Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.
Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S
2008-01-01
The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.
Bernigaud, Charlotte; Fang, Fang; Fischer, Katja; Lespine, Anne; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier
2016-10-01
Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26-100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite's entire life cycle and enabling long-lasting efficacy. Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies.
Bernigaud, Charlotte; Aho, Ludwig Serge; Dreau, Dominique; Kelly, Andrew; Sutra, Jean-François; Moreau, Francis; Lilin, Thomas; Botterel, Françoise; Guillot, Jacques; Chosidow, Olivier
2016-01-01
Background Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. Methodology/Principal Findings Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26–100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite’s entire life cycle and enabling long-lasting efficacy. Conclusions/Significance Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies. PMID:27732588
A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors
NASA Astrophysics Data System (ADS)
Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K.
We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption-desorption (A-D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A-Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.
Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun
2016-01-01
A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d).
Experience from start-ups of the first ANITA Mox plants.
Christensson, M; Ekström, S; Andersson Chan, A; Le Vaillant, E; Lemaire, R
2013-01-01
ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the 'BioFarm concept', has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3-15% of the added carriers being from the 'BioFarm', with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m³ d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N₂O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.
Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Ronald James
The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) duringmore » cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.« less
Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I
2007-04-01
Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bays; W. Skerjanc; M. Pope
A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch averagemore » discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.« less
Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up
NASA Astrophysics Data System (ADS)
Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.
2014-06-01
The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D.J.; Lidstrom, M.E.
The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less
Tsai, Tzu-Yun; Chen, Ta-Ching; Wang, I-Jong; Yeh, Chao-Yuan; Su, Ming-Jai; Chen, Ruey-Hua; Tsai, Tzu-Hsun; Hu, Fung-Rong
2015-02-10
Moxifloxacin (MOX), a fourth generation fluoroquinolone (FQ), has a wide antibacterial spectrum, but may show cytotoxicity characterized by high productions of reactive oxygen species (ROS). This study investigated the protective role of a common antioxidant agent, resveratrol (trans-3,5,4'-trihydroxystilbene), against the cytotoxicity caused by MOX. Experiments were performed with a human corneal epithelial cell line (HCECs; ATCC-CRL-11515). Another commonly used FQ, levofloxacin (LEV), and the most commonly used preservatives, benzalkonium chloride (BAC), were also used for comparison with MOX. Cell viability and morphologic changes after treatment were evaluated with trypan blue exclusion assay, propidium iodine/annexin V-FITC staining, and flow cytometry. Chemiluminescence immunoassay was used for ROS quantification. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, wound healing assay, and intracellular detections of oxidative stress were performed to evaluate the effects of resveratrol. The MOX group, similar to the BAC group, showed significant cell shrinkage and death compared with the LEV group. High ROS production in HCECs of MOX group was observed both by chemiluminescence immunoassay and intracellular images. Within the observations of MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, live cell images, and wound healing process in vitro, the cytotoxic effects of the MOX and BAC groups were opposed by resveratrol. Human corneal epithelial cells pretreated with resveratrol demonstrated better cell viability and healing rate in the early stage. The protective effects of antioxidant agents indicate that MOX, similar to BAC, causes oxidative stress-related cell damage. The results also inspired us to think about a "supplementary regimen" to increase safety and decrease the adverse effect in the treatment of corneal infections. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production
NASA Astrophysics Data System (ADS)
Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda
2016-10-01
Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.
NASA Astrophysics Data System (ADS)
Kavi Rasu, K.; Balaji, D.; Moorthy Babu, S.
2017-06-01
A series of LiGd(W(1-x)MoxO4)2 [hereafter LGWM]:Eu3+(x=0.00 to 1.00) red-emitting phosphors were synthesized by sol-gel method. Metal nitrates were used as starting materials with citric acid as chelator and ethylene glycol as binder. Synthesized gel was pre-fired at 523 K and calcined at 1073 K using resistive furnace in air atmosphere. The crystallinity, surface morphology and luminescent properties of the phosphors were investigated using powder X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrophotometry respectively. The intensity of the red emission at 615 nm for 5D0→7F2 electric dipole transition increases as the content of Mo6+ was increased and reach a maximum, when the relative ratio of W/Mo is 1:1 under 396 nm excitation.
Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne
2012-01-01
The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688
Chérif, Thouraya; Saidani, Mabrouka; Decré, Dominique; Boutiba-Ben Boubaker, Ilhem; Arlet, Guillaume
2016-01-01
Over a period of 40 months, plasmid-mediated AmpC β-lactamases were detected in Tunis, Tunisia, in 78 isolates (0.59%) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. In 67 isolates, only one ampC gene was detected, i.e., blaCMY-2-type (n = 33), blaACC (n = 23), blaDHA (n = 6) or blaEBC (n = 5). Multiple ampC genes were detected in 11 isolates, with the following distribution: blaMOX-2, blaFOX-3, and blaCMY-4/16 (n = 6), blaFOX-3 and blaMOX-2 (n = 3), and blaCMY-4 and blaMOX-2 (n = 2). A great variety of plasmids carrying these genes was found, independently of the species and the bla gene. If the genetic context of blaCMY-2-type is variable, that of blaMOX-2, reported in part previously, is unique and that of blaFOX-3 is unique and new. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Van der Meeren, Anne; Moureau, Agnes; Griffiths, Nina M
2014-11-01
Abstract Purpose: To investigate the consequences of alveolar macrophage (AM) depletion on Mixed OXide fuel (MOX: U, Pu oxide) distribution and clearance, as well as lung damage following MOX inhalation. Rats were exposed to MOX by nose only inhalation. AM were depleted with intratracheal administration of liposomal clodronate at 6 weeks. Lung changes, macrophage activation, as well as local and systemic actinide distribution were studied up to 3 months post-inhalation. Clodronate administration modified excretion/retention patterns of α activity. At 3 months post-inhalation lung retention was higher in clodronate-treated rats compared to Phosphate Buffered Saline (PBS)-treated rats, and AM-associated α activity was also increased. Retention in liver was higher in clodronate-treated rats and fecal and urinary excretions were lower. Three months after inhalation, rats exhibited lung fibrotic lesions and alveolitis, with no marked differences between the two groups. Foamy macrophages of M2 subtype [inducible Nitric Oxide Synthase (iNOS) negative but galectin-3 positive] were frequently observed, in correlation with the accumulation of MOX particles. AM from all MOX-exposed rats showed increased chemokine levels as compared to sham controls. Despite the transient reduced AM numbers in clodronate-treated animals no major differences on lung damage were observed as compared to non-treated rats after MOX inhalation. The higher lung activity retention in rats receiving clodronate seems to be part of a general inflammatory response and needs further investigation.
