lapse rate (FLH) occurs during the mid-Holocene, confirming the amplification of warming at high altitudes between the LGM and present. These lapse rate and FLH reconstructions match records of regional hydrological variability, confirming the importance of glacial/interglacial humidity variations on altitudinal temperature gradients in the tropics. Furthermore, the FLH record largely matches records of tropical glacier ELA changes, indicating that warming from LGM-present was likely amplified at high altitudes throughout the tropics.
Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes
NASA Astrophysics Data System (ADS)
Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.
2011-12-01
In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air temperature in a high elevation catchment. Our main result is that the assumption of a MALR is appropriate to describe the average variability of temperature over the entire measurement period (and possibly for daily scales), but that hourly near-surface lapse rates vary considerably and can deviate strongly from the MALR. This diurnal variability in lapse rates is associated with changes in wind direction and variations in wind velocity. Shallow lapse rates, in particular, occur during the morning, in correspondence to low wind speeds and change in wind direction from katabatic wind to valley wind and are associated with a weaker correlation between air temperature and elevation, while steeper lapse rates (meaning by this that temperature decreases more with elevation) closer to the MALR are typical of the afternoon hours from 13.00 on (and correspond to high wind speed), and are representative of a more linear dependency between air temperature and elevation. The steepest LRs, however, occur in the evening at 20.00-21.00, when wind velocity drops again and wind direction changes from valley wind to katabatic wind. It is clear that the wind regime is the main controls on LRs variability, and it is important to validate these findings with data sets from a second season.
High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan
2004-01-01
The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.
NASA Astrophysics Data System (ADS)
Wang, Tingting; Sun, Fubao; Ge, Quansheng; Kleidon, Axel; Liu, Wenbin
2018-02-01
Although gridded air temperature data sets share much of the same observations, different rates of warming can be detected due to different approaches employed for considering elevation signatures in the interpolation processes. Here we examine the influence of varying spatiotemporal distribution of sites on surface warming in the long-term trend and over the recent warming hiatus period in China during 1951-2015. A suspicious cooling trend in raw interpolated air temperature time series is found in the 1950s, and 91% of which can be explained by the artificial elevation changes introduced by the interpolation process. We define the regression slope relating temperature difference and elevation difference as the bulk lapse rate of -5.6°C/km, which tends to be higher (-8.7°C/km) in dry regions but lower (-2.4°C/km) in wet regions. Compared to independent experimental observations, we find that the estimated monthly bulk lapse rates work well to capture the elevation bias. Significant improvement can be achieved in adjusting the interpolated original temperature time series using the bulk lapse rate. The results highlight that the developed bulk lapse rate is useful to account for the elevation signature in the interpolation of site-based surface air temperature to gridded data sets and is necessary for avoiding elevation bias in climate change studies.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... of Lapse--Government Life Insurance); Comment Request AGENCY: Veterans Benefits Administration... determine claimants' eligibility to reinstate lapsed Government Life Insurance policy. DATES: Written.... Notice of Lapse--Government Life Insurance, VA Form 29-389. b. Application for Reinstatement, VA Form 29...
Fine fuel moisture measured and estimated in dead Andropogon virginicus in Hawaii
Francis M. Fujioka
1976-01-01
Fuel moisture estimates generated by the National Fire-Danger Rating System procedure were compared with actual fuel moisture measurements determined from laboratory analysis. Meteorological data required for the NFDRS procedure were collected at two heights to assess the effect of temperature and humidity lapse rates. Standard measurements gave the best results, but...
NASA Astrophysics Data System (ADS)
Sims, Elizabeth M.
In order to study the impact of climate change on the Earth's hydrologic cycle, global information about snowfall is needed. To achieve global measurements of snowfall over both land and ocean, satellites are necessary. While satellites provide the best option for making measurements on a global scale, the task of estimating snowfall rate from these measurements is a complex problem. Satellite-based radar, for example, measures effective radar reflectivity, Ze, which can be converted to snowfall rate, S, via a Ze-S relation. Choosing the appropriate Ze-S relation to apply is a complicated problem, however, because quantities such as particle shape, size distribution, and terminal velocity are often unknown, and these quantities directly affect the Ze-S relation. Additionally, it is important to correctly classify the phase of precipitation. A misclassification can result in order-of-magnitude errors in the estimated precipitation rate. Using global ground-based observations over multiple years, the influence of different geophysical parameters on precipitation phase is investigated, with the goal of obtaining an improved method for determining precipitation phase. The parameters studied are near-surface air temperature, atmospheric moisture, low-level vertical temperature lapse rate, surface skin temperature, surface pressure, and land cover type. To combine the effects of temperature and moisture, wet-bulb temperature, instead of air temperature, is used as a key parameter for separating solid and liquid precipitation. Results show that in addition to wet-bulb temperature, vertical temperature lapse rate also affects the precipitation phase. For example, at a near-surface wet-bulb temperature of 0°C, a lapse rate of 6°C km-1 results in an 86 percent conditional probability of solid precipitation, while a lapse rate of -2°C km-1 results in a 45 percent probability. For near-surface wet-bulb temperatures less than 0°C, skin temperature affects precipitation phase, although the effect appears to be minor. Results also show that surface pressure appears to influence precipitation phase in some cases, however, this dependence is not clear on a global scale. Land cover type does not appear to affect precipitation phase. Based on these findings, a parameterization scheme has been developed that accepts available meteorological data as input, and returns the conditional probability of solid precipitation. Ze-S relations for various particle shapes, size distributions, and terminal velocities have been developed as part of this research. These Ze-S relations have been applied to radar reflectivity data from the CloudSat Cloud Profiling Radar to calculate the annual mean snowfall rate. The calculated snowfall rates are then compared to surface observations of snowfall. An effort to determine which particle shape best represents the type of snow falling in various locations across the United States has been made. An optimized Ze-S relation has been developed, which combines multiple Ze-S relations in order to minimize error when compared to the surface snowfall observations. Additionally, the resulting surface snowfall rate is compared with the CloudSat standard product for snowfall rate.
NASA Technical Reports Server (NTRS)
Schlesinger, Robert E.
1988-01-01
The effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared, mature, isolated midlatitude thunderstorms are investigated by performing three different experiments with an anelastic, three-dimensional model: (1) with an assumed stratospheric lapse rate of 0 K/km (i.e., the isothermal case), (2) with 3 K/km, and (3) with -3 K/km (i.e., the case of inversion). Kinematic storm structure is very similar in all three cases, especially in the troposphere; a strong quasi-steady updraft evolves and splits into a dominant cyclonic overshooting right-mover and a weaker, anticyclonic left-mover that does not reach the tropopause.
NASA Astrophysics Data System (ADS)
Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.
2016-12-01
This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.
Businelle, Michael S; Ma, Ping; Kendzor, Darla E; Frank, Summer G; Wetter, David W; Vidrine, Damon J
2016-10-17
Mobile phone‒based real-time ecological momentary assessments (EMAs) have been used to record health risk behaviors, and antecedents to those behaviors, as they occur in near real time. The objective of this study was to determine if intensive longitudinal data, collected via mobile phone, could be used to identify imminent risk for smoking lapse among socioeconomically disadvantaged smokers seeking smoking cessation treatment. Participants were recruited into a randomized controlled smoking cessation trial at an urban safety-net hospital tobacco cessation clinic. All participants completed in-person EMAs on mobile phones provided by the study. The presence of six commonly cited lapse risk variables (ie, urge to smoke, stress, recent alcohol consumption, interaction with someone smoking, cessation motivation, and cigarette availability) collected during 2152 prompted or self-initiated postcessation EMAs was examined to determine whether the number of lapse risk factors was greater when lapse was imminent (ie, within 4 hours) than when lapse was not imminent. Various strategies were used to weight variables in efforts to improve the predictive utility of the lapse risk estimator. Participants (N=92) were mostly female (52/92, 57%), minority (65/92, 71%), 51.9 (SD 7.4) years old, and smoked 18.0 (SD 8.5) cigarettes per day. EMA data indicated significantly higher urges (P=.01), stress (P=.002), alcohol consumption (P<.001), interaction with someone smoking (P<.001), and lower cessation motivation (P=.03) within 4 hours of the first lapse compared with EMAs collected when lapse was not imminent. Further, the total number of lapse risk factors present within 4 hours of lapse (mean 2.43, SD 1.37) was significantly higher than the number of lapse risk factors present during periods when lapse was not imminent (mean 1.35, SD 1.04), P<.001. Overall, 62% (32/52) of all participants who lapsed completed at least one EMA wherein they reported ≥3 lapse risk factors within 4 hours of their first lapse. Differentially weighting lapse risk variables resulted in an improved risk estimator (weighted area=0.76 vs unweighted area=0.72, P<.004). Specifically, 80% (42/52) of all participants who lapsed had at least one EMA with a lapse risk score above the cut-off within 4 hours of their first lapse. Real-time estimation of smoking lapse risk is feasible and may pave the way for development of mobile phone‒based smoking cessation treatments that automatically tailor treatment content in real time based on presence of specific lapse triggers. Interventions that identify risk for lapse and automatically deliver tailored messages or other treatment components in real time could offer effective, low cost, and highly disseminable treatments to individuals who do not have access to other more standard cessation treatments.
Climatological characteristics of high altitude wind shear and lapse rate layers
NASA Technical Reports Server (NTRS)
Ehernberger, L. J.; Guttman, N. B.
1981-01-01
Indications of the climatological distribution of wind shear and temperature lapse and inversion rates as observed by rawinsonde measurements over the western United States are recorded. Frequencies of the strongest shear, lapse rates, and inversion layer strengths were observed for a 1 year period of record and were tabulated for the lower troposphere, the upper troposphere, and five altitude intervals in the lower stratosphere. Selected bivariate frequencies were also tabulated. Strong wind shears, lapse rates, and inversion are observed less frequently as altitude increases from 175 millibars to 20 millibars. On a seasonal basis the frequencies were higher in winter than in summer except for minor influences due to increased tropopause altitude in summer and the stratospheric wind reversal in the spring and fall.
Air motion determination by tracking humidity patterns in isentropic layers
NASA Technical Reports Server (NTRS)
Mancuso, R. L.; Hall, D. J.
1975-01-01
Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe.
Greenland outlet glacier dynamics from Extreme Ice Survey (EIS) photogrammetry
NASA Astrophysics Data System (ADS)
Hawbecker, P.; Box, J. E.; Balog, J. D.; Ahn, Y.; Benson, R. J.
2010-12-01
Time Lapse cameras fill gaps in our observational capabilities: 1. By providing much higher temporal resolution than offered by conventional airborne or satellite remote sensing. 2. While GPS or auto-theodolite observations can provide higher time resolution data than from photogrammetry, survival of these instruments on the hazardous glacier surface is limited, plus, the maintenance of such systems can be more expensive than the maintenance of a terrestrial photogrammetry installation. 3. Imagery provide a high spatial density of observations across the glacier surface, higher than is realistically available from GPS or other in-situ observations. 4. time lapse cameras provide observational capabilities in Eulerian and Lagrangian frames while GPS or theodolite targets, going along for a ride on the glacier, provide only Lagrangian data. Photogrammetry techniques are applied to a year-plus of images from multiple west Greenland glaciers to determine the glacier front horizontal velocity variations at hourly to seasonal time scales. The presentation includes comparisons between glacier front velocities and: 1. surface melt rates inferred from surface air temperature and solar radiation observations; 2. major calving events identified from camera images; 3. surface and near-surface ocean temperature; 4. land-fast sea ice breakup; 5. tidal variations; 6. supra-glacial melt lake drainage events observed in daily optical satellite imagery; and 7.) GPS data. Extreme Ice Survey (EIS) time lapse camera overlooking the Petermann glacier, installed to image glacier dynamics and to capture the predicted ice "island" detachment.
Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer
ERIC Educational Resources Information Center
Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.
2017-01-01
We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…
Determinants of return behavior: a comparison of current and lapsed donors.
Germain, Marc; Glynn, Simone A; Schreiber, George B; Gélinas, Stéphanie; King, Melissa; Jones, Mike; Bethel, James; Tu, Yongling
2007-10-01
There is a need to identify factors explaining why some people stop donating blood. A random mail survey of first-time (FT) and repeat (RPT) current (donating within 6 months before survey) and lapsed (donating >2 years prior) donors was conducted. The self-administered questionnaire included questions on personal, social, and behavioral characteristics. Among 1280 current and 1672 lapsed donors with valid addresses, the participation rate was 66.8 and 39.2 percent, respectively. In FT donors, the odds of lapsing increased with education (odds ratio [OR], 2.18; 95% confidence interval [CI], 1.34-3.55 for college or higher vs. Grade 12 or less education). Lapsed FT donors were more often asked to donate (OR, 1.89; 95% CI, 1.32-2.70) and had less interest in incentives (p < 0.001) than current FT donors. In RPT donors, lapsed status was associated with being younger (p < 0.001) and female (OR, 1.19; 95% CI, 1.00-1.42). Lapsed status was inversely associated with satisfaction with the last donation experience in both FT (p = 0.043) and RPT (p < 0.001) donors. Lapsed and current donors did not differ in perceived need for blood, personal transfusion experience, or mean reported altruistic behavior score. A positive donation experience appears to be a major determinant of donor return behavior. Lapsed donors do not appear, on average, to engage in fewer altruistic behaviors than currently active donors. Retention marketing strategies that appeal solely to altruistic values need to be further evaluated for their effectiveness.
Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes
NASA Astrophysics Data System (ADS)
Nieto-Moreno, Vanesa; Rohrmann, Alexander; van der Meer, Marcel T. J.; Sinninghe Damsté, Jaap S.; Sachse, Dirk; Tofelde, Stefanie; Niedermeyer, Eva M.; Strecker, Manfred R.; Mulch, Andreas
2016-11-01
Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present δD values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28°S) and a valley (22-24°S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane δD values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a δD lapse rate (Δ (δD)) of - 1.64 ‰ / 100 m (R2 = 0.91, p < 0.01) at the hillslope transect, within the range of δD lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of ΔT = - 0.51 °C / 100 m (R2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite-derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Δ (δD) = - 0.95 ‰ / 100 m, R2 = 0.76, p < 0.01 and ΔT = - 0.19 °C / 100 m, R2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane δD values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Δ (δD) = - 1.64 ‰ / 100 m, R2 = 0.91, p < 0.01 and ΔT = - 0.51 °C / 100 m, R2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation.
Are lapsed donors willing to resume blood donation, and what determines their motivation to do so?
van Dongen, Anne; Abraham, Charles; Ruiter, Robert A C; Schaalma, Herman P; de Kort, Wim L A M; Dijkstra, J Anneke; Veldhuizen, Ingrid J T
2012-06-01
This study investigated the possibility of rerecruiting lapsed blood donors. Reasons for donation cessation, motivation to restart donation, and modifiable components of donation motivation were examined. We distinguished between lapsed donors who had passively withdrawn by merely not responding to donation invitations and donors who had contacted the blood bank to actively withdraw. A cross-sectional survey was sent to 400 actively lapsed donors and to 400 passively lapsed donors, measuring intention to restart donation and psychological correlates of restart intention. The data were analyzed using multiple regression analyses. The response rate among actively lapsed donors was higher than among passively lapsed donors (37% vs. 25%). Actively lapsed donors typically ceased donating because of physical reactions, while passively lapsed donors quit because of a busy lifestyle. Nonetheless, 51% of actively lapsed responders and 80% of passively lapsed responders were willing to restart donations. Multiple regression analysis showed that, for passively lapsed donors, cognitive attitude was the strongest correlate of intention to donate in the future (β=0.605, p<0.001), with affective attitude (β=0.239, p<0.05) and self-efficacy (β=0.266, p<0.001) explaining useful proportions of the variance as well. For actively lapsed donors, cognitive attitude was also the strongest correlate of intention (β=0.601, p<0.001), with affective attitude (β=0.345, p<0.001) and moral norm (β=-0.118, p<0.05) explaining smaller proportions of the variance. The majority of lapsed donors indicated a moderate to high intention to restart donations. Interventions focusing on boosting cognitive and affective attitudes and self-efficacy could further raise such intentions. © 2011 American Association of Blood Banks.
2013-01-01
Introduction: The great majority of smokers relapse when they make quit attempts. Therefore, understanding the process of relapse may guide the development of more effective smoking cessation or relapse prevention treatments. The goal of this research is to extend our understanding of the context of initial lapses that occur within 8 weeks of quitting by using more comprehensive assessments of context, a contemporary sample, and sophisticated analytic techniques. Methods: Participants from a randomized controlled smoking cessation trial completed baseline assessments of demographics and tobacco dependence, a daily smoking calendar to determine latency to lapse and relapse (7 consecutive days of smoking), and an assessment of initial lapse context (affect, location, activity, interpersonal, smoke exposure, and cigarette availability). Latent class analysis (LCA) was used to analyze the 6 early lapse (within the first 8 weeks; N = 551) context dimensions; logistic regression and Cox regression were used to relate context to cessation outcomes. Results: LCA revealed 5 distinct initial lapse context classes (talking, with friends, angry; social; alone; with spouse, angry; and with smoking spouse) that were differentially related to cessation outcome. The easy availability of cigarettes characterized almost 75% of lapses, but being with friends, drinking, and not being at home were associated with a lower likelihood of progression to relapse. Conclusions: Early lapsing is highly related to ultimate relapse, and lapsing in frequently experienced contexts seemed most strongly linked with progression to full relapse. PMID:23780705
NASA Astrophysics Data System (ADS)
Po-Chedley, S.; Thorsen, T. J.; Fu, Q.
2015-12-01
Recent research has compared CMIP5 general circulation model (GCM) simulations with satellite observations of warming in the tropical upper troposphere relative to the lower-middle troposphere. Although the pattern of SST warming is important, this research demonstrated that models overestimate increases in static stability between the mid- to upper- tropical troposphere, even when they are forced with historical sea surface temperatures. This discrepancy between satellite-borne microwave sounding unit measurements (MSU) and GCMs is important because it has implications for the strength of the lapse rate and water vapor feedback. The apparent model-observational difference for changes in static stability in the tropical upper troposphere represents an important problem, but it is not clear whether the difference is a result of common biases in GCMs, biases in observational datasets, or both. In this work, we will use GCM simulations to examine the importance of the spatial pattern of SST warming and different convective parameterizations in determining the lapse rate changes in tropical troposphere. We will also consider uncertainties in MSU satellite observations, including changes in the diurnal sampling of temperature and instrument calibration biases when comparing GCMs with the observed record.
Meseck, Kristin; Jankowska, Marta M.; Schipperijn, Jasper; Natarajan, Loki; Godbole, Suneeta; Carlson, Jordan; Takemoto, Michelle; Crist, Katie; Kerr, Jacqueline
2016-01-01
The main purpose of the present study was to assess the impact of global positioning system (GPS) signal lapse on physical activity analyses, discover any existing associations between missing GPS data and environmental and demographics attributes, and to determine whether imputation is an accurate and viable method for correcting GPS data loss. Accelerometer and GPS data of 782 participants from 8 studies were pooled to represent a range of lifestyles and interactions with the built environment. Periods of GPS signal lapse were identified and extracted. Generalised linear mixed models were run with the number of lapses and the length of lapses as outcomes. The signal lapses were imputed using a simple ruleset, and imputation was validated against person-worn camera imagery. A final generalised linear mixed model was used to identify the difference between the amount of GPS minutes pre- and post-imputation for the activity categories of sedentary, light, and moderate-to-vigorous physical activity. Over 17% of the dataset was comprised of GPS data lapses. No strong associations were found between increasing lapse length and number of lapses and the demographic and built environment variables. A significant difference was found between the pre- and post-imputation minutes for each activity category. No demographic or environmental bias was found for length or number of lapses, but imputation of GPS data may make a significant difference for inclusion of physical activity data that occurred during a lapse. Imputing GPS data lapses is a viable technique for returning spatial context to accelerometer data and improving the completeness of the dataset. PMID:27245796
Kinnafick, Florence-Emilie; Thøgersen-Ntoumani, Cecilie; Duda, Joan L
2014-05-01
Grounded in Self-Determination Theory, we aimed to explore and identify key motivational processes involved in the transition from a physically inactive to an active lifestyle, and the processes involved in lapse and dropout behavior within a walking program. We implemented a qualitative, longitudinal case study method, using semistructured interviews and theoretical thematic analyses. Fifteen women were interviewed over 10 months and three profiles were generated: (a) nonadherence, (b) lapse/readoption of physical activity, and (c) adherence. Internalization of walking behavior was key to adherence. Satisfaction of the needs for competence and relatedness were central for participation during exercise at the adoption stages, and autonomy was particularly pertinent in facilitating adherence. Those who lapsed and restarted physical activity experienced feelings of autonomy at the point of readoption. Sources of support were driving forces in the adoption and adherence phases.
Daily air temperature interpolated at high spatial resolution over a large mountainous region
Dodson, R.; Marks, D.
1997-01-01
Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.
Epstein, Richard H; Dexter, Franklin
2012-03-01
Anesthesia groups may wish to decrease the supervision ratio for nontrainee providers. Because hospitals offer many first-case starts and focus on starting these cases on time, the number of anesthesiologists needed is sensitive to this ratio. The number of operating rooms that an anesthesiologist can supervise concurrently is determined by the probability of multiple simultaneous critical portions of cases (i.e., requiring presence) and the availability of cross-coverage. A simulation study showed peak occurrence of critical portions during first cases, and frequent supervision lapses. These predictions were tested using real data from an anesthesia information management system. The timing and duration of critical portions of cases were determined from 1 yr of data at a tertiary care hospital. The percentages of days with at least one supervision lapse occurring at supervision ratios between 1:1 and 1:3 were determined. Even at a supervision ratio of 1:2, lapses occurred on 35% of days (lower 95% confidence limit = 30%). The peak incidence occurred before 8:00 AM, P < 0.0001 for the hypothesis that most (i.e., >50%) lapses occurred before this time. The average time from operating room entry until ready for prepping and draping (i.e., anesthesia release time) during first case starts was 22.2 min (95% confidence interval 21.8-22.8 min). Decreasing the supervision ratio from 1:2 to 1:3 has a large effect on supervision lapses during first-case starts. To mitigate such lapses, either staggered starts or additional anesthesiologists working at the start of the day would be required.
Multivariate Regression Analysis of Winter Ozone Events in the Uinta Basin of Eastern Utah, USA
NASA Astrophysics Data System (ADS)
Mansfield, M. L.
2012-12-01
I report on a regression analysis of a number of variables that are involved in the formation of winter ozone in the Uinta Basin of Eastern Utah. One goal of the analysis is to develop a mathematical model capable of predicting the daily maximum ozone concentration from values of a number of independent variables. The dependent variable is the daily maximum ozone concentration at a particular site in the basin. Independent variables are (1) daily lapse rate, (2) daily "basin temperature" (defined below), (3) snow cover, (4) midday solar zenith angle, (5) monthly oil production, (6) monthly gas production, and (7) the number of days since the beginning of a multi-day inversion event. Daily maximum temperature and daily snow cover data are available at ten or fifteen different sites throughout the basin. The daily lapse rate is defined operationally as the slope of the linear least-squares fit to the temperature-altitude plot, and the "basin temperature" is defined as the value assumed by the same least-squares line at an altitude of 1400 m. A multi-day inversion event is defined as a set of consecutive days for which the lapse rate remains positive. The standard deviation in the accuracy of the model is about 10 ppb. The model has been combined with historical climate and oil & gas production data to estimate historical ozone levels.
Seismic Signatures of Brine Release at Blood Falls, Taylor Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Carr, C. G.; Pettit, E. C.; Carmichael, J.
2017-12-01
Blood Falls is created by the release of subglacially-sourced, iron-rich brine at the surface of Taylor Glacier, McMurdo Dry Valleys, Antarctica. The supraglacial portion of this hydrological feature is episodically active. Englacial liquid brine flow occurs despite ice temperatures of -17°C and we document supraglacial liquid brine release despite ambient air temperatures average -20°C. In this study, we use data from a seismic network, time-lapse cameras, and publicly available weather station data to address the questions: what are the characteristics of seismic events that occur during Blood Falls brine release and how do these compare with seismic events that occur during times of Blood Falls quiescence? How are different processes observable in the time-lapse imagery represented in the seismic record? Time-lapse photography constrains the timing of brine release events during the austral winter of 2014. We use a noise-adaptive digital power detector to identify seismic events and cluster analysis to identify repeating events based on waveform similarity across the network. During the 2014 wintertime brine release, high-energy repeated seismic events occurred proximal to Blood Falls. We investigate the ground motions associated with these clustered events, as well as their spatial distribution. We see evidence of possible tremor during the brine release periods, an indicator of fluid movement. If distinctive seismic signatures are associated with Blood Falls brine release they could be identified based solely on seismic data without any aid from time-lapse cameras. Passive seismologic monitoring has the benefit of continuity during the polar night and other poor visibility conditions, which make time-lapse imagery unusable.
Oxygen isotope ratios in trees reflect mean annual temperature and humidity.
Burk, R L; Stuiver, M
1981-03-27
Values of the oxygen isotope ratios (delta(18)O) in tree-ring cellulose closely reflect the delta(18)O values in atmospheric precipitation and hence mean annual temperature. The change in delta(18)O in cellulose is 0.41 per mil per degree Celsius for selected near-coastal stations. The values of delta(18)O in precipitation and cellulose also change with altitude, as demonstrated for Mount Rainier, Washington. A temperature lapse rate of 5.2 degrees +/- 0.5 degrees C per 1000 meters calculated from cellulose delta(18)O values agrees with the accepted mean annual lapse rate of 5 degrees C per 1000 meters for this region. Cellulose delta(18)O values and delta(18)O values of carbon dioxide equilibrated with leaf water differ by a fixed 16 per mil.
Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere
1998-01-01
Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...
NASA Astrophysics Data System (ADS)
Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.
2012-12-01
In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing so to support an accurate determination of precipitation phase for assessing catchment hydrologic response to the storm.
Vinci, Christine; Li, Liang; Wu, Cai; Lam, Cho Y; Guo, Lin; Correa-Fernández, Virmarie; Spears, Claire A; Hoover, Diana S; Etcheverry, Paul E; Wetter, David W
2017-11-01
Individuals attempting to quit smoking typically have poor success rates, and the majority fail to maintain long-term abstinence. Although a large body of evidence documents the impact of negative affect on reducing abstinence, there is a much smaller body of research on positive emotions, which could be an important mechanism that is associated with successful cessation. As such, this study examined positive emotions in real-time via ecological momentary assessment (EMA) to determine whether discrete positive emotions were uniquely related to 2 cessation milestones: quit day lapse and first lapse. Participants were 391 smokers who received tobacco cessation treatment. EMAs were completed pre- and postquit, and positive emotion was assessed with 3 items (enthusiastic, happy, and relaxed) rated on 5-point Likert scales. Analyses examined the associations of the means and slopes of each emotion on the current day with the likelihood of lapse on the following day. When controlling for relevant covariates, prequit positive emotions were not related to quit day lapse. However, postquit positive emotions were associated with first lapse. Specifically, high levels of happiness and relaxation, as well as increasing levels of enthusiasm, happiness, and relaxation were related to a lower likelihood of next day lapse. These are some of the first real-time, real-world data to demonstrate that distinct positive emotions are associated with a lower risk of lapse during the postquit period among smokers attempting to quit. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Hallberg, Robert; Inamdar, Anand K.
1993-01-01
Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.
Hébert, Emily T; Stevens, Elise M; Frank, Summer G; Kendzor, Darla E; Wetter, David W; Zvolensky, Michael J; Buckner, Julia D; Businelle, Michael S
2018-03-01
Smartphone apps can provide real-time, tailored interventions for smoking cessation. The current study examines the effectiveness of a smartphone-based smoking cessation application that assessed risk for imminent smoking lapse multiple times per day and provided messages tailored to current smoking lapse risk and specific lapse triggers. Participants (N=59) recruited from a safety-net hospital smoking cessation clinic completed phone-based ecological momentary assessments (EMAs) 5 times/day for 3 consecutive weeks (1week pre-quit, 2weeks post-quit). Risk for smoking lapse was estimated in real-time using a novel weighted lapse risk estimator. With each EMA, participants received messages tailored to current level of risk for imminent smoking lapse and self-reported presence of smoking urge, stress, cigarette availability, and motivation to quit. Generalized linear mixed model analyses determined whether messages tailored to specific lapse risk factors were associated with greater reductions in these triggers than messages not tailored to specific triggers. Overall, messages tailored to smoking urge, cigarette availability, or stress corresponded with greater reductions in those triggers than messages that were not tailored to specific triggers (p's=0.02 to <0.001). Although messages tailored to stress were associated with greater reductions in stress than messages not tailored to stress, the association was non-significant (p=0.892) when only moments of high stress were included in the analysis. Mobile technology can be used to conduct real-time smoking lapse risk assessment and provide tailored treatment content. Findings provide initial evidence that tailored content may impact users' urge to smoke, stress, and cigarette availability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verster, Joris C; Mooren, Loes; Bervoets, Adriana C; Roth, Thomas
2017-10-24
The primary outcome measure of the on-road driving test is the Standard Deviation of Lateral Position. However, other outcome measures, such as lapses and excursions out-of-lane, also need to be considered as they may be related to crash risk. The aim of this study was to determine the direction of lapses and excursions out-of-lane (i.e. towards/into the adjacent traffic lane or towards/into the road shoulder). In total, data from 240 driving tests were re-analysed, and 628 lapses and 401 excursions out-of-lane were identified. The analyses revealed that lapses were made equally frequently over left (49.4%) and over right (43.3%). In contrast, excursions out-of-lane were almost exclusively directed over right into the (safer) road shoulder (97.3%). These findings suggest that drivers are unaware of having lapses, whereas excursions out-of-lane are events where the driver is aware of loss of vehicle control. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
John H. Fryer; F. Thomas Ledig
1972-01-01
Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1992-01-01
A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.
Time-lapse and slow-motion tracking of temperature changes: response time of a thermometer
NASA Astrophysics Data System (ADS)
Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.
2017-03-01
We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure in a simple yet rigorous way the response time of an alcohol thermometer and show its critical dependence on the properties of the surrounding environment giving insight into instrument characteristics, heat transfer and thermal equilibrium concepts.
NASA Astrophysics Data System (ADS)
Kayastha, R.; Kayastha, R. B.; Chand, M. B.; Armstrong, R. L.
2016-12-01
Meteorological data are the key parameter for deeper and better understanding the local to regional climate variability. Temperature and precipitation are highly dependent on elevation and it is foremost important in water resource management. The runoff from glacierized catchments is greatly influenced by the variation in temperature and precipitation. However, inaccessibility limits the hydro-meteorological data observation in high altitudes. In this study, temperature and precipitation data are observed and analyzed from six stations including two weather stations in different elevation ranging from 1926 to 3908 m a.s.l. in the Dudh Khola River basin, a sub basin of Marsyangdi River basin from March to June 2016 (pre-monsoon period). Clear spatial and temporal variability of temperature lapse rate (TLR) is observed which is related to the extent of humid air. The hourly mean TLR shows highly heterogeneous between the different elevations from - 0.72 o C, -0.51 o C, -0.77 o C, -0.68 to +0.42 o C per 100 m and the hourly linear regression of TLR is - 0.54 o C per 100 m. Similarly, vertical precipitation gradients (PG) between Dharapani & Goa, Goa & Yak Kharka, and Yak Kharka & glacier station are 0.040, 0.037 and 0.032 per meter respectively. Horizontal precipitation gradient from lower station to the higher station in a distance of 16 km is 0.0015 mm per meter. The TLR from the recorded period are less than the environmental lapse rate in the Dudh Khola Valley in pre-monsoon season. From this study it can be concluded that hourly and daily lapse rates and PGs can be used to improve the output of the glacio-hydrological and energy balance modelling in glacierized river basin.
NASA Astrophysics Data System (ADS)
Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David
1997-02-01
Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops against frost damage.
Weidmann, Christian; Müller-Steinhardt, Michael; Schneider, Sven; Weck, Eberhard; Klüter, Harald
2012-01-01
Background The aim of the study was to identify characteristics of lapsed donors 4 years after the initial donation as well as self-reported barriers to return for further blood donations. Methods A random number of 8,000 blood donors, donating for the German Red Cross Blood Service Baden-Württemberg – Hessen, were asked to fill in a self-administered questionnaire. The response rate was 38.5%. Donors were categorized as ‘lapsed’ if they had not donated within the last 24 months. The odds of being a lapsed donor were determined in a multivariate logistic regression. Results Multivariate analysis showed that lapsed donors were more likely to be female, between 26 and 33 years old, not employed, have moved, and were dissatisfied with the last donation experience. Furthermore, lapsed donors were less likely to have family members or friends who also donate blood. Medical reasons and having moved to another city were the most frequently named reasons preventing lapsed donors from continuing to donate blood. Conclusion The importance of medical reasons and having moved was rated much higher than in previous studies. We conclude that barriers to return may vary considerably between countries and blood services. Therefore, donor surveys are required to guide reactivation campaigns. PMID:22896761
30 CFR 35.20 - Autogenous-ignition temperature test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... timer shall be stopped. The test flask shall then be flushed well with clean dry air and, after a lapse... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Autogenous-ignition temperature test. 35.20..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20...
Di Sante, Gabriele; Casimiro, Mathew C.; Pestell, Timothy G.; Pestell, Richard G.
2016-01-01
Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach. PMID:27168174
Di Sante, Gabriele; Casimiro, Mathew C; Pestell, Timothy G; Pestell, Richard G
2016-05-04
Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.
A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Carle, W. E.; Knight, K.; Moyer, V.; Cheng, N. M.
1981-01-01
Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved.
NASA Astrophysics Data System (ADS)
Gance, Julien; Sailhac, Pascal; Malet, Jean-Philippe; Supper, Robert; Jochum, Birgit; Ottowittz, David; Grandjean, Gilles
2014-05-01
Water infiltration, evaporation and runoff are responsible of changes in the topsoil water content and can influence slope stability which is very often the main controlling factor of landslide triggering. In this work, time-lapse monitoring of electrical conductivity is used to observe variations in soil water contents. Based on recent work which demonstrated the possibility of monitoring the hydrological response of a clayey slope to controlled rainfall experiments, we installed an electrical monitoring system at the Super-Sauze landslide for long-term observation. We used the GEOMON4D resistivimeter (developed by the Austrian Geological Surve) and specifically designed for experiments needing high rate of data acquisition, records of full signal samples for noise detection, remote controlled management and automatic data transfer. The electrode positions varying with time, we installed two cameras to control the position of the electrodes. Several hydrological sensors were also installed along the profile to measure soil temperature, groundwater temperature, groundwater level, groundwater conductivity and soil humidity. The challenge is the processing of 4.2 million of electrical resistivity data. In this difficult context, the possible factors controlling changes in resistivity values are the movement of the electrodes, the soil and water temperature, the change of porosity due to compaction and the soil degree of saturation. Therefore, before any inversion, the presence of possible 3D effects, and the measurement accuracy and uncertainty are assessed. A threshold in apparent resistivity change that could correspond to a change in soil saturation is determined. From those results, we investigate variations in the apparent resistivity. Responses to different hydrological processes (soil freezing/thawing, snow-melting, intense rainfall) occurring during the period of study are detected on resistivity values inversed on short periods.
Ge, Jielin; Xie, Zongqiang
2017-06-01
Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25-29.1°N, and 15% per degree at 29.1-34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between -4.5 and 2.5°C and 2% per °C at 2.5-10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1-32°N, corresponding with MAT of 11-18.1°C, MinT of -2.5 to 2.51°C, and MAP of 1,000-1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species' distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.
Does extinction of responses to cigarette cues occur during smoking cessation?
O'Connell, Kathleen A; Shiffman, Saul; Decarlo, Lawrence T
2011-02-01
This study investigated whether Pavlovian extinction occurs during smoking cessation by determining whether experience abstaining from smoking in the presence of cigarette cues leads to decreased probability of lapsing and whether this effect is mediated by craving. Secondary analyses were carried out with data sets from two studies with correlational/observational designs. Data were collected in smokers' natural environments using ecological momentary assessment techniques. Sixty-one and 207 smokers who were attempting cessation participated. Multi-level path models were used to examine effects of prior experience abstaining in the presence of available cigarettes and while others were smoking on subsequent craving intensity and the probability of lapsing. Control variables included current cigarette availability, current exposure to others smoking, number of prior lapses and time in the study. Both currently available cigarettes [odds ratios (OR) = 36.60, 11.59] and the current presence of other smoking (OR = 5.00, 1.52) were powerful predictors of smoking lapse. Repeated exposure to available cigarettes without smoking was associated with a significantly lower probability of lapse in subsequent episodes (OR = 0.44, 0.52). However, exposure to others smoking was not a reliable predictor, being significant only in the smaller study (OR = 0.30). Craving functioned as a mediator between extinction of available cigarettes and lapsing only in the smaller study and was not a mediator for extinction of others smoking in either study. This study showed that exposure to available cigarettes is a large risk factor for lapsing, but that this risk can also be reduced over time by repeated exposures without smoking. Smoking cessation interventions should attempt to reduce cigarette exposure (by training cigarette avoidance) but recognize the potential advantage of unreinforced exposure to available cigarettes. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
Predicting the Initial Lapse Using a Mobile Health Application after Alcohol Detoxification
ERIC Educational Resources Information Center
Chih, Ming-Yuan
2013-01-01
The prediction and prevention of the initial lapse--which is defined as the first lapse after a period of abstinence--is important because the initial lapse often leads to subsequent lapses (within the same lapse episode) or relapse. The prediction of the initial lapse may allow preemptive intervention to be possible. This dissertation reports on…
Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Toon, O. B.; Boese, R.
1980-01-01
Recent measurements conducted from the Pioneer Venus probes and orbiter have provided a significantly improved definition of the solar net flux profile, the gaseous composition, temperature structure, and cloud properties of Venus' lower atmosphere. Using these data, we have carried out a series of one-dimensional radiative-convective equilibrium calculations to determine the viability of the greenhouse model of Venus' high surface temperature and to assess the chief contributors to the greenhouse effect. New sources of infrared opacity include the permitted transitions of SO2, CO, and HCl as well as opacity due to several pressure-induced transitions of CO2. We find that the observed surface temperature and lapse rate structure of the lower atmosphere can be reproduced quite closely with a greenhouse model that contains the water vapor abundance reported by the Venera spectrophotometer experiment. Thus the greenhouse effect can account for essentially all of Venus' high surface temperature. The prime sources of infrared opacity are, in order of importance, CO2, H2O, cloud particles, and SO2, with CO and HCl playing very minor roles.
Martínez-Granados, Luis; Serrano, María; González-Utor, Antonio; Ortíz, Nereyda; Badajoz, Vicente; Olaya, Enrique; Prados, Nicolás; Boada, Montse; Castilla, Jose A
2017-01-01
The aim of this study is to determine inter-laboratory variability on embryo assessment using time-lapse platform and conventional morphological assessment. This study compares the data obtained from a pilot study of external quality control (EQC) of time lapse, performed in 2014, with the classical EQC of the Spanish Society for the Study of Reproductive Biology (ASEBIR) performed in 2013 and 2014. In total, 24 laboratories (8 using EmbryoScope™, 15 using Primo Vision™ and one with both platforms) took part in the pilot study. The clinics that used EmbryoScope™ analysed 31 embryos and those using Primo Vision™ analysed 35. The classical EQC was implemented by 39 clinics, based on an analysis of 25 embryos per year. Both groups were required to evaluate various qualitative morphological variables (cell fragmentation, the presence of vacuoles, blastomere asymmetry and multinucleation), to classify the embryos in accordance with ASEBIR criteria and to stipulate the clinical decision taken. In the EQC time-lapse pilot study, the groups were asked to determine, as well as the above characteristics, the embryo development times, the number, opposition and size of pronuclei, the direct division of 1 into 3 cells and/or of 3 into 5 cells and false divisions. The degree of agreement was determined by calculating the intra-class correlation coefficients and the coefficient of variation for the quantitative variables and the Gwet index for the qualitative variables. For both EmbryoScope™ and Primo Vision™, two periods of greater inter-laboratory variability were observed in the times of embryo development events. One peak of variability was recorded among the laboratories addressing the first embryo events (extrusion of the second polar body and the appearance of pronuclei); the second peak took place between the times corresponding to the 8-cell and morula stages. In most of the qualitative variables analysed regarding embryo development, there was almost-perfect inter-laboratory agreement among conventional morphological assessment (CMA), EmbryoScope™ and Primo Vision™, except for false divisions, vacuoles and asymmetry (users of all methods) and multinucleation (users of Primo Vision™), where the degree of agreement was lower. The inter-laboratory agreement on embryo classification according to the ASEBIR criteria was moderate-substantial (Gwet 0.41-0.80) for the laboratories using CMA and EmbryoScope™, and fair-moderate (Gwet 0.21-0.60) for those using Primo Vision™. The inter-laboratory agreement for clinical decision was moderate (Gwet 0.41-0.60) on day 5 for CMA users and almost perfect (Gwet 0.81-1) for time-lapse users. In conclusion, time-lapse technology does not improve inter-laboratory agreement on embryo classification or the analysis of each morphological variable. Moreover, depending on the time-lapse platform used, inter-laboratory agreement may be lower than that obtained by CMA. However, inter-laboratory agreement on clinical decisions is improved with the use of time lapse, regardless of the platform used.
Serrano, María; González-Utor, Antonio; Ortíz, Nereyda; Badajoz, Vicente; Olaya, Enrique; Prados, Nicolás; Boada, Montse; Castilla, Jose A.
2017-01-01
The aim of this study is to determine inter-laboratory variability on embryo assessment using time-lapse platform and conventional morphological assessment. This study compares the data obtained from a pilot study of external quality control (EQC) of time lapse, performed in 2014, with the classical EQC of the Spanish Society for the Study of Reproductive Biology (ASEBIR) performed in 2013 and 2014. In total, 24 laboratories (8 using EmbryoScope™, 15 using Primo Vision™ and one with both platforms) took part in the pilot study. The clinics that used EmbryoScope™ analysed 31 embryos and those using Primo Vision™ analysed 35. The classical EQC was implemented by 39 clinics, based on an analysis of 25 embryos per year. Both groups were required to evaluate various qualitative morphological variables (cell fragmentation, the presence of vacuoles, blastomere asymmetry and multinucleation), to classify the embryos in accordance with ASEBIR criteria and to stipulate the clinical decision taken. In the EQC time-lapse pilot study, the groups were asked to determine, as well as the above characteristics, the embryo development times, the number, opposition and size of pronuclei, the direct division of 1 into 3 cells and/or of 3 into 5 cells and false divisions. The degree of agreement was determined by calculating the intra-class correlation coefficients and the coefficient of variation for the quantitative variables and the Gwet index for the qualitative variables. For both EmbryoScope™ and Primo Vision™, two periods of greater inter-laboratory variability were observed in the times of embryo development events. One peak of variability was recorded among the laboratories addressing the first embryo events (extrusion of the second polar body and the appearance of pronuclei); the second peak took place between the times corresponding to the 8-cell and morula stages. In most of the qualitative variables analysed regarding embryo development, there was almost-perfect inter-laboratory agreement among conventional morphological assessment (CMA), EmbryoScope™ and Primo Vision™, except for false divisions, vacuoles and asymmetry (users of all methods) and multinucleation (users of Primo Vision™), where the degree of agreement was lower. The inter-laboratory agreement on embryo classification according to the ASEBIR criteria was moderate-substantial (Gwet 0.41–0.80) for the laboratories using CMA and EmbryoScope™, and fair-moderate (Gwet 0.21–0.60) for those using Primo Vision™. The inter-laboratory agreement for clinical decision was moderate (Gwet 0.41–0.60) on day 5 for CMA users and almost perfect (Gwet 0.81–1) for time-lapse users. In conclusion, time-lapse technology does not improve inter-laboratory agreement on embryo classification or the analysis of each morphological variable. Moreover, depending on the time-lapse platform used, inter-laboratory agreement may be lower than that obtained by CMA. However, inter-laboratory agreement on clinical decisions is improved with the use of time lapse, regardless of the platform used. PMID:28841654
Coda Wave Attenuation Characteristics for North Anatolian Fault Zone, Turkey
NASA Astrophysics Data System (ADS)
Sertcelik, Fadime; Guleroglu, Mehmet
2017-10-01
North Anatolian Fault Zone, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda wave quality factor (Qc) for each of the five sub regionsthat were determined according to the fault rupture of these large earthquakes and along the fault. 978 records have been analyzed for 1.5, 3, 6, 9, 12 and 18 Hz frequencies by Single Backscattering Method. Along the fault, the variations in the Qc with lapse time are determined via, Qc = (136±25)f(0.96±0.027), Qc = (208±22)f(0.85±0.02) Qc = (307±28)f(0.72±0.025) at 20, 30, 40 sec lapse times, respectively. The estimated average frequency-dependence quality factor for all lapse time are; Qc(f) = (189±26)f(0.86±0.02) for Karliova-Tokat region; Qc(f) = (216±19)f(0.76±0.018) for Tokat-Çorum region; Qc(f) = (232±18)f(0.76±0.019) for Çorum-Adapazari region; Qc(f) = (280±28)f(0.79±0.021) for Adapazari-Yalova region; Qc(f) = (252±26)f(0.81±0.022) for Yalova-Gulf of Saros region. The coda wave quality factor at all the lapse times and frequencies is Qc(f) = (206±15)f(0.85±0.012) in the study area. The most change of Qc with lapse time is determined at Yalova-Saros region. The result may be related to heterogeneity degree of rapidly decreases towards the deep crust like compared to the other sub region. Moreover, the highest Qc is calculated between Adapazari - Yalova. It was interpreted as a result of seismic energy released by 1999 Kocaeli Earthquake. Besides, it couldn't be established a causal relationship between the regional variation of Qc with frequency and lapse time associated to migration of the big earthquakes. These results have been interpreted as the attenuation mechanism is affected by both regional heterogeneity and consist of a single or multi strands of the fault structure.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio
2017-12-01
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.
Using time lapse cameras to monitor shoreline changes due to sea level rise.
DOT National Transportation Integrated Search
2017-01-01
Shoreline habitats and infrastructure are currently being affected by sea level rise (SLR) and as : global temperatures continue to rise, will continue to get worse for millennia. Governments : and individuals decisions to adapt to SLR could ha...
Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs
Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.
2011-01-01
Growing concerns surrounding established and expanding populations of wild pigs (Sus scrofa) have created the need for rapid and accurate surveys of these populations. We conducted surveys of a portion of the wild pig population on Fort Benning, Georgia, to determine if a longer time-lapse interval than had been previously used in surveys of wild pigs would generate similar detection results. We concurrently examined whether use of soured corn at camera sites affected the time necessary for pigs to locate a new camera site or the time pigs remained at a site. Our results suggest that a 9-min time-lapse interval generated dependable detection results for pigs and that soured corn neither attracted pigs to a site any quicker than plain, dry, whole-kernel corn, nor held them at a site longer. Maximization of time-lapse interval should decrease data and processing loads, and use of a simple, available bait should decrease cost and effort associated with more complicated baits; combination of these concepts should increase efficiency of wild pig surveys. ?? 2011 The Wildlife Society.
Temporal Variability of the Trade Wind Inversion: Measured with a Boundary Layer Vertical Profiler
1992-05-01
direction change . Consequently, the frequency of vertical observations is every 70 s and each measu t is a 30 s average. T. Riddle combined the raw data set... changes to superadiabatic. There is no change to the temperature at the inversion top. 25 Temperature ( and Dewpoint (-): 8 Aug. 1200 UTC 5000 4500 ! 4000...inversion base is the last level before the lapse rate changes to superadiaatc, (2) There is no change to temperature at the inversion top, and (3) A
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
Time-Lapse Acoustic Impedance Inversion in CO2 Sequestration Study (Weyburn Field, Canada)
NASA Astrophysics Data System (ADS)
Wang, Y.; Morozov, I. B.
2016-12-01
Acoustic-impedance (AI) pseudo-logs are useful for characterising subtle variations of fluid content during seismic monitoring of reservoirs undergoing enhanced oil recovery and/or geologic CO2 sequestration. However, highly accurate AI images are required for time-lapse analysis, which may be difficult to achieve with conventional inversion approaches. In this study, two enhancements of time-lapse AI analysis are proposed. First, a well-known uncertainty of AI inversion is caused by the lack of low-frequency signal in reflection seismic data. To resolve this difficulty, we utilize an integrated AI inversion approach combining seismic data, acoustic well logs and seismic-processing velocities. The use of well logs helps stabilizing the recursive AI inverse, and seismic-processing velocities are used to complement the low-frequency information in seismic records. To derive the low-frequency AI from seismic-processing velocity data, an empirical relation is determined by using the available acoustic logs. This method is simple and does not require subjective choices of parameters and regularization schemes as in the more sophisticated joint inversion methods. The second improvement to accurate time-lapse AI imaging consists in time-variant calibration of reflectivity. Calibration corrections consist of time shifts, amplitude corrections, spectral shaping and phase rotations. Following the calibration, average and differential reflection amplitudes are calculated, from which the average and differential AI are obtained. The approaches are applied to a time-lapse 3-D 3-C dataset from Weyburn CO2 sequestration project in southern Saskatchewan, Canada. High quality time-lapse AI volumes are obtained. Comparisons with traditional recursive and colored AI inversions (obtained without using seismic-processing velocities) show that the new method gives a better representation of spatial AI variations. Although only early stages of monitoring seismic data are available, time-lapse AI variations mapped within and near the reservoir zone suggest correlations with CO2 injection. By extending this procedure to elastic impedances, additional constraints on the variations of physical properties within the reservoir can be obtained.
Coastal Permafrost Bluff Response to Summer Warming, Barter Island, NE Alaska
NASA Astrophysics Data System (ADS)
Richmond, B. M.; Gibbs, A.; Johnson, C. D.; Swarzenski, P. W.; Oberle, F. J.; Tulaczyk, S. M.; Lorenson, T. D.
2016-12-01
Observations of warming air and sea temperatures in the Arctic are leading to longer periods of permafrost thaw and ice-free conditions during summer, which lead to increased exposure to coastal storm surge, wave impacts, and heightened erosion. Recently collected air and soil (bluff) temperatures, atmospheric pressure, water levels, time-lapse photography, aerial photography and satellite imagery, and electrical resistivity tomography (ERT) surveys were used to document coastal bluff morphological response to seasonal warming. Data collection instruments and time-lapse cameras installed overlooking a bluff face on the exposed open ocean coast and within an erosional gully were used to create an archive of hourly air temperature, pressure, bluff morphology, and sea-state conditions allowing for documentation of individual bluff failure events and coincident meteorology. Permafrost boreholes as deep as 6 m from the upper bluff tundra surface were fitted with thermistor arrays to record a high resolution temperature record that spanned an initial frozen state, a summer thaw cycle, and subsequent re-freezing. Late summer ERT surveys were used to link temperature observations to subsurface electrical resistivities and active-layer dynamics. Preliminary observations suggest surface warming and active layer growth are responsible for a significant amount of bluff face failures that are exacerbated in the shore perpendicular gullies and along the exposed ocean coast. Electrical resistivity surveys and geochemical data reveal concentrated brines at depth, which likely contribute to enhanced, localized erosion in weakened strata.
NASA Astrophysics Data System (ADS)
Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.
2017-12-01
The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.
Kuruvatti, J; Prasad, V; Williams, R; Harrison, M A; Jones, R P O
2011-11-01
Blood donors' motivations and reasons for lapsing and never donating were determined from a questionnaire completed by 489 adults (89 regular donors, 105 lapsed donors, 295 never donors) in Leeds, UK. The free text responses were classified according to themes that arose. Altruistic motivations including reciprocation and kinship towards family, friends, and unknowns were most numerous. Other motivations related to the NHS or National Blood Service, obligation, occupation, self-interest, convenience, peer-influence, health benefits, a rare blood group, donations being useful, a TV programme, or ethnicity. Reasons for non-donation were personal, medical, donation centre- or procedure-related, exclusions, and age-related. Suggestions are offered to increase the blood supply. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.
NASA Astrophysics Data System (ADS)
Cronin, T.; Tziperman, E.; Li, H.
2015-12-01
High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.
Estimation of Coda Wave Attenuation in Northern Morocco
NASA Astrophysics Data System (ADS)
Boulanouar, Abderrahim; Moudnib, Lahcen El; Padhy, Simanchal; Harnafi, Mimoun; Villaseñor, Antonio; Gallart, Josep; Pazos, Antonio; Rahmouni, Abdelaali; Boukalouch, Mohamed; Sebbani, Jamal
2018-03-01
We studied the attenuation of coda waves and its frequency and lapse-time dependence in northern Morocco. We analysed coda waves of 66 earthquakes recorded in this region during 2008 for four lapse time windows of length 30, 40, 50, and 60 s, and at five frequency bands with central frequency in the range of 0.75-12 Hz. We determined the frequency dependent Q c relation for the horizontal (NS and EW) and vertical (Z) component seismograms. We analyzed three-component broadband seismograms of 66 local earthquakes for determining coda-Q based on the single back-scattering model. The Q c values show strong frequency dependence in 1.5-12 Hz that is related to high degree of heterogeneity of the medium. The lapse time dependence of Q c shows that Q 0 ( Q c at 1 Hz) significantly increases with lapse time that is related to the depth dependence of attenuation and hence of the level of heterogeneity of the medium. The average frequency-dependent Q c( f) values are Qc = (143.75 ± 1.09)f^{(0.864 ± 0.006)}, Qc = (149.12 ± 1.08)f^{(0.85 ± 0.005)} and Qc = (140.42 ± 1.81)f^{(0.902 ± 0.004)} for the vertical, north-south and east-west components of motion, respectively. The frequency-dependent Q c(f) relations are useful for evaluating source parameters (Singh et al. 2001), which are the key inputs for seismic hazard assessment of the region.
Estimating adolescent sleep need using dose-response modeling.
Short, Michelle A; Weber, Nathan; Reynolds, Chelsea; Coussens, Scott; Carskadon, Mary A
2018-04-01
This study will (1) estimate the nightly sleep need of human adolescents, (2) determine the time course and severity of sleep-related deficits when sleep is reduced below this optimal quantity, and (3) determine whether sleep restriction perturbs the circadian system as well as the sleep homeostat. Thirty-four adolescents aged 15 to 17 years spent 10 days and nine nights in the sleep laboratory. Between two baseline nights and two recovery nights with 10 hours' time in bed (TIB) per night, participants experienced either severe sleep restriction (5-hour TIB), moderate sleep restriction (7.5-hour TIB), or no sleep restriction (10-hour TIB) for five nights. A 10-minute psychomotor vigilance task (PVT; lapse = response after 500 ms) and the Karolinska Sleepiness Scale were administered every 3 hours during wake. Salivary dim-light melatonin onset was calculated at baseline and after four nights of each sleep dose to estimate circadian phase. Dose-dependent deficits to sleep duration, circadian phase timing, lapses of attention, and subjective sleepiness occurred. Less TIB resulted in less sleep, more lapses of attention, greater subjective sleepiness, and larger circadian phase delays. Sleep need estimated from 10-hour TIB sleep opportunities was approximately 9 hours, while modeling PVT lapse data suggested that 9.35 hours of sleep is needed to maintain optimal sustained attention performance. Sleep restriction perturbs homeostatic and circadian systems, leading to dose-dependent deficits to sustained attention and sleepiness. Adolescents require more sleep for optimal functioning than typically obtained.
NASA Technical Reports Server (NTRS)
Hu, H.; Liu, W.
2000-01-01
The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.
NASA Astrophysics Data System (ADS)
Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta
2018-02-01
Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.
Predictors of smoking lapse in a human laboratory paradigm.
Roche, Daniel J O; Bujarski, Spencer; Moallem, Nathasha R; Guzman, Iris; Shapiro, Jenessa R; Ray, Lara A
2014-07-01
During a smoking quit attempt, a single smoking lapse is highly predictive of future relapse. While several risk factors for a smoking lapse have been identified during clinical trials, a laboratory model of lapse was until recently unavailable and, therefore, it is unclear whether these characteristics also convey risk for lapse in a laboratory environment. The primary study goal was to examine whether real-world risk factors of lapse are also predictive of smoking behavior in a laboratory model of smoking lapse. After overnight abstinence, 77 smokers completed the McKee smoking lapse task, in which they were presented with the choice of smoking or delaying in exchange for monetary reinforcement. Primary outcome measures were the latency to initiate smoking behavior and the number of cigarettes smoked during the lapse. Several baseline measures of smoking behavior, mood, and individual traits were examined as predictive factors. Craving to relieve the discomfort of withdrawal, withdrawal severity, and tension level were negatively predictive of latency to smoke. In contrast, average number of cigarettes smoked per day, withdrawal severity, level of nicotine dependence, craving for the positive effects of smoking, and craving to relieve the discomfort of withdrawal were positively predictive of number of cigarettes smoked. The results suggest that real-world risk factors for smoking lapse are also predictive of smoking behavior in a laboratory model of lapse. Future studies using the McKee lapse task should account for between subject differences in the unique factors that independently predict each outcome measure.
Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.
2014-12-01
Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).
Requirement of spatiotemporal resolution for imaging intracellular temperature distribution
NASA Astrophysics Data System (ADS)
Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira
2017-04-01
Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.
CO2 condensation and the climate of early Mars.
Kasting, J F
1991-01-01
A one-dimensional, radiative-convective climate model was used to reexamine the question of whether early Mars could have been kept warm by the greenhouse effect of a dense, CO2 atmosphere. The new model differs from previous models by considering the influence of CO2 clouds on the convective lapse rate and on the the planetary radiation budget. Condensation of CO2 decreases the lapse rate and, hence, reduces the magnitude of the greenhouse effect. This phenomenon becomes increasingly important at low solar luminosities and may preclude warm (0 degree C), globally averaged surface temperatures prior to approximately 2 billion years ago unless other greenhouse gases were present in addition to CO2 and H2O. Alternative mechanisms for warming early Mars and explaining channel formation are discussed.
Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data
NASA Astrophysics Data System (ADS)
Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.
2017-12-01
The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.
Extreme Vertical Gusts in the Atmospheric Boundary Layer
2015-07-01
significant effect on the statistics of the rare, extreme gusts. In the lowest 5,000 ft, boundary layer effects make small to moderate vertical...4 2.4 Effects of Gust Shape ............................................................................................... 5... Definitions Adiabatic Lapse Rate The rate of change of temperature with altitude that would occur if a parcel of air was transported sufficiently
Lam, Cho Y; Businelle, Michael S; Aigner, Carrie J; McClure, Jennifer B; Cofta-Woerpel, Ludmila; Cinciripini, Paul M; Wetter, David W
2014-05-01
Negative affect, alcohol consumption, and presence of others smoking have consistently been implicated as risk factors for smoking lapse and relapse. What is not known, however, is how these factors work together to affect smoking outcomes. This paper uses ecological momentary assessment (EMA) collected during the first 7 days of a smoking cessation attempt to test the individual and combined effects of high-risk triggers on smoking urge and lapse. Participants were 300 female smokers who enrolled in a study that tested an individually tailored smoking cessation treatment. Participants completed EMA, which recorded negative affect, alcohol consumption, presence of others smoking, smoking urge, and smoking lapse, for 7 days starting on their quit date. Alcohol consumption, presence of others smoking, and negative affect were, independently and in combination, associated with increase in smoking urge and lapse. The results also found that the relationship between presence of others smoking and lapse and the relationship between negative affect and lapse were moderated by smoking urge. The current study found significant individual effects of alcohol consumption, presence of other smoking, and negative affect on smoking urge and lapse. Combing the triggers increased smoking urge and the risk for lapse to varying degrees, and the presence of all 3 triggers resulted in the highest urge and lapse risk.
Nowak-Lovato, Kristy L.; Rector, Kirk D.
2012-01-01
Tmore » his review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. he addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. o ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [ H + ] concentration with that of the cell compartments. his review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature ( 37 ° C ) versus room temperature ( 25 ° C ) , (2) after pharmacological treatment with bafilomycin, an H + APase pump inhibitor, or amiloride, an inhibitor of Na + / H + exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. he versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.« less
Cross-sectional and Longitudinal Analyses of Everyday Memory Lapses in Older Adults
McAlister, Courtney; Schmitter-Edgecombe, Maureen
2016-01-01
Everyday memory lapses experienced by older adults (OA) were examined using a daily-diary checklist and retrospective questionnaire. In Experiment 1, 138 younger and 138 OAs indicated the frequency of forgetting of 16 memory lapses, and whether each occurred daily during the course of a week. OAs reported more memory lapses on the questionnaire, but not the daily diary. OAs reported more frequently forgetting names and words, while younger adults had more difficulty with appointments and personal dates. Fewer memory lapses on the daily diary were related to better performance on a laboratory-memory measure for OAs. In Experiment 2, 62 OAs returned for a five-year follow-up and endorsed experiencing more memory lapses on the daily diary compared to baseline, specifically forgetting more names and words, but not the retrospective questionnaire. Daily checklist memory lapses again correlated with the laboratory-memory measure. A daily checklist may be a viable way to assess everyday memory lapses. PMID:26810777
The Microwave Temperature Profiler (PERF)
NASA Technical Reports Server (NTRS)
Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard
2013-01-01
The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.
1994-07-01
lwir imagery (preliminary calibration) and local lapse rates. Type maps were developed using a supervised multi-spectral classification procedure., 2.5...Atmospherics Conference, R. Lee, chairman, 251-260. 4. Tofsted, D. H., 1993, "Effects of Nonuniform Aerosol Forward Scattering on Imagery," Proceedings of...than channel 4; 4) the channel 4 brightness temperature is high relative to the predicted clear scene temperature; and 5) LWIR channel difference is
Time-lapse Raman imaging of osteoblast differentiation
Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi
2015-01-01
Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable. PMID:26211729
Time-lapse Raman imaging of osteoblast differentiation
NASA Astrophysics Data System (ADS)
Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi
2015-07-01
Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.
Predictors of lapse in first week of smoking abstinence in PTSD and non-PTSD smokers.
Beckham, Jean C; Calhoun, Patrick S; Dennis, Michelle F; Wilson, Sarah M; Dedert, Eric A
2013-06-01
Retrospective research suggests smokers with posttraumatic stress disorder (PTSD) lapse more quickly after their quit date. Ecological momentary assessment (EMA) research is needed to confirm the presence of early smoking lapse in PTSD and form conceptualizations that inform intervention. Smokers with (n = 55) and without (n = 52) PTSD completed alarm-prompted EMA of situational and psychiatric variables the week before and after a quit date, and self-initiated EMA following smoking lapses. Blood samples at baseline and on the quit date allowed assessment of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA(S)). PTSD was related to shorter time to lapse (hazard ratio [HR] = 1.677, 95% CI: 1.106-2.544). Increased smoking abstinence self-efficacy was related to longer time to lapse (HR = 0.608, 95% CI: 0.430-0.860). Analyses of participants' real-time reports revealed that smokers with PTSD were more likely to attribute first-time lapses to negative affect ( = 5.412, p = .020), and trauma reminders (Fisher's exact p = .003**). Finally, the quit date decrease in DHEA(S) was related to shorter time to lapse (HR = 1.009, 95% CI: 1.000-1.018, p < .05). Results provide evidence of shorter time to first smoking lapse in PTSD, and add to evidence that early lapse occasions are more strongly related to trauma reminders, negative affect, and cravings in smokers with PTSD.
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
Application of Machine Learning to Predict Dietary Lapses During Weight Loss.
Goldstein, Stephanie P; Zhang, Fengqing; Thomas, John G; Butryn, Meghan L; Herbert, James D; Forman, Evan M
2018-05-01
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a "lapse." There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
NASA Astrophysics Data System (ADS)
Schlesinger, Robert E.
1988-05-01
An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very briefly.The cold cloud-top points are near or slightly downwind of relative vertical velocity maxima, usually positive, while the warm points are imbedded in subsidence downwind of the principal cloud-top downdraft core. The storm-relative cloud-top horizontal wind fields are consistent with the `V' shape of the cold region, showing strong diffluent flow directed downshear along the flanks from an upshear stagnation zone.
Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.
Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert
2013-01-01
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.
Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy
Barretto, Robert P. J.; Ko, Tony H.; Jung, Juergen C.; Wang, Tammy J.; Capps, George; Waters, Allison C.; Ziv, Yaniv; Attardo, Alessio; Recht, Lawrence; Schnitzer, Mark J.
2013-01-01
The combination of intravital microscopy and animal models of disease has propelled studies of disease mechanisms and treatments. However, many disorders afflict tissues inaccessible to light microscopy in live subjects. Here we introduce cellular-level time-lapse imaging deep within the live mammalian brain by one- and two-photon fluorescence microendoscopy over multiple weeks. Bilateral imaging sites allowed longitudinal comparisons within individual subjects, including of normal and diseased tissues. Using this approach we tracked CA1 hippocampal pyramidal neuron dendrites in adult mice, revealing these dendrites' extreme stability (>8,000 day mean lifetime) and rare examples of their structural alterations. To illustrate disease studies, we tracked deep lying gliomas by observing tumor growth, visualizing three-dimensional vasculature structure, and determining microcirculatory speeds. Average erythrocyte speeds in gliomas declined markedly as the disease advanced, notwithstanding significant increases in capillary diameters. Time-lapse microendoscopy will be applicable to studies of numerous disorders, including neurovascular, neurological, cancerous, and trauma-induced conditions. PMID:21240263
Relations among affect, abstinence motivation and confidence, and daily smoking lapse risk.
Minami, Haruka; Yeh, Vivian M; Bold, Krysten W; Chapman, Gretchen B; McCarthy, Danielle E
2014-06-01
This study tested the hypothesis that changes in momentary affect, abstinence motivation, and confidence would predict lapse risk over the next 12-24 hr using Ecological Momentary Assessment (EMA) data from smokers attempting to quit smoking. One hundred and three adult, daily, treatment-seeking smokers recorded their momentary affect, motivation to quit, abstinence confidence, and smoking behaviors in near real time with multiple EMA reports per day using electronic diaries postquit. Multilevel models indicated that initial levels of negative affect were associated with smoking, even after controlling for earlier smoking status, and that short-term increases in negative affect predicted lapses up to 12, but not 24, hr later. Positive affect had significant effects on subsequent abstinence confidence, but not motivation to quit. High levels of motivation appeared to reduce increases in lapse risk that occur over hours although momentary changes in confidence did not predict lapse risk over 12 hr. Negative affect had short-lived effects on lapse risk, whereas higher levels of motivation protected against the risk of lapsing that accumulates over hours. An increase in positive affect was associated with greater confidence to quit, but such changes in confidence did not reduce short-term lapse risk, contrary to expectations. Relations observed among affect, cognitions, and lapse seem to depend critically on the timing of assessments.
Effect of high-dose nicotine patch on craving and negative affect leading up to lapse episodes.
Ferguson, Stuart G; Shiffman, Saul
2014-07-01
Nicotine patches have been reliably demonstrated to improve smoking cessation outcomes but most users still lapse, and then relapse, during treatment. While patch has been shown to alleviate background cravings, its effects on cue-induced cravings - which have been linked to the occurrence of lapse events - are poorly understood. Here we investigate the effect of nicotine patch on the intensity of craving and negative affect experienced during the hours immediately preceding lapse episodes. Participants were 185 smokers who had quit in the context of a randomized, double-blind trial of high-dose (35 mg) nicotine patch and who lapsed at least once during the first 5 weeks of treatment. Participants used electronic diaries to monitor their smoking, affect, and craving during their cessation attempt. The data suggest that developments on the lapse day - either external events or changes in internal states - caused craving and negative affect to rise, cumulating in the lapse. Nicotine is known to lower background craving and negative affect, but the difference between patch and placebo appeared to dissipate in the hours immediately preceding lapse episodes. Understanding the process by which these symptoms "spike" prior to a lapse - and developing treatments to counter it - are worthy research endeavors.
Lapse in Institutional Animal Care and Use Committee Continuing Reviews.
Tsan, Min-Fu; Grabenbauer, Michael; Nguyen, Yen
2016-01-01
The United States federal animal welfare regulations and the Public Health Service Policy on Humane Care and Use of Laboratory Animals require that institutional animal care and use committees (IACUCs) conduct continuing reviews of all animal research activities. However, little is known about the lapse rate of IACUC continuing reviews, and how frequently investigators continue research activities during the lapse. It is also not clear what factors may contribute to an institution's lapse in IACUC continuing reviews. As part of the quality assurance program, the Department of Veterans Affairs (VA) has collected performance metric data for animal care and use programs since 2011. We analyzed IACUC continuing review performance data at 74-75 VA research facilities from 2011 through 2015. The IACUC continuing review lapse rates improved from 5.6% in 2011 to 2.7% in 2015. The rate of investigators continuing research activities during the lapse also decreased from 47.2% in 2012 to 7.4% in 2015. The type of IACUCs used and the size of animal research programs appeared to have no effect in facility's rates of lapse in IACUC continuing reviews. While approximately 80% of facilities reported no lapse in IACUC continuing reviews, approximately 14% of facilities had lapse rates of >10% each year. Some facilities appeared to be repeat offenders. Four facilities had IACUC lapse rates of >10% in at least 3 out of 5 years, suggesting a system problem in these facilities requiring remedial actions to improve their IACUC continuing review processes.
Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.
Kuntz, Steven G; Eisen, Michael B
2014-04-01
Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges.
Assessment of ice-dam collapse by time-lapse photos at the Perito Moreno glacier, Argentina
NASA Astrophysics Data System (ADS)
Lenzano, M. G.; Lannutti, E.; Toth, C. K.; Lenzano, L. E.; Lovecchio, A.
2014-11-01
This research provides a feasibility study on the implementation and performance assessment of time-lapse processing of a monoscopic image sequence, acquired by a calibrated camera in the Perito Moreno Glacier in Argentina. The glacier is located at 50°28'23" S, 73°02'10" W at the Parque Nacional Los Glaciares, South Patagonia Icefield, Santa Cruz and has experienced minor fluctuations and unusual behavior since the early 1960's to present. The objective of this study was to determine the evolution and changes in the ice-dam of the Perito Moreno glacier that started on November, 23 2012 and collapsed on January 19, 2013. Two images every 24 hours were acquired since October 2012 until February 2013, a total of 135 days. Image information was supported by ground data. Image and ground data was correlated with a 2D affine transformation. This technique allows the determination of the distortions in the images and estimating the values of scale factors. This, along with an accurate time-lapse interval, has produced accurate data for the analysis. In addition, changes in the level of the Brazo Rico lake were validated with direct data in order to determine the degree of uncertainty in the estimation of changes in the glacier. Based on the calculations, advance rates of the front of the Perito Moreno glacier were estimated at 0.67 m/d ± 0.003 m, and the tunnel evolution was also recorded.
Reconstructed imaging of acoustic cloak using time-lapse reversal method
NASA Astrophysics Data System (ADS)
Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun
2014-08-01
We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.
NASA Astrophysics Data System (ADS)
Rousseau, Denis-Didier; Boers, Niklas; Sima, Adriana; Svensson, Anders; Bigler, Matthias; Lagroix, France; Taylor, Samuel; Antoine, Pierre
2017-08-01
Since their discovery, the abrupt climate changes that punctuated the last glacial period (∼110.6-14.62 ka) have attracted considerable attention. Originating in the North-Atlantic area, these abrupt changes have been recorded in ice, marine and terrestrial records all over the world, but especially in the Northern Hemisphere, with various environmental implications. Ice-core records of unprecedented temporal resolution from northern Greenland allow to specify the timing of these abrupt changes, which are associated with sudden temperature increases in Greenland over a few decades, very precisely. The continental records have, so far, been mainly interpreted in terms of temperature, precipitation or vegetation changes between the relatively warm ;Greenland Interstadials; (GI) and the cooler ;Greenland Stadials; (GS). Here we compare records from Greenland ice and northwestern European eolian deposits in order to establish a link between GI and the soil development in European mid-latitudes, as recorded in loess sequences. For the different types of observed paleosols, we use the correlation with the Greenland records to propose estimates of the maximum time lapses needed to achieve the different degrees of maturation and development. To identify these time lapses more precisely, we compare two independent ice-core records: δ18O and dust concentration, indicating variations of atmospheric temperature and dustiness in the Greenland area, respectively. Our method slightly differs from the definition of a GI event duration applied in other studies, where the sharp end of the δ18O decrease alone defines the end of a GI. We apply the same methodology to both records (i.e., the GIs are defined to last from the beginning of the abrupt δ18O increase or dust concentration decrease until the time when δ18O or dust recur to their initial value before the GI onset), determined both visually and algorithmically, and compare them to published estimates of GI timing and duration. The duration of the GI and consequently the maximum time for paleosol development varies between 200 and 4200 years when visually determined and between 200 and 4800 years when estimated algorithmically for GI 17 to 2, i.e. an interval running from 60 ka to 23 ka b2k (age before 2000 AD). Furthermore, we investigate the abruptness of the transition from stadial to interstadial conditions, which initiates the paleosol development. The average transition duration is 55.4 ± 16.1 (56.8 ± 19.6) years when determined visually, and 36.4 ± 13.4 (60.00 ± 21.2) years when determined algorithmically for the δ18O (dust concentration). The δ18O increases correspond to a mean temperature difference of 11.8 °C on the top of the Greenland ice sheet, associated with substantial reorganizations of the ecosystems in mid-latitude Europe.
Relations among Affect, Abstinence Motivation and Confidence, and Daily Smoking Lapse Risk
Minami, Haruka; Yeh, Vivian M.; Bold, Krysten W.; Chapman, Gretchen B.; McCarthy, Danielle E.
2016-01-01
Aims This study tested the hypothesis that changes in momentary affect, abstinence motivation, and confidence would predict lapse risk over the next 12–24 hours using Ecological Momentary Assessment (EMA) data from smokers attempting to quit smoking. Method 103 adult, daily, treatment-seeking smokers recorded their momentary affect, motivation to quit, abstinence confidence, and smoking behaviors in near real time with multiple EMA reports per day using electronic diaries post-quit. Results Multilevel models indicated that initial levels of negative affect were associated with smoking, even after controlling for earlier smoking status, and that short-term increases in negative affect predicted lapses up to 12, but not 24, hours later. Positive affect had significant effects on subsequent abstinence confidence, but not motivation to quit. High levels of motivation appeared to reduce increases in lapse risk that occur over hours while momentary changes in confidence did not predict lapse risk over 12 hours. Conclusion Negative affect had short-lived effects on lapse risk, whereas higher levels of motivation protected against the risk of lapsing that accumulates over hours. An increase in positive affect was associated with greater confidence to quit, but such changes in confidence did not reduce short-term lapse risk, contrary to expectations. Relations observed among affect, cognitions, and lapse seem to depend critically on the timing of assessments. PMID:24955665
A North American regional reanalysis climatology of the Haines Index
Wei Lu; Joseph J. (Jay) Charney; Sharon Zhong; Xindi Bian; Shuhua Liu
2011-01-01
A warm-season (May through October) Haines Index climatology is derived using 32-km regional reanalysis temperature and humidity data from 1980 to 2007. We compute lapse rates, dewpoint depressions, Haines Index factors A and B, and values for each of the low-, mid- and high-elevation variants of the Haines Index. Statistical techniques are used to investigate the...
Application of the urban mixing-depth concept to air pollution problems
Peter W. Summers
1977-01-01
A simple urban mixing-depth model is used to develop an indicator of downtown pollution concentrations based on emission strength, rural temperature lapse rate, wind speed, city heat input, and city size. It is shown that the mean annual downtown suspended particulate levels in Canadian cities are proportional to the fifth root of the population. The implications of...
NASA Astrophysics Data System (ADS)
Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan
2008-02-01
Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius re, optical depth, and liquid water path for SL stratus are 0.1 ± 1.9 μm (1.2 ± 23.5%), -1.3 ± 9.5 (-3.6 ± 26.2%), and 0.6 ± 49.9 gm-2 (0.3 ± 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 ± 1.9 μm (2.5 ± 23.4%), 2.5 ± 7.8 (7.8 ± 24.3%), and 28.1 ± 52.7 gm-2 (17.2 ± 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in re was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of re is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. Methods for improving the cloud top height and microphysical property retrievals are suggested.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan
2008-01-01
Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius r(sub e), optical depth, and liquid water path for SL stratu are 0.1 +/- 1.9 micrometers (1.2 +/- 23.5%), -1.3 +/- 9.5 (-3.6 +/-26.2%), and 0.6 +/- 49.9 gm (exp -2) (0.3 +/- 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 +/- 1.9 micrometers (2.5 +/- 23.4%), 2.5 +/- 7.8 (7.8 +/- 24.3%), and 28.1 +/- 52.7 gm (exp -2) (17.2 +/- 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in R(sub e) was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of r(sub e) is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. methods for improving the cloud-top height and microphysical property retrievals are suggested.
NASA Astrophysics Data System (ADS)
Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng
2018-03-01
To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.
Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra.
Lin, Chin-Teng; Huang, Kuan-Chih; Chuang, Chun-Hsiang; Ko, Li-Wei; Jung, Tzyy-Ping
2013-10-01
This study explores the neurophysiological changes, measured using an electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy drivers, and predicts the efficacy of the feedback based on changes in the EEG. Eleven healthy subjects participated in sustained-attention driving experiments. The driving task required participants to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel, while their EEG and driving performance were continuously monitored. The arousing warning signal was delivered to participants who experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events (specifically the reaction time exceeded three times the alert reaction time). The results of our previous studies revealed that arousing feedback immediately reversed deteriorating driving performance, which was accompanied by concurrent EEG theta- and alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback efficacy assessment system to accurately estimate the efficacy of arousing warning signals delivered to drowsy participants by monitoring the changes in their EEG power spectra immediately thereafter. The classification accuracy was up 77.8% for determining the need for triggering additional warning signals. The findings of this study, in conjunction with previous studies on EEG correlates of behavioral lapses, might lead to a practical closed-loop system to predict, monitor and rectify behavioral lapses of human operators in attention-critical settings.
Butman, Bradford; Bryden, Cynthia G.; Pfirman, Stephanie L.; Strahle, William J.; Noble, Marlene A.
1984-01-01
An instrument system that measures bottom current, temperature, light transmission, and pressure, and that photographs the bottom at 2- to 6-hour intervals has been developed to study sediment transport on the Atlantic Continental Shelf. Instruments have been deployed extensively along the United States East Coast Continental Shelf for periods of from 2 to 6 months to study the frequency, direction, and rate of bottom sediment movement, and the processes causing movement. The time-lapse photographs are used to (1) characterize the bottom benthic community and surface microtopography; (2) monitor changes in the bottom topography and near-bottom water column caused by currents and storms (for example, ripple generation and migration, sediment resuspension); and (3) monitor seasonal changes in the bottom benthic community and qualitative effects of this community on the bottom sediments.
Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos.
Mio, Yasuyuki; Maeda, Kazuo
2008-12-01
The purpose of this study was to clarify developmental changes of early human embryos by using time-lapse cinematography (TLC). For human ova, fertilization and cleavage, development of the blastocyst, and hatching, as well as consequent changes were repeatedly photographed at intervals of 5-6 days by using an inverse microscope under stabilized temperature and pH. Photographs were taken at 30 frames per second and the movies were studied. Cinematography has increased our understanding of the morphologic mechanisms of fertilization, development, and behavior of early human embryos, and has identified the increased risk of monozygotic twin pregnancy based on prolonged incubation in vitro to the blastocyst stage. Using TLC, we observed the fertilization of an ovum by a single spermatozoon, followed by early cleavages, formation of the morula, blastocyst hatching, changes in the embryonic plates, and the development of monozygotic twins from the incubated blastocysts.
Smoker Characteristics and Smoking-Cessation Milestones
Japuntich, Sandra J.; Leventhal, Adam M.; Piper, Megan E.; Bolt, Daniel M.; Roberts, Linda J.; Fiore, Michael C.; Baker, Timothy B.
2011-01-01
Background Contextual variables often predict long-term abstinence, but little is known about how these variables exert their effects. These variables could influence abstinence by affecting the ability to quit at all, or by altering risk of lapsing, or progressing from a lapse to relapse. Purpose To examine the effect of common predictors of smoking-cessation failure on smoking-cessation processes. Methods The current study (N = 1504, 58% female, 84% Caucasian; recruited from January 2005 to June 2007; data analyzed in 2009) uses the approach advocated by Shiffman et al., (2006), which measures cessation outcomes on three different cessation milestones (achieving initial abstinence, lapse risk, and the lapse-relapse transition) to examine relationships of smoker characteristics (dependence, contextual and demographic factors) with smoking-cessation process. Results High nicotine dependence strongly predicted all milestones: not achieving initial abstinence, and a higher risk of both lapse and transitioning from lapse to complete relapse. Numerous contextual and demographic variables were associated with higher initial cessation rates and/or decreased lapse risk at 6 months post-quit (e.g., ethnicity, gender, marital status, education, smoking in the workplace, number of smokers in the social network, and number of supportive others). However, aside from nicotine dependence, only gender significantly predicted the risk of transition from lapse to relapse. Conclusions These findings demonstrate that: (1) higher nicotine dependence predicted worse outcomes across every cessation milestone; (2) demographic and contextual variables are generally associated with initial abstinence rates and lapse risk and not the lapse-relapse transition. These results identify groups who are at risk for failure at specific stages of the smoking-cessation process, and this may have implications for treatment. PMID:21335259
A fjord-glacier coupled system model
NASA Astrophysics Data System (ADS)
de Andrés, Eva; Otero, Jaime; Navarro, Francisco; Prominska, Agnieszka; Lapazaran, Javier; Walczowski, Waldemar
2017-04-01
With the aim of studying the processes occurring at the front of marine-terminating glaciers, we couple a fjord circulation model with a flowline glacier dynamics model, with subglacial discharge and calving, which allows the calculation of submarine melt and its influence on calving processes. For ocean modelling, we use a general circulation model, MITgcm, to simulate water circulation driven by both fjord conditions and subglacial discharge, and for calculating submarine melt rates at the glacier front. To constrain freshwater input to the fjord, we use estimations from European Arctic Reanalysis (EAR). To determine the optimal values for each run period, we perform a sensitivity analysis of the model to subglacial discharge variability, aimed to get the best fit of model results to observed temperature and salinity profiles in the fjord for each of these periods. Then, we establish initial and boundary fjord conditions, which we vary weekly-fortnightly, and calculate the submarine melt rate as a function of depth at the calving front. These data are entered into the glacier-flow model, Elmer/Ice, which has been added a crevasse-depth calving model, to estimate the glacier terminus position at a weekly time resolution. We focus our study on the Hansbreen Glacier-Hansbukta Fjord system, in Southern Spitsbergen, Svalbard, where a large set of data are available for both glacier and fjord. The bathymetry of the entire system has been determined from ground penetrating radar and sonar data. In the fjord we have got temperature and salinity data from CTDs (May to September, 2010-2014) and from a mooring (September to May, 2011-2012). For Hansbreen, we use glacier surface topography data from the SPIRIT DEM, surface mass balance from EAR, centre line glacier velocities from stake measurements (May 2005-April 2011), weekly terminus positions from time-lapse photos (Sept. 2009-Sept. 2011), and sea-ice concentrations from time-lapse photos and Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Results suggest submarine melt rates at Hansbreen terminus implying noticeable changes in the glacier front geometry, and hence the stress field, which favour the occurrence of calving events. In this way, submarine melt at the glacier front could be a first-order mechanism in determining the terminus position in late summer.
Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts
NASA Astrophysics Data System (ADS)
Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.
2015-12-01
Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted by regression of weather variables. In addition amplitude of spatial variations were most dependent on temperature, north winds, and high level lapse rate and the temporal variations were most dependent on temperature and lapse rates.
NASA Astrophysics Data System (ADS)
Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.
2014-03-01
The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April-June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.
NASA Astrophysics Data System (ADS)
Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.
2015-08-01
When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.
Variation in Phenometric Lapse Rates in Pasture Resources across Four Rayons in Kyrgyzstan
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Tomaszewska, M. A.; Kelgenbaeva, K.
2017-12-01
High elevation pasture resources form the foundation of agro-pastoralist livelihoods in Kyrgyzstan and elsewhere in montane Central Asia. We explore the temporal and the topographical variation in phenometric lapse rates (PLRs: the change in a phenometric as a function of elevation) across four rayons in two oblasts of the Kyrgyz Republic—Alay, At-Bashy, Chong Alay, and Naryn—with the aim of identifying and quantifying robust generic patterns in the PLRs. We evaluate two fundamental phenometrics derived from the downward convex quadratic model of land surface phenology that links the NDVI to accumulated growing degree-day (AGDD). The peak height (PH) is the maximum NDVI value obtained from the fitted model. The thermal time to peak (TTP) is the amount of AGDD required to reach the PH. We fitted sixteen years of Landsat NDVI data at 30 m spatial resolution to annual AGDD progressions derived from MODIS land surface temperature time series at 1 km spatial resolution, yielding maps for each phenometric. If the coefficient of determination was less than 0.5, then the model fit was deemed a failure. We classified the reliability of pasture resources into five classes based on the number of years of successful model fit: very persistent (14-16 y); persistent (11-13 y); marginal (7-10 y); occasional (4-6); and rare (1-3). We explore the interactive roles of elevation, slope, aspect, latitude, and rayon on the PLRs and pasture resource persistence to identify critical areas for resource management.