The phase state at high temperatures in the MOX-SiO 2 system
NASA Astrophysics Data System (ADS)
Nakamichi, S.; Kato, M.; Sunaoshi, T.; Uchida, T.; Morimoto, K.; Kashimura, M.; Kihara, Y.
2009-06-01
Influence of impurity Si on microstructure in a plutonium and uranium mixed oxide (MOX), which is used for fast breeder reactor fuel, was investigated, and phase state in 25% SiO 2 - (U 0.7Pu 0.3)O 2 was observed as a function of oxygen chemical potential. Compounds composed of Pu and Si with other elements were observed at grain boundaries of the MOX parent phase in the specimens after annealing. These compounds were not observed in the grain interior and the MOX phase was not affected significantly by impurity Si. It was found that the compounds tended to form more observably with decreasing O/M ratio and with increasing annealing temperatures.
Morris, C J; Lidstrom, M E
1992-01-01
In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436
NASA Astrophysics Data System (ADS)
Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge
2017-03-01
Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia
2002-04-01
fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of
NASA Astrophysics Data System (ADS)
Chopra, Nikita; Agarwal, Shivangi; Verma, Shashikala; Bhatnagar, Sonika; Bhatnagar, Rakesh
2011-03-01
Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254-7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein-protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX-DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.
Structural, electronic, magnetic and optical properties of semiconductor Zn1-xMoxTe compound
NASA Astrophysics Data System (ADS)
Feng, Zhong-Ying; Zhang, Jian-Min
2018-03-01
The structural, electronic, magnetic and optical properties of the Zn1-xMoxTe (x = 0.00, 0.25, 0.50, 0.75, 1.00) have been investigated by the spin-polarized first-principles calculations. The Zn0.50Mo0.50Te has tetragonal structure while the Zn1-xMoxTe (x = 0.00, 0.25, 0.75, 1.00) crystallize in cubic structures. For Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) alloys, the lattice constant and the volume are found larger than those of pure ZnTe alloy. The Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) is magnetic and the Mo element is found dominant in the bands crossing the Fermi level in the spin-up channel. The Zn0.75Mo0.25Te and MoTe have half-metallic (HM) behavior. In spin-down channel of the Zn0.75Mo0.25Te, the Zn atom mainly contributed to the conduction band minimum (CBM), while the valence band maximum (VBM) appears mainly due to contribution of Te element. A positive spin splitting and crystal field splitting of d-states of Mo atom has been observed for Zn0.75Mo0.25Te alloy. The maximum values of the absorption coefficients αMAX(ω) of the Zn0.50Mo0.50Te alloy along a or b axes are smaller than the absorption coefficient along c axis. The first absorption peak appearing in the energy range of 0.000-1.000 eV for Zn1-xMoxTe (x = 0.25, 0.50, 0.75 or 1.00) alloys is the new peak which is not observed in ZnTe.
NASA Astrophysics Data System (ADS)
Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.
2014-12-01
Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.
An Analysis of Coherent Digital Receivers in the Presence of Colored Noise Interference.
1985-06-01
115 6.4 Pe for Det-erministic Jamnmers, JSR = 0.01, E0.3---------------------------------------------116 6.5 Pe for Deterministic Jamnmers, JSR = 0.1...k k where h p(t) and hhi(t) are the particular and homogeneous solutions, respectively, to a differential equation derived from the Fredholm I...yields 2 2D(s2)c (s) = N(s ) (3.4)c Multiplication by s corresponds to differentiation with respect to t in the time domain. So, Eq. (3.4) becomes D(p 2)K
Canadian experience in irradiation and testing of MOX fuel
NASA Astrophysics Data System (ADS)
Yatabe, S.; Floyd, M.; Dimayuga, F.
2018-04-01
Experimental irradiation and performance testing of Mixed OXide (MOX) fuel at the Canadian Nuclear Laboratories (CNL) has taken place for more than 40 years. These experiments investigated MOX fuel behaviour and compared it with UO2 behaviour to develop and verify fuel performance models. This article compares the performance of MOX of various concentrations and homogeneities, under different irradiation conditions. These results can be applied to future fuel designs. MOX fuel irradiated by CNL was found to be comparable in performance to similarly designed and operated UO2 fuel. MOX differs in behaviour from UO2 fuel in several ways. Fission-gas release, grain growth and the thickness of zirconium oxide on the inner sheath appear to be related to MOX fuel homogeneity. Columnar grains formed at the pellet centre begin to develop at lower powers in MOX than in UO2 fuel.
Performance of the MTR core with MOX fuel using the MCNP4C2 code.