Kakkar, G; Chouvenc, T; Osbrink, W; Su, N-Y
2016-10-01
Molt frequency of workers in laboratory-reared juvenile colonies and foraging population from field colonies of Coptotermes formosanus Shiraki was determined using planar arenas in laboratory. Given that, chitin synthesis inhibitor (CSI)-incorporated baits disrupt the molting process of workers that comprises the major population of a termite colony, temporal assessment of molting frequency in workers can give insights into potential methods of reducing the time to eliminate a CSI-baited colony. In our study the 10-d observation of juvenile colonies of C. formosanus suggested average daily molting incidence of workers in a colony is 1.7 ± 0.3% (mean ± SD). The results from a time lapse study on foraging population of workers showed that on average there is a 44-d intermolt period for second-instar workers molting to third instar and 45 d for third-instar workers molting to fourth instar. At low temperature (21 °C), molting frequency of workers (0.6% per day) was significantly lower than that of workers at 27 °C (2.2% per day). Information from this study suggests that time to molt is an important component of total time for eliminating colonies treated with CSI baits and reduction in time lapse between two consecutive molts may reduce the time required for colony elimination. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Simoson, Andrew J.
2007-01-01
For a given orbital period and eccentricity, we determine the maximum time lapse between the winter solstice and the spring equinox on a planet. In addition, given an axial precession path, we determine the effects on the seasons. This material can be used at various levels to illustrate ideas such as periodicity, eccentricity, polar coordinates,…
Suga, Mika; Kii, Hiroaki; Niikura, Keiichi; Kiyota, Yasujiro; Furue, Miho K
2015-07-01
: Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs. ©AlphaMed Press.
Potential for driver attention monitoring system development
DOT National Transportation Integrated Search
1985-06-01
The objective of this effort was to determine the potential of developing techniques and : methods for reducing the occurrence of highway accidents attributable to degraded : driver alertness. : Lapses in driver alertness are thought to be a maior fa...
NASA Astrophysics Data System (ADS)
Jang, K.; Won, M.; Yoon, S.; Lim, J.
2016-12-01
Surface air temperature (Tair) is a fundamental factor for terrestrial environments and plays a major role in the fields of applied meteorology, climatology, and ecology. The satellite remotely sensed data offers the opportunity to estimate Tair on the earth's surface with high spatial and temporal resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective Tair retrievals although restricted to clear sky condition. MODIS Tair over complex terrain can result in significant retrieval errors due to the retrieval height mismatch to the elevation of local weather stations. In this study, we propose the methodology to estimate Tair over complex terrain for all sky conditions using multiple satellite data fusion based on the pixel-wise regression method. The combination of synergistic information from MODIS Tair and the brightness temperature (Tb) retrievals at 37 GHz frequency from the satellite microwave sensor were used for analysis. The air temperature lapse rate was applied to estimate the near-surface Tair considering the complex terrain such as mountainous regions. The retrieval results produced from this study showed a good agreement (RMSE < 2.5 K) with weather measurements from the Korea Forest Service (KFS) for mountain regions and the Korea Meteorology Administration (KMA). The gaps in the MODIS Tair data due to cloud contamination were successfully filled using the proposed method which yielded similar accuracy as retrievals of clear sky. The results of this study indicate that the satellite data fusion can continuously produce Tair retrievals with reasonable accuracy and that the application of the temperature lapse rate can lead to improvement of the reliability over complex terrains such as the Korean Peninsula.
Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics
Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.
2017-01-01
We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.
Shrier, Lydia A; Sarda, Vishnudas; Jonestrask, Cassandra; Harris, Sion Kim
2018-08-01
Young adults using marijuana heavily often try multiple times to quit on their own. We sought to identify momentary experiences during marijuana use that could aid in predicting lapse when young adults subsequently attempt abstinence. Young adults (N=34) age 18-25 using marijuana ≥5days/week and planning to quit completed a survey of sociodemographic characteristics, substance use, marijuana expectancies, use motives, perceived social support, and confidence to abstain. They completed ecological momentary assessment (EMA) smartphone reports several times/day for two weeks prior to, then during two weeks of attempted abstinence. Use period EMA reports assessed affect, craving, accessibility, situational permissibility, use, and motivation to abstain. Baseline survey and EMA data were examined in relation to subsequent lapse during attempted abstinence. Nearly 3 in 4 participants (73.5%) reported lapsing during attempted abstinence from marijuana. On bivariate analyses, lower baseline dependence severity score, negative effect expectancies, perceived family support, and confidence to abstain were each associated with lapse. Of the use period EMA variables, greater percent of days with marijuana use, reports of easy accessibility, and reports of situational permissibility were each associated with lapse. Modeled together, negative effect expectancies, perceived family support, confidence to abstain, and situational permissibility during use were highly accurate in predicting lapse during attempted abstinence. Momentary factors may add to conventionally-surveyed characteristics to enhance prediction of lapse during attempted abstinence among young adults with heavy marijuana use. Momentary assessment prior to a quit attempt may thus enable more effective personalized approaches to preventing lapse. Copyright © 2018 Elsevier Ltd. All rights reserved.
Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.
Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart L
2011-01-01
Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.
Insights into mid-latitude storm track dynamics from simulations with an idealized dry GCM
NASA Astrophysics Data System (ADS)
Mbengue, C. O.; Schneider, T.
2012-12-01
The mid-latitude storm tracks play an important role in balancing the earth's heat and momentum budget. They have a significant human impact through precipitation and adverse weather conditions; thus, the storm track response to changing climatic conditions is of great interest. In this study, we investigate the climatological response of the mid-latitude storm tracks to varying mean global temperature and convective static stability, using an idealized dry GCM. We demonstrate storm track migration in response to changes in global-mean surface temperatures without modifying the surface pole-equator temperature contrast or including moisture-related effects. The results help interpret the findings of previous global warming studies in which the mid-latitude storm tracks migrate poleward with increasing mean global temperatures. In our study, the storm track position is found to be particularly sensitive to changes in tropical static stability and tropopause height and their effect on the Hadley circulation. The mechanisms driving the dynamics of the mid-latitude storm tracks have been elusive. However, making use of the simplified framework employed in this study, which lends itself to dynamical decompositions, we have been able to improve upon some existing theories on storm track dynamics in dry atmospheres, as well as make additional observations. Previous studies into dry atmospheric dynamics have shown a linear scaling between eddy kinetic energy, a robust measure of the level of storminess, and the mean available potential energy (MAPE). This scaling is utilized in a decomposition that shows that the dominant quantity in storm track dynamics is the meridional gradient of the potential temperature—a measure of baroclinicity. This observation leads us to look for dynamical mechanisms that, on average, dictate the location of regions of elevated baroclinicity. Some credible explanations include the effects on mid-latitude isentropic slopes through a raising or lowering of the tropical tropopause, and effects of a migrating terminus of the Hadley cell. In a simulation where we only vary the convective lapse rate, the decomposition reinforces the meridional temperature gradient as the major determinant of the location of the maximum of MAPE and, by extension, the location of the storm tracks. This is surprising considering that static stability constitutes one of the components of the decomposition. This revelation suggests that static stability plays an indirect role in storm track dynamics through temperature gradients, which is plausible since static stability can affect temperature gradients through its interaction with isentropic slopes. Furthermore, upper tropospheric temperature gradients can be modified by the convective lapse rate through its effect on the depth of the troposphere. The results contained herein can be used to supplement ongoing storm track work in moist atmospheres, using more comprehensive GCMs to understand storm track dynamics in an earth-like environment.
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
NASA Astrophysics Data System (ADS)
Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.
2013-12-01
Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.
NASA Astrophysics Data System (ADS)
Gance, J.; Sailhac, P.; Malet, J.-P.; Grandjean, G.; Supper, R.; Jochum, B.; Ottowitz, D.
2012-04-01
This work presents results of a permanent hydro-geophysical monitoring of an active landslide developed in clay-shales. Hydrology has been proved to be a major factor controlling the Super-Sauze earthflow behavior, but it knowledge still limited mainly because of the importance of spatial heterogeneities. The geometry of the bedrock creates internal crests and gullies that can guide waterflows or create a lock and engender an excess of pore water pressure; the soil surface characteristics plays also a large role in the surface hydraulic conductivity, and therefore, on the infiltration pattern. To understand in detail these processes, it is therefore important to monitor spatially at large scale (with high resolution) those phenomena and to overcome the monitoring difficulties inherent to a fast-moving clayey earthflow. The objectives of the survey are to identify and characterize spatially and temporarily the water flow circulation within the landslide body over a period of one year. The studied profile measures 114 m long and is surveyed with 93 electrodes spaced from 0.5, 1 or 2 meter according the soil surface cracking. Four resistivity datasets of 4300 measurements are acquired each day using a gradient array since May 2011. The monitoring is performed with the GEOMON4D system, developed by the Geological Survey of Austria. To facilitate the interpretation, humidity, conductivity, temperature, and piezometer sensors are placed along the profile. Two dGPS antenna placed upstream and downstream the profile allow to correlate the results with soil displacement. Lefranc tests and granulometry results realized on several samples have shown the important heterogeneities of the near surface. The objective of this work is to present the data processing strategy for the analysis of long periods time-lapse ERT survey of natural rain events taking into account changes through time of the position of the electrodes, changes in the soil surface state and important changes in sub-surface soil temperature. Two high-resolution optical cameras are installed on stable crests on the side of the cross-sections and time-lapse stereoscopy is used to reconstruct the displacement field to locate the electrodes in space and time (in order to take into account changes in the dipole geometry). The apparent electrical resistivity values were inverted with a time-lapse approach using an initial model constructed from statistical analysis of resistivity data and a priori knowledge on the landslide structure from a previous geotechnical model. The near surface apparent resistivity can vary of ten percent without any input of water. This shows the importance of temperature effect on the measurement. The temperature correction is handled from a complete study of the soil temperature propagation solving the heat equation with several temperature probes placed at different depths in soil and in the water table. The results are interpreted in combination to hydrological data (rain, water table level). The acquisition of 8 ERT all over the studied area, in different directions permits to create by interpolation a 3D electrical resistivity model of the area. This model shows the importance of the bedrock topography because high water content areas are visible at the theoretical hydrological network computed from the 3D geotechnical model of Travelletti and Malet (2011). Transversal waterflow circulation not predicted are also visible and permit to interpret the results taking into account the 3D structure of the landslide. A 250 m long P-wave tomography acquired on the studied profile and inversed with a quasi-Newton algorithm that uses Fresnel wavepaths and the finite bandwidth of the source signal, specially developed for the study of very heterogeneous soils, shows a very good correlation with electrical resistivity and permits to propose a geotechnical model of the profile. Spatially heterogeneous water flow patterns are identified and the presence of a deep water supply is hypothesized downstream of the investigated profile. The presentation will focus on some key factors and parameters to take into account for the analysis of time-lapse resistivity data. This work was supported by the Austrian Science Fund (FWF) (contract TRP 175-N21) and the French National Research Agency (ANR).
Control for monitoring thickness of high temperature refractory
Caines, M.J.
1982-11-23
This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Keller, Martha; Mustin, Walter
2017-03-01
The Cayman Turtle Farm raises thousands of green sea turtles ( Chelonia mydas ) annually under aquaculture conditions. Historically, the turtles have been raised in tanks without routine access to a shade structure. The purpose of this study was to determine the effects of adding a shade structure on curved carapace length (CCL) and weight gain of green sea turtles. In addition, water and cloacal temperatures were compared across treatment groups and shade cover preferences observed. Ninety turtles were split equally into three treatment groups for this 8-wk study. In the first group turtles were kept in tanks in full sun, the second group in half-shaded tanks, and the third group in tanks completely covered with shade cloth. Time-lapse cameras mounted above half-shaded tanks were used to determine turtle shade structure preferences throughout the day. There were no differences in CCL among treatment groups. Significant increases in weights were noted in turtles kept in full sun and half-shaded tanks versus the fully shaded tanks. Significantly higher water and cloacal turtle temperatures were noted in the full-sun tank compared with the half-shaded or completely shaded tanks. A significantly lower number of turtles was observed in the sun in the half-shaded tanks, indicating a possible preference by turtles for a shade structure. Results suggest that providing shade structures for sea turtles results in a significant decrease in both overall water temperature as well as a reduction in maximum high daily temperatures. Results also suggest that turtles exhibit a preference for shade structures when it is provided as an option. From these results, we recommend that a shade structure be provided when housing green sea turtles in outdoor enclosures.
Evans, Brittney C.; Flack, Daniel; Juarascio, Adrienne; Manasse, Stephanie; Zhang, Fengqing; Forman, Evan M.
2018-01-01
Purpose Lapses are strong indicators of later relapse among individuals with addictive disorders, and thus are an important intervention target. However, lapse behavior has proven resistant to change due to the complex interplay of lapse triggers that are present in everyday life. It could be possible to prevent lapses before they occur by using m-Health solutions to deliver interventions in real-time. Method Just-in-time adaptive intervention (JITAI) is an intervention design framework that could be delivered via mobile app to facilitate in-the-moment monitoring of triggers for lapsing, and deliver personalized coping strategies to the user to prevent lapses from occurring. An organized framework is key for successful development of a JITAI. Results Nahum-Shani and colleagues (2014) set forth six core elements of a JITAI and guidelines for designing each: distal outcomes, proximal outcomes, tailoring variables, decision points, decision rules, and intervention options. The primary aim of this paper is to illustrate the use of this framework as it pertains to developing a JITAI that targets lapse behavior among individuals following a weight control diet. Conclusion We will detail our approach to various decision points during the development phases, report on preliminary findings where applicable, identify problems that arose during development, and provide recommendations for researchers who are currently undertaking their own JITAI development efforts. Issues such as missing data, the rarity of lapses, advantages/disadvantages of machine learning, and user engagement are discussed. PMID:28083725
Goldstein, Stephanie P; Evans, Brittney C; Flack, Daniel; Juarascio, Adrienne; Manasse, Stephanie; Zhang, Fengqing; Forman, Evan M
2017-10-01
Lapses are strong indicators of later relapse among individuals with addictive disorders, and thus are an important intervention target. However, lapse behavior has proven resistant to change due to the complex interplay of lapse triggers that are present in everyday life. It could be possible to prevent lapses before they occur by using m-Health solutions to deliver interventions in real-time. Just-in-time adaptive intervention (JITAI) is an intervention design framework that could be delivered via mobile app to facilitate in-the-moment monitoring of triggers for lapsing, and deliver personalized coping strategies to the user to prevent lapses from occurring. An organized framework is key for successful development of a JITAI. Nahum-Shani and colleagues (2014) set forth six core elements of a JITAI and guidelines for designing each: distal outcomes, proximal outcomes, tailoring variables, decision points, decision rules, and intervention options. The primary aim of this paper is to illustrate the use of this framework as it pertains to developing a JITAI that targets lapse behavior among individuals following a weight control diet. We will detail our approach to various decision points during the development phases, report on preliminary findings where applicable, identify problems that arose during development, and provide recommendations for researchers who are currently undertaking their own JITAI development efforts. Issues such as missing data, the rarity of lapses, advantages/disadvantages of machine learning, and user engagement are discussed.
Challenge and Error: Critical Events and Attention-Related Errors
ERIC Educational Resources Information Center
Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel
2011-01-01
Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
NASA Astrophysics Data System (ADS)
Hokkanen, T. M.; Hartikainen, A.; Raja-Halli, A.; Virtanen, H.; Makinen, J.
2015-12-01
INTRODUCTION The aim of this study is to construct a fine resolution time lapse groundwater (GW) model of Metsähovi (MH). GW, geological, and soil moisture (SM) data were collected for several years to achieve the goal. The knowledge of the behavior of the GW at local scale is essential for superconductive gravimeter (SG) investigations performing in MH. DESCRIPTION OF THE DATA Almost 50 sensors have been recorded SM data some 6 years with 1 to 5 minutes sampling frequency. The GW table has been monitored, both in bedrock and in soil, in many stages with all together 15 piezometers. Two geological sampling campaigns were conducted to get the knowledge of hydrological properties of soil in the study area of 200×200 m2 around SG station in MH. PRINCIPLE OF TIME LAPSE 3D HYDROGEOLOGICAL MODEL The model of study site consists of the surfaces of ground and bedrock gridded with 2×2 m2 resolution. The height of GW table was interpolated to 2×2×0.1 m3 grid between GW and SM monitoring points. Close to the outline of the study site and areas lacking of sensors GW table was defined by extrapolation and considering the geological information of the area. The bedrock porosity is 2% and soil porosity determined by geological information and SM recordings is from 5 to 35%. Only fully saturated media is considered in the time lapse model excluding unsaturated one. BENEFICIERS With a new model the fluctuation of GW table can be followed with ranging time lapses from 1 minute to 1 month. The gravity effect caused by the variation of GW table can be calculated more accurate than before in MH. Moreover, the new model can be validated and refined by measured gravity, i.e. hydrological model can be improved by SG recordings (Figure 1).
Monitoring Kilauea Volcano Using Non-Telemetered Time-Lapse Camera Systems
NASA Astrophysics Data System (ADS)
Orr, T. R.; Hoblitt, R. P.
2006-12-01
Systematic visual observations are an essential component of monitoring volcanic activity. At the Hawaiian Volcano Observatory, the development and deployment of a new generation of high-resolution, non- telemetered, time-lapse camera systems provides periodic visual observations in inaccessible and hazardous environments. The camera systems combine a hand-held digital camera, programmable shutter-release, and other off-the-shelf components in a package that is inexpensive, easy to deploy, and ideal for situations in which the probability of equipment loss due to volcanic activity or theft is substantial. The camera systems have proven invaluable in correlating eruptive activity with deformation and seismic data streams. For example, in late 2005 and much of 2006, Pu`u `O`o, the active vent on Kilauea Volcano`s East Rift Zone, experienced 10--20-hour cycles of inflation and deflation that correlated with increases in seismic energy release. A time-lapse camera looking into a skylight above the main lava tube about 1 km south of the vent showed an increase in lava level---an indicator of increased lava flux---during periods of deflation, and a decrease in lava level during periods of inflation. A second time-lapse camera, with a broad view of the upper part of the active flow field, allowed us to correlate the same cyclic tilt and seismicity with lava breakouts from the tube. The breakouts were accompanied by rapid uplift and subsidence of shatter rings over the tube. The shatter rings---concentric rings of broken rock---rose and subsided by as much as 6 m in less than an hour during periods of varying flux. Time-lapse imagery also permits improved assessment of volcanic hazards, and is invaluable in illustrating the hazards to the public. In collaboration with Hawaii Volcanoes National Park, camera systems have been used to monitor the growth of lava deltas at the entry point of lava into the ocean to determine the potential for catastrophic collapse.
Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani
2016-04-01
The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins) project.
In Vivo Analysis of Alternative Modes of Breast Cancer Cell Invasion
2010-05-01
mouse mammary tumor cells was characterized in 3-D culture by time-lapse videomicroscopy . Bright field time-lapse videomicroscopy revealed that the...role that cell signalling pathways play in tumor cell behavior. Working with 3-D gels and time-lapse videomicroscopy I have also gained an
A new weighted mean temperature model in China
NASA Astrophysics Data System (ADS)
Liu, Jinghong; Yao, Yibin; Sang, Jizhang
2018-01-01
The Global Positioning System (GPS) has been applied in meteorology to monitor the change of Precipitable Water Vapor (PWV) in atmosphere, transformed from Zenith Wet Delay (ZWD). A key factor in converting the ZWD into the PWV is the weighted mean temperature (Tm), which has a direct impact on the accuracy of the transformation. A number of Bevis-type models, like Tm -Ts and Tm -Ts,Ps type models, have been developed by statistics approaches, and are not able to clearly depict the relationship between Tm and the surface temperature, Ts . A new model for Tm , called weighted mean temperature norm model (abbreviated as norm model), is derived as a function of Ts , the lapse rate of temperature, δ, the tropopause height, htrop , and the radiosonde station height, hs . It is found that Tm is better related to Ts through an intermediate temperature. The small effects of lapse rate can be ignored and the tropopause height be obtained from an empirical model. Then the norm model is reduced to a simplified form, which causes fewer loss of accuracy and needs two inputs, Ts and hs . In site-specific fittings, the norm model performs much better, with RMS values reduced averagely by 0.45 K and the Mean of Absolute Differences (MAD) values by 0.2 K. The norm model is also found more appropriate than the linear models to fit Tm in a large area, not only with the RMS value reduced from 4.3 K to 3.80 K, correlation coefficient R2 increased from 0.84 to 0.88, and MAD decreased from 3.24 K to 2.90 K, but also with the distribution of simplified model values to be more reasonable. The RMS and MAD values of the differences between reference and computed PWVs are reduced by on average 16.3% and 14.27%, respectively, when using the new norm models instead of the linear model.
Self-potential monitoring of a thermal pulse advecting through a preferential flow path
NASA Astrophysics Data System (ADS)
Ikard, S. J.; Revil, A.
2014-11-01
There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes experience temperature changes.
NASA Astrophysics Data System (ADS)
Strong, Courtenay; Khatri, Krishna B.; Kochanski, Adam K.; Lewis, Clayton S.; Allen, L. Niel
2017-05-01
The main objective of this study was to investigate whether dynamically downscaled high resolution (4-km) climate data from the Weather Research and Forecasting (WRF) model provide physically meaningful additional information for reference evapotranspiration (E) calculation compared to the recently published GridET framework that uses interpolation from coarser-scale simulations run at 32-km resolution. The analysis focuses on complex terrain of Utah in the western United States for years 1985-2010, and comparisons were made statewide with supplemental analyses specifically for regions with irrigated agriculture. E was calculated using the standardized equation and procedures proposed by the American Society of Civil Engineers from hourly data, and climate inputs from WRF and GridET were debiased relative to the same set of observations. For annual mean values, E from WRF (EW) and E from GridET (EG) both agreed well with E derived from observations (r2 = 0.95, bias < 2 mm). Domain-wide, EW and EG were well correlated spatially (r2 = 0.89), however local differences ΔE =EW -EG were as large as +439 mm year-1 (+26%) in some locations, and ΔE averaged +36 mm year-1. After linearly removing the effects of contrasts in solar radiation and wind speed, which are characteristically less reliable under downscaling in complex terrain, approximately half the residual variance was accounted for by contrasts in temperature and humidity between GridET and WRF. These contrasts stemmed from GridET interpolating using an assumed lapse rate of Γ = 6.5 K km-1, whereas WRF produced a thermodynamically-driven lapse rate closer to 5 K km-1 as observed in mountainous terrain. The primary conclusions are that observed lapse rates in complex terrain differ markedly from the commonly assumed Γ = 6.5 K km-1, these lapse rates can be realistically resolved via dynamical downscaling, and use of constant Γ produces differences in E of order as large as 102 mm year-1.
NASA Astrophysics Data System (ADS)
Price, D. C.; Angus, D. A.; Garcia, A.; Fisher, Q. J.; Parsons, S.; Kato, J.
2018-03-01
Time-lapse seismic attributes are used extensively in the history matching of production simulator models. However, although proven to contain information regarding production induced stress change, it is typically only loosely (i.e. qualitatively) used to calibrate geomechanical models. In this study we conduct a multimethod Global Sensitivity Analysis (GSA) to assess the feasibility and aid the quantitative calibration of geomechanical models via near-offset time-lapse seismic data. Specifically, the calibration of mechanical properties of the overburden. Via the GSA, we analyse the near-offset overburden seismic traveltimes from over 4000 perturbations of a Finite Element (FE) geomechanical model of a typical High Pressure High Temperature (HPHT) reservoir in the North Sea. We find that, out of an initially large set of material properties, the near-offset overburden traveltimes are primarily affected by Young's modulus and the effective stress (i.e. Biot) coefficient. The unexpected significance of the Biot coefficient highlights the importance of modelling fluid flow and pore pressure outside of the reservoir. The FE model is complex and highly nonlinear. Multiple combinations of model parameters can yield equally possible model realizations. Consequently, numerical calibration via a large number of random model perturbations is unfeasible. However, the significant differences in traveltime results suggest that more sophisticated calibration methods could potentially be feasible for finding numerous suitable solutions. The results of the time-varying GSA demonstrate how acquiring multiple vintages of time-lapse seismic data can be advantageous. However, they also suggest that significant overburden near-offset seismic time-shifts, useful for model calibration, may take up to 3 yrs after the start of production to manifest. Due to the nonlinearity of the model behaviour, similar uncertainty in the reservoir mechanical properties appears to influence overburden traveltime to a much greater extent. Therefore, reservoir properties must be known to a suitable degree of accuracy before the calibration of the overburden can be considered.
Time-Lapse Measurement of Wellbore Integrity
NASA Astrophysics Data System (ADS)
Duguid, A.
2017-12-01
Well integrity is becoming more important as wells are used longer or repurposed. For CO2, shale gas, and other projects it has become apparent that wells represent the most likely unintended migration pathway for fluids out of the reservoir. Comprehensive logging programs have been employed to determine the condition of legacy wells in North America. These studies provide examples of assessment technologies. Logging programs have included pulsed neutron logging, ultrasonic well mapping, and cement bond logging. While these studies provide examples of what can be measured, they have only conducted a single round of logging and cannot show if the well has changed over time. Recent experience with time-lapse logging of three monitoring wells at a US Department of Energy sponsored CO2 project has shown the full value of similar tools. Time-lapse logging has shown that well integrity changes over time can be identified. It has also shown that the inclusion of and location of monitoring technologies in the well and the choice of construction materials must be carefully considered. Two of the wells were approximately eight years old at the time of study; they were constructed with steel and fiberglass casing sections and had lines on the outside of the casing running to the surface. The third well was 68 years old when it was studied and was originally constructed as a production well. Repeat logs were collected six or eight years after initial logging. Time-lapse logging showed the evolution of the wells. The results identified locations where cement degraded over time and locations that showed little change. The ultrasonic well maps show clearly that the lines used to connect the monitoring technology to the surface are visible and have a local effect on cement isolation. Testing and sampling was conducted along with logging. It provided insight into changes identified in the time-lapse log results. Point permeability testing was used to provide an in-situ point estimate of the cement isolating capacity. Cased-hole sidewall cores in the steel and fiberglass casing sections allowed analysis of bulk cement and the cement at the casing- and formation-interface. This presentation will cover how time-lapse logging was conducted, how the results may be applicable to other wells, and how monitoring well design may affect wellbore integrity.
NASA Astrophysics Data System (ADS)
Giordano, N.; Arato, A.; Comina, C.; Mandrone, G.
2017-05-01
A Borehole Thermal Energy Storage living lab was built up nearby Torino (Northern Italy). This living lab aims at testing the ability of the alluvial deposits of the north-western Po Plain to store the thermal energy collected by solar thermal panels and the efficiency of energy storage systems in this climatic context. Different monitoring approaches have been tested and analyzed since the start of the thermal injection in April 2014. Underground temperature monitoring is constantly undertaken by means of several temperature sensors located along the borehole heat exchangers and within the hydraulic circuit. Nevertheless, this can provide only pointwise information about underground temperature distribution. For this reason, a geophysical approach is proposed in order to image the thermally affected zone (TAZ) caused by the heat injection: surface electrical resistivity measurements were carried out with this purpose. In the present paper, results of time-lapse acquisitions during a heating day are reported with the aim of imaging the thermal plume evolution within the subsoil. Resistivity data, calibrated on local temperature measurements, have shown their potentiality in imaging the heated plume of the system and depicting its evolution throughout the day. Different types of data processing were adopted in order to face issues mainly related to a highly urbanized environment. The use of apparent resistivity proved to be in valid agreement with the results of different inversion approaches. The inversion processes did not significantly improve the qualitative and quantitative TAZ imaging in comparison to the pseudo-sections. This suggested the usefulness of apparent resistivity data alone for a rough monitoring of TAZ in this kind of applications.
Schuster, C; Estrella, N; Menzel, A
2014-03-01
The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch-Partenkirchen, Germany. Site- and species-specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site-specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species-specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
In Vivo Analysis of Alternative Modes of Breast Cancer Cell Invasion
2009-05-01
lapse videomicroscopy . Bright field time-lapse videomicroscopy revealed that the MMTV-neu cells moved as both round ed and e longated cells on a...behavior. Working with 3-D gel s and time-lapse videomicroscopy I hav e also gained an apprec iation of the way in which mammary tumor cells
In Vivo Analysis of Alternative Modes of Breast Cancer Cell Invasion
2008-05-01
characterized in 3-D culture by time-lapse videomicroscopy . Bright field time-lapse videomicroscopy revealed that the MMTV-neu cells moved as both rounded...intricacies of cell signalling, and the role that cell signalling pathways play in tumor cell behavior. Working with 3-D gels and time-lapse videomicroscopy
Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan
2016-01-01
Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community. PMID:28002463
Hernández Vera, Rodrigo; Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan
2016-01-01
Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community.
Revealing the secret life of pre-implantation embryos by time-lapse monitoring: A review
Faramarzi, Azita; Khalili, Mohammad Ali; Micara, Giulietta; Agha-Rahimi, Azam
2017-01-01
High implantation success following in vitro fertilization cycles are achieved via the transfer of embryos with the highest developmental competence. Multiple pregnancies as a result of the transfer of several embryos per cycle accompany with various complication. Thus, single-embryo transfer (SET) is the preferred practice in assisted reproductive technique (ART) treatment. In order to improve the pregnancy rate for SET, embryologists need reliable biomarkers to aid their selection of embryos with the highest developmental potential. Time-lapse technology is a noninvasive alternative conventional microscopic assessment. It provides uninterrupted and continues the survey of embryo development to transfer day. Today, there are four time-lapse systems that are commercially available for ART centers. In world and Iran, the first time lapse babies were born in 2010 and 2015, respectively, conceived by SET. Here, we review the use of time-lapse monitoring in the observation of embryogenesis as well as its role in SET. Although, the findings from our review support common use of time-lapse monitoring in ART centers; but, future large studies assessing this system in well-designed trials are necessary. PMID:28744520
Intentional and inadvertent non-adherence in adult coeliac disease. A cross-sectional survey.
Hall, Nicola J; Rubin, Gregory P; Charnock, Anne
2013-09-01
Adherence to a gluten-free diet is the mainstay of treatment for coeliac disease. Non-adherence is common as the diet is restrictive and can be difficult to follow. This study aimed to determine the rates of intentional and inadvertent non-adherence in adult coeliac disease and to examine the factors associated with both. A self-completion questionnaire was mailed to adult coeliac patients identified from the computer records of 31 family practices within the North East of England. We received 287 responses after one reminder. Intentional gluten consumption was reported by 115 (40%) of respondents. 155 (54%) had made at least one known mistaken lapse over the same period and 82 (29%) reported neither intentional nor mistaken gluten consumption. Using logistic regression analysis, low self-efficacy, perceptions of tolerance to gluten and intention were found to be independently predictive of intentional gluten consumption. A statistical model predicted 71.8% of cases reporting intentional lapses. Intentional non-adherence to the GFD was found to be common but not as frequent as inadvertent lapses. Distinguishing the factors influencing both intentional and inadvertent non-adherence is useful in understanding dietary self-management in coeliac disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki
2012-12-01
Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Schroedter-Homscheidt, Marion
Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.
A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments
NASA Astrophysics Data System (ADS)
Yoshimori, M.; Yokohata, T.; Abe-Ouchi, A.
2008-12-01
Studies of past climate potentially provide a constraint on the uncertainty of climate sensitivity, but previous studies warn against a simple scaling to the future. The climate sensitivity is determined by various feedback processes and they may vary with climate states and forcings. In this study, we investigate similarities and differences of feedbacks for a CO2 doubling, a last glacial maximum (LGM), and LGM greenhouse gas (GHG) forcing experiments, using an atmospheric general circulation model coupled to a slab ocean model. After computing the radiative forcing, the individual feedback strengths: water vapor, lapse rate, albedo, and cloud feedbacks, are evaluated explicitly. For this particular model, the difference in the climate sensitivity among experiments is attributed to the shortwave cloud feedback in which there is a tendency that it becomes weaker or even negative in the cooling experiments. No significant difference is found in the water vapor feedback between warming and cooling experiments by GHGs despite the nonlinear dependence of the Clausius-Clapeyron relation on temperature. The weaker water vapor feedback in the LGM experiment due to a relatively weaker tropical forcing is compensated by the stronger lapse rate feedback due to a relatively stronger extratropical forcing. A hypothesis is proposed which explains the asymmetric cloud response between warming and cooling experiments associated with a displacement of the region of mixed- phase clouds. The difference in the total feedback strength between experiments is, however, relatively small compared to the current intermodel spread, and does not necessarily preclude the use of LGM climate as a future constraint.
Jones, Pete R
2018-05-16
During psychophysical testing, a loss of concentration can cause observers to answer incorrectly, even when the stimulus is clearly perceptible. Such lapses limit the accuracy and speed of many psychophysical measurements. This study evaluates an automated technique for detecting lapses based on body movement (postural instability). Thirty-five children (8-11 years of age) and 34 adults performed a typical psychophysical task (orientation discrimination) while seated on a Wii Fit Balance Board: a gaming device that measures center of pressure (CoP). Incorrect responses on suprathreshold catch trials provided the "reference standard" measure of when lapses in concentration occurred. Children exhibited significantly greater variability in CoP on lapse trials, indicating that postural instability provides a feasible, real-time index of concentration. Limitations and potential applications of this method are discussed.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less
Time-lapse electrical geophysical monitoring of amendment-based biostimulation
Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.
NASA Astrophysics Data System (ADS)
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
Systematic characterization of maturation time of fluorescent proteins in living cells
Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe
2017-01-01
Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486
Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.
Rieger, Sandra; Wang, Fang; Sagasti, Alvaro
2011-07-01
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.
[Embryo selection in IVF/ICSI cycles using time-lapse microscopy and the clinical outcomes].
Chen, Minghao; Huang, Jun; Zhong, Ying; Quan, Song
2015-12-01
To compare the clinical outcomes of embryos selected using time-lapse microscopy and traditional morphological method in IVF/ICSI cycles and evaluate the clinical value of time-lapse microscopy in early embryo monitoring and selection. e retrospectively analyzed the clinical data of 139 IVF/ICSI cycles with embryo selection based on time-lapse monitoring (TLM group, n=68) and traditional morphological method (control group, n=71). The βHCG-positive rate, clinical pregnancy rate and embryo implantation rate were compared between the 2 groups. Subgroup analysis was performed in view of female patients age and the fertilization type. The βHCG-positive rate, clinical pregnancy rate and implantation rate were 66.2%, 61.8% and 47.1% in TLM group, significantly higher than those in the control group (47.9%, 43.7% and 30.3%, respectively; P<0.05). Compared with patients below 30 years of age, patients aged between 31 and 35 years benefited more from time-lapse monitoring with improved clinical outcomes. time-lapse monitoring significantly increased the βHCG-positive rate, clinical pregnancy rate and implantation rate for patients undergoing IVF cycles, but not for those undergoing ICSI or TESA cycles. Compared with those selected using traditional morphological method, the embryos selected with time-lapse microscopy have better clinical outcomes, especially in older patients (31-35 years of age) and in IVF cycles.
Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel
2015-01-01
Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes. PMID:26543581
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... of Lapse--Government Life Insurance) Activities Under OMB Review AGENCY: Veterans Benefits...--Government Life Insurance, VA Form 29-389. b. Application for Reinstatement, VA Form 29-389-1. OMB Control...-389 and 29-389-1 are used to inform claimants that their government life insurance has lapsed or will...
Exploring Time-Lapse Photography as a Means for Qualitative Data Collection
ERIC Educational Resources Information Center
Persohn, Lindsay
2015-01-01
Collecting information via time-lapse photography is nothing new. Scientists and artists have been using this kind of data since the late 1800s. However, my research and experiments with time-lapse have shown that great potential may lie in its application to educational and social scientific research methods. This article is part history, part…
The Development of an Aftermath of Dietary Lapses Coping Questionnaire for Weight Control
ERIC Educational Resources Information Center
Shimpo, Misa; Akamatsu, Rie
2015-01-01
Objective: This study was designed to develop the Aftermath of Dietary Lapses Coping Questionnaire (ADLCQ) for evaluating how people cope with the aftermath of dietary lapses during weight control. Method: Between June-July 2012, dieticians working in public health centres and city offices in Sizuoka, Japan, recruited 466 participants. They were…
Time-Lapse Videos for Physics Education: Specific Examples
ERIC Educational Resources Information Center
Vollmer, Michael; Möllmann, Klaus-Peter
2018-01-01
There are many physics experiments with long time scales such that they are usually neither shown in the physics class room nor in student labs. However, they can be easily recorded with time-lapse cameras and the respective time-lapse videos allow qualitative and/or quantitative analysis of the underlying physics. Here, we present some examples…
Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.
Cornelius, C; Estrella, N; Franz, H; Menzel, A
2013-01-01
Global climate change influences ecosystems across the world. Alpine plant communities have already experienced serious impacts, and will continue to do so as climate change continues. The aim of our study was to determine the sensitivity of woody and herbaceous species to shifts in temperature along an altitudinal gradient. Since 1994, park rangers have been making phenological observations at 24 sites from 680 to 1425 m a.s.l. Each year 21 plant species were observed once or twice weekly from March to July; with a main focus on flowering and leaf unfolding. Our study showed a very high degree of dependence of phenophases and species on inter-annual temperature variation and altitude. Averaged over all species and phenophases, there was a delay of 3.8 days with every 100 m increase in altitude and, across all elevations, an advance of phenophases of 6 days per 1 °C increase in temperature. Temperature lapse rates assessed indirectly by phenology, as the quotient of altitudinal to temperature response coefficients, were higher than directly calculated from March to July mean temperatures, most likely due to snow effects. Furthermore, a significant difference in sensitivity to temperature change was found between growth forms (herbs versus trees). Sensitivity was less pronounced in events occurring later in the season. Our results show that species reactions will differ in magnitude during global warming. Consequently, impacts of shifts in the timing of phenological events on plant migration and plant-pollinator interactions due to rising temperatures should be considered at the species level. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere
NASA Technical Reports Server (NTRS)
Sun, De-Zheng; Lindzen, Richard S.
1994-01-01
The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.
NASA Astrophysics Data System (ADS)
Rittgers, J. B.; Revil, A.; Mooney, M. A.; Karaoulis, M.; Wodajo, L.; Hickey, C. J.
2016-12-01
Joint inversion and time-lapse inversion techniques of geophysical data are often implemented in an attempt to improve imaging of complex subsurface structures and dynamic processes by minimizing negative effects of random and uncorrelated spatial and temporal noise in the data. We focus on the structural cross-gradient (SCG) approach (enforcing recovered models to exhibit similar spatial structures) in combination with time-lapse inversion constraints applied to surface-based electrical resistivity and seismic traveltime refraction data. The combination of both techniques is justified by the underlying petrophysical models. We investigate the benefits and trade-offs of SCG and time-lapse constraints. Using a synthetic case study, we show that a combined joint time-lapse inversion approach provides an overall improvement in final recovered models. Additionally, we introduce a new approach to reweighting SCG constraints based on an iteratively updated normalized ratio of model sensitivity distributions at each time-step. We refer to the new technique as the Automatic Joint Constraints (AJC) approach. The relevance of the new joint time-lapse inversion process is demonstrated on the synthetic example. Then, these approaches are applied to real time-lapse monitoring field data collected during a quarter-scale earthen embankment induced-piping failure test. The use of time-lapse joint inversion is justified by the fact that a change of porosity drives concomitant changes in seismic velocities (through its effect on the bulk and shear moduli) and resistivities (through its influence upon the formation factor). Combined with the definition of attributes (i.e. specific characteristics) of the evolving target associated with piping, our approach allows localizing the position of the preferential flow path associated with internal erosion. This is not the case using other approaches.
Distress Tolerance Treatment for Early-Lapse Smokers
Brown, Richard A.; Palm, Kathleen M.; Strong, David R.; Lejuez, Carl W.; Kahler, Christopher W.; Zvolensky, Michael J.; Hayes, Steven C.; Wilson, Kelly G.; Gifford, Elizabeth V.
2008-01-01
A significant percentage of individuals attempting smoking cessation lapse within a matter of days, and very few are able to recover to achieve long-term abstinence. This observation suggests that many smokers may have quit-attempt histories characterized exclusively by early lapses to smoking following quit attempts. Recent negative-reinforcement conceptualizations of early lapse to smoking suggest that individuals' reactions to withdrawal and inability to tolerate the experience of these symptoms, rather than withdrawal severity itself, may represent an important treatment target in the development of new behavioral interventions for this subpopulation of smokers. This article presents the theoretical rationale and describes a novel, multicomponent distress-tolerance treatment for early-lapse smokers that incorporates behavioral and pharmacological elements of standard smoking-cessation treatment, whereas drawing distress-tolerance elements from exposure-based and Acceptance and Commitment Therapy–based treatment approaches. Preliminary data from a pilot study (N = 16) are presented, and clinical implications are discussed. PMID:18391050
NASA Astrophysics Data System (ADS)
Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.
2005-12-01
Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic programming to optimize over the entire finite time horizon. We use a Monte Carlo approach to explore trade-offs between survey costs, remediation costs, and survey frequency and to analyze the sensitivity to leakage probabilities, and carbon tax. The model can be useful in determining a monitoring regime appropriate to a specific site's risk and set of remediation options, rather than a generic one based on a maximum downside risk threshold for CO2 storage as a whole. This may have implications on the overall costs associated with deploying Carbon capture and storage on a large scale.
Time-lapse Inversion of Electrical Resistivity Data
NASA Astrophysics Data System (ADS)
Nguyen, F.; Kemna, A.
2005-12-01
Time-lapse geophysical measurements (also known as monitoring, repeat or multi-frame survey) now play a critical role for monitoring -non-destructively- changes induced by human, as reservoir compaction, or to study natural processes, as flow and transport in porous media. To invert such data sets into time-varying subsurface properties, several strategies are found in different engineering or scientific fields (e.g., in biomedical, process tomography, or geophysical applications). Indeed, for time-lapse surveys, the data sets and the models at each time frame have the particularity to be closely related to their "neighbors", if the process does not induce chaotic or very high variations. Therefore, the information contained in the different frames can be used for constraining the inversion in the others. A first strategy consists in imposing constraints to the model based on prior estimation, a priori spatiotemporal or temporal behavior (arbitrary or based on a law describing the monitored process), restriction of changes in certain areas, or data changes reproducibility. A second strategy aims to invert directly the model changes, where the objective function penalizes those models whose spatial, temporal, or spatiotemporal behavior differs from a prior assumption or from a computed a priori. Clearly, the incorporation of time-lapse a priori information, determined from data sets or assumed, in the inversion process has been proven to improve significantly the resolving capability, mainly by removing artifacts. However, there is a lack of comparison of these methods. In this paper, we focus on Tikhonov-like inversion approaches for electrical tomography imaging to evaluate the capability of the different existing strategies, and to propose new ones. To evaluate the bias inevitably introduced by time-lapse regularization, we quantified the relative contribution of the different approaches to the resolving power of the method. Furthermore, we incorporated different noise levels and types (random and/or systematic) to determine the strategies' ability to cope with real data. Introducing additional regularization terms yields also more regularization parameters to compute. Since this is a difficult and computationally costly task, we propose that it should be proportional to the velocity of the process. To achieve these objectives, we tested the different methods using synthetic models, and experimental data, taking noise and error propagation into account. Our study shows that the choice of the inversion strategy highly depends on the nature and magnitude of noise, whereas the choice of the regularization term strongly influences the resulting image according to the a priori assumption. This study was developed under the scope of the European project ALERT (GOCE-CT-2004-505329).
Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime
NASA Astrophysics Data System (ADS)
Wu, Ka Ling; Porté-Agel, Fernando
2017-04-01
Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully-developed flow regime. The flow characteristics of the wake of these large finite-size wind farms are reported to forecast the effect of large finite-size wind farms on adjacent wind farms. A power deficit as large as 8% is found at a distance of 10 km downwind from the large finite-size wind farms.
75 FR 16022 - Airworthiness Directives; Turbomeca S.A. MAKILA 1A and 1A1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... investigation by Turbom[eacute]ca are that these malfunctions are due to a lapse of quality control in the... Turbomeca are that these malfunctions are due to a lapse of quality control in the varnishing process... these malfunctions are due to a lapse of quality control in the varnishing process applied to the boards...
ERIC Educational Resources Information Center
Unsworth, Nash; Redick, Thomas S.; Lakey, Chad E.; Young, Diana L.
2010-01-01
A latent variable analysis was conducted to examine the nature of individual differences in lapses of attention and their relation to executive and fluid abilities. Participants performed a sustained attention task along with multiple measures of executive control and fluid abilities. Lapses of attention were indexed based on the slowest reaction…
Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals
NASA Astrophysics Data System (ADS)
Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.
2017-10-01
DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.
2012-04-01
The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station) was also investigated.
Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak
2017-12-01
Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.
Weather and Climate Indicators for Coffee Rust Disease
NASA Astrophysics Data System (ADS)
Georgiou, S.; Imbach, P. A.; Avelino, J.; Anzueto, F.; del Carmen Calderón, G.
2014-12-01
Coffee rust is a disease that has significant impacts on the livelihoods of those who are dependent on the Central American coffee sector. Our investigation has focussed on the weather and climate indicators that favoured the high incidence of coffee rust disease in Central America in 2012 by assessing daily temperature and precipitation data available from 81 weather stations in the INSIVUMEH and ANACAFE networks located in Guatemala. The temperature data were interpolated to determine the corresponding daily data at 1250 farms located across Guatemala, between 400 and 1800 m elevation. Additionally, CHIRPS five day (pentad) data has been used to assess the anomalies between the 2012 and the climatological average precipitation data at farm locations. The weather conditions in 2012 displayed considerable variations from the climatological data. In general the minimum daily temperatures were higher than the corresponding climatology while the maximum temperatures were lower. As a result, the daily diurnal temperature range was generally lower than the corresponding climatological range, leading to an increased number of days where the temperatures fell within the optimal range for either influencing the susceptibility of the coffee plants to coffee rust development during the dry season, or for the development of lesions on the coffee leaves during the wet season. The coffee rust latency period was probably shortened as a result, and farms at high altitudes were impacted due to these increases in minimum temperature. Factors taken into consideration in developing indicators for coffee rust development include: the diurnal temperature range, altitude, the environmental lapse rate and the phenology. We will present the results of our study and discuss the potential for each of the derived weather and climatological indicators to be used within risk assessments and to eventually be considered for use within an early warning system for coffee rust disease.
Rheology of acrylic denture-base polymers.
Mutlu, G; Huggett, R; Harrison, A; Goodwin, J W; Hughes, R W
1990-10-01
The aim of this study was to investigate the changing rheological behavior of a denture-base polymer from mixing to setting. In addition, monomer evaporation and exothermic behavior of the mix were evaluated. The results show that the material behaves as a pseudoplastic fluid. It is shown that the viscosity increases at different rates with respect to lapsed time, and increases with higher temperature. Also, it is shown that polymerization and monomer evaporation both play a part in dough formation.
Red Hot: Determining the Physical Properties of Lava Lake Skin
NASA Astrophysics Data System (ADS)
Ford, C.; Lev, E.
2015-12-01
Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.
Chacón, María M; Segnini, Samuel; Briceño, Daniela
2016-03-01
Daily emergence of mayflies in Neotropical rivers and their causes have been poorly studied. In temperate zones, this process is better known and attributed to several factors. In this work, we studied the daily emergence of subimagines of several Ephemeroptera genera in La Picón River of a Venezuelan Andean cloud forest and its relation with changes of environmental temperature. Four emergence traps were placed along a reach of 50 m of the stream, each one was examined each two hours in a 24 hr cycle to capture the newly emerged subimagos. This procedure was repeated for eight dates between November-2007 and February-2008 for a total of 32 observations in each sampling hour. The subimagos were reared to adults and identified to genus. The relative density of emergence per trap was calculated for each genus and sampling hour. Water and air temperature were measured each hour during the daily cycle of observation, and the averages of temperature and hour-degrees of air and water were calculated for each hour from the eight dates studied. Seven genera were identified: Leptohyphes Eaton, 1882 and Haplohyphes Allen 1966 (Leptophlebiidae); Prebaetodes Lugo-Ortiz and McCafferty, 1996, Andesiops Lugo-Ortiz and McCafferty, 1999, Baetodes Needham and Murphy, 1924 and Americabaetis Kluge, 1992 (Baetidae); and Thraulodes Ulmer, 1920 (Leptophlebiidae); being the more abundant Leptohyphes (38.4 %) and Thraulodes (20.5 %). The emergence occurred between 11:00 am and 23:00 pm showing the following: a) an emergence initiated during daylight hours by organisms of Leptohyphes, Prebaetodes and Haplohyphes; b) a nocturnal emergence, in Thraulodes, Andesiops, Baetodes and Americabaetis; and c) two peaks: one diurnal produced by Leptohyphes and other nocturnal with predominance of Thraulodes. These results are the first records on the diurnal daily emergence in Andesiops, Prebaetodes, Americabaetis, Haplohyphes, and Leptohyphes, as well as the nocturnal emergence in Thraulodes. It was evidenced that Leptohyphes, with small nymphs (average head width = 1.05 mm) needed to accumulate less hour-degrees to initiate the emergence than those required by Thraulodes whose nymphs are larger (average head width = 2.01 mm). This disparity in the emergence energy requirements must be consequence of differences between the sizes of mature nymphs of both genera; facts which rely on the constancy of sizes shown by these taxa along an altitudinal-thermal gradient and the little daily and seasonal variability of water temperature in La Picón River. In the daily lapse when the emergence occurred, the air and water average temperatures were higher than those registered in the no-emergence lapse; therefore; it is suggested that during the daily lapse, when this process occurs, the environment is thermally favorable for the emergence of subimagos and their survival out of water.
Time-lapse videos for physics education: specific examples
NASA Astrophysics Data System (ADS)
Vollmer, Michael; Möllmann, Klaus-Peter
2018-05-01
There are many physics experiments with long time scales such that they are usually neither shown in the physics class room nor in student labs. However, they can be easily recorded with time-lapse cameras and the respective time-lapse videos allow qualitative and/or quantitative analysis of the underlying physics. Here, we present some examples from thermal physics (melting, evaporation, cooling) as well as diffusion processes
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio
2015-04-01
Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS acquisitions) to that melted on each grid cell, a coefficient is obtained for spatially distributing the SD loses. For 2012 and 2013, three TLS acquisition campaigns were available during each melting period. This way the first acquisitions of both melting periods were reserved for validation while the other two were considered for adjusting the reconstruction. Validation has revealed a very good performance of the reconstructed SD distribution when compared with the TLS data (r2 values between 0.74 and 0.8 respectively). When no calibration with TLS data was applied for distributing melt rates; this is, using the distribution coefficients for reconstructing SD of precedent years, rather similar accuracy was reached. With the spatial calibration of 2012 and 2013, the reconstructions for the two TLS acquisition dates in 2014, obtained r2 values that ranged between 0.73 and 0.76. This shows the usefulness of lapse-rate images to estimate not only SCA but also the spatial distribution of the SD when combined with TLS acquisition and punctual information on temperature and SD. In such a way it is shown the effectiveness of combining two remote sensing techniques for obtaining distributed information on snow depth.
NASA Astrophysics Data System (ADS)
Lewkowicz, A. G.; Smith, K. M.
2004-12-01
The BTS (Basal Temperature of Snow) method to predict permafrost probability in mountain basins uses elevation as an easily available and spatially distributed independent variable. The elevation coefficient in the BTS regression model is, in effect, a substitute for ground temperature lapse rates. Previous work in Wolf Creek (60° 8'N 135° W), a mountain basin near Whitehorse, has shown that the model breaks down in a mid-elevation valley (1250 m asl) where actual permafrost probability is roughly twice that predicted by the model (60% vs. 20-30%). The existence of a double tree-line at the site suggested that air temperature inversions might be the cause of this inaccuracy (Lewkowicz and Ednie, 2004). This paper reports on a first year (08/2003-08/2004) of hourly air and ground temperature data collected along an altitudinal transect within the valley in upper Wolf Creek. Measurements were made at sites located 4, 8, 22, 82 and 162 m above the valley floor. Air temperature inversions between the lowest and highest measurement points occurred 42% of the time and in all months, but were most frequent and intense in winter (>60% of December and January) and least frequent in September (<25% of time). They generally developed after sunset and reached a maximum amplitude before sunrise. Only 11 inversions that lasted through more than one day occurred during the year, and only from October to February. The longest continuous duration was 145 h while the greatest inversion magnitude measured over the 160 m transect was 19° C. Ground surface temperatures are more difficult to interpret because of differences in soils and vegetation cover along the transect and the effects of seasonal snow cover. In many cases, however, air temperature inversions are not duplicated in the ground temperature record. Nevertheless, the annual altitudinal ground temperature gradient is much lower than would be expected from a standard atmospheric lapse rate, suggesting that the inversions do have an important impact on permafrost distribution at this site. More generally, therefore, it appears probable that any reduction in inversion frequency resulting from a more vigorous atmospheric circulation in the context of future climate change, would have a significant effect on permafrost distribution in mountain basins.
Sainsbury, Kirby; Halmos, Emma P; Knowles, Simon; Mullan, Barbara; Tye-Din, Jason A
2018-06-01
A strict lifelong gluten free diet (GFD) is the only treatment for coeliac disease (CD). Theory-based research has focused predominantly on initiation, rational, and motivational processes in predicting adherence. The aim of this study was to evaluate an expanded collection of theoretical constructs specifically relevant to the maintenance of behaviour change, in the understanding and prediction of GFD adherence. Respondents with CD (N = 5573) completed measures of GFD adherence, psychological distress, intentions, self-efficacy, and the maintenance-relevant constructs of self-regulation, habit, temptation and intentional and unintentional lapses (cognitive and behavioural consequences of lowered or fluctuating psychological resources and self-control), motivation, social and environmental support, and goal priority, conflict, and facilitation. Correlations and multiple regression were used to determine their influence on adherence, over and above intention and self-efficacy, and how relationships changed in the presence of distress. Better adherence was associated with greater self-regulation, habit, self-efficacy, priority, facilitation, and support; and lower psychological distress, conflict, and fewer self-control lapses (e.g., when busy/stressed). Autonomous and wellbeing-based, but not controlled motivations, were related to adherence. In the presence of distress, the influence of self-regulation and intentional lapses on adherence were increased, while temptation and unintentional lapses were decreased. The findings point to the importance of considering intentional, volitional, automatic, and emotional processes in the understanding and prediction of GFD adherence. Behaviour change interventions and psychological support are now needed so that theoretical knowledge can be translated into evidence-based care, including a role for psychologists within the multi-disciplinary treatment team. Copyright © 2018 Elsevier Ltd. All rights reserved.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.
Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Chakravorty, Rajib; Rawlinson, David; Zhang, Alan; Markham, John; Dowling, Mark R; Wellard, Cameron; Zhou, Jie H S; Hodgkin, Philip D
2014-01-01
Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte founders and their 631 progeny in vitro over a period of 108 hours. Using this data to train a Support Vector Machine classifier, we were retrospectively able to predict the fates of individual lymphocytes with more than 90% accuracy, using only time-lapse imaging captured prior to mitosis or death of 90% of all cells. The motivation for this paper is to explore the impact of labour-efficient assistive software tools that allow larger and more ambitious live-cell time-lapse microscopy studies. After training on this data, we show that machine learning methods can be used for realtime prediction of individual cell fates. These techniques could lead to realtime cell culture segregation for purposes such as phenotype screening. We were able to produce a large volume of data with less effort than previously reported, due to the image processing, computer vision, tracking and human-computer interaction tools used. We describe the workflow of the software-assisted experiments and the graphical interfaces that were needed. To validate our results we used our methods to reproduce a variety of published data about lymphocyte populations and behaviour. We also make all our data publicly available, including a large quantity of lymphocyte spatio-temporal dynamics and related lineage information.
An isotope hydrology study of the Kilauea volcano area, Hawaii
Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.
1995-01-01
Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for ground water in the Kilauea volcano area on the Island of Hawaii. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade-wind, rain shadow, and high-elevation climatological patterns. Temporal variations in isotopic composition of precipitation are controlled more by the frequency of large storms than b.y seasonal temperature fluctuations. Consistency in results between two separate areas with rainfall caused by tradewinds and thermally-driven upslope airflow suggests that isotopic gradients with elevation may be similar on other islands in the tradewind belt, especially the other Hawaiian Islands, which have similar climatology and temperature lapse rates. Areal contrasts in ground-water stable isotopes and tritium indicate that the volcanic ri~ zones compartmentalize the regional ground-water system. Tritium levels in ground water within and downgradient of Kilauea's ri~ zones indicate relatively long residence times. Part of Kilauea's Southwest Ri~ Zone appears to act as a conduit for water from higher elevation, but there is no evidence for extensive down-ri~ flow in the lower East Ri~ Zone.
NASA Astrophysics Data System (ADS)
Zhang, M.; Gao, K.; Balch, R. S.; Huang, L.
2016-12-01
During the Development Phase (Phase III) of the U.S. Southwest Regional Partnership on Carbon Sequestration (SWP), time-lapse 3D vertical seismic profiling (VSP) data were acquired to monitor CO2 injection/migration at the Farnsworth Enhanced Oil Recovery (EOR) field, in partnership with the industrial partner Chaparral Energy. The project is to inject a million tons of carbon dioxide into the target formation, the deep oil-bearing Morrow Formation in the Farnsworth Unit EOR field. Quantitative time-lapse seismic monitoring has the potential to track CO2 movement in geologic carbon storage sites. Los Alamos National Laboratory (LANL) has recently developed new full-waveform inversion methods to jointly invert time-lapse seismic data for changes in elastic and anisotropic parameters in target monitoring regions such as a CO2 reservoir. We apply our new joint inversion methods to time-lapse VSP data acquired at the Farnsworth EOR filed, and present some preliminary results showing geophysical properties changes in the reservoir.
The Driver Behaviour Questionnaire: a North American analysis.
Cordazzo, Sheila T D; Scialfa, Charles T; Bubric, Katherine; Ross, Rachel Jones
2014-09-01
The Driver Behaviour Questionnaire (DBQ), originally developed in Britain by Reason et al. [Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K. (1990). Errors and violations on the road: A real distinction? Ergonomics, 33, 1315-1332] is one of the most widely used instruments for measuring driver behaviors linked to collision risk. The goals of the study were to adapt the DBQ for a North American driving population, assess the component structure of the items, and to determine whether scores on the DBQ could predict self-reported traffic collisions. Of the original Reason et al. items, our data indicate a two-component solution involving errors and violations. Evidence for a Lapses component was not found. The 20 items most closely resembling those of Parker et al. [Parker, D., Reason, J. T., Manstead, A. S. R., & Stradling, S. G. (1995). Driving errors, driving violations and accident involvement. Ergonomics, 38, 1036-1048] yielded a solution with 3 orthogonal components that reflect errors, lapses, and violations. Although violations and Lapses were positively and significantly correlated with self-reported collision involvement, the classification accuracy of the resulting models was quite poor. A North American DBQ has the same component structure as reported previously, but has limited ability to predict self-reported collisions. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Source Repeatability of Time-Lapse Offset VSP Surveys for Monitoring CO2 Injection
NASA Astrophysics Data System (ADS)
Zhang, Z.; Huang, L.; Rutledge, J. T.; Denli, H.; Zhang, H.; McPherson, B. J.; Grigg, R.
2009-12-01
Time-lapse vertical seismic profiling (VSP) surveys have the potential to remotely track the migration of injected CO2 within a geologic formation. To accurately detect small changes due to CO2 injection, the sources of time-lapse VSP surveys must be located exactly at the same positions. However, in practice, the source locations can vary from one survey to another survey. Our numerical simulations demonstrate that a variation of a few meters in the VSP source locations can result in significant changes in time-lapse seismograms. To address the source repeatability issue, we apply double-difference tomography to downgoing waves of time-lapse offset VSP data to invert for the source locations and the velocity structures simultaneously. In collaboration with Resolute Natural Resources, Navajo National Oil and Gas Company, and the Southwest Regional Partnership on Carbon Sequestration under the support of the U.S. Department of Energy’s National Energy Technology Laboratory, one baseline and two repeat offset VSP datasets were acquired in 2007-2009 for monitoring CO2 injection at the Aneth oil field in Utah. A cemented geophone string was used to acquire the data for one zero-offset and seven offset source locations. During the data acquisition, there was some uncertainty in the repeatability of the source locations relative to the baseline survey. Our double-difference tomography results of the Aneth time-lapse VSP data show that the source locations for different surveys are separated up to a few meters. Accounting for these source location variations during VSP data analysis will improve reliability of time-lapse VSP monitoring.
Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko
2016-02-01
Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Mehrotra, Hunny; Vatsa, Mayank; Singh, Richa; Majhi, Banshidhar
2013-01-01
Iris as a biometric identifier is assumed to be stable over a period of time. However, some researchers have observed that for long time lapse, the genuine match score distribution shifts towards the impostor score distribution and the performance of iris recognition reduces. The main purpose of this study is to determine if the shift in genuine scores can be attributed to aging or not. The experiments are performed on the two publicly available iris aging databases namely, ND-Iris-Template-Aging-2008–2010 and ND-TimeLapseIris-2012 using a commercial matcher, VeriEye. While existing results are correct about increase in false rejection over time, we observe that it is primarily due to the presence of other covariates such as blur, noise, occlusion, and pupil dilation. This claim is substantiated with quality score comparison of the gallery and probe pairs. PMID:24244305
Mehrotra, Hunny; Vatsa, Mayank; Singh, Richa; Majhi, Banshidhar
2013-01-01
Iris as a biometric identifier is assumed to be stable over a period of time. However, some researchers have observed that for long time lapse, the genuine match score distribution shifts towards the impostor score distribution and the performance of iris recognition reduces. The main purpose of this study is to determine if the shift in genuine scores can be attributed to aging or not. The experiments are performed on the two publicly available iris aging databases namely, ND-Iris-Template-Aging-2008-2010 and ND-TimeLapseIris-2012 using a commercial matcher, VeriEye. While existing results are correct about increase in false rejection over time, we observe that it is primarily due to the presence of other covariates such as blur, noise, occlusion, and pupil dilation. This claim is substantiated with quality score comparison of the gallery and probe pairs.
NASA Astrophysics Data System (ADS)
Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.
2012-09-01
Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.
Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils
NASA Astrophysics Data System (ADS)
Yang, Huan; Xiao, Wenjie; Jia, Chengling; Xie, Shucheng
2015-03-01
The MBT/CBT (Methylation Index of Branched Tetraethers/Cyclisation ratio of Branched Tetraether) proxy, a terrestrial paleothermometer based on bacterial branched glycerol dialkyl glycerol tetraethers (bGDGTs), was employed to indicate altimetry; however, the mechanistic control on this proxy is still ambiguous. Here, we investigated the bGDGTs' distribution and associated environmental factors along an altitude transect of Mt. Shennongjia in China in order to determine the applicability of bGDGT-based proxies to altimetry reconstruction. The MBT index exhibits only a weak correlation with estimated mean annual air temperature (MATe, estimated according to the meteorological record and lapse rate) or altitude. Likewise, MBT shows weak or no relationship with temperature or altitude at four other mountains (Mts. Meghalaya, Jianfengling, Gongga, and Rungwe). It is notable that mean annual air temperature (MAT) or altitude estimated by the MBT/CBT proxy largely relies on CBT, rather than on MBT, which was generally acknowledged. The poor relationship between MBTand MATe for Mt. Shennongjia can be ascribed to the insensitive response of bGDGT-I to temperature. Our data from this mountain imply that care should be taken if the MBT/CBT proxy is employed as an indication of paleoaltimetry. We propose that the fractional abundance of bGDGTs may be a better paleoaltimeter than the MBT/CBT proxy, because specific bGDGT subsets that might show the most sensitive response to temperature can be preferentially selected using a statistical method and used to establish local calibration. This local calibration was applied to Mt. Shennongjia and apparently improves the accuracy of temperature and altimetry reconstruction. The differential response of bGDGTs to temperature among mountains suggests that local calibrations are needed to better constrain the altimetry.
Attenuation Characteristics of the Armutlu Peninsula (NW Turkey) Using Coda Q
NASA Astrophysics Data System (ADS)
Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Woith, Heiko; Gottfried Lühr, Birger; Barış, Şerif
2016-04-01
Attenuation characteristic of seismic waves was determined using coda Q in the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Data from 82 earthquakes recorded in 2013-2014 in the Armutlu Peninsula and its vicinity by 9 ARNET seismic stations were used for processing. The earthquake magnitudes (Ml) and depths vary from 1.5 to 3.7 and 1.2-16.9 km, respectively. Epicentral distances closer than 90 km were selected to ensure better signal-to-noise ratios. Lapse times between 20 seconds and 40 seconds at intervals of 5 seconds were used for the calculation of the coda wave quality factor. The coda windows were filtered at central frequencies of 1.5, 3, 6, 9 and 12 Hz bandpass filter. To obtain reliable results, only data with signal-to-noise ratios greater than 5 and correlation coefficents higher than 0.7 were used. The SEISAN software and one of its subroutines (CODAQ) were used for data processing and analyses. In the whole study area, Qc=(51±4)f^(0.91±0.04) for 20 seconds, Qc=(77±7)f^(0.80±0.04) for 30 seconds and Qc=(112±13)f^(0.72±0.06) for 40 seconds lapse times are obtained for coda wave quality factor. The observed quality factor is dependent on frequency and lapse time. The results indicate that the upper lithosphere is more heterogeneous and seismically more active than the lower lithosphere as expected in the region which is tectonically complex refering to the effects of the North Anatolian Fault Zone. By considering earthquake clusters and recorded stations, the scattering area was drawn. The intersection of the scattered areas for 20 seconds lapse time is covering all stations. Quality factor in 1 Hz and frequency dependent values were calculated separately and for the intersection of all scattered areas. Calculated Qo and n values of the intersection area are 50 and 0.89, respectively. Hence, the Qo and n values which are calculated using all stations and both values of the intersection area are very close to each other. Additionally, in the detailed review of TRML station which located in Yalova Province Termal District; Qc=(46±3)f^(0.97±0.04) for 20 seconds, Qc=(61±6)f^(1.03±0.06), for 30 seconds and Qc=(74±6)f^(1.06±0.05) for 40 seconds lapse times are obtained for coda wave quality factor. With these results, both the lower Qo values increasing with lapse times demonstrate high tectonic activity. Furthermore, the increasing n value with lapse times is conformable with the geothermal sources, next to the TRML station.
NASA Technical Reports Server (NTRS)
Schlesinger, Robert E.
1990-01-01
Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.
Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells
NASA Astrophysics Data System (ADS)
Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat
2017-05-01
Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.
Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates
NASA Astrophysics Data System (ADS)
Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria
2016-04-01
Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the simultaneous availability of data from all these three databases for a specific Mediterranean location and day. Here, results are presented for two stations, Lecce (Italy) and Thessaloniki (Greece). For each station, using long-term AERONET daily aerosol retrievals, including optical depth (AOD), and applying a specific methodology aiming to find out days in which aerosol burden is unusually high, dust episodes are determined for specific days. Subsequently, for these days, a search is made for simultaneously available UoW radiosonde and EARLINET aerosol profiles (vertically distributed aerosol backscatter and extinction coefficients). This procedure led in a number of study case dust episodes, which were further confirmed by back-trajectories of air masses obtained with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. Our study reveals that during the investigated episodes, in the daytime, high dust atmospheric loadings induce temperature inversions in heights ranging from the surface to the top of boundary, but also through to the lower free tropospheric layer.
On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.; Stansberry, John A.
2015-11-01
Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.
Variational analysis of temperature and moisture advection in a severe storm environment
NASA Technical Reports Server (NTRS)
Mcfarland, M. J.; Sasaki, Y. K.
1977-01-01
Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central United States were objectively analyzed from synoptic upper air observations with a nonhomogeneous anisotropic weighting function. The particular case study discussed here is the tornado producting squall line which moved through eastern Oklahoma 26 May 1973. The synoptic situation which preceded squall line development was cyclogenesis and frontogenesis in the lee-of-mountain trough, which produced a well-defined surface dry line (or dew point front) and a pronounced mid-level dry air intrusion. It is shown that the intrusion was also characterized by warm air, with a lapse rate approaching the dry adiabatic.
Atmosphere and ionosphere of venus from the mariner v s-band radio occultation measurement.
Kliore, A; Levy, G S; Cain, D L; Fjeldbo, G; Rasool, S I
1967-12-29
Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause.
Function of the alpha 6 Integrins in Breast Carcinoma
2001-10-01
motility on laminin-1. Time-lapse was resistant to solubilization with Triton X-100. Cy- videomicroscopy of clone A cells on laminin-1 revealed...represent SEM. The Integrin a6/34 Participates in the Dynamic Formation of Actin-based Motility Structures: Filopodia lapse videomicroscopy in serum-free...threefold greater time-lapse videomicroscopy to understand how the cu6P34 than on an equivalent concentration of collagen type I, integrin contributes to
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1988-01-01
Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1987-01-01
Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.
NASA Astrophysics Data System (ADS)
Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker
2016-04-01
A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin Basin. The results of this study support a hypothesis that the thermal maximum and simultaneous increased discharge observed each winter at both springs is the result of rapid infiltration, heating and re-circulation of meteoric waters within a structurally- and recharge-controlled hydrothermal circulation system.
NASA Astrophysics Data System (ADS)
Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker
2016-09-01
Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and re-circulation of meteoric waters within this structurally controlled hydrothermal circulation system. This paper illustrates how AMT may be useful in a multi-disciplinary investigation of an intermediate-depth (100-1000 m), low-enthalpy, geothermal target, and shows how the different strands of inquiry from a multi-disciplinary investigation may be woven together to gain a deeper understanding of a complex hydrothermal system.
NASA Astrophysics Data System (ADS)
Tobin, Cara; Nicotina, Ludovico; Parlange, Marc B.; Berne, Alexis; Rinaldo, Andrea
2011-04-01
SummaryThis paper presents a comparative study on the mapping of temperature and precipitation fields in complex Alpine terrain. Its relevance hinges on the major impact that inadequate interpolations of meteorological forcings bear on the accuracy of hydrologic predictions regardless of the specifics of the models, particularly during flood events. Three flood events measured in the Swiss Alps are analyzed in detail to determine the interpolation methods which best capture the distribution of intense, orographically-induced precipitation. The interpolation techniques comparatively examined include: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Kriging with External Drift (KED). Geostatistical methods rely on a robust anisotropic variogram for the definition of the spatial rainfall structure. Results indicate that IDW tends to significantly underestimate rainfall volumes whereas OK and KED methods capture spatial patterns and rainfall volumes induced by storm advection. Using numerical weather forecasts and elevation data as covariates for precipitation, we provide evidence for KED to outperform the other methods. Most significantly, the use of elevation as auxiliary information in KED of temperatures demonstrates minimal errors in estimated instantaneous rainfall volumes and provides instantaneous lapse rates which better capture snow/rainfall partitioning. Incorporation of the temperature and precipitation input fields into a hydrological model used for operational management was found to provide vastly improved outputs with respect to measured discharge volumes and flood peaks, with notable implications for flood modeling.
NASA Astrophysics Data System (ADS)
Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph
2017-05-01
Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.
Introducing a sensor to measure budburst and its environmental drivers
Kleinknecht, George J.; Lintz, Heather E.; Kruger, Anton; Niemeier, James J.; Salino-Hugg, Michael J.; Thomas, Christoph K.; Still, Christopher J.; Kim, Youngil
2015-01-01
Budburst is a key adaptive trait that can help us understand how plants respond to a changing climate from the molecular to landscape scale. Despite this, acquisition of budburst data is constrained by a lack of information at the plant scale on the environmental stimuli associated with the release of bud dormancy. Additionally, to date, little effort has been devoted to phenotyping plants in natural populations due to the challenge of accounting for the effect of environmental variation. Nonetheless, natural selection operates on natural populations, and investigation of adaptive phenotypes in situ is warranted and can validate results from controlled laboratory experiments. To identify genomic effects on individual plant phenotypes in nature, environmental drivers must be concurrently measured, and characterized. Here, we designed and evaluated a sensor to meet these requirements for temperate woody plants. It was designed for use on a tree branch to measure the timing of budburst together with its key environmental drivers; temperature, and photoperiod. Specifically, we evaluated the sensor through independent corroboration with time-lapse photography and a suite of environmental sampling instruments. We also tested whether the presence of the device on a branch influenced the timing of budburst. Our results indicated the following: the temperatures measured by the budburst sensor’s digital thermometer closely approximated the temperatures measured using a thermocouple touching plant tissue; the photoperiod detector measured ambient light with the same accuracy as did time lapse photography; the budburst sensor accurately detected the timing of budburst; and the sensor itself did not influence the budburst timing of Populus clones. Among other potential applications, future use of the sensor may provide plant phenotyping at the landscape level for integration with landscape genomics. PMID:25806035
Time-lapse electrical resistivity tomography: a powerful tool for landslide monitoring?
NASA Astrophysics Data System (ADS)
Perrone, A.
2011-12-01
The extreme rainfall events and the quick snowmelt occurrences play an important role in the triggering of the landslides. The occurrence of one of these factors can determine the variation of water content in the first layers of the subsoil and as a consequence a quick soil saturation inducing both an increase in pore-water pressures and the overloaded of the slopes progressively collapsing. The electrical resistivity, self-potential, electromagnetic induction and GPR methods can be considered as the most appropriate for assessing the presence of water in the underground. Such methods allow us to study the behavior of water content over much wider and deeper areas than those offered by traditional methods (thermo-gravimetric, tensiometric, TDR, etc) based on spot measures and concerning small volumes. In particular, the Electrical Resistivity Tomography (ERT), which has already proved to be a powerful tool both for the geometrical reconstruction of a landslide body (location of sliding surface, estimation of the thickness of the slide material) and the individuation of high water content areas, can be considered as an alternative tool to be employed for a qualitative and quantitative water content monitoring in the first layers of the subsoil. Indeed, time-lapse 2D ERT can be tested in order to gather information on the temporal and spatial patterns of water infiltration processes and water content variation. This work reports the preliminary results from a new prototype system planned to obtain time-lapse 2D ERTs, TDR and precipitation measurements in two landslide areas located in the Southern Apennine chain (Italy). The system was planned with the aim to estimate the variation of the resistivity parameter on a long period considering the water content variation, the rain water infiltration and the seasonal changes. The prototype system, linked to a pc used for storing data and managing the time interval acquisition, consists of: a resistivimeter connected to a multichannel cable, 48 steel electrodes buried in the soil at a depth of about 0.5 m at a distance of 1 or 5 m; a TDR system linked to 4 probes 20 cm length, buried at different depths along the same profile of the geoelectrical one; while a weather station consists of a rain gauge to quantify the amount of rain falling on that area, one sensor to measure the temperature and another to determine the speed and direction of the wind. At the beginning the time-lapse ERT were analysed to verify the functionality and stability of the system and to decide the measurement time intervals. After that, the statistical analysis of the results obtained was performed with the aim to define the water content variation in the first layers of the subsoil, in particular in the vadose zone. The results were compared with the TDR ones and the piezometric measurements were performed in the area thanks to the presence of equipped boreholes. The correlation between the variation of the parameters measured (electrical resistivity, water content and piezometric level) and the rain-gauge measurements was also considered. The preliminary results seem to be encouraged also if the analysis of the data acquired on a longer period could better highlight the capability of the system.
Bodri, Daniel; Kato, Ryutaro; Kondo, Masae; Hosomi, Naoko; Katsumata, Yoshinari; Kawachiya, Satoshi; Matsumoto, Tsunekazu
2015-05-01
To report time-lapse monitoring of human oocytes in which the damaged zona pellucida was removed, producing zona-free (ZF) oocytes that were cultured until the blastocyst stage in time-lapse incubators. Retrospective case series. Private infertility clinic. Infertile patients (n = 32) undergoing minimal ovarian stimulation or natural cycle IVF treatment between October 2012 and June 2014. Intracytoplasmic sperm injection (ICSI) fertilization of ZF oocytes, prolonged embryo culture in time-lapse incubators, elective vitrification, and subsequent single vitrified-thawed blastocyst transfer (SVBT). Rate of fertilization, cleavage and blastocyst development, live-birth rate per SVBT cycle. In spite of advanced maternal age (39 ± 4.2; range, 30-46 years), good fertilization (94%), cleavage (94%), and blastocyst development rates (38%) were reached after fertilization and culturing of ZF oocytes/embryos. All thawed ZF blastocysts survived, and up to this date seven SVBT transfers were performed, yielding three (43%) term live births with healthy newborns. Time-lapse imagery gives a unique insight into the dynamics of embryo development in ZF embryos. Moreover, our case series demonstrate that an oocyte with a damaged zona pellucida that has been removed could be successfully fertilized with ICSI, cultured until blastocyst stage in a time-lapse incubator and vitrified electively for subsequent use. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
Bray, Mark-Anthony; Carpenter, Anne E
2015-11-04
Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.
Reconsidering the Device in the Drawer: Lapses as a Design Opportunity in Personal Informatics
Epstein, Daniel A.; Kang, Jennifer H.; Pina, Laura R.; Fogarty, James; Munson, Sean A.
2017-01-01
People stop using personal tracking tools over time, referred to as the lapsing stage of their tool use. We explore how designs can support people when they lapse in tracking, considering how to design data representations for a person who lapses in Fitbit use. Through a survey of 141 people who had lapsed in using Fitbit, we identified three use patterns and four perspectives on tracking. Participants then viewed seven visual representations of their Fitbit data and seven approaches to framing this data. Participant Fitbit use and perspective on tracking influenced their preference, which we surface in a series of contrasts. Specifically, our findings guide selecting appropriate aggregations from Fitbit use (e.g., aggregate more when someone has less data), choosing an appropriate framing technique from tracking perspective (e.g., ensure framing aligns with how the person feels about tracking), and creating appropriate social comparisons (e.g., portray the person positively compared to peers). We conclude by discussing how these contrasts suggest new designs and opportunities in other tracking domains. PMID:28516173
Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.
2011-03-15
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less
NASA Astrophysics Data System (ADS)
Senese, Antonella; Maugeri, Maurizio; Vuillermoz, Elisa; Smiraglia, Claudio; Diolaiuti, Guglielmina
2014-05-01
Glacier melt occurs whenever the surface temperature is null (273.15 K) and the net energy budget is positive. These conditions can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present at the glacier surface the assessment of actual melting conditions and the evaluation of melt amount is difficult and degree-day (also named T-index) models are applied. These approaches require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K, since it is determined by the energy budget which in turn is only indirectly affected by air temperature. This is the case of the late spring period when ablation processes start at the glacier surface thus progressively reducing snow thickness. In this study, to detect the most indicative air temperature threshold witnessing melt conditions in the April-June period, we analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS (at 2631 m a.s.l.) on the ablation tongue of the Forni Glacier (Italy), and by a weather station located nearby the studied glacier (at Bormio, 1225 m a.s.l.). Moreover we evaluated the glacier energy budget (which gives the actual melt, Senese et al., 2012) and the snow water equivalent values during this time-frame. Then the ablation amount was estimated both from the surface energy balance (MEB from supraglacial AWS data) and from degree-day method (MT-INDEX, in this latter case applying the mean tropospheric lapse rate to temperature data acquired at Bormio changing the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of daily glacier air temperature conditions and the major uncertainty in the computation of snow melt from degree-day models is driven by the choice of an appropriate air temperature threshold. Then, to assess the most suitable threshold, we firstly analyzed hourly MEB values to detect if ablation occurs and how long this phenomenon takes (number of hours per day). The largest part of the melting (97.7%) resulted occurring on days featuring at least 6 melting hours thus suggesting to consider their minimum average daily temperature value as a suitable threshold (268.1 K). Then we ran a simple T-index model applying different threshold values. The threshold which better reproduces snow melting results the value 268.1 K. Summarizing using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the best reconstruction of glacier melt and it results in agreement with findings by van den Broeke et al. (2010) in Greenland ice sheet. Then probably the choice of a 268 K value as threshold for computing degree days amount could be generalized and applied not only on Greenland glaciers but also on Mid latitude and Alpine ones. This work was carried out under the umbrella of the SHARE Stelvio Project funded by the Lombardy Region and managed by FLA and EvK2-CNR Committee.
Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.
This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less
Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity
Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...
2016-01-07
This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less
Thermal imaging for cold air flow visualisation and analysis
NASA Astrophysics Data System (ADS)
Grudzielanek, M.; Pflitsch, A.; Cermak, J.
2012-04-01
In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.
Using Digital Time-Lapse Videos to Teach Geomorphic Processes to Undergraduates
NASA Astrophysics Data System (ADS)
Clark, D. H.; Linneman, S. R.; Fuller, J.
2004-12-01
We demonstrate the use of relatively low-cost, computer-based digital imagery to create time-lapse videos of two distinct geomorphic processes in order to help students grasp the significance of the rates, styles, and temporal dependence of geologic phenomena. Student interviews indicate that such videos help them to understand the relationship between processes and landform development. Time-lapse videos have been used extensively in some sciences (e.g., biology - http://sbcf.iu.edu/goodpract/hangarter.html, meteorology - http://www.apple.com/education/hed/aua0101s/meteor/, chemistry - http://www.chem.yorku.ca/profs/hempsted/chemed/home.html) to demonstrate gradual processes that are difficult for many students to visualize. Most geologic processes are slower still, and are consequently even more difficult for students to grasp, yet time-lapse videos are rarely used in earth science classrooms. The advent of inexpensive web-cams and computers provides a new means to explore the temporal dimension of earth surface processes. To test the use of time-lapse videos in geoscience education, we are developing time-lapse movies that record the evolution of two landforms: a stream-table delta and a large, natural, active landslide. The former involves well-known processes in a controlled, repeatable laboratory experiment, whereas the latter tracks the developing dynamics of an otherwise poorly understood slope failure. The stream-table delta is small and grows in ca. 2 days; we capture a frame on an overhead web-cam every 3 minutes. Before seeing the video, students are asked to hypothesize how the delta will grow through time. The final time-lapse video, ca. 20-80 MB, elegantly shows channel migration, progradation rates, and formation of major geomorphic elements (topset, foreset, bottomset beds). The web-cam can also be "zoomed-in" to show smaller-scale processes, such as bedload transfer, and foreset slumping. Post-lab tests and interviews with students indicate that these time-lapse videos significantly improve student interest in the material, and comprehension of the processes. In contrast, the natural landslide is relatively unconstrained, and its processes of movement, both gradual and catastrophic, are essentially impossible to observe directly without the aid of time-lapse imagery. We are constructing a remote digital camera, mounted in a tree, which will capture 1-2 photos/day of the toe. The toe is extremely active geomorphically, and the time-lapse movie should help us (and the students) to constrain the style, frequency, and rates of movement, surface slumping, and debris-flow generation. Because we have also installed a remote weather station on the landslide, we will be able to test the links between these processes and local climate conditions.
Estimating ocean-air heat fluxes during cold air outbreaks by satellite
NASA Technical Reports Server (NTRS)
Chou, S. H.; Atlas, D.
1981-01-01
Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.
Short-term climatic fluctuations forced by thermal anomalies
NASA Technical Reports Server (NTRS)
Hanna, A. F.
1982-01-01
A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.
About the coordinate time for photons in Lifshitz space-times
NASA Astrophysics Data System (ADS)
Villanueva, J. R.; Vásquez, Yerko
2013-10-01
In this paper we studied the behavior of radial photons from the point of view of the coordinate time in (asymptotically) Lifshitz space-times, and we found a generalization to the result reported in previous works by Cruz et al. (Eur. Phys. J. C 73:7, 2013), Olivares et al. (Astrophys. Space Sci. 347:83-89, 2013), and Olivares et al. (arXiv:1306.5285). We demonstrate that all asymptotically Lifshitz space-times characterized by a lapse function f( r) which tends to one when r→∞, present the same behavior, in the sense that an external observer will see that photons arrive at spatial infinity in a finite coordinate time. Also, we show that radial photons in the proper system cannot determine the presence of the black hole in the region r +< r<∞, because the proper time as a result is independent of the lapse function f( r).
NASA Astrophysics Data System (ADS)
van de Ven, C.; Weiss, S. B.
2009-12-01
Most climate models are expressed at regional scales, with resolutions on the scales of kilometers. When used for ecological modeling, these climate models help explain only broad-scale trends, such as latitudinal and upslope migration of plants. However, more refined ecological models require down-scaled climate data at ecologically relevant spatial scales, and the goal of this presentation is to demonstrate robust downscaling methods. For example, in the White Mountains, eastern California, tree species, including bristlecone pine (Pinus longaeva) are seen moving not just upslope, but also sideways across aspects, and downslope into areas characterized by cold air drainage. Macroclimate in the White Mountains is semi-arid, residing in the rain shadow of the Sierra Nevada. Macroclimate is modified by mesoscale effects of mountain ranges, where climate becomes wetter and colder with elevation, the temperature decreasing according to the regionally and temporally-specific lapse rate. Local topography further modifies climate, where slope angle, aspect, and topographic position further impact the temperature at a given site. Finally, plants experience extremely localized microclimate, where surrounding vegetation provide differing degrees of shade. We measured and modeled topoclimate across the White Mountains using iButton Thermochron temperature data loggers during late summer in 2006 and 2008, and have documented effects of microclimatic temperature differences between sites in the open and shaded by shrubs. Starting with PRISM 800m data, we derived mesoscale lapse rates. Then, we calculated temperature differentials between each Thermochron and a long-term weather station in the middle of the range at Crooked Creek Valley. We modeled month-specific minimum temperature differentials by regressing the Thermochron-weather station minimum temperature differentials with various topographic parameters. Topographic position, the absolute value of topographic position, and slope combined to provide a very close fit (r2>0.9) to measured inversions of >8°C. Although topoclimatic maximum temperature models have been more elusive, regressions with degree hours greater than zero (DH>0) have been modeled with September insolation and slope (r2=0.7). In paired experiments, Thermochrons also recorded the temperature differences between the environment under sagebrush (Artemisia tridentata) and in the open, with an average minimum temperature difference of 2.1°C, and maximum temperature difference of 4.5°C. When we incorporate hourly weather station data, the strength of the inversion is weakened by wind, higher relative humidity, and cloudiness. This hierarchical modeling provides a template for downscaling climate and weather to ecologically relevant scales.