Shaaban, Ismail; Albarhoum, Mohamad
2016-08-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shi, Jingjing; Cao, Hongxia; Wang, Ruiyu
2017-01-01
CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications. PMID:29234577
Farmer, J J; Carter, G P; Miller, V L; Falkow, S; Wachsmuth, I K
1992-01-01
We evaluated several simple laboratory tests that have been used to identify pathogenic serotypes of Yersinia enterocolitica or to indicate the pathogenic potential of individual strains. A total of 100 strains of Y. enterocolitica were studied, including 25 isolated during five outbreak investigations, 63 from sporadic cases, and 12 from stock cultures. The pyrazinamidase test, which does not depend on the Yersinia virulence plasmid, correctly identified 60 of 63 (95% sensitivity) strains of pathogenic serotypes and 34 of 37 (92% specificity) strains of nonpathogenic serotypes. Salicin fermentation-esculin hydrolysis (25 degrees C, 48 h) correctly identified all 63 (100% sensitivity) strains of the pathogenic serotypes and 34 of 37 (92% specificity) strains of the nonpathogenic serotypes. The results of the pyrazinamidase and salicin-esculin tests disagreed for only 7 of the 100 strains of Y. enterocolitica, and these would require additional testing. Congo red-magnesium oxalate (CR-MOX) agar determines Congo red dye uptake and calcium-dependent growth at 36 degrees C, and small red colonies are present only if the strain contains the Yersinia virulence plasmid. This test has proven to be extremely useful for freshly isolated cultures, but only 15 of 62 strains of pathogenic serotypes that had been stored for 1 to 10 years were CR-MOX positive. None of the 16 strains of Y. enterocolitica serotype O3 fermented D-xylose, so this test easily differentiated strains of this serotype, which now appears to be the most common in the United States. Although antisera that can actually be used to serotype strains of Y. enterocolitica are not readily available, the four simple tests described above can be used to screen for pathogenic serotypes. Images PMID:1400958
Kantermann, Thomas; Duboutay, Françoise; Haubruge, Damien; Hampton, Shelagh; Darling, Andrea L; Berry, Jacqueline L; Kerkhofs, Myriam; Boudjeltia, Karim Zouaoui; Skene, Debra J
2014-12-01
The aim of this pilot study was to explore the risk of metabolic abnormalities in steel workers employed in different shift-work rotations. Male workers in a steel factory [16 employed in a fast clockwise rotation (CW), 18 in slow counterclockwise rotation (CC), 9 day workers (DW); mean age 43.3 ± SD 6.8 years] with at least 5 years experience in their current work schedule participated. All workers provided fasting blood samples between 06:00 and 08:00 h for plasma glucose, insulin, apo-lipoproteins A and B (ApoA, ApoB), high- and low-density lipoproteins (HDL and LDL), total cholesterol (tCH), triglycerides (TG), minimally oxidized (mox) LDL, C-reactive protein (CRP), interleukin-8 (IL-8) and serum 25-hydroxyvitamin D (25(OH)D). HOMA index (homeostatic model assessment) was calculated to evaluate insulin resistance, beta cell function and risk of diabetes. Information on demographics, health, stimulants, sleep, social and work life, chronotype (phase of entrainment) and social jetlag (difference between mid-sleep on workdays and free days) as a surrogate for circadian disruption was collected by questionnaire. Neither chronotype nor social jetlag was associated with any of the metabolic risk blood markers. There were no significant differences in 25(OH)D, ApoA, ApoB, CRP, HDL, IL-8, insulin, LDL, mox-LDL, mox-LDL/ApoB ratio, tCH and TG levels between the three work groups. Although we did observe absolute differences in some of these markers, the small sample size of our study population might prevent these differences being statistically significant. Fasting glucose and HOMA index were significantly lower in CW compared to DW and CC, indicating lower metabolic risk. Reasons for the lower fasting glucose and HOMA index in CW workers remains to be clarified. Future studies of workers in different shift rotations are warranted to understand better the differential effects of shift-work on individual workers and their health indices.
Moxidectin and the avermectins: Consanguinity but not identity
Prichard, Roger; Ménez, Cécile; Lespine, Anne
2012-01-01
The avermectins and milbemycins contain a common macrocyclic lactone (ML) ring, but are fermentation products of different organisms. The principal structural difference is that avermectins have sugar groups at C13 of the macrocyclic ring, whereas the milbemycins are protonated at C13. Moxidectin (MOX), belonging to the milbemycin family, has other differences, including a methoxime at C23. The avermectins and MOX have broad-spectrum activity against nematodes and arthropods. They have similar but not identical, spectral ranges of activity and some avermectins and MOX have diverse formulations for great user flexibility. The longer half-life of MOX and its safety profile, allow MOX to be used in long-acting formulations. Some important differences between MOX and avermectins in interaction with various invertebrate ligand-gated ion channels are known and could be the basis of different efficacy and safety profiles. Modelling of IVM interaction with glutamate-gated ion channels suggest different interactions will occur with MOX. Similarly, profound differences between MOX and the avermectins are seen in interactions with ABC transporters in mammals and nematodes. These differences are important for pharmacokinetics, toxicity in animals with defective transporter expression, and probable mechanisms of resistance. Resistance to the avermectins has become widespread in parasites of some hosts and MOX resistance also exists and is increasing. There is some degree of cross-resistance between the avermectins and MOX, but avermectin resistance and MOX resistance are not identical. In many cases when resistance to avermectins is noticed, MOX produces a higher efficacy and quite often is fully effective at recommended dose rates. These similarities and differences should be appreciated for optimal decisions about parasite control, delaying, managing or reversing resistances, and also for appropriate anthelmintic combination. PMID:24533275
Determining Reactor Fuel Type from Continuous Antineutrino Monitoring
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Huber, Patrick
2017-09-01
We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.
Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Fernández-Liencres, M Paz; Fernández-Gómez, Manuel; Moreno-Carretero, Miguel N
2013-01-14
The oxime derived from 6-acetyl-1,3,7-trimethyllumazine (1) ((E-6-(hydroxyimino)ethyl)-1,3,7-trimethylpteridine-2,4(1H,3H)-dione, DLMAceMox) has been prepared and its molecular and crystal structure determined from spectral and XRD data. The oxime ligand was reacted with silver nitrate, perchlorate, thiocyanate, trifluoromethylsulfonate and tetrafluoroborate to give complexes with formulas [Ag(2)(DLMAceMox)(2)(NO(3))(2)](n) (2), [Ag(2)(DLMAceMox)(2)(ClO(4))(2)](n) (3), [Ag(2)(DLMAceMox)(2)(SCN)(2)] (4), [Ag(2)(DLMAceMox)(2)(CF(3)SO(3))(2)(CH(3)CH(2)OH)]·CH(3)CH(2)OH (5) and [Ag(DLMAceMox)(2)]BF(4) (6). Single-crystal XRD studies show that the asymmetrical residual unit of complexes 2, 3 and 5 contains two quite different but connected silver centers (Ag1-Ag2, 2.9-3.2 Å). In addition to this, the Ag1 ion displays coordination with the N5 and O4 atoms from both lumazine moieties and a ligand (nitrato, perchlorato or ethanol) bridging to another disilver unit. The Ag2 ion is coordinated to the N61 oxime nitrogens, a monodentate and a (O,O)-bridging nitrato/perchlorato or two monodentate O-trifluoromethylsulfonato anions. The coordination polyhedra can be best described as a strongly distorted octahedron (around Ag1) and a square-based pyramid (around Ag2). The Ag-N and Ag-O bond lengths range between 2.22-2.41 and 2.40-2.67 Å, respectively. Although the structure of 4 cannot be resolved by XRD, it is likely to be similar to those described for 2, 3 and 5, containing Ag-Ag units with S-thiocyanato terminal ligands. Finally, the structure of the tetrafluoroborate compound 6 is mononuclear with a strongly distorted tetrahedral AgN(4) core (Ag-N, 2.27-2.43 Å). Always, the different Ag-N distances found clearly point to the more basic character of the oxime N61 nitrogen atom when compared with the pyrazine N5 one. A topological analysis of the electron density within the framework provided by the quantum theory of atoms in molecules (QTAIM) using DFT(M06L) levels of theory has been performed. Every Ag-Ag and Ag-ligand interaction has been characterized in terms of Laplacian of the electron density, [nabla](2)ρ(r), and the total energy density, H(r).
NASA Astrophysics Data System (ADS)
Ramos, José A.; Mercère, Guillaume
2016-12-01
In this paper, we present an algorithm for identifying two-dimensional (2D) causal, recursive and separable-in-denominator (CRSD) state-space models in the Roesser form with deterministic-stochastic inputs. The algorithm implements the N4SID, PO-MOESP and CCA methods, which are well known in the literature on 1D system identification, but here we do so for the 2D CRSD Roesser model. The algorithm solves the 2D system identification problem by maintaining the constraint structure imposed by the problem (i.e. Toeplitz and Hankel) and computes the horizontal and vertical system orders, system parameter matrices and covariance matrices of a 2D CRSD Roesser model. From a computational point of view, the algorithm has been presented in a unified framework, where the user can select which of the three methods to use. Furthermore, the identification task is divided into three main parts: (1) computing the deterministic horizontal model parameters, (2) computing the deterministic vertical model parameters and (3) computing the stochastic components. Specific attention has been paid to the computation of a stabilised Kalman gain matrix and a positive real solution when required. The efficiency and robustness of the unified algorithm have been demonstrated via a thorough simulation example.
Convergence studies of deterministic methods for LWR explicit reflector methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, S.; Hursin, M.; Ferroukhi, H.
2013-07-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on verymore » different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)« less
Wang, Long; Zou, Wei; Chi, Qing-bin
2009-06-01
In order to explore the problems and countermeasure in the methodology of acupuncture and moxibustion clinical researches at present, clinical research literatures about acupuncture and moxibustion (Acup-Mox) published in recent years in our country were reviewed. For the urgent need of the current internationalization of Acup-Mox, the authors proposed the model of clinical research on Acup-Mox, which should strictly stick to the international standard and fully embody traditional Chinese medicine characteristics in the intervention measures of acupuncture. It is indicated that innovation of the methodology about clinical researches of Acup-Mox has great significance in improving the quality of clinical research on Acup-Mox in our country and promoting internationalization of Acup-Mox.
NASA Astrophysics Data System (ADS)
Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.
2015-04-01
Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas transport. Two concepts of gas-tracer-test applications in termite mounds are presented, together with 3D photogrammetric approaches to estimate volume, surface area and internal gas volume of termite mounds that enables acuare scaling of methane production and consumption. In a further phase of the project, the application of these methods in a comprehensive field survey in the Australian savanna ecosystem will give insights into major driving factors of MOX in termite mounds, a major driver of nutrient cycling in this extensive tropical ecosystem.
The Mars oxidant experiment (MOx) for Mars '96
NASA Technical Reports Server (NTRS)
McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.;
1998-01-01
The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.
ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel
The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rodsmore » was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.« less
A comparison of two integrated approaches of controlling nematode parasites in small ruminants.