NASA Astrophysics Data System (ADS)
Tomaskovicova, Sonia; Paamand, Eskild; Ingeman-Nielsen, Thomas; Bauer-Gottwein, Peter
2013-04-01
The sedimentary settings of West Greenlandic towns with their fine-grained, often ice-rich marine deposits are of great concern in building and construction projects in Greenland, as they lose volume, strength and bearing capacity upon thaw. Since extensive permafrost thawing over large areas of inhabited Greenlandic coast has been predicted as a result of climate change, it is of great both technical and economical interest to assess the extent and thermal properties of such formations. Availability of methods able to determine the thermal parameters of permafrost and forecast its reaction to climate evolution is therefore crucial for sustainable infrastructure planning and development in the Arctic. We are developing a model of heat transport for permafrost able to assess the thermal properties of the ground based on calibration by surface geoelectrical measurements and ground surface temperature measurements. The advantages of modeling approach and use of exclusively surface measurements (in comparison with direct measurements on core samples) are smaller environmental impact, cheaper logistics, assessment of permafrost conditions over larger areas and possibility of forecasting of the fate of permafrost by application of climate forcing. In our approach, the heat model simulates temperature distribution in the ground based on ground surface temperature, specified proportions of the ground constituents and their estimated thermal parameters. The calculated temperatures in the specified model layers are governing the phase distribution between unfrozen water and ice. The changing proportion of unfrozen water content as function of temperature is the main parameter driving the evolution of electrical properties of the ground. We use a forward modeling scheme to calculate the apparent resistivity distribution of such a ground as if collected from a surface geoelectrical array. The calculated resistivity profile is compared to actual field measurements and a difference between the synthetic and the measured apparent resistivities is minimized in a least-squares inversion procedure by adjusting the thermal parameters of the heat model. A site-specific calibration is required since the relation between unfrozen water content and temperature is strongly dependent on the grain size of the soil. We present details of an automated permanent field measurement setup that has been established to collect the calibration data in Ilulissat, West Greenland. Considering the station location in high latitude environment, this setup is unique of its kind since the installation of automated geophysical stations in the Arctic conditions is a challenging task. The main issues are related to availability of adapted equipment, high demand on robustness of the equipment and method due to the harsh environment, remoteness of the field sites and related powering issues of such systems. By showing the results from the new-established geoelectrical station over the freezing period in autumn 2012, we prove the 2D time lapse resistivity tomography to be an effective method for permafrost monitoring in high latitudes. We demonstrate the effectivity of time lapse geoelectrical signal for petrophysical relationship calibration, which is enhanced comparing to sparse measurements.
Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.
Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd
2017-01-01
Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH 4 to CO 2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH 4 to CO 2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner. Copyright © 2016 Elsevier Ltd. All rights reserved.
17 CFR 257.1 - General instructions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... company determines that the lapse of time has made it unlikely that it will need to prove the details... on the copy preserved may be destroyed at any time. If the same document would be required under more... preserved under § 250.26 of this chapter may be maintained and preserved for the required time by, or on...
Analysis of compaction initiation in human embryos by using time-lapse cinematography.
Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki
2014-04-01
To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.
2017-12-01
The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.
The influence of lapses of attention on working memory capacity.
Unsworth, Nash; Robison, Matthew K
2016-02-01
In three experiments, the influence of lapses of attention on working memory (WM) capacity measures was examined. Participants performed various change detection tasks while also reporting whether they were focused on the current task or whether they were unfocused and mind-wandering. Participants reported that they were mind-wandering roughly 27% of the time, and when participants reported mind-wandering, their performance was worse compared to when they reported being on-task. Low WM capacity individuals reported more mind-wandering and lapses of attention than high WM capacity individuals, and mind-wandering and filtering abilities were shown to make independent contributions to capacity estimates. These results provide direct support for the notion that the ability to focus attention on-task and prevent lapses of attention is an important contributor to performance on measures of WM capacity.
Kresowik, Jessica; Sparks, Amy; Duran, Eyup H; Shah, Divya K
2015-03-01
To compare rates of clinical pregnancy (CPR) and live birth (LBR) following embryo transfer (ET) performed by reproductive endocrinology and infertility (REI) fellows before and after a prolonged lapse in clinical training due to an 18-month research rotation. Retrospective cohort study. Not applicable. All women undergoing in vitro fertilization (IVF) and IVF-intracytoplasmic sperm injection (ICSI) cycles with ET performed by REI fellows from August 2003 to July 2012. Eighteen-month lapse in clinical training of REI fellows. CPR and LBR before and after the lapse in clinical training were calculated and compared per fellow and as a composite group. Alternating logistic regression models were used to calculate the odds of clinical pregnancy and live birth following transfers performed before and after the lapse in training. Unadjusted odds of clinical pregnancy and live birth were similar between the two time periods both for individual fellows and for the composite group. Alternate logistic regression analysis revealed no significant difference in CPR (odds ratio [OR] 0.94, 95% confidence interval [CI] 0.83-1.07) or LBR (OR 1.05, 95% CI 0.94-1.18) after the lapse in training compared with before. A research rotation is common in REI fellowship training programs. This prolonged departure from clinical training does not appear to negatively affect pregnancy outcome following fellow ET. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Zhao; Bo, Han; Shihua, Lv; Lijuan, Wen; Xianhong, Meng; Zhaoguo, Li
2018-02-01
The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth's surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth's surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.
Gas Generation of Heated PBX 9502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Matthew David; Parker, Gary Robert
2016-10-07
Uniaxially pressed samples of PBX 9502 were heated until self-ignition (cookoff) in order to collect pressure and temperature data relevant for model development. Samples were sealed inside a small gas-tight vessel, but were mechanically unconfined. Long-duration static pressure rise, as well as dynamic pressure rise during the cookoff event, were recorded. Time-lapse photography of the sample was used to measure the thermal expansion of the sample as a function of time and temperature. High-speed videography qualitatively characterized the mechanical behavior and failure mechanisms at the time of cookoff. These results provide valuable input to modeling efforts, in order to improvemore » the ability to predict pressure output during cookoff as well as the effect of pressure on time-toignition.« less
Ice Particle Growth Under Conditions of the Upper Troposphere
NASA Technical Reports Server (NTRS)
Peterson, Harold S.; Bailey, Matthew; Hallett, John
2010-01-01
Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.
Ice Particle Growth Rates Under Upper Troposphere Conditions
NASA Technical Reports Server (NTRS)
Peterson, Harold; Bailey, Matthew; Hallett, John
2010-01-01
Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.
Ice Crystal Growth Rates Under Upper Troposphere Conditions
NASA Technical Reports Server (NTRS)
Peterson, Harold S.; Bailey, Matthew; Hallett, John
2010-01-01
Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.
NASA Technical Reports Server (NTRS)
Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne
2000-01-01
The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.
26 CFR 25.2704-1 - Lapse of certain rights.
Code of Federal Regulations, 2014 CFR
2014-04-01
... was a key factor in Y's profitability). Section 2704(a) applies to the lapse of voting rights on D's... full rights as general partner are restored if the partner regains competency. A becomes incompetent...
26 CFR 25.2704-1 - Lapse of certain rights.
Code of Federal Regulations, 2011 CFR
2011-04-01
... was a key factor in Y's profitability). Section 2704(a) applies to the lapse of voting rights on D's... full rights as general partner are restored if the partner regains competency. A becomes incompetent...
26 CFR 25.2704-1 - Lapse of certain rights.
Code of Federal Regulations, 2013 CFR
2013-04-01
... was a key factor in Y's profitability). Section 2704(a) applies to the lapse of voting rights on D's... full rights as general partner are restored if the partner regains competency. A becomes incompetent...
26 CFR 25.2704-1 - Lapse of certain rights.
Code of Federal Regulations, 2012 CFR
2012-04-01
... was a key factor in Y's profitability). Section 2704(a) applies to the lapse of voting rights on D's... full rights as general partner are restored if the partner regains competency. A becomes incompetent...
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e190769 - iss042e191096). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e330173 - iss042e331530). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e238532 - iss042e239150). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e177446 - iss042e178444 ). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e110489 - iss042e111902). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e212874 - iss042e213080). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e285752 - iss042e286830). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e116561 - iss042e117265). Shows Earth views. Solar Array Wing (SAW) in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (iss042e071550 - iss042e072050). Shows Earth views over Africa, Sinai, Saudi Arabia, Jordan and Israel.
NASA Astrophysics Data System (ADS)
Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.
2014-12-01
Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination) as boundary conditions for the models. In all, and with limited integration of existing tools, to deployment of high-temperature downhole tools could contribute largely to the success of the long awaited Mohole project.
Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.
Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A
2011-01-01
Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.
Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions
NASA Astrophysics Data System (ADS)
Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.
2018-07-01
Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.
Wohl, David A; Kuwahara, Rita K; Javadi, Kamran; Kirby, Christine; Rosen, David L; Napravnik, Sonia; Farel, Claire
2017-11-01
Antiretroviral (ARV) adherence has largely been considered from the perspective of an individual's behavior with less attention given to potential structural causes for lapses in treatment, such as the cost of medications and care. HIV medication expense is typically covered by third party payers. However, private insurance premiums and deductibles may rise, or policies terminated such as with a change in employment. Likewise, a patient's eligibility for publicly funded coverage like state AIDS Drug Assistance Programs (ADAP) or Medicaid can also be lost. We conducted a one-time survey of a sample of 300 patients receiving HIV care at a single large academic center in the south of United States to examine lapses in HIV therapy due to financial reasons. We found that during the prior year, financial issues including medication cost or coverage led to a lapse in ARVs in 10% (n = 31) of participants. However, of the 42% (n = 125) participants who had been enrolled in ADAP at any time during the prior year, 21% (n = 26) reported an ARV lapse due to problems with ADAP or medication cost. Respondents cited ADAP's required semi-annual renewal process and other administrative issues as the cause of ARV lapses. The median duration of missed ARVs was 2 weeks (range of <1-23 weeks). Non-HIV medication and transportation to and from clinic costs were also identified as financial burdens to care by respondents. In conclusion, although conducted at a single medical center and one state, this study suggests that a significant minority of HIV-infected patients encounter financial barriers to ARV access, and this is paradoxically more common among those enrolled in the state ADAP. Streamlining, supporting, and simplifying ADAP renewal procedures will likely reduce lapses in ARV adherence and persistence.
Farris, Samantha G; Zvolensky, Michael J; Schmidt, Norman B
2016-06-01
There is little knowledge about how emotion regulation difficulties interplay with psychopathology in terms of smoking cessation. Participants ( n = 250; 53.2 % female, M age = 39.5, SD = 13.85) were community-recruited daily smokers (≥8 cigarettes per day) who self-reported motivation to quit smoking; 38.8 % of the sample met criteria for a current (past 12-month) psychological disorder. Emotion regulation deficits were assessed pre-quit using the Difficulties with Emotion Regulation Scale (DERS; Gratz and Roemer in J Psychopathol Behav Assess 26(1):41-54, 2004) and smoking behavior in the 28 days post-quit was assessed using the Timeline Follow-Back (TLFB; Sobell and Sobell in Measuring alcohol consumption: psychosocial and biochemical methods. Humana Press, Totowa, 1992). A Cox proportional-hazard regression analysis was used to model the effects of past-year psychopathology, DERS (total score), and their interaction, in terms of time to lapse post-quit day. After adjusting for the effects of gender, age, pre-quit level of nicotine dependence, and treatment condition, the model revealed a non-significant effect of past-year psychopathology ( OR = 1.14, CI 95 % = 0.82-1.61) and difficulties with emotion regulation ( OR = 1.01, CI 95 % = 1.00-1.01) on likelihood of lapse rate. However, the interactive effect of psychopathology status and difficulties with emotion regulation was significant ( OR = 0.98, CI 95 % = 0.97-0.99). Specifically, there was a significant conditional effect of psychopathology status on lapse rate likelihood at low, but not high, levels of emotion regulation difficulties. Plots of the cumulative survival functions indicated that for smokers without a past-year psychological disorder, those with lower DERS scores relative to elevated DERS scores had significantly lower likelihood of early smoking lapse, whereas for smokers with past-year psychopathology, DERS scores did not differentially impact lapse rate likelihood. Smokers with emotion regulation difficulties may have challenges quitting, and not having such difficulties, especially without psychopathology, decreases the potential likelihood of early lapse.
NASA Technical Reports Server (NTRS)
2009-01-01
A time lapse from start to finish of steel erection for the 235-foot tall A-3 Test Stand. Ground work for the stand was broken in August 2008 and the final structural steel beam was placed April 9, 2009.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e260338 - iss042e261334). Shows night time Earth views taken from the Cupola module.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
s time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e207712 - iss042e209132 ). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e203119 - iss042e203971). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e334978 - iss042e335976). Shows Earth views. Solar Array Wing (SAW) comes into view.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e324104 - iss042e325631). Shows Earth views. Soyuz and Progress spacecrafts come into view.
De la Torre, Gabriel G; Martin, Alba; Cervantes, Elizabeth; Guil, Rocio; Mestre, Jose M
2017-08-01
Attentional lapses are usually defined as temporary and often brief shifts of attention away from some primary task to unrelated internal information processing. This study addressed the incidence of attention lapses and differences in attentional functioning in 30 children with attention-deficit/hyperactivity disorder (ADHD), 26 healthy children, and 29 children with spina bifida myelomeningocele and hydrocephalus (SBH). Assessments were conducted using computerized tonic and phasic attention tests, the Symbol Digit Modalities Test (SDMT), and the Trail Making Test Form B (TMT-B). The group with SBH differed from normal controls on cognitive measures of attention and executive functions. The ADHD group obtained lower scores than the SBH group and healthy children. ANOVA results showed that there was an effect of shunt revisions and shunt-related infections on neuropsychological performance. Lapses of attention together with reaction time may thus represent important factors for the understanding of cognitive deficits in SBH.
Global dynamics of selective attention and its lapses in primary auditory cortex.
Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle
2016-12-01
Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-08-08
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.
26 CFR 1.83-5 - Restrictions that will never lapse.
Code of Federal Regulations, 2010 CFR
2010-04-01
... than the current book value of the stock for purposes of determining the fair market value of the stock... example, where the price to be paid for the stock subject to the right of first refusal is the fair market..., the fair market value of the X stock is includible in E's gross income as compensation for taxable...
26 CFR 301.6343-1 - Requirement to release levy and notice of release.
Code of Federal Regulations, 2011 CFR
2011-04-01
... person upon whom the levy was made of such a release, if the director determines that any of the... levy was made is satisfied or the period of limitations provided in section 6502 (and any period during which the period of limitations is suspended as provided by law) has lapsed. A levy is considered made...
Larson-Prior, Linda J.; Ju, Yo-El; Galvin, James E.
2014-01-01
Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders. PMID:25309500
Early Events in Insulin Fibrillization Studied by Time-Lapse Atomic Force Microscopy
Podestà, Alessandro; Tiana, Guido; Milani, Paolo; Manno, Mauro
2006-01-01
The importance of understanding the mechanism of protein aggregation into insoluble amyloid fibrils lies not only in its medical consequences, but also in its more basic properties of self-organization. The discovery that a large number of uncorrelated proteins can form, under proper conditions, structurally similar fibrils has suggested that the underlying mechanism is a general feature of polypeptide chains. In this work, we address the early events preceding amyloid fibril formation in solutions of zinc-free human insulin incubated at low pH and high temperature. Here, we show by time-lapse atomic force microscopy that a steady-state distribution of protein oligomers with a quasiexponential tail is reached within a few minutes after heating. This metastable phase lasts for a few hours, until fibrillar aggregates are observable. Although for such complex systems different aggregation mechanisms can occur simultaneously, our results indicate that the prefibrillar phase is mainly controlled by a simple coagulation-evaporation kinetic mechanism, in which concentration acts as a critical parameter. These experimental facts, along with the kinetic model used, suggest a critical role for thermal concentration fluctuations in the process of fibril nucleation. PMID:16239333
Concentration variance decay during magma mixing: a volcanic chronometer.
Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B
2015-09-21
The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.
1988-01-01
In 1982, the VISSR Atmospheric Sounder (VAS) on the GOES satellite performed the Atmospheric Variability Experiment (AVE) to verify VAS's mesoscale-sounding capabilities. Attention is given to the AVE network in the late afternoon of March 6, 1982, after a winter storm had passed over Texas, in order to ascertain whether such temperature profile deviations from the average lapse rate as a midlevel cold pool (which should decrease the brightness of several IR channels) can be retrieved from VAS radiances. Two simple enhancements are introduced: the regression matrix is calculated using the AVE asynoptic radiosondes launched from NWS sites in the region, and a change of the statistical conditioning factor from the conservative 10/1 SNR to a more optimistic 100/1 for those VAS channels that are more sensitive to tropospheric temperature.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
30 CFR 285.530 - What must I do if my financial assurance lapses?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Payments and... lapse; and (2) Provide new financial assurance in the amount set by MMS, as provided in this subpart. (b...
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e211498 - iss042e212135). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e162807 - iss042e163936). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e308288 - iss042e309536). Shows Earth views taken from a window aboard the International Space Station (ISS).
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e210380 - iss042e211441). Shows Earth views. Solar Array Wing (SAW) in and out of view.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e193144 - iss042e194102). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e209133 - iss042e210379). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e215401 -iss042e215812). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e290689 - iss042e291289). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e249923 - iss042e250759). Shows Earth views. Space Station Remote Manipulator system (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e170341 - iss042e171462). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e244330 - iss042e245101). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence
NASA Astrophysics Data System (ADS)
Ait Chaalal, F.; Schneider, T.
2012-12-01
The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.
NASA Astrophysics Data System (ADS)
Gance, J.; Sailhac, P.; Malet, J.; Supper, R.; Jochum, B.; Ottowitz, D.; Grandjean, G.
2013-12-01
Movements of water in the topsoil (infiltration, run-off and evaporation) influence changes in slope stability which is the main controlling factor of landslide triggering (e.g. van Asch et al., 1999). Among the petrophysical parameters that can provide time-lapse sections of the topsoil, we consider the electrical conductivity for its sensitivity to soil water contents. Based on recent works which showed the possibility of monitoring the hydrological response of a clay-shale slope to a controlled rainfall experiment (Travelletti et al., 2012), we installed a permanent electrical monitoring experiment at the Super-Sauze landslide for long-term monitoring (one year) of natural meteorological events. We used the GEOMON4D resistivimeter, developed by the Austrian Geological Survey (Vienna, Austria) for experiments needing high rate of data acquisition, records of full signal samples for noise detection, remote controlled management and automatic data transfer (Supper et al., 2002, 2003 & 2004). The electrode positions varying with time, we installed two terrestrial optical cameras to characterize the changes in dipole geometry. Several hydrological sensors were installed along the profile to measure soil temperature, water temperature and conductivity, ground water level and soil humidity in the vadose zone. The main challenge is the processing of ca. 4.2 million of electrical resistivity data. In this difficult context, the potential factors influencing electrical resistivity with time without modification of soil saturation are the relative changes in the dipole geometry (linked to the displacement of the electrodes), changes in soil and water temperature, change in material porosity due to compaction/dilatation caused by the landslide movement. Therefore, before any inversion of data, we verify the presence of possible 3D effects, and assess the measurement accuracy and uncertainty. An apparent resistivity variation threshold, from which a modification of the saturation can be attributed, is determined. From those first results, we first investigate changes in the apparent resistivity. Responses to different hydrological processes (such as soil freezing/thawing, snow melting, high intensity rainfall, debris flow events) occurring during the monitoring period are detectable on the inversed resistivities over short periods. For example The results of the study highlight the difficulty to monitor hydrological changes on a clay-shale landslide, and will permit to improve such future device. Although a quantitative interpretation of the apparent resistivity is impossible, typical responses are clearly detectable and allows a first qualitative interpretation of hydrological changes in the landslide
Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder
NASA Technical Reports Server (NTRS)
Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.
1999-01-01
We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.
Terrestrial cooling and solar variability
NASA Technical Reports Server (NTRS)
Agee, E. M.
1982-01-01
Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.
Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network
Gallo, K.P.
2005-01-01
Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.
A numerical field experiment approach for determining probabilities of microburst intensity
NASA Technical Reports Server (NTRS)
Droegemeier, Kelvin K.; Zweifel, Terry
1992-01-01
Several investigators had determined that some atmospheric parameters were related to the formation and severity of microbursts. For example, Caracena pointed out the relationship between a dry adiabatic lapse rate and microbursts in 'The crash of Delta Flight 191 at Dallas-Fort Worth international airport'. These early investigations led to the idea that numeric modeling of microbursts with varying atmospheric parameters might define 'signatures' that could lead to determining the probability of microburst intensity. The idea was that, by using already available sensors (such as static air temperature, pressure altitude, and radar reflectivity) onboard an aircraft, a reliable prediction of microburst existence and intensity could be formed. Such data could be used to create an 'expert meteorologist' using either artificial intelligence or other techniques that could be used in either reactive or look-ahead systems to vary sensitivity thresholds and coordinate the inputs from different detecting systems. To this end, Honeywell contracted to have the microburst simulations run. The questions to be addressed were the following: using the sensor set available to the aircraft (e.g. temperature, radar reflectivity, etc.), can we calculate the probability that (1) a microburst could be formed? and (2) that the resultant winds would be of sufficient magnitude to threaten the aircraft? Over a two year period, a data set of 1800 microburst simulations was accumulated. Verification of the microburst simulation was obtained using the results of other independent researchers and actual comparison to microburst events in Orlando and Denver. Some of the results from the simulation have already been incorporated into Honeywell's Windshear Detection and Guidance System with excellent results. Various aspects of this investigation are presented in viewgraph form.
Bubbling cell death: A hot air balloon released from the nucleus in the cold.
Chang, Nan-Shan
2016-06-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.
Bubbling cell death: A hot air balloon released from the nucleus in the cold
2016-01-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as “formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death.” When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. PMID:27075929
Things Forgotten: Simple Lapse or Serious Problem?
... part of the U.S. Department of Health and Human Services Search form Search ... went there. And misplaced your keys or eyeglasses at least a few times. Many people worry about these memory lapses. They fear they’re heading toward a ...
2017-02-27
Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.
ISS Expedition 42 Time Lapse Video of Earth
2014-09-29
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss041e37762 - iss041e39788). Shows Earth and aurora views. Partial views of ISS in and out of view.
Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse photo sequence to monitor the active volcanos on Jupiter's moon Io following the spacecraft's closest approach to Jupiter. This picture is one of about 200 images that will be used to generate a time lapse motion picture to illustrate Io's volcanic activity. On the bright limb, two of the plumes (P-5 & P-6) discovered in March by Voyager 1 are again visible. The plumes are spewing materials to a height of about 100 kilometers.
Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008
Orr, Tim R.
2011-01-01
Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.
Advances in interpretation of subsurface processes with time-lapse electrical imaging
Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.
2015-01-01
Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.
Advances in interpretation of subsurface processes with time-lapse electrical imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.
2015-03-15
Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.
Respiratory problems and anxiety sensitivity in smoking lapse among treatment seeking smokers.
Zvolensky, Michael J; Rodríguez-Cano, Rubén; Paulus, Daniel J; Kotov, Roman; Bromet, Evelyn; Gonzalez, Adam; Manning, Kara; Luft, Benjamin J
2017-12-01
The current study examined whether the interaction of lower respiratory symptoms and anxiety sensitivity is related to smoking lapse in the context of smoking cessation. Participants were adult daily smokers (N=60) exposed to the World Trade Center (WTC) disaster who were in a smoking cessation treatment program (75.0% male, 50.6years old [SD=9.2], and current smoking rate was 17.6 cigarettes per day (SD=10.6). Results indicated that the interaction between lower respiratory symptoms and anxiety sensitivity was a significant predictor of greater risk for lapse (i.e., lower survival time; B=0.005, OR=1.01, p=0.039). Follow-up analysis showed that greater respiratory symptoms were a significant predictor of lapse risk among those with high (B=0.116, OR=1.12, p=0.025), but not those with low (B=-0.048, OR=0.95, p=0.322), levels of anxiety sensitivity. The findings from the current study suggest that smokers with greater respiratory symptoms and higher levels of anxiety sensitivity may be associated with early lapse to smoking following smoking cessation treatment. Future work has the potential to inform the development of tailored cessation interventions for smokers who experience varying levels of lower respiratory symptoms and anxiety sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.
2018-01-01
The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.
3D lens-free time-lapse microscopy for 3D cell culture
NASA Astrophysics Data System (ADS)
Berdeu, Anthony; Momey, Fabien; Laperrousaz, Bastien; Bordy, Thomas; Gidrol, Xavier; Dinten, Jean-Marc; Picollet-D'hahan, Nathalie; Allier, Cédric
2017-07-01
We propose a new imaging platform based on lens-free time-lapse microscopy for 3D cell culture and its dedicated algorithm lying on a fully 3D regularized inverse problem approach. First 3D+t results are presented
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, L.; Gu, H.
2017-12-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.
Developing an EEG-based on-line closed-loop lapse detection and mitigation system
Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping
2014-01-01
In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15–20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments. PMID:25352773
Ziring, Deborah; Danoff, Deborah; Grosseman, Suely; Langer, Debra; Esposito, Amanda; Jan, Mian Kouresch; Rosenzweig, Steven; Novack, Dennis
2015-07-01
Teaching and assessing professionalism is an essential element of medical education, mandated by accrediting bodies. Responding to a call for comprehensive research on remediation of student professionalism lapses, the authors explored current medical school policies and practices. In 2012-2013, key administrators at U.S. and Canadian medical schools accredited by the Liaison Committee on Medical Education were interviewed via telephone or e-mail. The structured interview questionnaire contained open-ended and closed questions about practices for monitoring student professionalism, strategies for remediating lapses, and strengths and limitations of current systems. The authors employed a mixed-methods approach, using descriptive statistics and qualitative analysis based on grounded theory. Ninety-three (60.8%) of 153 eligible schools participated. Most (74/93; 79.6%) had specific policies and processes regarding professionalism lapses. Student affairs deans and course/clerkship directors were typically responsible for remediation oversight. Approaches for identifying lapses included incident-based reporting and routine student evaluations. The most common remediation strategies reported by schools that had remediated lapses were mandated mental health evaluation (74/90; 82.2%), remediation assignments (66/90; 73.3%), and professionalism mentoring (66/90; 73.3%). System strengths included catching minor offenses early, emphasizing professionalism schoolwide, focusing on helping rather than punishing students, and assuring transparency and good communication. System weaknesses included reluctance to report (by students and faculty), lack of faculty training, unclear policies, and ineffective remediation. In addition, considerable variability in feedforward processes existed between schools. The identified strengths can be used in developing best practices until studies of the strategies' effectiveness are conducted.
Lab-X-ray multidimensional imaging of processes inside porous media
NASA Astrophysics Data System (ADS)
Godinho, Jose
2017-04-01
Time-lapse and other multidimensional X-ray imaging techniques have mostly been applied using synchrotron radiation, which limits accessibility and complicates data analysis. Here, we present new time-lapse imaging approaches using laboratory X-ray computed microtomography (CT) to study transformations inside porous media. Specifically, three methods will be presented: 1) Quantitative time-lapse radiography to study sub-second processes. For example to study the penetration of particles into fractures and pores, which is essential to understand how proppants keep fractures opened during hydraulic fracturing and how filter cakes form during borehole drilling. 2) Combination of time-lapse CT with diffraction tomography to study the transformation between bio-inspired polymorphs in 6D, e.g. mineral phase transformation between ACC, Vaterite and Calcite - CaCO3, and between ACS, Anhydrite and Gypsum - CaSO4. Crystals can be resolved in nanopores down to 7 nm (over 100 times smaller than the resolution of CT), which allows studying the effect of confinement on phase stability and growth rates. 3) Fast iterative helical micro-CT scanning to study samples of high ratio height to width (e.g. long cores) with optimal resolution. Here we show how this can be useful to study the distribution of the products from fluid-mediated mineral reactions throughout longer reaction paths and more representative volumes. Using state of the art reconstruction algorithms allows reducing the scanning times from over ten hours to below two hours enabling time-lapse studies. It is expected that these new techniques will open new possibilities for time-lapse imaging of a wider range of geological processes using laboratory X-ray CT, thereby increasing the accessibility of multidimensional imaging to a larger number of users and applications in geology.
How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study.
Holter, Marianne T S; Johansen, Ayna; Brendryen, Håvar
2016-06-28
eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist's support of a working alliance, internalization of motivation, and managing lapses. We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several "counseling sessions" about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. The program supports the user's working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective.
How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study
Johansen, Ayna; Brendryen, Håvar
2016-01-01
Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373
Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010
NASA Astrophysics Data System (ADS)
Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.
2018-03-01
Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.
Everyday attention lapses and memory failures: the affective consequences of mindlessness.
Carriere, Jonathan S A; Cheyne, J Allan; Smilek, Daniel
2008-09-01
We examined the affective consequences of everyday attention lapses and memory failures. Significant associations were found between self-report measures of attention lapses (MAAS-LO), attention-related cognitive errors (ARCES), and memory failures (MFS), on the one hand, and boredom (BPS) and depression (BDI-II), on the other. Regression analyses confirmed previous findings that the ARCES partially mediates the relation between the MAAS-LO and MFS. Further regression analyses also indicated that the association between the ARCES and BPS was entirely accounted for by the MAAS-LO and MFS, as was that between the ARCES and BDI-II. Structural modeling revealed the associations to be optimally explained by the MAAS-LO and MFS influencing the BPS and BDI-II, contrary to current conceptions of attention and memory problems as consequences of affective dysfunction. A lack of conscious awareness of one's actions, signaled by the propensity to experience brief lapses of attention and related memory failures, is thus seen as having significant consequences in terms of long-term affective well-being.
Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W
2011-01-01
Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
Chih, Ming-Yuan
2014-01-01
How patients used Addiction-Comprehensive Health Enhancement Support System (A-CHESS)1, a mobile health intervention, while quitting drinking is worthy exploring. This study is to explore A-CHESS use patterns prior to the initial lapse reported after discharge from inpatient detoxification programs. 142 patients with alcohol addiction from two treatment agencies in the U.S. were included. A comprehensive set of A-CHESS use measures were developed based on a three-level system use framework and three A-CHESS service categories. In latent profile analyses, three A-CHESS system use patterns-inactive, passive, and active users-were found. Compared to the passive users (with the highest chance of the initial lapse), the active users (with the lowest chance of such behavior) participated more in online social activities, used more sessions, viewed more pages, and used A-CHESS longer. However, the chances of the initial lapse between A-CHESS user profiles were not statistically different. Implications of this finding were provided.
Zvolensky, Michael J.; Schmidt, Norman B.
2015-01-01
There is little knowledge about how emotion regulation difficulties interplay with psychopathology in terms of smoking cessation. Participants (n = 250; 53.2 % female, Mage = 39.5, SD = 13.85) were community-recruited daily smokers (≥8 cigarettes per day) who self-reported motivation to quit smoking; 38.8 % of the sample met criteria for a current (past 12-month) psychological disorder. Emotion regulation deficits were assessed pre-quit using the Difficulties with Emotion Regulation Scale (DERS; Gratz and Roemer in J Psychopathol Behav Assess 26(1):41–54, 2004) and smoking behavior in the 28 days post-quit was assessed using the Timeline Follow-Back (TLFB; Sobell and Sobell in Measuring alcohol consumption: psychosocial and biochemical methods. Humana Press, Totowa, 1992). A Cox proportional-hazard regression analysis was used to model the effects of past-year psychopathology, DERS (total score), and their interaction, in terms of time to lapse post-quit day. After adjusting for the effects of gender, age, pre-quit level of nicotine dependence, and treatment condition, the model revealed a non-significant effect of past-year psychopathology (OR = 1.14, CI95 % = 0.82–1.61) and difficulties with emotion regulation (OR = 1.01, CI95 % = 1.00–1.01) on likelihood of lapse rate. However, the interactive effect of psychopathology status and difficulties with emotion regulation was significant (OR = 0.98, CI95 % = 0.97–0.99). Specifically, there was a significant conditional effect of psychopathology status on lapse rate likelihood at low, but not high, levels of emotion regulation difficulties. Plots of the cumulative survival functions indicated that for smokers without a past-year psychological disorder, those with lower DERS scores relative to elevated DERS scores had significantly lower likelihood of early smoking lapse, whereas for smokers with past-year psychopathology, DERS scores did not differentially impact lapse rate likelihood. Smokers with emotion regulation difficulties may have challenges quitting, and not having such difficulties, especially without psychopathology, decreases the potential likelihood of early lapse. PMID:27239081
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e103580 - iss042e104044). Shows night time Earth views. Solar Array Wing (SAW) and Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e196791 - iss042e197504). Shows Earth views. Day time views turn into night time views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
NASA Astrophysics Data System (ADS)
Forsythe, N. D.; Fowler, H.; Pritchard, D.
2016-12-01
High mountain Asia (HMA) constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area will experience rapid demographic growth and socio-economic development for the next few decades compounding pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative. Multiple international modelling centres have contributed RCM experiments for the CORDEX South Asia domain. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically on the northwest Upper Indus basin (NW UIB) which covers the bulk of the Karakoram range. Within this subdomain we use climatologies derived from local observations and meteorological reanalyses (ERA-Interim, NASA MERRA-2, HAR)as benchmarks for inter-comparison of individual CORDEX South Asia ensemble members skill in reproducing seasonality and spatial gradients (orographic precipitation profile, temperature lapse rates). Validation of individual CORDEX South Asia ensemble members to this level of detail is indispensable because discontinuities - e.g. differences in latent heat regimes (fusion versus vaporisation) - abound in mountain environments. These discontinuities may undermine widely used statistical approaches (e.g. change factors) used for downscaling and bias correction of future climate projections to locally observed conditions.
A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography
Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.
2017-01-01
Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.
NASA Astrophysics Data System (ADS)
Bergmann, Peter; Yang, Can; Lüth, Stefan; Juhlin, Christopher; Cosma, Calin
2011-09-01
The Ketzin project provides an experimental pilot test site for the geological storage of CO2. Seismic monitoring of the Ketzin site comprises 2D and 3D time-lapse experiments with baseline experiments in 2005. The first repeat 2D survey was acquired in 2009 after 22 kt of CO2 had been injected into the Stuttgart Formation at approximately 630 m depth. Main objectives of the 2D seismic surveys were the imaging of geological structures, detection of injected CO2, and comparison with the 3D surveys. Time-lapse processing highlighted the importance of detailed static corrections to account for travel time delays, which are attributed to different near-surface velocities during the survey periods. Compensation for these delays has been performed using both pre-stack static corrections and post-stack static corrections. The pre-stack method decomposes the travel time delays of baseline and repeat datasets in a surface consistent manner, while the latter cross-aligns baseline and repeat stacked sections along a reference horizon. Application of the static corrections improves the S/N ratio of the time-lapse sections significantly. Based on our results, it is recommended to apply a combination of both corrections when time-lapse processing faces considerable near-surface velocity changes. Processing of the datasets demonstrates that the decomposed solution of the pre-stack static corrections can be used for interpretation of changes in near-surface velocities. In particular, the long-wavelength part of the solution indicates an increase in soil moisture or a shallower groundwater table in the repeat survey. Comparison with the processing results of 2D and 3D surveys shows that both image the subsurface, but with local variations which are mainly associated to differences in the acquisition geometry and source types used. Interpretation of baseline and repeat stacks shows that no CO2 related time-lapse signature is observable where the 2D lines allow monitoring of the reservoir. This finding is consistent with the time-lapse results of the 3D surveys, which show an increase in reflection amplitude centered around the injection well. To further investigate any potential CO2 signature, an amplitude versus offset (AVO) analysis was performed. The time-lapse analysis of the AVO does not indicate the presence of CO2, as expected, but shows signs of a pressure response in the repeat data.
Time-lapse microscopy using smartphone with augmented reality markers.
Baek, Dongyoub; Cho, Sungmin; Yun, Kyungwon; Youn, Keehong; Bang, Hyunwoo
2014-04-01
A prototype system that replaces the conventional time-lapse imaging in microscopic inspection for use with smartphones is presented. Existing time-lapse imaging requires a video data feed between a microscope and a computer that varies depending on the type of image grabber. Even with proper hardware setups, a series of tedious and repetitive tasks is still required to relocate to the region-of-interest (ROI) of the specimens. In order to simplify the system and improve the efficiency of time-lapse imaging tasks, a smartphone-based platform utilizing microscopic augmented reality (μ-AR) markers is proposed. To evaluate the feasibility and efficiency of the proposed system, a user test was designed and performed, measuring the elapse time for a trial of the task starting from the execution of the application software to the completion of restoring and imaging of an ROI saved in advance. The results of the user test showed that the average elapse time was 65.3 ± 15.2 s with 6.86 ± 3.61 μm of position error and 0.08 ± 0.40 degrees of angle error. This indicates that the time-lapse imaging task was accomplished rapidly with a high level of accuracy. Thus, simplification of both the system and the task was achieved via our proposed system. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tran, Anh Phuong; Dafflon, Baptiste; Bisht, Gautam; Hubbard, Susan S.
2018-06-01
Quantitative understanding of controls on thaw layer thickness (TLT) dynamics in the Arctic peninsula is essential for predictive understanding of permafrost degradation feedbacks to global warming and hydrobiochemical processes. This study jointly interprets electrical resistivity tomography (ERT) measurements and hydro-thermal numerical simulation results to assess spatiotemporal variations of TLT and to determine its controlling factors in Barrow, Alaska. Time-lapse ERT measurements along a 35-m transect were autonomously collected from 2013 to 2015 and inverted to obtain soil electrical resistivity. Based on several probe-based TLT measurements and co-located soil electrical resistivity, we estimated the electrical resistivity thresholds associated with the boundary between the thaw layer and permafrost using a grid search optimization algorithm. Then, we used the obtained thresholds to derive the TLT from all soil electrical resistivity images. The spatiotemporal analysis of the ERT-derived TLT shows that the TLT at high-centered polygons (HCPs) is smaller than that at low-centered polygons (LCPs), and that both thawing and freezing occur earlier at the HCPs compared to the LCPs. In order to provide a physical explanation for dynamics in the thaw layer, we performed 1-D hydro-thermal simulations using the community land model (CLM). Simulation results showed that air temperature and precipitation jointly govern the temporal variations of TLT, while the topsoil organic content (SOC) and polygon morphology are responsible for its spatial variations. When the topsoil SOC and its thickness increase, TLT decreases. Meanwhile, at LCPs, a thicker snow layer and saturated soil contribute to a thicker TLT and extend the time needed for TLT to freeze and thaw. This research highlights the importance of combination of measurements and numerical modeling to improve our understanding spatiotemporal variations and key controls of TLT in cold regions.
The nuclear debate: Deterrence and the lapse of faith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, R.W.
1985-01-01
This essay examines the growth of skepticism about the present system of nuclear deterrence. Tucker resists predicting the ultimate outcome, but he views the nuclear debate of this decade as an important ''lapse of faith'' in deterrence and he doubts there will ever be a full restoration of confidence.
40 CFR 60.2655 - How do I renew my lapsed operator qualification?
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Operator Training...) For a lapse of less than 3 years, you must complete a standard annual refresher course described in...
40 CFR 60.2655 - How do I renew my lapsed operator qualification?
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Operator Training...) For a lapse of less than 3 years, you must complete a standard annual refresher course described in...
30 CFR 285.530 - What must I do if my financial assurance lapses?
Code of Federal Regulations, 2011 CFR
2011-07-01
...? 285.530 Section 285.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... business days about the financial assurance lapse; and (2) Provide new financial assurance in the amount...
ISS Expedition 42 Time Lapse Video of Earth
2015-05-18
This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e218184 - iss042e219070 ). Shows night time views over Egypt, Sinai, Saudi Arabia, Jordan and Israel. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.
A Typology of University Ethical Lapses: Types, Levels of Seriousness, and Originating Location
ERIC Educational Resources Information Center
Kelley, Patricia C.; Chang, Pepe Lee
2007-01-01
Scandals ranging from National Collegiate Athletic Association (NCAA) violations to falsified research results have fueled criticism of America's universities. Sports violations, research manipulation, gender discrimination, and other ethical lapses affect an entire institution as they have a spillover effect on its reputation. The results of…
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…
Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation
Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Oostrom, Martinus; Truex, Michael J.
2013-05-21
Water saturation is an important indicator of contaminant distribution and plays a governing role in contaminant transport within the vadose zone. Understanding the water saturation distribution is critical for both remediation and contaminant flux monitoring in unsaturated environments. In this work we propose and demonstrate a method of remotely determining water saturation levels using gas phase partitioning tracers and time-lapse bulk electrical conductivity measurements. The theoretical development includes the partitioning chemistry for the tracers we demonstrate (ammonia and carbon dioxide), as well as a review of the petrophysical relationship governing how these tracers influence bulk conductivity. We also investigate methodsmore » of utilizing secondary information provided by electrical conductivity breakthrough magnitudes induced by the tracers. We test the method on clean, well characterized, intermediate-scale sand columns under controlled conditions. Results demonstrate the capability to predict partitioning coefficients and accurately monitor gas breakthrough curves along the length of the column according to the corresponding electrical conductivity response, leading to accurate water saturation estimates. This work is motivated by the need to develop effective characterization and monitoring techniques for contaminated deep vadose zone environments, and provides a proof-of-concept toward uniquely characterizing and monitoring water saturation levels at the field scale and in three-dimensions using electrical resistivity tomography.« less
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-01-01
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K. PMID:28773789
Glacier-derived climate for the Younger Dryas in Europe
NASA Astrophysics Data System (ADS)
Pellitero, Ramon; Rea, Brice R.; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven
2016-04-01
We have reconstructed and calculated the glacier equilibrium line altitudes (ELA) for 120 Younger Dryas palaeoglaciers from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east. The chronology of these landform were checked and, when derived from cosmogenic dates, these were recalculated based on newer production rates. Frontal moraines/limits for the palaeoglaciers were used to reconstruct palaeoglacier extent by using a GIS tool which implements a discretised solution for the assumption of perfect-plasticity ice rheology for a single flowline and extents this out to a 3D ice surface. From the resulting equilibrium profile, palaeoglaciers palaeo-ELAs were calculated using another GIS tool. Where several glaciers were reconstructed in a region, a single ELA value was generated following the methodology of Osmaston (2005). In order to utilise these ELAs for quantitative palaeo-precipitation reconstructions an independent regional temperature analysis was undertaken. A database of 121 sites was compiled where the temperature was determined from palaeoproxies other than glaciers (e.g. pollen, diatoms, choleoptera, chironimids…) in both terrestrial and offshore environments. These proxy data provides estimates of average annual, summer and winter temperatures. These data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. From these maps the temperature at the ELA was obtained using a lapse rate of 0.65°C/100m. Using the ELA temperature range and summer maximum in a degree-day model allows determination of the potential melt which can be taken as equivalent to precipitation given the assumption a glacier is in equilibrium with climate. Results show that during the coldest part of the Younger Dryas precipitation was high in the British Isles, the NW of the Iberian Peninsula and the Vosges. There is a general trend for declining precipitation to the east with some regional exceptions. Local rain shadow effects can be seen in NW Scotland, NW Iberian Peninsula, the Balkans and the Alps. Precipitation is lowest for glaciers in N Norway, which appear to have had their Younger Dryas maxima later in the stadial. This is interpreted to be the result of limited precipitation north of the polar front due to the presence of a near permanent sea ice cover.