Miller, J E; Burke, J M; Terrill, T H; Kearney, M T
2011-06-10
Control of gastrointestinal nematodes (GIN) in small ruminants in regions of the world where anthelmintic resistance is prevalent must rely on more than just chemical deworming strategies. The objective of this experiment was to compare two integrated treatment protocols for control of GIN (primarily Haemonchus contortus in this region) using anthelmintics, copper oxide wire particles (COWP) and FAMACHA(©), compared to traditional anthelmintic use only. Three separate trials were conducted on mature ewes, weaned goats, and weaned lambs in which three deworming management strategies were applied: 1) all animals were dewormed with levamisole at four week intervals (LEV), 2) individual animals were dewormed with moxidectin when scored≥4 (ewes) or ≥3 (kids and lambs) using FAMACHA(©) (FAM/MOX), 3) all animals were dewormed with moxidectin initially and again with COWP (2g) when group mean FEC exceeded 500 (ewes), 3000 (kids), or 1000 (lambs) eggs/g (MOX/COWP). In this final group, during periods between group treatments, individual animals were dewormed with albendazole and levamisole according to FAMACHA(©) score. Fecal egg counts (FEC) and blood packed cell volume (PCV) were determined every 7 days and body weight every 28 days for 30, 20, or 16 weeks in ewes, goats, and lambs, respectively. Efficacy of levamisole was 83.4-86.4%, efficacy of moxidectin was 93.5-100%, and efficacy of COWP was 10.8-98.1% among the three trials. The mean number of deworming treatments per animal that occurred for the LEV, FAM/MOX, and MOX/COWP groups, respectively, was 7.9, 0.6, and 2.5±0.4 (P<0.001) for ewes, 5.2, 1.6, and 3.4±0.3 (P<0.001) for goats, and 4.0, 1.7, and 3.6±0.2 (P<0.001) for lambs. Production (body weight of lambs weaned from ewes or final body weight of kids and lambs) was similar among management strategy groups for ewes and kids, but FAM/MOX lambs were lighter by the end of the trial (P<0.003). While more time and labor was required to use the FAMACHA(©) system, a more conservative use of anthelmintics occurred in the FAM/MOX group. Copyright © 2011 Elsevier B.V. All rights reserved.
Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S
2017-02-01
Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, J.J.
2005-05-27
The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are describedmore » as accurately as possible, given the current sources of data.« less
Muscle oxygenation as an early predictor of shock severity in trauma patients
Arakaki, Lorilee S. L.; Bulger, Eileen M.; Ciesielski, Wayne A.; Carlbom, David J.; Fisk, Dana M.; Sheehan, Kellie L.; Asplund, Karin M.; Schenkman, Kenneth A.
2016-01-01
Introduction We evaluated the potential utility of a new prototype noninvasive muscle oxygenation (MOx) measurement for the identification of shock severity in a population of patients admitted to the trauma resuscitation rooms of a Level I regional trauma center. The goal of this project was to correlate MOx with shock severity as defined by standard measures of shock: systolic blood pressure, heart rate, and lactate. Methods Optical spectra were collected from subjects by placement of a custom-designed optical probe over the first dorsal interosseous muscles on the back of the hand. Spectra were acquired from trauma patients as soon as possible upon admission to the trauma resuscitation room. Patients with any injury were eligible for study. MOx was determined from the collected optical spectra with a multi-wavelength analysis that used both visible and near-infrared regions of light. Shock severity was determined in each patient by a scoring system based on combined degrees of hypotension, tachycardia, and lactate. MOx values of patients in each shock severity group (mild, moderate, and severe) were compared using two-sample t-tests. Results In 17 healthy control patients, the mean MOx value was 91.0 ± 5.5%. A total of 69 trauma patients were studied. Patients classified as having mild shock had a mean MOx of 62.5 ± 26.2% (n = 33), those classified as in moderate shock had a mean MOx of 56.9 ± 26.9% (n = 25) and those classified as in severe shock had a MOx of 31.0 ± 17.1% (n = 11). Mean MOx for each of these groups was statistically different from the healthy control group (p<0.05). Receiver operating characteristic (ROC) analyses show that MOx and shock index (heart rate/systolic blood pressure) identified shock similarly well (area under the curves (AUC) = 0.857 and 0.828, respectively). However, MOx identified mild shock better than shock index in the same group of patients (AUC = 0.782 and 0.671, respectively). Conclusions The results obtained from this pilot study indicate that MOx correlates with shock severity in a population of trauma patients. Noninvasive and continuous MOx holds promise to aid in patient triage and to evaluate patient condition throughout the course of resuscitation. PMID:27820776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.L.; Haygood, M.G.; Lidstrom, M.E.
An open-reading-frame fragment of a Methylobacterium sp. strain AM1 gene (moxF) encoding a portion of the methanol dehydrogenase structural protein has been used as a hybridization probe to detect similar sequences in a variety of methylotrophic bacteria. This hybridization was used to isolate clones containing putative moxF genes from two obligate methanotrophic bacteria, Methylococcus capsulatus Bath and Methylomonas albus BG8. The identity of these genes was confirmed in two ways. A T7 expression vector was used to produce methanol dehydrogenase protein in Escherichia coli from the cloned genes,a and in each case the protein was identified by immunoblotting with antiserummore » against the Methylomonas albus methanol dehydrogenase. In addition, a moxF mutant of Methylobacterium strain AM1 was complemented to a methanol-positive phenotype that partially restored methanol dehydrogenase activity, using broad-host-range plasmids containing the moxF genes from each methanotroph. The partial complementation of a moxF mutant in a facultative serine pathway methanol utilizer by moxF genes from type I and type X obligate methane utilizers suggests broad functional conservation of the methanol oxidation system among gram-negative methylotrophs.« less
Lyons, Eugene T; Tolliver, Sharon C; Collins, Sandra S; Ionita, Mariana; Kuzmina, Tetiana A; Rossano, Mary
2011-02-01
Efficacy of ivermectin (IVM) and moxidectin (MOX) against small strongyles was evaluated in horses (n=363) in field tests on 14 farms in Central Kentucky between 2007 and 2009. Most of the horses were yearlings but a few were weanlings and mares. The number of horses treated with IVM was 255 and those treated with MOX was 108. Horses on six farms were allotted into two groups. One group was treated with each of the two drugs, whereas horses on the other eight farms were treated with only one of the two drugs--IVM on six farms and MOX on two farms. Strongyle eggs per gram of feces (EPGs) compared to initial use of IVM and MOX returned almost twice as quickly after treatment of horses on all of the farms. IVM has been used much more extensively in this geographical area than MOX. Reduced activity of MOX was evident even on farms with rare or no apparent previous use of MOX but with probable extensive use of IVM.
Barrel maturation, oak alternatives and micro-oxygenation: influence on red wine aging and quality.
Oberholster, A; Elmendorf, B L; Lerno, L A; King, E S; Heymann, H; Brenneman, C E; Boulton, R B
2015-04-15
The impact of micro-oxygenation (MOX) in conjunction with a variety of oak alternatives on phenolic composition and red wine aging was investigated and compared with traditional barrel aging. Although several studies concluded that MOX give similar results to barrel aging, few have compared them directly and none directly compared MOX with and without wood alternatives and barrel aging. Results confirmed that MOX had a positive effect on colour density, even after 5 months of bottle aging. This is supported by an increase in polymeric phenol and pigment content not only with aging but in the MOX compared to barrel matured wine treatments. Descriptive analysis showed that MOX in combination with wood alternatives such as oak chips and staves could mimic short term (six months) barrel aging in new American and French oak barrels in regards to sensory characteristics. Published by Elsevier Ltd.
X-ray Photoelectron Spectroscopy study of CaV1-xMoxO3-δ
NASA Astrophysics Data System (ADS)
Belyakov, S. A.; Kuznetsov, M. V.; Shkerin, S. N.
2018-06-01
An investigation was carried out on perovskite-based derivatives of CaV1-xMoxO3-δ using X-ray Photoelectron Spectroscopy (XPS). According to the XRD pattern, the area of homogeneity covers the region from x = 0 to x = 0.6. Wide XPS-peaks of Ca, V, Mo and O are observed, signalling that elements are presented in multiple states. A model for explaining the large chemical shifts of XPS peaks due to different charging effects on different parts of the sample surface is proposed.
Thermal property change of MOX and UO2 irradiated up to high burnup of 74 GWd/t
NASA Astrophysics Data System (ADS)
Nakae, Nobuo; Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro; Kurematsu, Shigeru; Kosaka, Yuji; Yoshino, Aya; Kitagawa, Takaaki
2013-09-01
Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO2 fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO2. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO2 is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO2 at high burnup under the condition that the pellet-cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO2 before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO2. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian
2013-06-01
Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Shaaban, Ismail; Albarhoum, Mohamad
2017-07-01
The MOX (UO 2 &PuO 2 ) caramel fuel mixed with 241 Am, 242m Am and 243 Am as burnable absorber actinides was proposed as a fuel of the MTR-22MW reactor. The MCNP4C code was used to simulate the MTR-22MW reactor and estimate the criticality and the neutronic parameters, and the power peaking factors before and after replacing its original fuel (U 3 O 8 -Al) by the MOX caramel fuel mixed with 241 Am, 242m Am and 243 Am actinides. The obtained results of the criticality, the neutronic parameters, and the power peaking factors for the MOX caramel fuel mixed with 241 Am, 242m Am and 243 Am actinides were compared with the same parameters of the U 3 O 8 -Al original fuel and a maximum difference is -6.18% was found. Additionally, by recycling 2.65% and 2.71% plutonium and 241 Am, 242m Am and 243 Am actinides in the MTR-22MW reactor, the level of 235 U enrichment is reduced from 4.48% to 3% and 2.8%, respectively. This also results in the reduction of the 235 U loading by 32.75% and 37.22% for the 2.65%, the 2.71% plutonium and 241 Am, 242m Am and 243 Am actinides, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tissue residue depletion of moxidectin in lambs (Ovis aries) following subcutaneous administration.
Cruz, Michelle Del Bianchi A; Fernandes, Maria Ângela M; Monteiro, Alda Lúcia G; Teles, Juliana A; Anadón, Arturo; Reyes, Felix G R
2018-06-07
To date, a tissue depletion study of moxidectin (MOX) in lambs is not available. Thus, considering that lamb meat is of great commercial interest in the world, the aim of the present study was to determine the residue levels of MOX in lamb target-tissues (muscle, liver, kidney and fat) and subsequently calculate the MOX withdrawal period. For this purpose, the target-tissues were analysed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Method validation was performed based on Commission Decision 2002/657/EC and VICH GL49. To quantify the analyte, matrix-matched analytical curves were constructed with spiked blank tissues. The limits of detection and quantitation were 1.5 and 5 ng g -1 , respectively, for all matrices. The linearity, decision limit, detection capability accuracy and inter- and intra-day precision of the method are reported. The lambs were treated with a single subcutaneous dose of 0.2 mg MOX kg -1 body weight and were slaughtered in accordance with accepted animal care protocols. Samples of target-tissues were collected on 2, 4, 7, 14, 28 and 42 days after MOX administration. During the whole study, the highest drug residue level occurred in the fat. For the other target-tissues (muscle, liver and kidney), MOX concentrations were below the maximum residue limit (MRL). Considering the MRL value of 500 µg kg -1 for MOX residues in sheep fat, our results in lambs allowed the estimation of a MOX withdrawal period of 31 days. This indicates that the withdrawal period established for MOX in adult sheep (28 days) does not apply for lambs.