Concentration variance decay during magma mixing: a volcanic chronometer
Perugini, Diego; De Campos, Cristina P.; Petrelli, Maurizio; Dingwell, Donald B.
2015-01-01
The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing – a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical “mixing to eruption” time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest. PMID:26387555
LaPointe, Dennis A; Goff, M Lee; Atkinson, Carter T
2010-04-01
More than half of the Hawaiian honeycreepers (Drepanidinae) known from historical records are now extinct. Introduced mosquito-borne disease, in particular the avian malaria Plasmodium relictum , has been incriminated as a leading cause of extinction during the 20th century and a major limiting factor in the recovery of remaining species populations. Today, most native Hawaiian bird species reach their highest densities and diversity in high elevation (>1,800 m above sea level) forests. We determined the thermal requirements for sporogonic development of P. relictum in the natural vector, Culex quinquefasciatus , and assessed the current distribution of native bird species in light of this information. Sporogonic development was completed at constant laboratory and mean field temperatures between 30 and 17 C, but development, prevalence, and intensity decreased significantly below 21 C. Using a degree-day (DD) model, we estimated a minimum threshold temperature of 12.97 C and a thermal requirement of 86.2 DD as necessary to complete development. Predicted (adiabatic lapse-rate) and observed summer threshold isotherm (13 C) correspond to the elevation of high forest refuges on the islands of Maui and Hawai'i. Our data support the hypothesis that avian malaria currently restricts the altitudinal distribution of Hawaiian honeycreeper populations and provide an ecological explanation for the absence of disease at high elevation.
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
NASA Astrophysics Data System (ADS)
Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.
2016-06-01
In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.
A hail climatology in Mongolia
NASA Astrophysics Data System (ADS)
Lkhamjav, Jambajamts; Jin, Han-Gyul; Lee, Hyunho; Baik, Jong-Jin
2017-11-01
The temporal and spatial characteristics of hail frequency in Mongolia are examined using the hail observation data from 61 meteorological observatories for 1984-2013. The annual number of hail days averaged over all observatories and the entire period is 0.74. It exhibits a decreasing trend, particularly since 1993 with a rate of decrease of 0.214 per decade. Hail occurrence is concentrated in summer, with 72% of the total hail days occurring in June, July, and August. Moreover, hail occurrence is concentrated in the afternoon and early evening, with 89% of the total hail events occurring between 1200 and 2100 local standard time (LST). Spatially, observatories where relatively frequent hail events are observed are concentrated in the north central region where almost all of the land is mountainous or covered by grassland, whereas relatively less frequent hail events are observed in the southern desert region. The relationship between hail frequency and thermodynamic factors including the convective available potential energy (CAPE), the temperature lapse rate between 700 and 500 hPa, the water vapor mixing ratio averaged over the lowest 100 hPa layer, and the freezing-level height is examined using the ERA-Interim reanalysis data. It is found that in summer, CAPE and the low-level water vapor mixing ratio are larger on hail days than on all days, but there is no clear relationship between hail frequency and the 700-500 hPa temperature lapse rate. It is also found that annually, CAPE and the low-level water vapor mixing ratio decrease, while the freezing-level height increases, which seems to be responsible for the annually decreasing trend of hail frequency in Mongolia.
49 CFR Appendix B to Part 604 - Reasons for Removal
Code of Federal Regulations, 2011 CFR
2011-10-01
... service organization represents that its serves the needs of the elderly, persons with disabilities, or... Fourth Edition, West Publishing Company, St. Paul, Minn., 1968. What is a lapse of other documentation? A lapse of other documentation means for example, but is not limited to, failure to have or loss or...
30 CFR 585.530 - What must I do if my financial assurance lapses?
Code of Federal Regulations, 2012 CFR
2012-07-01
...? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... assurance lapse; and (2) Provide new financial assurance in the amount set by BOEM, as provided in this...
30 CFR 585.530 - What must I do if my financial assurance lapses?
Code of Federal Regulations, 2013 CFR
2013-07-01
...? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... assurance lapse; and (2) Provide new financial assurance in the amount set by BOEM, as provided in this...
30 CFR 585.530 - What must I do if my financial assurance lapses?
Code of Federal Regulations, 2014 CFR
2014-07-01
...? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... assurance lapse; and (2) Provide new financial assurance in the amount set by BOEM, as provided in this...
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
Shen, Yi
2013-05-01
A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.
Naether, Silvio; Buck, Ursula; Campana, Lorenzo; Breitbeck, Robert; Thali, Michael
2012-01-01
Bite mark analysis offers the opportunity to identify the biter based on the individual characteristics of the dentitions. Normally, the main focus is on analysing bite mark injuries on human bodies, but also, bite marks in food may play an important role in the forensic investigation of a crime. This study presents a comparison of simulated bite marks in different kinds of food with the dentitions of the presumed biter. Bite marks were produced by six adults in slices of buttered bread, apples, different kinds of Swiss chocolate and Swiss cheese. The time-lapse influence of the bite mark in food, under room temperature conditions, was also examined. For the documentation of the bite marks and the dentitions of the biters, 3D optical surface scanning technology was used. The comparison was performed using two different software packages: the ATOS modelling and analysing software and the 3D studio max animation software. The ATOS software enables an automatic computation of the deviation between the two meshes. In the present study, the bite marks and the dentitions were compared, as well as the meshes of each bite mark which were recorded in the different stages of time lapse. In the 3D studio max software, the act of biting was animated to compare the dentitions with the bite mark. The examined food recorded the individual characteristics of the dentitions very well. In all cases, the biter could be identified, and the dentitions of the other presumed biters could be excluded. The influence of the time lapse on the food depends on the kind of food and is shown on the diagrams. However, the identification of the biter could still be performed after a period of time, based on the recorded individual characteristics of the dentitions.
Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window
Rodriguez-Tirado, Carolina; Kitamura, Takanori; Kato, Yu; Pollard, Jeffery W.; Condeelis, John S.; Entenberg, David
2017-01-01
Metastasis to secondary sites such as the lung, liver and bone is a traumatic event with a mortality rate of approximately 90% 1. Of these sites, the lung is the most difficult to assess using intravital optical imaging due to its enclosed position within the body, delicate nature and vital role in sustaining proper physiology. While clinical modalities (positron emission tomography (PET), magnetic resonance imaging (MRI) and computed tomography (CT)) are capable of providing noninvasive images of this tissue, they lack the resolution necessary to visualize the earliest seeding events, with a single pixel consisting of nearly a thousand cells. Current models of metastatic lung seeding postulate that events just after a tumor cell's arrival are deterministic for survival and subsequent growth. This means that real-time intravital imaging tools with single cell resolution 2 are required in order to define the phenotypes of the seeding cells and test these models. While high resolution optical imaging of the lung has been performed using various ex vivo preparations, these experiments are typically single time-point assays and are susceptible to artifacts and possible erroneous conclusions due to the dramatically altered environment (temperature, profusion, cytokines, etc.) resulting from removal from the chest cavity and circulatory system 3. Recent work has shown that time-lapse intravital optical imaging of the intact lung is possible using a vacuum stabilized imaging window 2,4,5 however, typical imaging times have been limited to approximately 6 hr. Here we describe a protocol for performing long-term intravital time-lapse imaging of the lung utilizing such a window over a period of 12 hr. The time-lapse image sequences obtained using this method enable visualization and quantitation of cell-cell interactions, membrane dynamics and vascular perfusion in the lung. We further describe an image processing technique that gives an unprecedentedly clear view of the lung microvasculature. PMID:27768066
Pribenszky, Csaba; Nilselid, Anna-Maria; Montag, Markus
2017-11-01
Embryo evaluation and selection is fundamental in clinical IVF. Time-lapse follow-up of embryo development comprises undisturbed culture and the application of the visual information to support embryo evaluation. A meta-analysis of randomized controlled trials was carried out to study whether time-lapse monitoring with the prospective use of a morphokinetic algorithm for selection of embryos improves overall clinical outcome (pregnancy, early pregnancy loss, stillbirth and live birth rate) compared with embryo selection based on single time-point morphology in IVF cycles. The meta-analysis of five randomized controlled trials (n = 1637) showed that the application of time-lapse monitoring was associated with a significantly higher ongoing clinical pregnancy rate (51.0% versus 39.9%), with a pooled odds ratio of 1.542 (P < 0.001), significantly lower early pregnancy loss (15.3% versus 21.3%; OR: 0.662; P = 0.019) and a significantly increased live birth rate (44.2% versus 31.3%; OR 1.668; P = 0.009). Difference in stillbirth was not significant between groups (4.7% versus 2.4%). Quality of the evidence was moderate to low owing to inconsistencies across the studies. Selective application and variability were also limitations. Although time-lapse is shown to significantly improve overall clinical outcome, further high-quality evidence is needed before universal conclusions can be drawn. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez
2012-01-01
Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.
Improvement of electrical resistivity tomography for leachate injection monitoring.
Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P
2010-03-01
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.
Improvement of electrical resistivity tomography for leachate injection monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d
2010-03-15
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less
NASA Astrophysics Data System (ADS)
Nichols, M. H.; Nearing, M.; Hernandez, M.; Polyakov, V. O.
2016-07-01
Gullies that terminate at a vertical-wall are ubiquitous throughout arid and semiarid regions. Multi-year assessments of gully evolution and headcut advance are typically accomplished using traditional ground surveys and aerial photographs, with much recent research focused on integrating data collected at very high spatial resolutions using new techniques such as aerial surveys with blimps or kites and ground surveys with LiDar scanners. However, knowledge of specific processes that drive headcut advance is limited due to inadequate observation and documentation of flash floods and subsequent erosion that can occur at temporal resolutions not captured through repeat surveys. This paper presents a method for using very-high temporal resolution ground-based time-lapse photography to capture short-duration flash floods and gully head evolution in response. In 2004, a base level controlling concrete weir was removed from the outlet of a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed in southeastern Arizona, USA. During the ten year period from 2004 to 2014 the headcut migrated upchannel a total of 14.5 m reducing the contributing area at the headwall by 9.5%. Beginning in July 2012, time-lapse photography was employed to observe event scale channel evolution dynamics. The most frequent erosion processes observed during three seasons of time-lapse photography were plunge pool erosion and mass wasting through sidewall or channel headwall slumping that occurred during summer months. Geomorphic change during the ten year period was dominated by a single piping event in August 2014 that advanced the channel head 7.4 m (51% of the overall advance) and removed 11.3 m3 of sediment. High temporal resolution time-lapse photography was critical for identifying subsurface erosion processes, in the absence of time-lapse images piping would not have been identified as an erosion mechanism responsible for advancing the gully headwall at this site.
What would encourage blood donation in Ireland?
Harrington, M; Sweeney, M R; Bailie, K; Morris, K; Kennedy, A; Boilson, A; O'Riordan, J; Staines, A
2007-05-01
Recent changes have resulted in the loss of 4% of the donor panel in the Republic of Ireland and 3% in Northern Ireland. In order to increase the number of donors in these two regions, it is important that transfusion service providers explore and understand the reasons, which prevent individuals from donating. The aim of this study was to explore these issues particularly in non-donors and those who had lapsed. This 7-month all-Ireland study was conducted by computer-assisted telephone interview. Data collected included sociodemographic history, donation status, as well as barriers/deterrents to donation. There were 4166 completed questionnaires (44% donors; 56% non-donors). Of the donors, 13% had donated blood within the last 2 years. Current donors cited 'awareness of patients needs' (88%), 'trust in the blood transfusion service' (70%), and 'an advertising campaign' (70%) as reasons encouraging them to donate blood. Lapsed donors and non-donors cited 'more frequent mobile clinics/sessions' (30% lapsed donors; 53% non-donors), 'if I was asked' (28% lapsed donors; 53% non-donors), and 'more flexible opening hours' (23% lapsed donors; 44% non-donors) as reasons that would encourage them to donate. The main reasons cited by non-donors for never having donated included 'medical reasons' (41% Republic of Ireland; 43% Northern Ireland), 'lack of information' (20% Republic of Ireland; 22% Northern Ireland), 'fear of needles' (15% Republic of Ireland; 17% Northern Ireland), and 'time constraints' (12% Republic of Ireland; 13% Northern Ireland). Among the non-donor group, 10% (Republic of Ireland) and 6% (Northern Ireland) claimed that they are not permitted to donate. Replacing regular donors is a major challenge for the transfusion service providers. This study shows that by facilitating the general public by introducing more mobile clinics/sessions, more flexible opening hours and having a better level of knowledge in the community about blood donation may encourage lapsed donors and new donors to become regular donors.
Local climate on and around a glacier - a case study of Storglaciären
NASA Astrophysics Data System (ADS)
Konya, K.; Hock, R.
2004-12-01
It is sometimes necessary to transform the climate data from a station to another station on a glacier. However, it is generally not so easy to do so since a glacier has its own specific microclimate. At Storglaciären in the summer 2003, air temperature and wind speed were measured at two weather stations set up near the center of the glacier and at the ridge of the bordering valley wall 300 m above the glacier surface. Additional continuous measurements are made at a weather station at Tarfala Research Station, which is located 1 km down glacier (1135 m a.s.l.). The result show a slight temperature difference between ridge and glacier stations because of the cooling effect by the glacier. Thus, temperature lapse rate is different. Wind speed on the ridge was higher than the other two in most cases, and the difference was largest during periods of high wind speed. The correlation between wind speed at the ridge and the other sites is weak.
Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.
2004-01-01
A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazari, Siamak; Daley, Thomas M.
2013-02-07
This study was done to assess the repeatability and uncertainty of time-lapse VSP response to CO 2 injection in the Frio formation near Houston Texas. A work flow was built to assess the effect of time-lapse injected CO 2 into two Frio brine reservoir intervals, the ‘C’ sand (Frio1) and the ‘Blue sand’ (Frio2). The time-lapse seismic amplitude variations with sensor depth for both reservoirs Frio1 and Frio2 were computed by subtracting the seismic response of the base survey from each of the two monitor seismic surveys. Source site 1 has been considered as one of the best sites formore » evaluating the time-lapse response after injection. For site 1, the computed timelapse NRMS levels after processing had been compared to the estimated time-lapse NRMS level before processing for different control reflectors, and for brine aquifers Frio1, and Frio2 to quantify detectability of amplitude difference. As the main interest is to analyze the time-lapse amplitude variations, different scenarios have been considered. Three different survey scenarios were considered: the base survey which was performed before injection, monitor1 performed after the first injection operation, and monitor2 which was after the second injection. The first scenario was base-monitor1, the second was basemonitor2, and the third was monitor1-monitor2. We considered three ‘control’ reflections above the Frio to assist removal of overburden changes, and concluded that third control reflector (CR3) is the most favorable for the first scenario in terms of NRMS response, and first control reflector (CR1) is the most favorable for the second and third scenarios in terms of NRMS response. The NRMS parameter is shown to be a useful measure to assess the effect of processing on time-lapse data. The overall NRMS for the Frio VSP data set was found to be in the range of 30% to 80% following basic processing. This could be considered as an estimated baseline in assessing the utility of VSP for CO 2 monitoring. This study shows that the CO 2 injection in brine reservoir Frio1 (the ‘C’ sand unit) does induce a relative change in amplitude response, and for Frio2 (the ‘Blue’ sand unit) an amplitude change has been also detected, but in both cases the uncertainty, as measured by NRMS indicates the reservoir changes are, at best, only slightly above the noise level, and often below the noise level of the overall data set.« less
NASA Astrophysics Data System (ADS)
Boullenger, Boris; Verdel, Arie; Paap, Bob; Thorbecke, Jan; Draganov, Deyan
2015-04-01
Seismic interferometry applied to ambient-noise measurements allows retrieval of the Green's function between two seismic receivers, by cross-correlating their recordings, as if from a source at one of the receivers. We propose to use ambient-noise seismic interferometry (ANSI) to retrieve reflection data. The time-lapse differences between different vintages of the retrieved data may help characterize property changes within a geologic reservoir with varying CO2 saturation. We test the feasibility of this time-lapse passive seismic method with numerical experiments based on the CO2-storage site of Ketzin, Germany. Ambient-noise recordings from Ketzin exhibit significant passive body-wave energy (from natural tremors or induced seismicity in the vicinity of the reservoir), which is advantageous to retrieve reflections with ANSI. The ANSI numerical experiments aim to understand what the requirements are for the recorded body-wave noise to retrieve the time-lapse reflection signal caused by an increase of CO2 saturation in the reservoir. For this purpose, we design two velocity scenarios at Ketzin: a base scenario before the injection of CO2, and a repeat scenario corresponding to a P-wave velocity decline in the reservoir by 20 percent. For both scenarios, we simulate passive seismic experiments of body-wave noise recordings that may take several days or months to record in the field. The passive recordings are obtained by modelling global (direct wave, internal and surface multiples) transmission responses from band-limited subsurface noise sources, randomly triggered in space and time. The time-lapse reflection signal is obtained by taking the differences between the base and the repeat retrieved reflection data (virtual common-shot gathers). We found that the time-lapse signal is still recovered with ANSI even if the base and repeat retrieved reflection data are partially polluted with artifacts. This means that uneven illumination of the array does not necessarily exclude acceptable time-lapse signal retrieval. Furthermore, the clarity of the time-lapse signal at the reservoir level increases with increasing repeatability of the two passive experiments. The increase in repeatability is achieved when the contributing noise sources form denser clusters that share analogous spatial coverage. To support the merits of the numerical experiments, we applied ANSI (by auto-correlation) to three days of Ketzin passive field-data and compare the retrieved responses with the modelling results. The data are recorded at a permanent array of sensors (hydrophones and geophones) installed above the injection site. We used the records from the buried line of the array that consists of sensors lying at 50-meters depth. These records are less contaminated with surface noise and preserve passive body-wave events better than surface-recorded data. The retrieved responses exhibit significant correspondence with the existing active-seismic field data as well as with our modelled ANSI and active responses. Key reflection events seem to be retrieved at the expected arrival times and support the idea that the settings and characteristics of the ambient noise at Ketzin offer good potential for time-lapse ANSI to monitor CO2 sequestration.
NASA Astrophysics Data System (ADS)
Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.
2018-04-01
A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.
Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M; Kovscek, Anthony R
2018-04-01
A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.
ERIC Educational Resources Information Center
Rugano, Emilio Kariuki
2011-01-01
This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…
Time-Lapse Motion Picture Technique Applied to the Study of Geological Processes.
Miller, R D; Crandell, D R
1959-09-25
Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.
Dynamic Association between Negative Affect and Alcohol Lapses following Alcohol Treatment
ERIC Educational Resources Information Center
Witkiewitz, Katie; Villarroel, Nadia Aracelliz
2009-01-01
Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the…
Analyzing Milestones in Smoking Cessation: Illustration in a Nicotine Patch Trial in Adult Smokers
ERIC Educational Resources Information Center
Shiffman, Saul; Scharf, Deborah M.; Shadel, William G.; Gwaltney, Chad J.; Dang, Qianyu; Paton, Stephanie M.; Clark, Duncan B.
2006-01-01
Tests of addiction treatments seldom reveal where treatment exercises its effect (i.e., promoting initial abstinence, preventing lapses, and/or impeding progression from lapse to relapse). The authors illustrate analyses distinguishing effects on these milestones in a randomized trial of high-dose nicotine patch (35 mg; n = 188) versus placebo (n…
Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter
2012-09-01
Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.
Atmospheric dynamics over Europe during the Younger Dryas revealed by palaeoglaciers.
NASA Astrophysics Data System (ADS)
Rea, Brice; Pellitero, Ramon; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven
2017-04-01
A dataset of 120 palaeoglaciers ranging from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east, has been assembled from the literature. A robust quality control on the chronology was undertaken and, when derived from cosmogenic nuclides, ages were recalculated using the most up-to-date production rates. All the reconstructed glaciers date to the Younger Dryas. Frontal moraines/limits were used to initiate the palaeoglacier reconstructions using GlaRe, a GIS tool which generates an equilibrium profile ice surface along a single flowline and extrapolates this to out to a 3D ice surface. From the resulting glacier surfaces palaeo-ELAs were calculated within the GIS. Where multiple glaciers were reconstructed within in a region, a single ELA value was generated. Results show that ELAs decrease with latitude but have a more complex pattern with longitude. A database of 121 sites, spanning the same geographical range as the palaeoglaciers, was compiled for Younger Dryas temperature, determined from palaeoproxies, for example pollen, diatoms, coleoptera, chironimids etc. These proxy data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. Results show that, in general, temperature decreases with latitude. Temperature at the palaeo-ELAs were determined from the temperature maps using a lapse rate of 0.65°C/100m and the precipitation required for equilibrium was calculated. Positive precipitation anomalies are found along much of the western seaboard of Europe, with the most striking positive anomalies present in the eastern Mediterranean. Negative precipitation anomalies appear on the northern side of the Alps. This pattern is interpreted to represent a southward displaced polar frontal jet stream with a concomitant track of Atlantic mid-latitude depressions, leading to more frequent incursions of low pressure systems especially over the relatively warm eastern Mediterranean, enhancing cyclogenesis. This is similar to the modern Scandinavia (SCAND) pattern which, in its positive phase, is characterised by a high pressure anomaly over Fennoscandia and western Russia, negative pressure anomalies around the Iberian Peninsula and enhanced cyclogenesis in the central and eastern Mediterranean. During the YD the Fennoscandian Ice Sheet and permafrost across much of northern continental Europe and Russia would have generated a high pressure region leading to a persistent, enhanced SCAND circulation.
2010-01-01
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897
Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel
2017-01-01
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943
NASA Astrophysics Data System (ADS)
Egli, Pascal; Mankoff, Ken; Mettra, François; Lane, Stuart
2017-04-01
This study investigates the application of feature tracking algorithms to monitoring of glacier uplift. Several publications have confirmed the occurrence of an uplift of the glacier surface in the late morning hours of the mid to late ablation season. This uplift is thought to be caused by high sub-glacial water pressures at the onset of melt caused by overnight-deposited sediment that blocks subglacial channels. We use time-lapse images from a camera mounted in front of the glacier tongue of Haut Glacier d'Arolla during August 2016 in combination with a Digital Elevation Model and GPS measurements in order to investigate the phenomenon of glacier uplift using the feature tracking toolbox ImGRAFT. Camera position is corrected for all images and the images are geo-rectified using Ground Control Points visible in every image. Changing lighting conditions due to different sun angles create substantial noise and complicate the image analysis. A small glacier uplift of the order of 5 cm over a time span of 3 hours may be observed on certain days, confirming previous research.
He, Li-Ming Lee; He, Zhen-Li
2008-05-01
Beach advisories are issued to the public in California when the concentration of fecal indicator bacteria (FIB), including total coliform, fecal coliform (or Escherichia coli), and Enterococcus, exceed their recreational water health standards, or when the amount of a rainfall event is above the pre-determined threshold. However, it is not fully understood about how and to what degree stormwater runoff or baseflow exerts impacts on beach water quality. Furthermore, current laboratory methods used to determine the FIB levels take 18-96 h, which is too slow to keep pace with changes in FIB levels in water. Thus, a beach may not be posted when it is contaminated, and may be posted under advisory when bacterial levels have already decreased to within water quality standards. The study was designed to address the above critical issues. There were large temporal and spatial variations in FIB concentrations along two popular State Beaches in San Diego, CA, USA. The rainstorm-induced runoff from the watersheds exerts significant impacts on the marine recreational water quality of the beaches adjacent to lagoons during the first 24-48 h after a rain event. The large volume of stormwater runoff discharging to beaches caused high FIB concentrations in beach water not only at the lagoon outlet channel and the mixing zone, but also at the locations 90 m away from the channel northward or southward along the shoreline. The geomorphology of beach shoreline, distance from the outlet channel, wind strength, wind direction, tide height, wave height, rainfall, time lapse after a rainstorm, or channel flow rate played a role in affecting the distribution of FIB concentrations in beach water. Despite the great temporal and spatial variability of FIB concentrations along a shoreline, the artificial neural network-based models developed in this study are capable of successfully predicting FIB concentrations at different beaches, different locations, and different times under baseflow or rainstorm conditions. The models are based on readily measurable variables including temperature, conductivity, pH, turbidity, channel water flow, rainfall, and/or time lapse after a rainstorm. The established models will help fill the current gap between beach posting and actual water quality and make more meaningful and effective decisions on beach closures and advisories.
Momentary changes in craving predict smoking lapse behavior: a laboratory study.
Motschman, Courtney A; Germeroth, Lisa J; Tiffany, Stephen T
2018-04-27
Current research on factors that predict smoking lapse behavior is limited in its ability to fully characterize the critical moments leading up to decisions to smoke. We used a validated and widely used experimental analogue for smoking lapse to assess how moment-to-moment dynamics of craving relate to decisions to smoke. Heavy smokers (N = 128, M age = 35.9) participated in a 50-min laboratory delay to smoking task on 2 consecutive days, earning money for each 5 min they remained abstinent or ending the task by choosing to smoke. Participants rated craving and negative affect levels immediately prior to each choice. Participants were randomized to smoking as usual (n = 50) or overnight abstinence (n = 50 successfully abstained, n = 22 failed abstaining) prior to session 2. Discrete-time hazard models were used to examine craving and negative affect as time-varying predictors of smoking. Higher craving levels prior to smoking opportunities predicted increased risk of smoking. When controlling for craving levels, incremental increases in craving predicted increased smoking risk. Increases in negative affect incrementally predicted increased smoking risk at session 2 only. Smokers who failed to abstain were at a higher risk of smoking than those who successfully abstained, whereas abstinent and non-abstinent smokers did not differ in smoking risk. Findings demonstrate an extension of the smoking lapse paradigm that can be utilized to capture momentary changes in craving that predict smoking behavior. Evaluations of nuanced craving experiences may inform clinical and pharmacological research on preventing smoking lapse and relapse.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, Longxiao; Gu, Hanming
2018-03-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.
NASA Astrophysics Data System (ADS)
Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong
2017-08-01
Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
USDA-ARS?s Scientific Manuscript database
Three factors (extent of chlorination, milling extraction rate and particle-size reduction) in the cake-bakeing functionality of Croplan 594W flour were explored by Rapid Visco-Analyzer (RVA) and time-lapse photography. The extent of chlorination and milling extraction rate showed dramatic effects,...
USDA-ARS?s Scientific Manuscript database
Headcut and channel extension in response to an abrupt base level change in 2004 of approximately 1m was studied in a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona, USA. Field observations and time-lapse photography were coupled with hy...
37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.
Code of Federal Regulations, 2011 CFR
2011-07-01
... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be paid...
37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.
Code of Federal Regulations, 2010 CFR
2010-07-01
... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be paid...
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim
2013-10-04
Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.
Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy
Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.
2014-01-01
Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010
Reduced African Easterly Wave Activity with Quadrupled CO 2 in the Superparameterized CESM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, Walter M.; Aiyyer, Anantha
African easterly wave (AEW) activity is examined in quadrupled CO 2 experiments with the superparameterized CESM (SP-CESM). The variance of 2–10-day filtered precipitation increases with warming over the West African monsoon region, suggesting increased AEW activity. The perturbation enstrophy budget is used to investigate the dynamic signature of AEW activity. The northern wave track becomes more active associated with enhanced baroclinicity, consistent with previous studies. The southern track exhibits a surprising reduction of wave activity associated with less frequent occurrence of weak waves and a slight increase in the occurrence of strong waves. These changes are connected to changes inmore » the profile of vortex stretching and tilting that can be understood as interconnected consequences of increased static stability from the lapse rate response, weak temperature gradient balance, and the fixed anvil temperature hypothesis.« less
Reduced African Easterly Wave Activity with Quadrupled CO 2 in the Superparameterized CESM
Hannah, Walter M.; Aiyyer, Anantha
2017-10-01
African easterly wave (AEW) activity is examined in quadrupled CO 2 experiments with the superparameterized CESM (SP-CESM). The variance of 2–10-day filtered precipitation increases with warming over the West African monsoon region, suggesting increased AEW activity. The perturbation enstrophy budget is used to investigate the dynamic signature of AEW activity. The northern wave track becomes more active associated with enhanced baroclinicity, consistent with previous studies. The southern track exhibits a surprising reduction of wave activity associated with less frequent occurrence of weak waves and a slight increase in the occurrence of strong waves. These changes are connected to changes inmore » the profile of vortex stretching and tilting that can be understood as interconnected consequences of increased static stability from the lapse rate response, weak temperature gradient balance, and the fixed anvil temperature hypothesis.« less
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Kline, Dwight B.
1951-01-01
Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.
The effects of cockpit environment on long-term pilot performance
NASA Technical Reports Server (NTRS)
Stave, A. M.
1977-01-01
A fixed-base helicopter simulator was used to examine pilot performance as influenced by noise, vibration, and fatigue. Subjects flew the simulator for periods ranging between three and eight hours while exposed to vibrations (at 17 Hz) ranging from 0.1 to 0.3 g, and noise stimuli varying between 74 (ambient) and 100 dB. Despite reports of extreme fatigue on these long flights, subject performance did not degrade. Within the limits of this study, performance tended to improve as environmental stress increased. However, subjects did suffer from lapses resulting in abnormally poor performance. These lapses are probably of short duration (seconds) and occur at unpredictable times. If such lapses occur in actual flight, they could provide an explanation for many so-called 'pilot error' accidents.
Clonal differences in generation times of GPK epithelial cells in monolayer culture.
Riley, P A; Hola, M
1980-01-01
Pedigrees of cells in eight clones of guinea pig keratocyte (GPK) cells in monolayer culture were analyzed from a time-lapse film. The generation times and the position in the field of observation were recorded up to the sixth generation when the cultures were still subconfluent. Statistical analysis of the results indicates that the position in the culture has less significance than the clonal origin of the cell in determining the interval between successive mitoses.
Zecchin, Annalisa; Wong, Brian W; Tembuyser, Bieke; Souffreau, Joris; Van Nuffelen, An; Wyns, Sabine; Vinckier, Stefan; Carmeliet, Peter; Dewerchin, Mieke
2018-06-18
During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid β-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.
2016-01-01
A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASAs N+2 goals for noise and performance. Model scale data from offset jets was used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called programmed lapse rate was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable range performance; one is a standard mixed-flow turbofan with a single-stage fan, and the other is a three-stream variable-cycle engine with a multi-stage fan. The engine with a single-stage fan has a lower specific thrust and is 8 to 10 EPNdB quieter for takeoff. Offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced and the bypass-to-core area ratio increases. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10 reduction in thrust just after takeoff rotation, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10 reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with additional reduction in takeoff thrust using programmed lapse rate, but studies are needed to investigate the practical limits for safety and takeoff regulations.
ERIC Educational Resources Information Center
Spencer, Sarah V.; Hawk, Larry W., Jr.; Richards, Jerry B.; Shiels, Keri; Pelham, William E., Jr.; Waxmonsky, James G.
2009-01-01
Recent research has suggested that intra-individual variability in reaction time (RT) distributions of children with ADHD is characterized by a particularly large rightward skew that may reflect lapses in attention. The purpose of the study was to provide the first randomized, placebo-controlled test of the effects of the stimulant methylphenidate…
Time-lapse seismic waveform inversion for monitoring near-surface microbubble injection
NASA Astrophysics Data System (ADS)
Kamei, R.; Jang, U.; Lumley, D. E.; Mouri, T.; Nakatsukasa, M.; Takanashi, M.
2016-12-01
Seismic monitoring of the Earth provides valuable information regarding the time-varying changes in subsurface physical properties that are caused by natural or man-made processes. However, the resulting changes in subsurface properties are often small both in terms of magnitude and spatial extent, leading to seismic data differences that are difficult to detect at typical non-repeatable noise levels. In order to better extract information from the time-lapse data, exploiting the full seismic waveform information can be critical, since detected amplitude or traveltime changes may be minimal. We explore methods of waveform inversion that estimate an optimal model of time-varying elastic parameters at the wavelength scale to fit the observed time-lapse seismic data with modelled waveforms based on numerical solutions of the wave equation. We apply acoustic waveform inversion to time-lapse cross-well monitoring surveys of 64-m well intervals, and estimate the velocity changes that occur during the injection of microbubble water into shallow unconsolidated Quaternary sediments in the Kanto basin of Japan at a depth of 25 m below the surface. Microbubble water is comprised of water infused with air bubbles of a diameter less than 0.1mm, and may be useful to improve resistance to ground liquefaction during major earthquakes. Monitoring the space-time distribution and physical properties of microbubble injection is therefore important to understanding the full potential of the technique. Repeated monitoring surveys (>10) reveal transient behaviours in waveforms during microbubble injection. Time-lapse waveform inversion detects changes in P-wave velocity of less than 1 percent, initially as velocity increases and subsequently as velocity decreases. The velocity changes are mainly imaged within a thin (1 m) layer between the injection and the receiver well, inferring the fluid-flow influence of the fluvial sediment depositional environment. The resulting velocity models fit the observed waveforms very well, supporting the validity of the estimated velocity changes. In order to further improve the estimation of velocity changes, we investigate the limitations of acoustic waveform inversion, and apply elastic waveform inversion to the time-lapse data set.
Pang, Raina D; Leventhal, Adam M
2013-08-01
Heightened negative affect during acute tobacco abstinence in women relative to men could be an important factor underlying sex differences in smoking motivation. However, little controlled experimental work addresses this hypothesis. The current study investigated sex differences in withdrawal-related negative affect, time to start smoking on a lab analogue smoking lapse task, and the interrelation between sex, withdrawal-related negative affect, and smoking lapse behavior. Following a baseline session, current smokers (women: n = 68, men: n = 131) attended two counterbalanced lab sessions (16 hours smoking abstinence and ad libitum smoking) during which they completed self-report measures of mood and withdrawal symptoms followed by a laboratory analogue smoking lapse task. In this task participants are monetarily rewarded for delaying smoking. Performance on this task serves as an analogue model of smoking lapse behavior by measuring smoker's capability to resist temptation to smoke under conditions where abstinence is advantageous. Females showed greater abstinence induced increases in composite negative affect as well as several particular negative affect states (i.e., POMS Anger, Anxiety, Depression, and Confusion, ps < .05) but no differences in abstinence induced changes in other forms of affect or craving. Females also exhibited marginally greater abstinence induced decreases in their willingness to delay smoking for money (p = .10), which was mediated by abstinence induced increases in anger (p < .05). These results suggest that differential sensitivity to abstinence induced negative affect, particularly anger, could underlie sex specific smoking patterns. Negative affect during tobacco abstinence may be an important factor for understanding and treating nicotine addiction in women. PsycINFO Database Record (c) 2013 APA, all rights reserved
Grant, Devon A; Honn, Kimberly A; Layton, Matthew E; Riedy, Samantha M; Van Dongen, Hans P A
2017-06-01
The psychomotor vigilance test (PVT) is widely used to measure reduced alertness due to sleep loss. Here, two newly developed, 3-min versions of the psychomotor vigilance test, one smartphone-based and the other tablet-based, were validated against a conventional 10-min laptop-based PVT. Sixteen healthy participants (ages 22-40; seven males, nine females) completed a laboratory study, which included a practice and a baseline day, a 38-h total sleep deprivation (TSD) period, and a recovery day, during which they performed the three different versions of the PVT every 3 h. For each version of the PVT, the number of lapses, mean response time (RT), and number of false starts showed statistically significant changes across the sleep deprivation and recovery days. The number of lapses on the laptop was significantly correlated with the numbers of lapses on the smartphone and tablet. The mean RTs were generally faster on the smartphone and tablet than on the laptop. All three versions of the PVT exhibited a time-on-task effect in RTs, modulated by time awake and time of day. False starts were relatively rare on all three PVTs. For the number of lapses, the effect sizes across 38 h of TSD were large for the laptop PVT and medium for the smartphone and tablet PVTs. These results indicate that the 3-min smartphone and tablet PVTs are valid instruments for measuring reduced alertness due to sleep deprivation and restored alertness following recovery sleep. The results also indicate that the loss of sensitivity on the 3-min PVTs may be mitigated by modifying the threshold defining lapses.
Hodson, Gordon; Earle, Megan
2018-01-01
Lapses from vegetarian and vegan (i.e., veg*n) food choices to meat consumption are very common, suggesting that sustaining veg*nism is challenging. But little is known about why people return to eating animals after initially deciding to avoid meat consumption. Several potential explanatory factors include personal inconvenience, meat cravings, awkwardness in social settings, or health/nutrition concerns. Here we test the degree to which political ideology predicts lapsing to meat consumption. Past research demonstrates that political ideology predicts present levels of meat consumption, whereby those higher in right-wing ideologies eat more animals, even after controlling for their hedonistic liking of meat (e.g., Dhont & Hodson, 2014). To what extent might political ideology predict whether one has lapsed from veg*n foods back to meat consumption? In a largely representative US community sample (N = 1313) of current and former veg*ns, those higher (vs. lower) in conservatism exhibited significantly greater odds of being a former than current veg*n, even after controlling for age, education, and gender. This ideology-lapsing relation was mediated (i.e., explained) by those higher (vs. lower) in conservatism: (a) adopting a veg*n diet for reasons less centered in justice concerns (animal rights, environment, feeding the poor); and (b) feeling socially unsupported in their endeavor. In contrast, factors such as differential meat craving or lifestyle inconvenience played little mediational role. These findings demonstrate that ideology and justice concerns are particularly relevant to understanding resilience in maintaining veg*n food choices. Implications for understanding why people eat meat, and how to develop intervention strategies, are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ballantyne, Kay; Plaghki, Léon; Le Bars, Daniel
2008-01-01
Background The quantitative end-point for many behavioral tests of nociception is the reaction time, i.e. the time lapse between the beginning of the application of a stimulus, e.g. heat, and the evoked response. Since it is technically impossible to heat the skin instantaneously by conventional means, the question of the significance of the reaction time to radiant heat remains open. We developed a theoretical framework, a related experimental paradigm and a model to analyze in psychophysical terms the “tail-flick” responses of rats to random variations of noxious radiant heat. Methodology/Principal Findings A CO2 laser was used to avoid the drawbacks associated with standard methods of thermal stimulation. Heating of the skin was recorded with an infrared camera and was stopped by the reaction of the animal. For the first time, we define and determine two key descriptors of the behavioral response, namely the behavioral threshold (Tβ) and the behavioral latency (Lβ). By employing more than one site of stimulation, the paradigm allows determination of the conduction velocity of the peripheral fibers that trigger the response (V) and an estimation of the latency (Ld) of the central decision-making process. Ld (∼130 ms) is unaffected by ambient or skin temperature changes that affect the behavioral threshold (∼42.2–44.9°C in the 20–30°C range), behavioral latency (<500 ms), and the conduction velocity of the peripheral fibers that trigger the response (∼0.35–0.76 m/s in the 20–30°C range). We propose a simple model that is verified experimentally and that computes the variations in the so-called “tail-flick latency” (TFL) caused by changes in either the power of the radiant heat source, the initial temperature of the skin, or the site of stimulation along the tail. Conclusions/Significance This approach enables the behavioral determinations of latent psychophysical (Tβ, Lβ, Ld) and neurophysiological (V) variables that have been previously inaccessible with conventional methods. Such an approach satisfies the repeated requests for improving nociceptive tests and offers a potentially heuristic progress for studying nociceptive behavior on more firm physiological and psychophysical grounds. The validity of using a reaction time of a behavioral response to an increasing heat stimulus as a “pain index” is challenged. This is illustrated by the predicted temperature-dependent variations of the behavioral TFL elicited by spontaneous variations of the temperature of the tail for thermoregulation. PMID:18769624
Benoist, Jean-Michel; Pincedé, Ivanne; Ballantyne, Kay; Plaghki, Léon; Le Bars, Daniel
2008-09-03
The quantitative end-point for many behavioral tests of nociception is the reaction time, i.e. the time lapse between the beginning of the application of a stimulus, e.g. heat, and the evoked response. Since it is technically impossible to heat the skin instantaneously by conventional means, the question of the significance of the reaction time to radiant heat remains open. We developed a theoretical framework, a related experimental paradigm and a model to analyze in psychophysical terms the "tail-flick" responses of rats to random variations of noxious radiant heat. A CO(2) laser was used to avoid the drawbacks associated with standard methods of thermal stimulation. Heating of the skin was recorded with an infrared camera and was stopped by the reaction of the animal. For the first time, we define and determine two key descriptors of the behavioral response, namely the behavioral threshold (Tbeta) and the behavioral latency (Lbeta). By employing more than one site of stimulation, the paradigm allows determination of the conduction velocity of the peripheral fibers that trigger the response (V) and an estimation of the latency (Ld) of the central decision-making process. Ld (approximately 130 ms) is unaffected by ambient or skin temperature changes that affect the behavioral threshold (approximately 42.2-44.9 degrees C in the 20-30 degrees C range), behavioral latency (<500 ms), and the conduction velocity of the peripheral fibers that trigger the response (approximately 0.35-0.76 m/s in the 20-30 degrees C range). We propose a simple model that is verified experimentally and that computes the variations in the so-called "tail-flick latency" (TFL) caused by changes in either the power of the radiant heat source, the initial temperature of the skin, or the site of stimulation along the tail. This approach enables the behavioral determinations of latent psychophysical (Tbeta, Lbeta, Ld) and neurophysiological (V) variables that have been previously inaccessible with conventional methods. Such an approach satisfies the repeated requests for improving nociceptive tests and offers a potentially heuristic progress for studying nociceptive behavior on more firm physiological and psychophysical grounds. The validity of using a reaction time of a behavioral response to an increasing heat stimulus as a "pain index" is challenged. This is illustrated by the predicted temperature-dependent variations of the behavioral TFL elicited by spontaneous variations of the temperature of the tail for thermoregulation.