Investigation of the Performance of D 2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiruta, Hikaru; Youinou, Gilles
2013-09-01
This report presents FY13 activities for the analysis of D 2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relativemore » fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D 2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D 2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D 2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D 2O-HCPWR.« less
Rossano, M G; Smith, A R; Lyons, E T
2010-10-29
Deworming horses with anthelmintics that have activity against encysted small strongyle larvae (L(3) and L(4)) is a common practice in parasite control programs. The two drugs currently available for this use are moxidectin (MOX) administered in a single dose of 0.4 mg/kg and fenbendazole (FBZ) given at the larvicidal dose (10mg/kg for 5 days). Here, we report the efficacy of MOX and the larvicidal dose of FBZ for reducing counts of strongyle-type eggs per gram of feces in naturally infected horses. Fecal egg counts (FECs) of 15 yearlings were observed following deworming. On day 0, 6 of the 15 yearlings were administered a larvicidal dose of FBZ; 14 days later, all 15 yearlings received MOX at a single dose of 0.4 mg/kg. Feces were collected on day 0 for pre-treatment egg counts. Feces were collected at weekly intervals thereafter during FEC observation periods. FECs of FBZ-treated horses were compared at day 0 and 14 days post-treatment. The difference in means pre- and post-treatment with FBZ was not statistically significant (p=0.65). On days 0 and 42 of the MOX treatment observation period the mean FEC of the yearlings that had not received the FBZ treatment did not differ significantly from that of the FBZ-treated yearlings. MOX was effective in reducing fecal egg counts to 0 EPG for 21 days. At day 35 all but 2 of the yearlings had some eggs present (range=4-361 EPG) and at day 42 all but 1 yearling had eggs present (range=3-432 EPG). At day 42 the group mean FEC reduction had fallen from 100% to 67%. Results of this study do not support the use of the larvicidal dose of FBZ for small strongyle control. Larger field studies will be needed to investigate whether egg reappearance periods are shortening for MOX-treated horses. Copyright © 2010 Elsevier B.V. All rights reserved.
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertyurek, Ugur; Gauld, Ian C.
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs
Mertyurek, Ugur; Gauld, Ian C.
2015-12-24
In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less
Thermal conductivity of heterogeneous LWR MOX fuels
NASA Astrophysics Data System (ADS)
Staicu, D.; Barker, M.
2013-11-01
It is generally observed that the thermal conductivity of LWR MOX fuel is lower than that of pure UO2. For MOX, the degradation is usually only interpreted as an effect of the substitution of U atoms by Pu. This hypothesis is however in contradiction with the observations of Duriez and Philiponneau showing that the thermal conductivity of MOX is independent of the Pu content in the ranges 3-15 and 15-30 wt.% PuO2 respectively. Attributing this degradation to Pu only implies that stoichiometric heterogeneous MOX can be obtained, while we show that any heterogeneity in the plutonium distribution in the sample introduces a variation in the local stoichiometry which in turn has a strong impact on the thermal conductivity. A model quantifying this effect is obtained and a new set of experimental results for homogeneous and heterogeneous MOX fuels is presented and used to validate the proposed model. In irradiated fuels, this effect is predicted to disappear early during irradiation. The 3, 6 and 10 wt.% Pu samples have a similar thermal conductivity. Comparison of the results for this homogeneous microstructure with MIMAS (heterogeneous) fuel of the same composition showed no difference for the Pu contents of 3, 5.9, 6, 7.87 and 10 wt.%. A small increase of the thermal conductivity was obtained for 15 wt.% Pu. This increase is of about 6% when compared to the average of the values obtained for 3, 6 and 10 wt.% Pu. For comparison purposes, Duriez also measured the thermal conductivity of FBR MOX with 21.4 wt.% Pu with O/M = 1.982 and a density close to 95% TD and found a value in good agreement with the estimation obtained using the formula of Philipponneau [8] for FBR MOX, and significantly lower than his results corresponding to the range 3-15 wt.% Pu. This difference in thermal conductivity is of about 20%, i.e. higher than the measurement uncertainties.Thus, a significant difference was observed between FBR and PWR MOX fuels, but was not explained. This difference was observed for hypostoichiometric fuels, that correspond to the condition used for irradiation. However, if these two formulas are evaluated for O/M = 2.000, the difference between the predictions is negligible (Fig. 1). The difference becomes significant for non-stoichiometric fuels, as shown for O/M = 1.975 in Fig. 1. The microstructure of the FBR fuel with 21.4 wt.% Pu was not described in the paper of Duriez. Taking into account the rigorous experimental methodology used by Duriez (characterisation of the stoichiometry), a possible explanation is an interaction between the plutonium distribution and the stoichiometry. Another parameter having a strong impact on the conductivity is the porosity correction used to obtain the values for 95% TD. This correction is small in the work of Duriez as the samples density is very close to 95% TD. This was also the case for the samples selected by Philipponneau in order to obtain his recommendation. An effect due to differences in the pores shape can also be excluded, as the results are identical for stoichiometric fuels (Fig. 1). Usually the apparent stoichiometry is obtained by heat treatments and checked before and after the measurements, either by XRD or thermogravimetry. However, for non-perfectly homogeneous samples, the gradients in the plutonium distribution induce a non-uniform oxygen distribution, which is difficult to characterise experimentally. It has been proposed by Baron that the deviation from stoichiometry is the main cause for the differences observed between fresh UO2 and MOX [14,15], this effect is quantified in the next section. In the first model ("Model 1"), the effect of Pu is neglected over the entire relevant Pu compositions range (up to 24 wt.