NASA Astrophysics Data System (ADS)
Hellstrom, R. A.; Mark, B. G.
2007-12-01
Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation up through the valley. Humidity and temperature measurements were analyzed to show significant effects of elevation and proximity to melt-water lakes on vapor pressure deficit.
Isotopic Ordering in Atmospheric O2 as a Tracer of Ozone Photochemistry and the Tropical Atmosphere
NASA Technical Reports Server (NTRS)
Yeung, Laurence Y.; Murray, Lee T.; Ash, Jeanine L.; Young, Edward D.; Boering, Kristie A.; Atlas, Elliot L.; Schauffler, Sue M.; Lueb, Richard A.; Langenfelds, Ray L.; Krummel, Paul B.;
2016-01-01
The distribution of isotopes within O2 molecules can be rapidly altered when they react with atomic oxygen. This mechanism is globally important: while other contributions to the global budget of O2 impart isotopic signatures, the O(3P) + O2 reaction resets all such signatures in the atmosphere on subdecadal timescales. Consequently, the isotopic distribution within O2 is determined by O3 photochemistry and the circulation patterns that control where that photochemistry occurs. The variability of isotopic ordering in O2 has not been established, however. We present new measurements of 18O18O in air (reported as delta36 values) from the surface to 33 km altitude. They confirm the basic features of the clumped-isotope budget of O2: Stratospheric air has higher delta36 values than tropospheric air (i.e., more 18O18O), reflecting colder temperatures and fast photochemical cycling of O3. Lower delta36 values in the troposphere arise from photochemistry at warmer temperatures balanced by the influx of high-delta36 air from the stratosphere. These observations agree with predictions derived from the GEOS-Chem chemical transport model, which provides additional insight. We find a link between tropical circulation patterns and regions where delta36 values are reset in the troposphere. The dynamics of these regions influences lapse rates, vertical and horizontal patterns of O2 reordering, and thus the isotopic distribution toward which O2 is driven in the troposphere. Temporal variations in delta36 values at the surface should therefore reflect changes in tropospheric temperatures, photochemistry, and circulation. Our results suggest that the tropospheric O3 burden has remained within a +/-10 percent range since 1978.
Calixarenes and cations: a time-lapse photography of the big-bang.
Casnati, Alessandro
2013-08-07
The outstanding cation complexation properties emerging from the pioneering studies on calixarene ligands during a five-year period in the early 1980s triggered a big-bang burst of publications on such macrocycles that is still lasting at a distance of more than 30 years. A time-lapse photography of this timeframe is proposed which allows the readers to pinpoint the contributions of the different research groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-04
... NATIONAL LABOR RELATIONS BOARD Notice of Procedures To Be Followed in the Event Board Offices Are Closed Due to a Lapse in Appropriated Funds AGENCY: National Labor Relations Board. ACTION: The National Labor Relations Board is issuing this notice to advise the public of procedures to be followed in the event that Board offices are closed, in...
Orr, Tim R.; Hoblitt, Richard P.
2008-01-01
Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.
Triatomine Infestation in Guatemala: Spatial Assessment after Two Rounds of Vector Control
Manne, Jennifer; Nakagawa, Jun; Yamagata, Yoichi; Goehler, Alexander; Brownstein, John S.; Castro, Marcia C.
2012-01-01
In 2000, the Guatemalan Ministry of Health initiated a Chagas disease program to control Rhodnius prolixus and Triatoma dimidiata by periodic house spraying with pyrethroid insecticides to characterize infestation patterns and analyze the contribution of programmatic practices to these patterns. Spatial infestation patterns at three time points were identified using the Getis-Ord Gi*(d) test. Logistic regression was used to assess predictors of reinfestation after pyrethroid insecticide administration. Spatial analysis showed high and low clusters of infestation at three time points. After two rounds of spray, 178 communities persistently fell in high infestation clusters. A time lapse between rounds of vector control greater than 6 months was associated with 1.54 (95% confidence interval = 1.07–2.23) times increased odds of reinfestation after first spray, whereas a time lapse of greater than 1 year was associated with 2.66 (95% confidence interval = 1.85–3.83) times increased odds of reinfestation after first spray compared with localities where the time lapse was less than 180 days. The time lapse between rounds of vector control should remain under 1 year. Spatial analysis can guide targeted vector control efforts by enabling tracking of reinfestation hotspots and improved targeting of resources. PMID:22403315
Atukunda, Esther C; Musiimenta, Angella; Musinguzi, Nicholas; Wyatt, Monique A; Ashaba, Justus; Ware, Norma C; Haberer, Jessica E
2017-02-01
SMS is a widely used technology globally and may also improve ART adherence, yet SMS notifications to social supporters following real-time detection of missed doses showed no clear benefit in a recent pilot trial. We examine the demographic and social-cultural dynamics that may explain this finding. In the trial, 63 HIV-positive individuals initiating ART received a real-time adherence monitor and were randomized to two types of SMS reminder interventions versus a control (no SMS). SMS notifications were also sent to 45 patient-identified social supporters for sustained adherence lapses. Like participants, social supporters were interviewed at enrollment, following their matched participant's adherence lapse and at exit. Social supporters with regular income (RR = 0.27, P = 0.001) were significantly associated with fewer adherence lapses. Instrumental support was associated with fewer adherence lapses only among social supporters who were food secure (RR = 0.58, P = 0.003). Qualitative interview data revealed diverse and complex economic and relationship dynamics, affecting social support. Resource availability in emotionally positive relationships seemingly facilitated helpful support, while limited resources prevented active provision of support for many. Effective social support appeared subject to social supporters' food security, economic stability and a well-functioning social network dependent on trust and supportive disclosure.
NASA Astrophysics Data System (ADS)
Vardaro, M. F.; Parmley, D.; Smith, K. L.
2007-08-01
The aggregation response of fish populations following the addition of artificial structures to seafloor habitats has been well documented in shallow-water reefs and at deeper structures such as oil extraction platforms. A long-term time-lapse camera was deployed for 27 four-month deployment periods at 4100 m in the eastern North Pacific to study abyssal megafauna activity and surface-benthos connections. The unique time-series data set provided by this research presented an opportunity to examine how deep-sea benthopelagic fish and epibenthic megafauna populations were affected by an isolated artificial structure and whether animal surveys at this site were biased by aggregation behavior. Counts were taken of benthopelagic grenadiers, Coryphaenoides spp., observed per week as well as numbers of the epibenthic echinoid Echinocrepis rostrata. No significant correlation ( rs=-0.39; p=0.11) was found between the duration of deployment (in weeks) and the average number of Coryphaenoides observed at the site. There was also no evidence of associative behavior around the time-lapse camera by E. rostrata ( rs=-0.32; p=0.19). The results of our study suggest that abyssal fish and epibenthic megafauna do not aggregate around artificial structures and that long-term time-lapse camera studies should not be impacted by aggregation response behaviors.
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1985-01-01
This report describes the activities during the fifth six month period of the investigation of acoustic propagation in the atmosphere with a realistic temperature profile. Progress has been achieved in two major directions: comparisons between the lapse model and experimental data taken by NASA during the second tower experiment, and development of a model propagation in an inversion. Data from the second tower experiment became available near the end of 1984 and some comparisons have been carried out, but this work is not complete. Problems with the temperature profiler during the experiment have produced temperature profiles that are difficult to fit the assumed variation of temperature with height, but in cases where reasonable fits have been obtained agreement between the model and the experiments are close. The major weaknesses in the model appear to be the presence of discontinuities in some regions, the low sound levels predicted near the source height, and difficulties with the argument of the Hankel function being outside the allowable range. Work on the inversion model has progressed slowly, and the rays for that case are discussed along with a simple energy conservation model of sound level enhancement in the inversion case.
Low body temperature, time dilation, and long-trace conditioned flavor aversion in rats.
Misanin, James R; Anderson, Matthew J; Christianson, John P; Collins, Michele M; Goodhart, Mark G; Rushanan, Scott G; Hinderliter, Charles F
2002-07-01
Conditioned flavor aversion was examined in Wistar-derived albino rats that were immersed in cold water for 0, 2.5, 5, or 10 min immediately following 10-min exposure to a.1% saccharin solution and given an intraperitoneal (i.p.) injection of 0.15 M lithium chloride (LiCl) either 90, 135, 180, or 225 min later. Cold water immersion for 2.5, 5, and 10 min led to body temperature decreases of approximately 4.5, 7, and 10 degrees C, respectively. Rats whose body temperatures were not reduced (0 min immersion) showed no saccharin aversion when the LiCl was delayed 90 min. Rats whose body temperatures were reduced 4.5, 7, and 10 degrees C displayed conditioned aversions at LiCl delays up to 135, 180, and 225 min, respectively. These results were interpreted in terms of a cold-induced slowing of a biochemical clock that may uniquely govern specific timing processes involved in associative learning over long delays, such as long-trace conditioned flavor aversion, learned safety, and certain types of learning that involve an extensive time lapse (e.g., extinction of fear). Copyright 2002 Elsevier Science (USA).
Local modification of the surface state properties at dilute coverages: CO/Cu(111)
NASA Astrophysics Data System (ADS)
Zaum, Ch.; Meyer-auf-der-Heide, K. M.; Morgenstern, K.
2018-04-01
We follow the diffusion of CO molecules on Cu(111) by time-lapsed low-temperature scanning tunneling microscopy. The diffusivity of individual CO molecules oscillates with the distance to its nearest neighbor due to the long-range interaction mediated by the surface state electrons. The markedly different wavelengths of the oscillation at a coverage of 0.6% ML as compared to the one at 6% ML coverage correspond to two different wavelengths of the surface state electrons, consistent with a shift of the surface state by 340 meV. This surprisingly large shift as compared to results of averaging methods suggests a local modification of the surface state properties.
A user-friendly one-dimensional model for wet volcanic plumes
Mastin, Larry G.
2007-01-01
This paper presents a user-friendly graphically based numerical model of one-dimensional steady state homogeneous volcanic plumes that calculates and plots profiles of upward velocity, plume density, radius, temperature, and other parameters as a function of height. The model considers effects of water condensation and ice formation on plume dynamics as well as the effect of water added to the plume at the vent. Atmospheric conditions may be specified through input parameters of constant lapse rates and relative humidity, or by loading profiles of actual atmospheric soundings. To illustrate the utility of the model, we compare calculations with field-based estimates of plume height (∼9 km) and eruption rate (>∼4 × 105 kg/s) during a brief tephra eruption at Mount St. Helens on 8 March 2005. Results show that the atmospheric conditions on that day boosted plume height by 1–3 km over that in a standard dry atmosphere. Although the eruption temperature was unknown, model calculations most closely match the observations for a temperature that is below magmatic but above 100°C.
Josberger, Edward G.; Bidlake, William R.
2010-01-01
The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Lundquist, J.D.; Cayan, D.R.
2007-01-01
A realistic description of how temperatures vary with elevation is crucial for ecosystem studies and for models of basin-scale snowmelt and spring streamflow. This paper explores surface temperature variability using temperature data from an array of 37 sensors, called the Yosemite network, which traverses both slopes of the Sierra Nevada in the vicinity of Yosemite National Park, California. These data indicate that a simple lapse rate is often a poor description of the spatial temperature structure. Rather, the spatial pattern of temperature over the Yosemite network varies considerably with synoptic conditions. Empirical orthogonal functions (EOFs) were used to identify the dominant spatial temperature patterns and how they vary in time. Temporal variations of these surface temperature patterns were correlated with large-scale weather conditions, as described by National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. Regression equations were used to downscale larger-scale weather parameters, such as Reanalysis winds and pressure, to the surface temperature structure over the Yosemite network. These relationships demonstrate that strong westerly winds are associated with relatively warmer temperatures on the east slope and cooler temperatures on the west slope of the Sierra, and weaker westerly winds are associated with the opposite pattern. Reanalysis data from 1948 to 2005 indicate weakening westerlies over this time period, a trend leading to relatively cooler temperatures on the east slope over decadal timescale's. This trend also appears in long-term observations and demonstrates the need to consider topographic effects when examining long-term changes in mountain regions. Copyright 2007 by the American Geophysical Union.
Aslam, Abdul Qayyum; Ahmad, Sajid R; Ahmad, Iftikhar; Hussain, Yawar; Hussain, Muhammad Sameem
2017-02-15
Understanding of frequency, severity, damages and adaptation costs of climate extremes is crucial to manage their aftermath. Evaluation of PRECIS RCM modelled data under IPCC scenarios in Southern Punjab reveals that monthly mean temperature is 30°C under A2 scenario, 2.4°C higher than A1B which is 27.6°C in defined time lapses. Monthly mean precipitation under A2 scenario ranges from 12 to 15mm and for A1B scenario it ranges from 15 to 19mm. Frequency modelling of floods and droughts via poisson distribution shows increasing trend in upcoming decades posing serious impacts on agriculture and livestock, food security, water resources, public health and economic status. Cumulative loss projected for frequent floods without adaptation will be in the range of USD 66.8-79.3 billion in time lapse of 40years from 2010 base case. Drought damage function @ 18% for A2 scenario and @ 13.5% for A1B scenario was calculated; drought losses on agriculture and livestock sectors were modelled. Cumulative loss projected for frequent droughts without adaptation under A2 scenario will be in the range of USD 7.5-8.5 billion while under A1B scenario it will be in the range of USD 3.5-4.2 billion for time lapse of 60years from base case 1998-2002. Severity analysis of extreme events shows that situation get worse if adaptations are not only included in the policy but also in the integrated development framework with required allocation of funds. This evaluation also highlights the result of cost benefit analysis, benefits of the adaptation options (mean & worst case) for floods and droughts in Southern Punjab. Additionally the research highlights the role of integrated extreme events impact assessment methodology in performing the vulnerability assessments and to support the adaptation decisions. This paper is an effort to highlight importance of bottom up approaches to deal with climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Clarification of terminology in medication errors: definitions and classification.
Ferner, Robin E; Aronson, Jeffrey K
2006-01-01
We have previously described and analysed some terms that are used in drug safety and have proposed definitions. Here we discuss and define terms that are used in the field of medication errors, particularly terms that are sometimes misunderstood or misused. We also discuss the classification of medication errors. A medication error is a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient. Errors can be classified according to whether they are mistakes, slips, or lapses. Mistakes are errors in the planning of an action. They can be knowledge based or rule based. Slips and lapses are errors in carrying out an action - a slip through an erroneous performance and a lapse through an erroneous memory. Classification of medication errors is important because the probabilities of errors of different classes are different, as are the potential remedies.
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James
2015-01-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009
Psychophysical measurements in children: challenges, pitfalls, and considerations.
Witton, Caroline; Talcott, Joel B; Henning, G Bruce
2017-01-01
Measuring sensory sensitivity is important in studying development and developmental disorders. However, with children, there is a need to balance reliable but lengthy sensory tasks with the child's ability to maintain motivation and vigilance. We used simulations to explore the problems associated with shortening adaptive psychophysical procedures, and suggest how these problems might be addressed. We quantify how adaptive procedures with too few reversals can over-estimate thresholds, introduce substantial measurement error, and make estimates of individual thresholds less reliable. The associated measurement error also obscures group differences. Adaptive procedures with children should therefore use as many reversals as possible, to reduce the effects of both Type 1 and Type 2 errors. Differences in response consistency, resulting from lapses in attention, further increase the over-estimation of threshold. Comparisons between data from individuals who may differ in lapse rate are therefore problematic, but measures to estimate and account for lapse rates in analyses may mitigate this problem.
Long Time-lapse Nanoscopy with Spontaneously Blinking Membrane Probes
Takakura, Hideo; Zhang, Yongdeng; Erdmann, Roman S.; Thompson, Alexander D.; Lin, Yu; McNellis, Brian; Rivera-Molina, Felix; Uno, Shin-nosuke; Kamiya, Mako; Urano, Yasuteru; Rothman, James E.; Bewersdorf, Joerg; Schepartz, Alanna; Toomre, Derek
2017-01-01
Long time-lapse, diffraction-unlimited super-resolution imaging of cellular structures and organelles in living cells is highly challenging, as it requires dense labeling, bright, highly photostable dyes, and non-toxic conditions. We developed a set of high-density, environment-sensitive (HIDE) membrane probes based on HMSiR that assemble in situ and enable long time-lapse, live cell nanoscopy of discrete cellular structures and organelles with high spatio-temporal resolution. HIDE-enabled nanoscopy movies are up to 50x longer than movies obtained with labeled proteins, reveal the 2D dynamics of the mitochondria, plasma membrane, and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum in living cells. These new HIDE probes also facilitate the acquisition of live cell, two-color, super-resolution images, greatly expanding the utility of nanoscopy to visualize processes and structures in living cells. PMID:28671662
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James
2015-04-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.
Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements
NASA Astrophysics Data System (ADS)
Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.
2017-12-01
Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.
Holst, Sebastian C; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter
2017-04-10
Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D 2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.
Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P
1981-03-01
Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.
Time-lapse camera observations of gas piston activity at Pu`u `Ō`ō, Kīlauea volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Orr, Tim R.; Rea, James C.
2012-12-01
Gas pistoning is a type of eruptive behavior described first at Kīlauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu`u `Ō`ō cone, in Kīlauea's east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60 min, had volumes ranging from 14 to 104 m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49 s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.
Time-lapse cinemicrography and scanning electron microscopy of platelet formation by megakaryocytes.
Haller, C J; Radley, J M
1983-01-01
The surface architecture of megakaryocytes undergoing platelet formation in vitro has been examined by time-lapse cinemicrography and scanning electron microscopy. Fragments of mouse bone marrow were placed in culture medium and incubated at 37 degrees C. After several hours mature megakaryocytes migrated out of the marrow and some underwent shape changes so that they eventually appeared as a relatively small central body, housing the nucleus, from which emerged a number of thin processes which resembled platelet chains. Scanning electron microscopy showed that initially the megakaryocyte surface was ruffled but with development of processes it became smoother. Circumferential folds of small amplitude were found on the surface of developing constrictions which separated putative platelets. It is thought they may be associated with the mechanism of extension, but could have a role in establishing the topography of membrane components. Rupture of the chains and release of platelets was not observed; this permits the number of putative platelets formed by individual megakaryocytes to be determined. The putative platelets exhibited features common to circulating platelets when exposed to a glass surface including the development of pseudopodia and, eventually, flattening on to the surface.
Daley, Thomas M.; Hendrickson, Joel; Queen, John H.
2014-12-31
A time-lapse Offset Vertical Seismic Profile (OVSP) data set was acquired as part of a subsurface monitoring program for geologic sequestration of CO 2. The storage site at Cranfield, near Natchez, Mississippi, is part of a detailed area study (DAS) site for geologic carbon sequestration operated by the U.S. Dept. of Energy’s Southeast Regional Carbon Sequestration Partnership (SECARB). The DAS site includes three boreholes, an injection well and two monitoring wells. The project team selected the DAS site to examine CO 2 sequestration multiphase fluid flow and pressure at the interwell scale in a brine reservoir. The time-lapse (TL) OVSPmore » was part of an integrated monitoring program that included well logs, crosswell seismic, electrical resistance tomography and 4D surface seismic. The goals of the OVSP were to detect the CO 2 induced change in seismic response, give information about the spatial distribution of CO 2 near the injection well and to help tie the high-resolution borehole monitoring to the 4D surface data. The VSP data were acquired in well CFU 31-F1, which is the ~3200 m deep CO 2 injection well at the DAS site. A preinjection survey was recorded in late 2009 with injection beginning in December 2009, and a post injection survey was conducted in Nov 2010 following injection of about 250 kT of CO 2. The sensor array for both surveys was a 50-level, 3-component, Sercel MaxiWave system with 15 m (49 ft) spacing between levels. The source for both surveys was an accelerated weight drop, with different source trucks used for the two surveys. Consistent time-lapse processing was applied to both data sets. Time-lapse processing generated difference corridor stacks to investigate CO 2 induced reflection amplitude changes from each source point. Corridor stacks were used for amplitude analysis to maximize the signal-to-noise ratio (S/N) for each shot point. Spatial variation in reflectivity (used to ‘map’ the plume) was similar in magnitude to the corridor stacks but, due to relatively lower S/N, the results were less consistent and more sensitive to processing and therefore are not presented. We examined the overall time-lapse repeatability of the OVSP data using three methods, the NRMS and Predictability (Pred) measures of Kragh and Christie (2002) and the signal-to-distortion ratio (SDR) method of Cantillo (2011). Because time-lapse noise was comparable to the observed change, multiple methods were used to analyze data reliability. The reflections from the top and base reservoir were identified on the corridor stacks by correlation with a synthetic response generated from the well logs. A consistent change in the corridor stack amplitudes from pre- to post-CO 2 injection was found for both the top and base reservoir reflections on all ten shot locations analyzed. In addition to the well-log synthetic response, a finite-difference elastic wave propagation model was built based on rock/fluid properties obtained from well logs, with CO 2 induced changes guided by time-lapse crosswell seismic tomography (Ajo-Franklin, et al., 2013) acquired at the DAS site. Time-lapse seismic tomography indicated that two reservoir zones were affected by the flood. The modeling established that interpretation of the VSP trough and peak event amplitudes as reflectivity from the top and bottom of reservoir is appropriate even with possible tuning effects. Importantly, this top/base change gives confidence in an interpretation that these changes arise from within the reservoir, not from bounding lithology. The modeled time-lapse change and the observed field data change from 10 shotpoints are in agreement for both magnitude and polarity of amplitude change for top and base of reservoir. Therefore, we conclude the stored CO 2 has been successfully detected and, furthermore, the observed seismic reflection change can be applied to Cranfield’s 4D surface seismic for spatially delineating the CO 2/brine interface.« less
Chinese carless young drivers' self-reported driving behavior and simulated driving performance.
Zhang, Qian; Jiang, Zuhua; Zheng, Dongpeng; Man, Dong; Xu, Xunnan
2013-01-01
Carless young drivers refers to those drivers aged between 18 and 25 years who have a driver's license but seldom have opportunities to practice their driving skills because they do not have their own cars. Due to China's lower private car ownership, many young drivers become carless young drivers after licensure, and the safety issue associated with them has raised great concern in China. This study aims to provide initial insight into the self-reported driving behaviors and simulated driving performance of Chinese carless young drivers. Thirty-three carless young drivers and 32 young drivers with their own cars (as a comparison group) participated in this study. A modified Driver Behavior Questionnaire (DBQ) with a 4-factor structure (errors, violations, attention lapses, and memory lapses) was used to study carless young drivers' self-reported driving behaviors. A simulated driving experiment using a low-cost, fixed-base driving simulator was conducted to measure their simulated driving performance (errors, violations, attention lapses, driving maintenance, reaction time, and accidents). Self-reported DBQ outcomes showed that carless young drivers reported similar errors, more attention lapses, fewer memory lapses, and significantly fewer violation behaviors relative to young drivers with their own cars, whereas simulated driving results revealed that they committed significantly more errors, attention lapses, and violation behaviors than the comparison group. Carless young drivers had a lower ability to maintain the stability of speed and lane position, drove more cautiously approaching and passing through red traffic lights, and committed more accidents during simulated driving. A tendency to speed was not found among carless young drivers; their average speed and speeding frequency were all much lower than that of the comparison group. Lifetime mileage was the only significant predictor of carless young drivers' self-reported violations, simulated violations, speed, and reaction time, whereas no significant predictor was found for young drivers with their own cars. Carless young drivers had poorer driving performance and were more overconfident of their self-reported driving skills compared to those young drivers with greater access to vehicles. Given that the lifetime mileage positively predicted the simulated violations measure of carless young drivers, immediate interventions are needed to help them increase driving exposure and gain driving experience gradually before moving to more challenging on-road driving tasks. Supplemental materials are available for this article.
NASA Astrophysics Data System (ADS)
Adam, L.; Sim, C. Y.; Macfarlane, J.; van Wijk, K.; Shragge, J. C.; Higgs, K.
2015-12-01
Time-lapse seismic signatures can be used to quantify fluid saturation and pressure changes in a reservoir undergoing CO2 sequestration. However, the injection of CO2 acidifies the water, which may dissolve and/or precipitate minerals. Understanding the impact on the rock frame from field seismic time-lapse changes remains an outstanding challenge. Here, we study the effects of carbonate-CO2-water reactions on the physical and elastic properties of rock samples with variable volumes of carbonate cementation. The effects of fluid substitution alone (brine to CO2) and those due to the combination of fluid substitution and mineral dissolution on time-lapse seismic signatures are studied by combining laboratory data, geophysical well-log data and 1-D seismic modeling. Nine rocks from Pohokura Field (New Zealand) are reacted with carbonic acid. The elastic properties are measured using a high-density laser-ultrasonic setup. We observe that P-wave velocity changes up to -19% and correlate with sandstone grain size. Coarse-grained sandstones show greater changes in elastic wave velocities due to dissolution than fine-grained sandstones. To put this in perspective, this velocity change is comparable to the effect of fluid substitution from brine to CO2. This can potentially create an ambiguity in the interpretation of the physical processes responsible for time-lapse signatures in a CO2injection scenario. The laboratory information is applied onto well-log data to model changes in elastic properties of sandstones at the well-log scale. Well-logs and core petrographic analyses are used to find an elastic model that best describes the observed elastic waves velocities in the cemented reservoir sandstones. The Constant-cement rock physics model is found to predict the elastic behaviour of the cemented sandstones. A possible late-time sequestration scenario is that both mineral dissolution and fluid substitution occur in the reservoir. 1-D synthetic seismograms show that seismic amplitudes can change up to 126% in such a scenario. Our work shows that it is important to consider that time-lapse seismic signatures in carbonate-cemented reservoirs can result not only from fluid and pressure changes but also potentially from chemical reaction between CO2-water mixtures and carbonate cemented sandstones.
2014-01-01
Background Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. However, there is still very limited information about the relationship between morphokinetic parameters, chromosomal compositions and implantation potential. Accordingly, this study aimed at investigating the effects of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing on pregnancy and implantation outcomes for patients undergoing preimplantation genetic screening (PGS). Methods A total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. These sibling MII oocytes were then randomized into two groups after ICSI: 1) Group A, oocytes (n = 582) were cultured in the time-lapse system and 2) Group B, oocytes (n = 581) were cultured in the conventional incubator. For both groups, whole genomic amplification and array CGH testing were performed after trophectoderm biopsy on day 5. One to two euploid blastocysts within the most predictive morphokinetic parameters (Group A) or with the best morphological grade available (Group B) were selected for transfer to individual patients on day 6. Ongoing pregnancy and implantation rates were compared between the two groups. Results There were significant differences in clinical pregnancy rates between Group A and Group B (71.1% vs. 45.9%, respectively, p = 0.037). The observed implantation rate per embryo transfer significantly increased in Group A compared to Group B (66.2% vs. 42.4%, respectively, p = 0.011). Moreover, a significant increase in ongoing pregnancy rates was also observed in Group A compared to Group B (68.9% vs. 40.5%. respectively, p = 0.019). However, there was no significant difference in miscarriage rate between the time-lapse system and the conventional incubator (3.1% vs. 11.8%, respectively, p = 0.273). Conclusions This is the first prospective investigation using sibling oocytes to evaluate the efficiency of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for PGS patients. Our data clearly demonstrate that the combination of these two advanced technologies to select competent blastocysts for transfer results in improved implantation and ongoing pregnancy rates for PGS patients. PMID:24954518
Assessing spatial and temporal snowpack evolution and melt with time-lapse photography
NASA Astrophysics Data System (ADS)
Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.
2015-12-01
Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.
NASA Astrophysics Data System (ADS)
Kattel, Dambaru Ballab; Yao, Tandong; Panday, Prajjwal Kumar
2018-05-01
Based on climatic data from 18 stations on the southern slopes of the eastern Himalayas in Bhutan for the period from 1996 to 2009, this paper investigates monthly characteristics of the near-surface air temperature lapse rate (TLR). The station elevations used in this study range from 300 to 2760 m a. s. l. TLRs were evaluated using a linear regression model. The monthly values of maximum TLRs were always smaller than those of the minimum TLRs, which is in contrast to results from the surrounding mountainous regions. In this study, annual patterns of TLRs were somewhat consistent, particularly in the summer; during the other seasons, patterns contrasted to results from the southeastern Tibetan Plateau (China) and were almost comparable to results from Nepal. The shallowest observed values for TLRs in summer are due to intense latent heating at the higher elevation, associated with water vapor condensation from moist convection and evapotranspiration, and decreasing sensible heating at lower elevation, due to heavier rainfall, cloud, and forest cover. When compared to summer, the steeper TLRs in the non-monsoon season are due to sensible heating at the lower elevations, corresponding to dry and clear weather seasons, as well as increasing cooling at higher elevations, particularly in winter due to snow and cloud cover. Owing to lower albedo and higher aerodynamic roughness of forested areas, the TLRs were considerably reduced in daytime because of the dissipation of sensible heat to the atmospheric boundary layer. The distinct variation in diurnal TLR range is due to the diurnal variation in net radiation associated with reduced turbulent heating in the day and increased turbulent heating in the night, in addition to the effect of moisture and cloud cover. The shallower values of TLRs in this study when compared with the surrounding mountainous regions are due to high humidity, as well as the differing elevations and local climates.
Shrivastava, Ashutosh; Gupta, Neeraj; Upadhyay, Pramod; Puliyel, Jacob
2012-04-01
Stabilized live attenuated oral polio vaccine (OPV) is used to immunize children up to the age of five years to prevent poliomyelitis. It is strongly advised that the cold-chain should be maintained until the vaccine is administered. It is assumed, that vaccine vial monitors (VVMs) are reliable at all temperatures. VVMs are tested at 37°C and it is assumed that the labels reach discard point before vaccine potency drops to >0.6 log10. This study was undertaken to see if VVMs were reliable when exposed to high temperatures as can occur in field conditions in India. Vaccine vials with VVMs were incubated (10 vials for each temperature) in an incubator at different temperatures at 37, 41, 45 and 49.5°C. Time-lapse photographs of the VVMs on vials were taken hourly to look for their discard-point. At 37 and 41°C the VVMs worked well. At 45°C, vaccine potency is known to drop to the discard level within 14 h whereas the VVM discard point was reached at 16 h. At 49.5°C the VVMs reached discard point at 9 h when these should have reached it at 3 h. Absolute reliance cannot be placed on VVM in situation where environmental temperatures are high. Caution is needed when using 'outside the cold chain' (OCC) protocols.
Urban heat island investigations in Arctic cities of northwestern Russia
NASA Astrophysics Data System (ADS)
Shumilov, Oleg I.; Kasatkina, Elena A.; Kanatjev, Alexander G.
2017-12-01
Urban microclimate peculiarities in two Arctic cities in northwestern Russia—Kirovsk (67.62°N, 33.67°E) and Apatity (67.57°N, 33.38°E)—were investigated by using mobile temperature records. The experiment was carried out in and around Apatity and Kirovsk in February 2014 and December 2016. The DS18B20 digital thermometer was installed on the roof of a car (height: approximately 1.2 m) to measure and record temperature variations automatically. In addition to the digital thermometer, the car was also equipped with an onboard global positioning system, allowing every temperature measurement to be referenced with an altitude and a latitude/longitude position. The possibility of urban heat island formation in these polar cities, above the Arctic Circle, was studied. Our analysis indicated that on 11 February 2014, the temperature varied in accordance with the background environmental lapse rate (-0.0045°C m-1), and nearly corresponded to it (-0.0165°C m-1) on 12 February 2014. On 6 December 2016, a strong local temperature inversion with a positive value of 0.032°C m-1 was detected, seemingly caused by the formation of a cold air pool in the valley near Kirovsk. It was found that the temperature variations within and outside these cities are strongly influenced by local topographic effects and the physical conditions of the atmospheric boundary layer.
2010-01-01
Use time-lapse videomicroscopy and patch-clamp techniques to characterize the motility of eGFP-transfected PC-3 cells in which MScCa/TRPC1 has been...except for GsmTx-4 (Peptides International, Louisville, KY) and fluorescent agents (Invitrogen/Molecular Probes, Carlsbad, CA). Videomicroscopy ...and Ca2+-imaging. Cell migration was monitored at 37oC by time-lapse videomicroscopy using Nomarski optics with an Epifluorescent microscope (Nikon
Value, Challenges, and Satisfaction of Certification for Multiple Sclerosis Specialists
Halper, June
2014-01-01
Background: Specialist certification among interdisciplinary multiple sclerosis (MS) team members provides formal recognition of a specialized body of knowledge felt to be necessary to provide optimal care to individuals and families living with MS. Multiple sclerosis specialist certification (MS Certified Specialist, or MSCS) first became available in 2004 for MS interdisciplinary team members, but prior to the present study had not been evaluated for its perceived value, challenges, and satisfaction. Methods: A sample consisting of 67 currently certified MS specialists and 20 lapsed-certification MS specialists completed the following instruments: Perceived Value of Certification Tool (PVCT), Perceived Challenges and Barriers to Certification Scale (PCBCS), Overall Satisfaction with Certification Scale, and a demographic data form. Results: Satisfactory reliability was shown for the total scale and four factored subscales of the PVCT and for two of the three factored PCBCS subscales. Currently certified MS specialists perceived significantly greater value and satisfaction than lapsed-certification MS specialists in terms of employer and peer recognition, validation of MS knowledge, and empowering MS patients. Lapsed-certification MS specialists reported increased confidence and caring for MS patients using evidence-based practice. Both currently certified and lapsed-certification groups reported dissatisfaction with MSCS recognition and pay/salary rewards. Conclusions: The results of this study can be used in efforts to encourage initial certification and recertification of interdisciplinary MS team members. PMID:25061432
Marshall, Jill; Qiao, Xuan; Baumbach, Jordan; Xie, Jingyu; Dong, Liang; Bhattacharyya, Madan K
2017-03-15
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
Tajul Baharuddin, Mohamad Faizal; Taib, Samsudin; Hashim, Roslan; Zainal Abidin, Mohd Hazreek; Ishak, Mohd Fakhrurrazi
2011-09-01
Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.
Inversion of time-domain induced polarization data based on time-lapse concept
NASA Astrophysics Data System (ADS)
Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon
2018-05-01
Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.
Activity patterns and monitoring numbers of Horned Puffins and Parakeet Auklets
Hatch, Shyla A.
2002-01-01
Nearshore counts of birds on the water and time-lapse photography were used to monitor seasonal activity patterns and interannual variation in numbers of Horned Puffins (Fratercula corniculata) and Parakeet Auklets (Aethia psittacula) at the Semidi Islands, Alaska. The best period for over-water counts was mid egg-laying through hatching in auklets and late prelaying through early hatching in puffins. Daily counts (07.00 h-09.30 h) varied widely, with peak numbers and days with few or no birds present occurring throughout the census period. Variation among annual means in four years amounted to 26% and 72% of total count variation in puffins and auklets, respectively. Time-lapse photography of nesting habitat in early incubation revealed a morning (08.00 h-12.00 h) peak in the number of puffins loitering on study plots. Birds recorded in time-lapse images never comprised more than a third of the estimated breeding population on a plot. Components of variance in the time-lapse study were 29% within hours, 9% among hours (08.00 h-12.00 h), and 62% among days (8-29 June). Variability of overwater and land-based counts is reduced by standardizing the time of day when counts are made, but weather conditions had little influence on either type of count. High international variation of population indices implies low power to detect numerical trends in crevice-nesting auklets and puffins.
Oil Sands Characteristics and Time-Lapse and P-SV Seismic Steam Monitoring, Athabasca, Canada
NASA Astrophysics Data System (ADS)
Takahashi, A.; Nakayama, T.; Kashihara, K.; Skinner, L.; Kato, A.
2008-12-01
A vast amount of oil sands exists in the Athabasca area, Alberta, Canada. These oil sands consist of bitumen (extra-heavy oil) and unconsolidated sand distributed from surface to a depth of 750 meters. Including conventional crude oil, the total number of proved remaining oil reserves in Canada ranks second place in the world after Saudi Arabia. For the production of bitumen from the reservoir 200 to 500 meters in depth, the Steam Assisted Gravity Drainage (SAGD) method (Steam Injection EOR) has been adopted as bitumen is not movable at original temperatures. It is essential to understand the detailed reservoir distribution and steam chamber development extent for optimizing the field development. Oil sands reservoir characterization is conducted using 3D seismic data acquired in February 2002. Conducting acoustic impedance inversion to improve resolution and subsequent multi-attribute analysis integrating seismic data with well data facilitates an understanding of the detailed reservoir distribution. These analyses enable the basement shale to be imaged, and enables identification to a certain degree of thin shale within the reservoir. Top and bottom depths of the reservoir are estimated in the range of 2.0 meters near the existing wells even in such a complex channel sands environment characterized by abrupt lateral sedimentary facies changes. In March 2006, monitoring 3D seismic data was acquired to delineate steam-affected areas. The 2002 baseline data is used as a reference data and the 2006 monitoring data is calibrated to the 2002 seismic data. Apparent differences in the two 3D seismic data sets with the exception of production related response changes are removed during the calibration process. P-wave and S-wave velocities of oil sands core samples are also measured with various pressures and temperatures, and the laboratory measurement results are then combined to construct a rock physics model used to predict velocity changes induced by steam-injection. The differences of the seismic responses between the time-lapse seismic volumes can be quantitatively explained by P-wave velocity decrease of the oil sands layers due to steam-injection. In addition, the data suggests that a larger area would be influenced by pressure than temperature. We calculate several seismic attributes such as RMS values of amplitude difference, maximum cross correlations, and interval velocity differences. These attributes are integrated by using self-organization maps (SOM) and K-means methods. By this analysis, we are able to distinguish areas of steam chamber growth from transitional and non-affected areas. In addition, 3D P-SV converted-wave processing and analysis are applied on the second 3D data set (recorded with three-component digital sensor). Low Vp/Vs values in the P-SV volume show areas of steam chamber development, and high Vp/Vs values indicate transitional zones. Our analysis of both time-lapse 3D seismic and 3D P-SV data along with the rock physics model can be used to monitor qualitatively and quantitatively the rock property changes of the inter-well reservoir sands in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; ...
2017-05-09
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
NASA Astrophysics Data System (ADS)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; Hazen, Duane; Wolfe, Daniel; Delgado, Ruben; Oncley, Steven P.; Lundquist, Julie K.
2017-05-01
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature (T) and relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature (Tv) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5 km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m-3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. An encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.
Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
Da'ar, Omar B; Yunus, Faisel; Md Hossain, Nassif; Househ, Mowafa
The recent outbreak of bubonic plague in Madagascar reminds us of the continuing public health challenges posed by such deadly diseases in various parts of the world years after their eradication. This study examines the role of Twitter in public health disease surveillance with special focus on how Twitter intensity, time, and location issues explain Twitter plague message delay. We retrospectively analyzed the Twitter feeds of the 2014 bubonic plague outbreak in Madagascar. The analyses are based on the plague-related data available in the public domain between November 19th and 27th 2014. The data were compiled in March 2015. We calculated the time differential between the tweets and retweets, and analyzed various characteristics of the Tweets including Twitter intensity of the users. A total of 6873 Twitter users were included in the study, of which 52% tweeted plague-related information during the morning hours (before mid-day), and 87% of the tweets came from the west of the epicenter of the plague. More importantly, while session of tweet lease and relative location had effect on message lapse, absolute location did not. Additionally, we found no evidence of differential effect of location on message lapse based on relative location i.e. tweets from west or east nor number of following. However, there is evidence that more intense Twitter use appears to have significant effect on message lapse such that as the number of tweets became more intense, time differential between the tweets and retweets increased while higher number of retweets diminished message lapse. This study affirms that Twitter can play an important role in ongoing disease surveillance and the timely dissemination of information during public health emergencies independent of the time and space restrictions. Further ways should be explored to embed social media channels in routine public health practice. Copyright © 2017 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Bruhn, Roberta; Lelie, Nico; Custer, Brian; Busch, Michael; Kleinman, Steven
2013-10-01
Twenty-one blood organizations from five geographical regions provided HIV individual donation (ID)-NAT and serology data on 11,787,610 donations. Infections were classified as anti-HIV-/RNA+ window period (WP), anti-HIV+/RNA+ concordant positive (CP) or anti-HIV+/RNA- elite controller (EC). Residual risk and efficacy of several screening scenarios were estimated for first time, lapsed and repeat donations. WP residual risk estimates assumed a 50% infectious dose of 3.16 virions and a 50% detection limit of 2.7 HIV RNA copies/mL for ID-NAT and 10,000 copies/mL for p24Ag. Infectivity for CP (100%) and EC (2.2%) donations was estimated based on viral load distributions and 100-fold reduced infectivity by antibody neutralization as reported elsewhere. Efficacy was calculated as proportion of transmission risk removed from baseline (i.e. in absence of any screening). There was no significant difference in transmission risk between lapsed and repeat donations in any region. Risk was 3.8-fold higher in first time than combined lapsed/repeat donations in South Africa but not in other regions. Screening strategies were most efficacious at interdicting infectious transfusions in first time (98.7-99.8%) followed by lapsed (97.6-99.7%) and repeat (86.8-97.7%) donations in all regions combined. In each donor category the efficacy of ID-NAT alone (97.7-99.8%) was superior to that of minipool (MP)-NAT/anti-HIV (95.0-99.6%) and p24 Ag/anti-HIV (89.8-99.1%). Efficacy patterns were similar by donor/donation status in each region despite large differences in HIV prevalence and transmission risk. As similar data become available for HBV and HCV, this modeling may be useful in cost effectiveness analyses of alternative testing scenarios. © 2013 American Association of Blood Banks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.
2013-03-29
The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.« less
Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas
NASA Astrophysics Data System (ADS)
Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.
2017-07-01
In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for quantitative interpretation purposes.
Sullivan, James; Cooze, Nathan; Gallagher, Callum; Lewis, Tom; Prosek, Tomas; Thierry, Dominique
2015-01-01
In situ time-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc-magnesium-aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn(2) lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al(2)O(3) at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse image analysis. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to the 1% NaCl electrolyte promoted an anodic shift of 50 mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system.
Time-lapse seismic - repeatability versus usefulness and 2D versus 3D
NASA Astrophysics Data System (ADS)
Landro, M.
2017-12-01
Time-lapse seismic has developed rapidly over the past decades, especially for monitoring of oil and gas reservoirs and subsurface storage of CO2. I will review and discuss some of the critical enabling factors for the commercial success of this technology. It was early realized that how well we are able to repeat our seismic experiment is crucial. However, it is always a question of detectability versus repeatability. For marine seismic, there are several factors limiting the repeatability: Weather conditions, positioning of sources and receivers and so on. I will discuss recent improvements in both acquisition and processing methods over the last decade. It is well known that repeated 3D seismic data is the most accurate tool for reservoir monitoring purposes. However, several examples show that 2D seismic data may be used for monitoring purposes despite lower repeatability. I will use examples from an underground blow out in the North Sea, and repeated 2D seismic lines acquired before and after the Tohoku earthquake in 2011 to illustrate this. A major challenge when using repeated 2D seismic for subsurface monitoring purposes is the lack of 3D calibration points and significantly less amount of data. For marine seismic acquisition, feathering issues and crossline dip effects become more critical compared to 3D seismic acquisition. Furthermore, the uncertainties arising from a non-ideal 2D seismic acquisition are hard to assess, since the 3D subsurface geometry has not been mapped. One way to shed more light on this challenge is to use 3D time lapse seismic modeling testing various crossline dips or geometries. Other ways are to use alternative data sources, such as bathymetry, time lapse gravity or electromagnetic data. The end result for all time-lapse monitoring projects is an interpretation associated with uncertainties, and for the 2D case these uncertainties are often large. The purpose of this talk is to discuss how to reduces and control these uncertainties as much as possible.
Transmission of blood-borne pathogens in US dental health care settings
Cleveland, Jennifer L.; Gray, Shellie Kolavic; Harte, Jennifer A.; Robison, Valerie A.; Moorman, Anne C.; Gooch, Barbara F.
2016-01-01
Background During the past decade, investigators have reported transmissions of blood-borne pathogens (BBPs) in dental settings. In this article, the authors describe these transmissions and examine the lapses in infection prevention on the basis of available information. Methods The authors reviewed the literature from 2003 through 2015 to identify reports of the transmission of BBPs in dental settings and related lapses in infection prevention efforts, as well as to identify reports of known or suspected health care–associated BBP infections submitted by state health departments to the Centers for Disease Control and Prevention. Results The authors identified 3 published reports whose investigators described the transmission of hepatitis B virus and hepatitis C virus. In 2 of these reports, the investigators described single-transmission events (from 1 patient to another) in outpatient oral surgery practices. The authors of the third report described the possible transmission of hepatitis B virus to 3 patients and 2 dental health care personnel in a large temporary dental clinic. The authors identified lapses in infection prevention practices that occurred during 2 of the investigations; however, the investigators were not always able to link a specific lapse to a transmission event. Examples of lapses included the failure to heat-sterilize handpieces between patients, a lack of training for volunteers on BBPs, and the use of a combination of unsafe injection practices. Conclusions The authors found that reports describing the transmission of BBPs in dental settings since 2003 were rare. Failure to adhere to Centers for Disease Control and Prevention recommendations for infection control in dental settings likely led to disease transmission in these cases. Practical Implications The existence of these reports emphasizes the need to improve dental health care personnel's understanding of the basic principles and implementation of standard precautions through the use of checklists, policies, and practices. PMID:27233680
VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah
NASA Astrophysics Data System (ADS)
Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.
2008-12-01
Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.
Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere
NASA Technical Reports Server (NTRS)
Quinn, Elizabeth P.; Holzworth, Robert H.
1987-01-01
Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.
Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface
Bliem, Roland; van der Hoeven, Jessi E. S.; Hulva, Jan; Pavelec, Jiri; Gamba, Oscar; de Jongh, Petra E.; Schmid, Michael; Blaha, Peter; Diebold, Ulrike; Parkinson, Gareth S.
2016-01-01
Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase. PMID:27457953
Ice crystal growth in a dynamic thermal diffusion chamber
NASA Technical Reports Server (NTRS)
Keller, V. W.
1980-01-01
Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.
1979-07-09
Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse photo sequence to monitor the active volcanos on Jupiter's moon Io following the spacecraft's closest approach to Jupiter. This picture is one of about 200 images that will be used to generate a time lapse motion picture to illustrate Io's volcanic activity. On the bright limb, two of the plumes (P-5 & P-6) discovered in March by Voyager 1 are again visible. The plumes are spewing materials to a height of about 100 kilometers.
Voyager image processing at the Image Processing Laboratory
NASA Astrophysics Data System (ADS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-09-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
Voyager image processing at the Image Processing Laboratory
NASA Technical Reports Server (NTRS)
Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.
1980-01-01
This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.
NASA Technical Reports Server (NTRS)
Peslen, C. A.
1979-01-01
The impact of 5 minute interval SMS-2 visible digital image data in analyzing severe local storms is examined using wind vectors derived from cloud tracking on time lapsed sequence of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on 6 May 1975, hail-producing thunderstorms occurred ahead of a well defined dry line. The results demonstrate that satellite-derived wind vectors and their associated divergence fields complement conventional meteorological analyses in describing the conditions preceding severe local storm development.
Studying cooling curves with a smartphone
NASA Astrophysics Data System (ADS)
Silva, Manuela Ramos; Martín-Ramos, Pablo; da Silva, Pedro Pereira
2018-01-01
This paper describes a simple procedure for the study of the cooling of a spherical body using a standard thermometer and a smartphone. Experiments making use of smartphone sensors have been described before, contributing to an improved teaching of classical mechanics, but rarely expand to thermodynamics. In this experiment, instead of using a smartphone camera to slow down a fast movement, we are using the device to speed up a slow process. For that we propose the use of the free app Framelapse to take periodic pictures (in the form of a time-lapse video) and then the free app VidAnalysis to track the position of the mercury inside the thermometer, thus effortlessly tracking the temperature of a cooling body (Fig. 1).
NASA Astrophysics Data System (ADS)
Harlow, J.
2017-12-01
Groundwater recharge quantification is a key parameter for sustainable groundwater management. Many recharge quantification techniques have been devised, each with advantages and disadvantages. A free, GIS based recharge quantification tool - the Soil Water Balance (SWB) model - was developed by the USGS to produce fine-tuned recharge constraints in watersheds and illuminate spatial and temporal dynamics of recharge. The subject of this research is to examine SWB within a Mediterranean climate zone, focusing on the Catalina Island, California. This project relied on publicly available online resources with the exception the geospatial processing software, ArcGIS. Daily climate station precipitation and temperature data was obtained from the Desert Research Institute for the years 2008-2014. Precipitation interpolations were performed with ArcGIS using the Natural Neighbor method. The USGS-National Map Viewer (NMV) website provided a 30-meter DEM - to interpolate high and low temperature ASCII grids using the Temperature Lapse Rate (TLR) method, to construct a D-8 flow direction grid for downhill redirection of soil-moisture saturated runoff toward non-saturated cells, and for aesthetic map creation. NMV also provided a modified Anderson land cover classification raster. The US Department of Agriculture-National Resource Conservation Service (NRCS) Web Soil Survey website provided shapefiles of soil water capacity and hydrologic soil groups. The Hargreaves and Samani method was implemented to determine evapotranspiration rates. The resulting SWB output data, in the form of ASCII grids are easily added to ArcGIS for quick visualization and data analysis (Figure 1). Calculated average recharge for 2008-2014 was 3537 inches/year, or 0.0174 acre feet/year. Recharge was 10.2% of the islands gross precipitation. The spatial distribution of the most significant recharge is in hotspots which dominate the residential hills above Avalon, followed by grassy/unvegetated areas associated with dirt roads, and then higher elevation southeast-eastern facing slopes. The greatest large-scale concentration of recharge is centered in the area from Two Harbors to Blackjack Mountain. Further examination within this project will determine parameter significance to recharge and runoff.
Desai, Nina; Ploskonka, Stephanie; Goodman, Linnea R; Austin, Cynthia; Goldberg, Jeffrey; Falcone, Tommaso
2014-06-20
Time-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting. Kinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed. A total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The incidence of multinucleation and reverse cleavage amongst the embryos observed was 25% and 7%, respectively. Over 40% of embryos exhibiting these characteristics did however form blastocysts meeting our criteria for freezing. These data provide us with a platform with which to potentially enhance embryo selection for transfer.
2014-01-01
Background Time-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting. Methods Kinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed. Results A total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The incidence of multinucleation and reverse cleavage amongst the embryos observed was 25% and 7%, respectively. Over 40% of embryos exhibiting these characteristics did however form blastocysts meeting our criteria for freezing. Conclusions These data provide us with a platform with which to potentially enhance embryo selection for transfer. PMID:24951056
The use of morphokinetics as a predictor of embryo implantation.
Meseguer, Marcos; Herrero, Javier; Tejera, Alberto; Hilligsøe, Karen Marie; Ramsing, Niels Birger; Remohí, Jose
2011-10-01
Time-lapse observation presents an opportunity for optimizing embryo selection based on morphological grading as well as providing novel kinetic parameters, which may further improve accurate selection of viable embryos. The objective of this retrospective study was to identify the morphokinetic parameters specific to embryos that were capable of implanting. In order to compare a large number of embryos, with minimal variation in culture conditions, we have used an automatic embryo monitoring system. Using a tri-gas IVF incubator with a built-in camera designed to automatically acquire images at defined time points, we have simultaneously monitored up to 72 individual embryos without removing the embryos from the controlled environment. Images were acquired every 15 min in five different focal planes for at least 64 h for each embryo. We have monitored the development of transferred embryos from 285 couples undergoing their first ICSI cycle. The total number of transferred embryos was 522, of which 247 either failed to implant or fully implanted, with full implantation meaning that all transferred embryos in a treatment implanted. A detailed retrospective analysis of cleavage times, blastomere size and multinucleation was made for the 247 transferred embryos with either failed or full implantation. We found that several parameters were significantly correlated with subsequent implantation (e.g. time of first and subsequent cleavages as well as the time between cleavages). The most predictive parameters were: (i) time of division to 5 cells, t5 (48.8-56.6 h after ICSI); (ii) time between division to 3 cells and subsequent division to 4 cells, s2 (≤ 0.76 h) and (iii) duration of cell cycle two, i.e. time between division to 2 cells and division to 3 cells, cc2 (≤ 11.9 h). We also observed aberrant behavior such as multinucleation at the 4 cell stage, uneven blastomere size at the 2 cell stage and abrupt cell division to three or more cells, which appeared to largely preclude implantation. The image acquisition and time-lapse analysis system makes it possible to determine exact timing of embryo cleavages in a clinical setting. We propose a multivariable model based on our findings to classify embryos according to their probability of implantation. The efficacy of this classification will be evaluated in a prospective randomized study that ultimately will determine if implantation rates can be improved by time-lapse analysis.
Dispositional Mindfulness Predicts Enhanced Smoking Cessation and Smoking Lapse Recovery
Heppner, Whitney L.; Spears, Claire Adams; Correa-Fernández, Virmarie; Castro, Yessenia; Li, Yisheng; Guo, Beibei; Reitzel, Lorraine R.; Vidrine, Jennifer Irvin; Mazas, Carlos A.; Cofta-Woerpel, Ludmila; Cinciripini, Paul M.; Ahluwalia, Jasjit S.; Wetter, David W.
2016-01-01
Background Although mindfulness has been hypothesized to promote health behaviors, no research has examined how dispositional mindfulness might influence the process of smoking cessation. Purpose The current study investigated dispositional mindfulness, smoking abstinence, and recovery from a lapse among African American smokers. Methods Participants were 399 African Americans seeking smoking cessation treatment (treatments did not include any components related to mindfulness). Dispositional mindfulness and other psychosocial measures were obtained pre-quit; smoking abstinence was assessed 3 days, 31 days, and 26 weeks post-quit. Results Individuals higher in dispositional mindfulness were more likely to quit smoking both initially and over time. Moreover, among individuals who had lapsed at day 3, those higher in mindfulness were more likely to recover abstinence by the later time points. The mindfulness-early abstinence association was mediated by lower negative affect, lower expectancies to regulate affect via smoking, and higher perceived social support. Conclusions Results suggest that mindfulness might enhance smoking cessation among African American smokers by operating on mechanisms posited by prominent models of addiction. PMID:26743533
[Research of Identify Spatial Object Using Spectrum Analysis Technique].
Song, Wei; Feng, Shi-qi; Shi, Jing; Xu, Rong; Wang, Gong-chang; Li, Bin-yu; Liu, Yu; Li, Shuang; Cao Rui; Cai, Hong-xing; Zhang, Xi-he; Tan, Yong
2015-06-01
The high precision scattering spectrum of spatial fragment with the minimum brightness of 4.2 and the resolution of 0.5 nm has been observed using spectrum detection technology on the ground. The obvious differences for different types of objects are obtained by the normalizing and discrete rate analysis of the spectral data. Each of normalized multi-frame scattering spectral line shape for rocket debris is identical. However, that is different for lapsed satellites. The discrete rate of the single frame spectrum of normalized space debris for rocket debris ranges from 0.978% to 3.067%, and the difference of oscillation and average value is small. The discrete rate for lapsed satellites ranges from 3.118 4% to 19.472 7%, and the difference of oscillation and average value relatively large. The reason is that the composition of rocket debris is single, while that of the lapsed satellites is complex. Therefore, the spectrum detection technology on the ground can be used to the classification of the spatial fragment.
NASA Technical Reports Server (NTRS)
Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.
1974-01-01
The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.
Very-high-resolution time-lapse photography for plant and ecosystems research.
Nichols, Mary H; Steven, Janet C; Sargent, Randy; Dille, Paul; Schapiro, Joshua
2013-09-01
Traditional photography is a compromise between image detail and area covered. We report a new method for creating time-lapse sequences of very-high-resolution photographs to produce zoomable images that facilitate observation across a range of spatial and temporal scales. • A robotic camera mount and software were used to capture images of the growth and movement in Brassica rapa every 15 s in the laboratory. The resultant time-lapse sequence (http://timemachine.gigapan.org/wiki/Plant_Growth) captures growth detail such as circumnutation. A modified, solar-powered system was deployed at a remote field site in southern Arizona. Images were collected every 2 h over a 3-mo period to capture the response of vegetation to monsoon season rainfall (http://timemachine.gigapan.org/wiki/Arizona_Grasslands). • A technique for observing time sequences of both individual plant and ecosystem response at a range of spatial scales is available for use in the laboratory and in the field.
Very-high-resolution time-lapse photography for plant and ecosystems research1
Nichols, Mary H.; Steven, Janet C.; Sargent, Randy; Dille, Paul; Schapiro, Joshua
2013-01-01
• Premise of the study: Traditional photography is a compromise between image detail and area covered. We report a new method for creating time-lapse sequences of very-high-resolution photographs to produce zoomable images that facilitate observation across a range of spatial and temporal scales. • Methods and Results: A robotic camera mount and software were used to capture images of the growth and movement in Brassica rapa every 15 s in the laboratory. The resultant time-lapse sequence (http://timemachine.gigapan.org/wiki/Plant_Growth) captures growth detail such as circumnutation. A modified, solar-powered system was deployed at a remote field site in southern Arizona. Images were collected every 2 h over a 3-mo period to capture the response of vegetation to monsoon season rainfall (http://timemachine.gigapan.org/wiki/Arizona_Grasslands). • Conclusions: A technique for observing time sequences of both individual plant and ecosystem response at a range of spatial scales is available for use in the laboratory and in the field. PMID:25202588
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.
2015-01-01
Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443
Seli, Paul; Cheyne, James Allan; Smilek, Daniel
2012-03-01
In two studies of a GO-NOGO task assessing sustained attention, we examined the effects of (1) altering speed-accuracy trade-offs through instructions (emphasizing both speed and accuracy or accuracy only) and (2) auditory alerts distributed throughout the task. Instructions emphasizing accuracy reduced errors and changed the distribution of GO trial RTs. Additionally, correlations between errors and increasing RTs produced a U-function; excessively fast and slow RTs accounted for much of the variance of errors. Contrary to previous reports, alerts increased errors and RT variability. The results suggest that (1) standard instructions for sustained attention tasks, emphasizing speed and accuracy equally, produce errors arising from attempts to conform to the misleading requirement for speed, which become conflated with attention-lapse produced errors and (2) auditory alerts have complex, and sometimes deleterious, effects on attention. We argue that instructions emphasizing accuracy provide a more precise assessment of attention lapses in sustained attention tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Predictive modeling of addiction lapses in a mobile health application.
Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M; Isham, Andrew J; Judkins-Fisher, Chris L; Atwood, Amy K; Gustafson, David H
2014-01-01
The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-comprehensive health enhancement support system (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients' recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support. © 2013.
Predictive Modeling of Addiction Lapses in a Mobile Health Application
Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M.; Isham, Andrew; Judkins-Fisher, Chris L.; Atwood, Amy K.; Gustafson, David H.
2013-01-01
The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-Comprehensive Health Enhancement Support System (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients’ recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support. PMID:24035143
NASA Astrophysics Data System (ADS)
Zhang, Ziran; Glaser, Steven D.; Bales, Roger C.; Conklin, Martha; Rice, Robert; Marks, Danny G.
2017-05-01
A network of sensors for spatially representative water-balance measurements was developed and deployed across the 2000 km2 snow-dominated portion of the upper American River basin, primarily to measure changes in snowpack and soil-water storage, air temperature, and humidity. This wireless sensor network (WSN) consists of 14 sensor clusters, each with 10 measurement nodes that were strategically placed within a 1 km2 area, across different elevations, aspects, slopes, and canopy covers. Compared to existing operational sensor installations, the WSN reduces hydrologic uncertainty in at least three ways. First, redundant measurements improved estimation of lapse rates for air and dew-point temperature. Second, distributed measurements captured local variability and constrained uncertainty in air and dew-point temperature, snow accumulation, and derived hydrologic attributes important for modeling and prediction. Third, the distributed relative-humidity measurements offer a unique capability to monitor upper-basin patterns in dew-point temperature and characterize elevation gradient of water vapor-pressure deficit across steep, variable topography. Network statistics during the first year of operation demonstrated that the WSN was robust for cold, wet, and windy conditions in the basin. The electronic technology used in the WSN-reduced adverse effects, such as high current consumption, multipath signal fading, and clock drift, seen in previous remote WSNs.
Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II
NASA Astrophysics Data System (ADS)
Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea
2016-04-01
In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.
Heritability of Performance Deficit Accumulation During Acute Sleep Deprivation in Twins
Kuna, Samuel T.; Maislin, Greg; Pack, Frances M.; Staley, Bethany; Hachadoorian, Robert; Coccaro, Emil F.; Pack, Allan I.
2012-01-01
Study Objectives: To determine if the large and highly reproducible interindividual differences in rates of performance deficit accumulation during sleep deprivation, as determined by the number of lapses on a sustained reaction time test, the Psychomotor Vigilance Task (PVT), arise from a heritable trait. Design: Prospective, observational cohort study. Setting: Academic medical center. Participants: There were 59 monozygotic (mean age 29.2 ± 6.8 [SD] yr; 15 male and 44 female pairs) and 41 dizygotic (mean age 26.6 ± 7.6 yr; 15 male and 26 female pairs) same-sex twin pairs with a normal polysomnogram. Interventions: Thirty-eight hr of monitored, continuous sleep deprivation. Measurements and Results: Patients performed the 10-min PVT every 2 hr during the sleep deprivation protocol. The primary outcome was change from baseline in square root transformed total lapses (response time ≥ 500 ms) per trial. Patient-specific linear rates of performance deficit accumulation were separated from circadian effects using multiple linear regression. Using the classic approach to assess heritability, the intraclass correlation coefficients for accumulating deficits resulted in a broad sense heritability (h2) estimate of 0.834. The mean within-pair and among-pair heritability estimates determined by analysis of variance-based methods was 0.715. When variance components of mixed-effect multilevel models were estimated by maximum likelihood estimation and used to determine the proportions of phenotypic variance explained by genetic and nongenetic factors, 51.1% (standard error = 8.4%, P < 0.0001) of twin variance was attributed to combined additive and dominance genetic effects. Conclusion: Genetic factors explain a large fraction of interindividual variance among rates of performance deficit accumulations on PVT during sleep deprivation. Citation: Kuna ST; Maislin G; Pack FM; Staley B; Hachadoorian R; Coccaro EF; Pack AI. Heritability of performance deficit accumulation during acute sleep deprivation in twins. SLEEP 2012;35(9):1223-1233. PMID:22942500
Employer perceptions of the employability of workers in a social business.
Krupa, Terry; Howell-Moneta, Angela; Lysaght, Rosemary; Kirsh, Bonnie
2016-06-01
This study examined employer perceptions of employability of job candidates working in a social business for people with mental illnesses. Using an analogue research design, 99 employers participated in a simulated job hiring process, rating 2 applicants on potential to do the job, fit with workplace culture and likelihood of hiring. One job applicant worked in a social business, and the second was either (a) working in a conventional business, (b) with employment lapse attributable to mental health issues, or (c) with an unexplained employment lapse. Paired samples t tests were used to compare ratings. Qualitative data were collected regarding the rationale for rankings and a content analysis was conducted. Employer rankings were significantly higher for the applicant working in a social business compared to either applicant with an employment lapse. Employers rated the candidate working in a conventional business significantly higher compared with the candidate in a social business only on ratings of likelihood to hire. Employers valued the recency of work experience in the social business, citing concerns about risks associated with employment lapses. Their comments suggested a lack of understanding of the nature of social business. Experience in a social business appears to lessen the disadvantage of unemployment in the job hiring process, but does not appear to be ranked on par with experience in the conventional workforce. The social business sector could benefit from considering ways to publically portray these work opportunities to enhance acceptance and inclusion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Time-lapse recordings of human corneal epithelial healing.
Hardarson, Thorir; Hanson, Charles; Claesson, Margareta; Stenevi, Ulf
2004-04-01
The aim of this study was to design an experimental set-up for the study of human corneal epithelial wound healing in a controlled in vitro situation. A time-lapse set-up was used. This allowed for pictures to be captured with a magnification ranging from x 80 to x 1800. Pictures were captured at 1-min intervals during the observation period, which lasted up to 4 days. Human corneal tissue was obtained from the Eye Bank or from surgery. A small, rounded lesion was produced in the corneal epithelium with a miniature drill. The specimens were placed in a mini-incubator; the camera focused on the epithelial lesion and continuously observed using the time-lapse set-up. The healing process of human corneal epithelium could be followed for several days. The initial healing response could be divided into a slow, a rapid and a consolidating phase. The first two phases lasted about 12 hours, and by then, epithelial cells covered the lesion. Depending on the origin of the tissue and the placement of the lesion, variations in the healing response could be seen. The time-lapse technique makes it possible to study epithelial wound healing over time at the cellular level. Data collected in this way can fill the gap between in vivo studies, where, by nature, human wound healing studies are restricted, and cell culture techniques, where cellular responses in many cases differ from the in vivo situation.
Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images
NASA Astrophysics Data System (ADS)
Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.
2014-11-01
We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports previous results determined from spacecraft observations.
Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
Stephens, J S; Cooper, J A; Phelan, F R; Dunkers, J P
2007-07-01
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. (c) 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A.
2012-06-01
Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water-minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.
Flower opening and closure: an update.
van Doorn, Wouter G; Kamdee, Chanattika
2014-11-01
This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Estimation of seismically detectable portion of a gas plume: CO2CRC Otway project case study
NASA Astrophysics Data System (ADS)
Pevzner, Roman; Caspari, Eva; Bona, Andrej; Galvin, Robert; Gurevich, Boris
2013-04-01
CO2CRC Otway project comprises of several experiments involving CO2/CH4 or pure CO2 gas injection into different geological formations at the Otway test site (Victoria, Australia). During the first stage of the project, which was finished in 2010, more than 64,000 t of gas were injected into the depleted gas reservoir at ~2 km depth. At the moment, preparations for the next stage of the project aiming to examine capabilities of seismic monitoring of small scale injection (up to 15,000 t) into saline formation are ongoing. Time-lapse seismic is one of the most typical methods for CO2 geosequestration monitoring. Significant experience was gained during the first stage of the project through acquisition and analysis of the 4D surface seismic and numerous time-lapse VSP surveys. In order to justify the second stage of the project and optimise parameters of the experiment, several modelling studies were conducted. In order to predict seismic signal we populate realistic geological model with elastic properties, model their changes using fluid substitution technique applied to the fluid flow simulation results and compute synthetic seismic baseline and monitor volumes. To assess detectability of the time-lapse signal caused by the injection, we assume that the time-lapse noise level will be equivalent to the level of difference between the last two Otway 3D surveys acquired in 2009 and 2010 using conventional surface technique (15,000 lbs vibroseis sources and single geophones as the receivers). In order to quantify the uncertainties in plume imaging/visualisation due to the time-lapse noise realisation we propose to use multiple noise realisations with the same F-Kx-Ky amplitude spectra as the field noise for each synthetic signal volume. Having signal detection criterion defined in the terms of signal/time- lapse noise level on a single trace we estimate visible portion of the plume as a function of this criterion. This approach also gives an opportunity to attempt to evaluate probability of the signal detection. The authors acknowledge the funding provided by the Australian government through its CRC program to support this CO2CRC research project. We also acknowledge the CO2CRC's corporate sponsors and the financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.
Naughton, Felix
2016-05-28
Smoking lapses early on during a quit attempt are highly predictive of failing to quit. A large proportion of these lapses are driven by cravings brought about by situational and environmental cues. Use of cognitive-behavioral lapse prevention strategies to combat cue-induced cravings is associated with a reduced risk of lapse, but evidence is lacking in how these strategies can be effectively promoted. Unlike most traditional methods of delivering behavioral support, mobile phones can in principle deliver automated support, including lapse prevention strategy recommendations, Just-In-Time (JIT) for when a smoker is most vulnerable, and prevent early lapse. JIT support can be activated by smokers themselves (user-triggered), by prespecified rules (server-triggered) or through sensors that dynamically monitor a smoker's context and trigger support when a high risk environment is sensed (context-triggered), also known as a Just-In-Time Adaptive Intervention (JITAI). However, research suggests that user-triggered JIT cessation support is seldom used and existing server-triggered JIT support is likely to lack sufficient accuracy to effectively target high-risk situations in real time. Evaluations of mobile phone cessation interventions that include user and/or server-triggered JIT support have yet to adequately assess whether this improves management of high risk situations. While context-triggered systems have the greatest potential to deliver JIT support, there are, as yet, no impact evaluations of such systems. Although it may soon be feasible to learn about and monitor a smoker's context unobtrusively using their smartphone without burdensome data entry, there are several potential advantages to involving the smoker in data collection. This commentary describes the current knowledge on the potential for mobile phones to deliver automated support to help smokers manage or cope with high risk environments or situations for smoking, known as JIT support. The article categorizes JIT support into three main types: user-triggered, server-triggered, and context-triggered. For each type of JIT support, a description of the evidence and their potential to effectively target specific high risk environments or situations is described. The concept of unobtrusive sensing without user data entry to inform the delivery of JIT support is finally discussed in relation to potential advantages and disadvantages for behavior change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Observing the Vertical Dimensions of Singapore's Urban Heat Island
NASA Astrophysics Data System (ADS)
Chow, W. T. L.; Ho, D. X. Q.
2015-12-01
In numerous cities, measurements of urban warmth in most urban heat island (UHI) studies are generally constrained towards surface or near-surface (<2 m above ground) levels across horizontal variations in land use and land cover. However, there has been hitherto limited attention towards the measurement of vertical temperature profiles extending from the urban surface through to the urban boundary layer. Knowledge of these profiles, through how they vary over different local urban morphologies, and develop with respect to synoptic meteorological conditions, are important towards several aspects of UHI research; these include validating modelling urban canopy lapse rate profiles or estimating the growth of urban plumes. In this study, we utilised temperature sensors attached onto remote controlled aerial quadcopter platforms to measure urban temperature and humidity profiles in Singapore, which is a rapidly urbanizing major tropical metropolis. These profiles were measured from the surface to ~100 m above ground level, a height which includes all of the urban canopy and parts of the urban boundary layer. Initial results indicate significant variations in stability measured over different land uses (e.g. urban park, high-rise residential, commercial); these profiles are also temporally dynamic, depending on the time of day and larger-scale weather conditions.
NASA Astrophysics Data System (ADS)
Kröhnert, M.; Meichsner, R.
2017-09-01
The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.
Babowitch, Jacklyn D; Sheinfil, Alan Z; Woolf-King, Sarah E; Vanable, Peter A; Sweeney, Shannon M
2018-03-23
Viral suppression, a critical component of HIV care, is more likely when individuals initiate antiretroviral therapy (ART) early in disease progression and maintain optimal levels of adherence to ART regimens. Although several studies have documented the negative association of depressive symptoms with ART adherence, less is known about how depressed mood relates to intentional versus unintentional lapses in adherence as well as the mechanisms underlying this association. The purpose of the current study was to examine the association of depressive symptoms with ART adherence, assessed as a multidimensional construct. Secondarily, this study conducted preliminary indirect path models to determine if medication self-efficacy could explain the depressed mood-adherence relationship. Depressive symptoms were not associated with 95% ART taken, self-reported viral load, deliberate adjustments to ART regimens or skipped ART doses. However, the indirect association of depressive symptoms via decrements in medication self-efficacy was significant for 95% ART taken, self-reported viral load and skipped ART doses, but not deliberate changes to ART regimens. In this sample of HIV-positive outpatients, there is evidence to support medication self-efficacy as a potential mechanism underlying the association between depressive symptoms and ART adherence. Additional longitudinal studies are needed to formally examine medication taking self-efficacy as a mediator.
Farnum, C E; Turgai, J; Wilsman, N J
1990-09-01
The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.
Time-lapse camera observations of gas piston activity at Pu‘u ‘Ō‘ō, Kīlauea volcano, Hawai‘i
Orr, Tim R.; Rea, James
2012-01-01
Gas pistoning is a type of eruptive behavior described first at Kīlauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu‘u ‘Ō‘ō cone, in Kīlauea’s east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60 min, had volumes ranging from 14 to 104 m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49 s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.
Shrivastava, Ashutosh; Gupta, Neeraj; Upadhyay, Pramod; Puliyel, Jacob
2012-01-01
Background & objectives: Stabilized live attenuated oral polio vaccine (OPV) is used to immunize children up to the age of five years to prevent poliomyelitis. It is strongly advised that the cold-chain should be maintained until the vaccine is administered. It is assumed, that vaccine vial monitors (VVMs) are reliable at all temperatures. VVMs are tested at 37°C and it is assumed that the labels reach discard point before vaccine potency drops to >0.6 log10. This study was undertaken to see if VVMs were reliable when exposed to high temperatures as can occur in field conditions in India. Methods: Vaccine vials with VVMs were incubated (10 vials for each temperature) in an incubator at different temperatures at 37, 41, 45 and 49.5°C. Time-lapse photographs of the VVMs on vials were taken hourly to look for their discard-point. Results: At 37 and 41°C the VVMs worked well. At 45°C, vaccine potency is known to drop to the discard level within 14 h whereas the VVM discard point was reached at 16 h. At 49.5°C the VVMs reached discard point at 9 h when these should have reached it at 3 h. Conclusion: Absolute reliance cannot be placed on VVM in situation where environmental temperatures are high. Caution is needed when using ‘outside the cold chain’ (OCC) protocols. PMID:22664500
Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field
NASA Astrophysics Data System (ADS)
Islam, Nayyer
One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a "new" reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the "gas cap" and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required. Using Walton's model for anisotropic unconsolidated sand, I successfully model the time-lapse changes for all phases of production. This observation may be of interest for application to other unconsolidated overpressured reservoirs under production.
NASA Astrophysics Data System (ADS)
Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine
2016-07-01
In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of improvement, which include recalibrating the baseline measurement datasets using the contemporaneous measurements of the water vapor scale height and temperature lapse rate from the oxygen sounder, and applying more accurate measurements of the sky coupling of the WVRs.
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
Fast history matching of time-lapse seismic and production data for high resolution models
NASA Astrophysics Data System (ADS)
Jimenez Arismendi, Eduardo Antonio
Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used extensively to demonstrate the value and contribution of this work. Our results show that the problem of non-uniqueness in this complex history matching problem is greatly reduced when constraints in the form of saturation maps from spatially closely sampled seismic data are included. Further on, our methodology can be used to quickly identify discrepancies between static and dynamic modeling. Reducing this gap will ensure robust and reliable models leading to accurate predictions and ultimately an optimum hydrocarbon extraction.
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Tomaszewska, M. A.; Krehbiel, C. P.; Kelgenbaeva, K.
2016-12-01
To explore the vulnerability of high-elevation communities in the Kyrgyz Republic and in Uzbekistan to changing climatic, sociodemographic, and socioeconomic conditions, we assembled image time series to characterize the condition of pastures near villages at high elevation (>2000 masl) and in remote pastures at higher elevations. Here we describe the application of the convex quadratic (CxQ) model of land surface phenology to highland pasturelands for selected oblasts in the Kyrgyz Republic and in eastern Uzbekistan. We used 16 years (2000-2015) of Landsat normalized difference vegetation index (NDVI) data with MODIS land surface temperature data processed into accumulated growing degree-days. The peak height of the NDVI and the thermal time to peak are two key phenological metrics derived analytically from the fitted parameter coefficients of the CxQ model for each pixel time series. Both exhibited sensitivity to elevation, which we describe in terms of phenometric lapse rates (PLRs). Interannual variation in PLRs was expressed differently for the peak NDVI and the thermal time to peak. Peak NDVI increased with elevation up to a point but also exhibited more spatial variation in dry years than in wetter years. Thermal time to peak exhibited strong, highly significant negative linear relationships to elevation with steeper slopes in drier years. Both types of PLRs were modulated by aspect. These relationships and the associated CxQ models by elevation and aspect can provide expectations against which to detect changes in pasture status as a result of management or weather.
NASA Technical Reports Server (NTRS)
Ridley, B.; Atlas, E.; Selkirk, H.; Pfister, L.; Montzka, D.; Walega, J.; Donnelly, S.; Stroud, V.; Richard, E.; Kelly, K.
2004-01-01
Measurements of ozone, reactive carbon and nitrogen, and other trace constituents from flights of the NASA WB-57F aircraft in the upper troposphere and lower stratosphere reveal that convection in the tropics can present a complex mix of surface-emitted constituents right up to the altitude of the lapse rate tropopause. At higher latitudes over the southern US, the strongest transport signal, in terms of constituent mixing ratios, occurred in the potential temperature range of 340-350K or approximately over the altitude range of 9-11km. Weaker convective signals were also seen up to near the tropopause. There was no evidence of convective transport directly into the lower stratosphere from these flights. $CPY 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, S. H.; Park, W.; Jung, H. S.
2018-04-01
Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.
Time-lapse camera studies of sea-disposed chemical munitions in Hawaii
NASA Astrophysics Data System (ADS)
Edwards, Margo H.; Fornari, Daniel J.; Rognstad, Mark R.; Kelley, Christopher D.; Mah, Christopher L.; Davis, Logan K.; Flores, Kyle R. M.; Main, Erin L.; Bruso, Natalie L.
2016-06-01
The interactions between fauna and sea-disposed munitions provide important evidence regarding whether munitions constituents affect the health of the ocean environment and its inhabitants. To date few studies of these interactions have been conducted at deep-water disposal sites; typically observations of fauna in the vicinity of sea-disposed munitions are limited to the few minutes or hours required to collect physical samples at a specific location. During the 2012 Hawaii Undersea Military Munitions Assessment (HUMMA) field program we deployed two deep-sea time-lapse camera systems with the objectives of cataloging the diversity of fauna visiting sea-disposed chemical munitions and observing faunal behavior and physiology. Over the 1- and 3-day deployments we recorded 28 different species of fishes, crustaceans, mollusks, cnidarians, and echinoderms at the two sites. Both cameras captured the previously undocumented behavior of brisingid sea stars repositioning themselves along chemical munitions casings. Despite the fact that brisingid sea stars are able to move, for the duration of both time-lapse experiments they remained on chemical munitions casings. We interpret this result to indicate that the advantages of residing on a hard substrate slightly elevated above the seafloor outweigh the effects of chemical munitions constituents for brisingid sea stars. One type of physiological anomaly observed on several arms of the brisingid sea stars at the time-lapse sites led to the collection and examination of six specimens. As reported by Mah (2015. Deep Sea Res. II, 2015, XX-XX), these physiological features are the result of parasitic crustaceans and are not caused by chemical munitions constituents.
Otsuki, Junko; Iwasaki, Toshiroh; Katada, Yuya; Sato, Haruka; Furuhashi, Kohyu; Tsuji, Yuta; Matsumoto, Yukiko; Shiotani, Masahide
2016-09-01
To examine the relationship between the inner cell mass (ICM) grade and its morphological configuration on the occurrence of monochorionic diamniotic (M-D) twinning. Retrospective embryo cohort study. Private IVF clinic. Evaluation of frozen-thawed single blastocyst transfers with hormone replacement treatment in 8,435. This cohort included 71 blastocysts and their ICMs observed by time-lapse photography. Any changes in configuration of the ICMs observed by time-lapse photography were analyzed retrospectively. The amount of loosening of blastomeres within the ICM was evaluated by time-lapse observations. The number of cells that were involved in the loosening process was also assessed. Both of these parameters were correlated with the type of monozygotic twinning that eventuated. The M-D twinning incidence resulting from blastocysts with a high grade ICM (grade A) were transferred was 0.38% (3/796), whereas it was significantly higher, 1.38% (34/2,463), when blastocysts with a poorer (B and C) grade ICM were transferred. Among 71 transferred frozen-thawed blastocysts that were studied with time-lapse photography, there were two dichorionic diamniotic and one M-D twins. Careful observations of the embryo that resulted in the one M-D case, revealed that the ICM acquired a looser appearance due to decompaction of at least eight cells. This type of decompaction was not observed in the ICMs of other transferred blastocysts. The occurrence of M-D twinning may be avoided by excluding blastocysts that contain decompacting ICMs. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Time-lapse microscopy of lung endothelial cells under hypoxia
NASA Astrophysics Data System (ADS)
Mehrvar, Shima; Ghanian, Zahra; Kondouri, Ganesh; Camara, Amadou S.; Ranji, Mahsa
2017-02-01
Objective: This study utilizes fluorescence microscopy to assess the effect of the oxygen tension on the production of reactive oxygen species (ROS) in mitochondria of fetal pulmonary artery endothelial cells (FPAECs). Introduction: Hypoxia is a severe oxygen stress, which mostly causes irreversible injury in lung cells. However, in some studies, it is reported that hypoxia decreases the severity of injuries. In this study, ROS production level was examined in hypoxic FPAECs treated with pentachlorophenol (PCP, uncoupler). This work was accomplished by monitoring and quantifying the changes in the level of the produced ROS in hypoxic cells before and after PCP treatment. Materials and methods: The dynamic of the mitochondrial ROS production in two groups of FPAECs was measured over time using time-lapse microscopy. For the first group, cells were incubated in 3% hypoxic condition for 2 hours and then continuously were exposed to hypoxic condition for imaging as well. For the second group, cells were incubated in normal oxygen condition. Time lapse images of the cells loaded with Mito-SOX (ROS indicator) were acquired, and the red fluorescence intensity profile of the cells was calculated. Changes in the level of the fluorescence intensity profile while they are treated with PCP indicates the dynamics of the ROS level. Results: The intensity profiles of the PCP-treated cells in the first group showed 47% lower ROS production rate than the PCP-treated cells in the second group. Conclusion: Time lapse microscopy revealed that hypoxic cells have lower ROS generation while treated with PCP. Therefore, this result suggests that hypoxia decreased electron transport chain activity in uncoupled chain.
The contribution of attentional lapses to individual differences in visual working memory capacity.
Adam, Kirsten C S; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K
2015-08-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.
The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity
Adam, Kirsten C. S.; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K.
2015-01-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe. PMID:25811710
Leventhal, Adam M.; Japuntich, Sandra J.; Piper, Megan E.; Jorenby, Douglas E.; Schlam, Tanya R.; Baker, Timothy B.
2012-01-01
Research exploring psychological dysfunction as a predictor of smoking cessation success may be limited by nonoptimal predictor variables (i.e., categorical psychodiagnostic measures vs. continuous personality-based manifestations of dysfunction) and imprecise outcomes (i.e., summative point prevalence abstinence vs. constituent cessation milestone measures). Accordingly, this study evaluated the unique and overlapping relations of broad-spectrum personality traits (positive emotionality, negative emotionality, and constraint) and past-year psychopathology (anxiety, mood, and substance use disorder) to point prevalence abstinence and three smoking cessation milestones: (1) initiating abstinence; (2) first lapse; and (3) transition from lapse to relapse. Participants were daily smokers (N=1365) enrolled in a smoking cessation treatment study. In single predictor regression models, each manifestation of internalizing dysfunction (lower positive emotionality, higher negative emotionality, and anxiety and mood disorder) predicted failure at one or more cessation milestone. In simultaneous predictor models, lower positive and higher negative emotionality significantly predicted failure to achieve milestones after controlling for psychopathology. Psychopathology did not predict any outcome when controlling for personality. Negative emotionality showed the most robust and consistent effects, significantly predicting failure to initiate abstinence, earlier lapse, and lower point prevalence abstinence rates. Substance use disorder and constraint did not predict cessation outcomes, and no single variable predicted lapse-to-relapse transition. These findings suggest that personality-related manifestations of internalizing dysfunction are more accurate markers of affective sources of relapse risk than mood and anxiety disorders. Further, individuals with high trait negative emotionality may require intensive intervention to promote the initiation and early maintenance of abstinence. PMID:22642858
Bener, Abdulbari; Verjee, Mohamud; Dafeeah, Elnour E; Yousafzai, Mohammad T; Mari, Sundus; Hassib, Ahmed; Al-Khatib, Hamza; Choi, Min Kyung; Nema, Noor; Ozkan, Türker; Lajunen, Timo
2013-05-12
The aim of this study was to compare the driving behaviours of four ethnic groups and to investigate the relationship between violations, errors and lapses of DBQ and accident involvement in Qatar. The Driver Behaviour Questionnaire (DBQ) was used to measure the aberrant driving behaviours leading to accidents. Of 2400 drivers approached, 1824 drivers agreed to participate (76%) and completed the driver behaviour questionnaire and background information. The study revealed that the majority of the Qatari (35.9%) and Jordanian drivers (37.5%) were below 30 years of age, whereas Filipino (42.3%) and Indian subcontinent (34.1%) drivers were in the age group of 30-39 years. Qatari drivers (52%) were involved in most accidents, followed by Jordanians (48.3%). The most common type of collision was a head on collision, which was similar in all four ethnic groups. The Qatari drivers scored higher on almost all items of violations, errors and lapses compared to other ethnic groups, while Filipino drivers were lower on all the items. The most common violation was the same in all four ethnic groups "Disregard the speed limits on a motorway". The most common error item observed was "Queing to turn right/left on to a main road". "Forget where you left your car" and "Hit something when reversing" were the two lapses identified in factor analysis. The present study identified that Qatari drivers scored higher on most of the items of violations, errors and lapses of DBQ compared to other countries, whereas Filipino drivers scored lower in DBQ items.