% PuO2), and a correlation obtained for non-stoichiometric homogeneous (U,Pu)O2 is used. In the second model ("Model 2", the effect of Pu is supposed to be present at all compositions, with the stoichiometry effect. The thermal conductivity is described by the correlations of Fink [16] for the UO2 matrix, Duriez at low PuO2 contents (coating phase) and of Philipponneau at high PuO2 contents (agglomerates). For the first model, applying a correlation for non-stoichiometric UO2 would be relevant, but such a correlation does not exist for physical reasons in the hypostoichiometric domain. A correlation for homogeneous (U,Pu)O2+x has to be obtained in order to predict the thermal conductivity of heterogeneous MOX fuel, supposing that the effect of Pu can be neglected, i.e. supposing that the thermal conductivities of homogeneous (U,Pu)O2 and UO2 are equal both for stoichiometric and non-stoichiometric fuels. Such a correlation has to be obtained considering reliable data for stoichiometric UO2 and stoichiometry dependence. Different correlations for non-stoichiometric fuels were reviewed [2,8,12,13,15,35,36]. The correlation of Martin [36], available for hyperstoichiometric UO2, was evaluated in the hypostoichiometric domain and the predictions were found to give a stoichiometry dependence very similar to a correlation already proposed [15]. Investigations by Molecular Dynamics [37] have confirmed the almost symmetric effect of the hypo- and hyper-stoichiometry in UO2. We therefore use the correlation of Martin, with however a correction, as for stoichiometric fuels it over predicts the conductivity of stoichiometric UO2 at high temperatures, when compared to the recommendation of Fink [16] (Fig. 4). Analysis has shown that this over-prediction was due to the high temperature term in the correlation of Martin, and that, if this term is removed, the predictions of Martin and Fink were identical for stoichiometric fuels in the temperature range 500-1500 K. The correlation proposed for homogeneous MOX is therefore given by the following equation. k=(0.035 The series and parallel bounds (Eq. (2)) were calculated using the thermal conductivity values given by Eq. (5) for the heterogeneous MOX constituents and the maximum difference between these two bounds is 2% over the considered temperature range. The predictions obtained with the equations of Maxwell-Eucken (Eq. (3)) and Bergman (Eq. (4)) are equal and are in the interval between the series and parallel bounds. This result shows that the use of a sophisticated analytical or numerical model to predict the thermal conductivity is not justified [38]. The model of Maxwell-Eucken [31] was therefore chosen to predict the equivalent thermal conductivity of the heterogeneous MOX.The equivalent thermal conductivity of the stoichiometric heterogeneous MOX with an average PuO2 content of 7.2 wt.% (constituted by a stoichiometric UO2 matrix containing 15 vol.% of (U0.76Pu0.24)O1.975 agglomerates and 55 vol.% of a coating phase of (U0.94Pu0.06)O1.995) was calculated. The results show that the apparent thermal conductivity of the heterogeneous MOX, calculated using homogeneous MOX data (Eq. (5)) with O/M = 2.000, 1.995 and 1.975 (labeled Model 1 in Fig. 4) is not significantly different from the values measured by Duriez. The latter values are also very similar to the thermal conductivity of homogeneous MOX with O/M = 1.995. This simple model shows that the stoichiometry effect is sufficient to explain the lower thermal conductivity of LWR MOX fuel as compared to UO2. The advantage of this simple model is its consistency, as the calculations for the heterogeneous MOX are based on a unique formula for non-stoichiometric homogeneous (U,Pu)O2.In the second model, the effect of the plutonium is taken into account for the coating phase and for the Pu-rich agglomerates. The thermal conductivity is described by the correlations of Fink [16] for UO2.000, of Duriez et al. [2] for (U0.94Pu0.06)O1.995 (coating phase with low PuO2 content) and of Philipponneau [8] for (U0.76Pu0.24)O1.975 (Pu-rich agglomerates with high PuO2 content). The results (labeled Model 2 in Fig. 5) show that the calculated thermal conductivity of the heterogeneous 'stoichiometric' MOX is lower than UO2 and also lower than for stoichiometric MOX as given by Duriez. Therefore taking into account both the heterogeneity in the oxygen distribution and the Pu content leads to an underprediction of the thermal conductivity of heterogeneous MOX. A possible cause for the lower thermal conductivity of unirradiated heterogeneous MOX is therefore the intrinsic fluctuations of the local stoichiometry and only to a lesser extent the perturbation of the heat transfer due to the substitution of the U by Pu atoms in the crystal lattice. This interpretation was already proposed by Baron [14,15]. This assumption is acceptable if the size of the heterogeneities is much smaller that the thickness of the sample. A theoretical criterion for the impact of these parameters, initially proposed by Kerrish [40], was checked experimentally by Lee and Taylor [41] and was found to be too restrictive. The conclusions resulting from the investigations of Lee are that for diffusivity ratios between 1 and 3.5 and volume fractions up to 30%, a ratio of 5 between the sample thickness and inclusions diameter is sufficient. Our heterogeneous samples fulfill this criterion, taking into account that the thermal diffusivity ratio is close to 1 in MOX, that the volume fraction of Pu rich agglomerates is under 30%, and that the agglomerates have a diameter of less than 200 μm compared to the sample (disc) thickness of 1 mm. The most severe requirement that one could use to define a medium behaving like a homogeneous material is that the heat transfer is not affected by the heterogeneities. This is the case for instance if we have a heterogeneous material where the two constituents have equal thermal diffusivity and no thermal resistance is present at the interfaces. This requirement is very close to be perfectly verified for the heterogeneous MOX, as UO2 and (U,Pu)O2 have very close values of the thermal diffusivity. An effect of the sample heterogeneity can also be excluded from the point of view of the location where the thermograms are recorded: the temperature transients on the rear face of the samples are measured with a pyrometer and the system is provided with a lens assembly which enables a 1 mm diameter spot of the sample surface to be focused onto the signal collecting fibre. The thermograms are therefore averaged over a 1 mm diameter surface, which is much larger than the size of the heterogeneities (Pu rich agglomerates with a size of less than 200 μm).The impact of sample thickness on the measured thermal diffusivity was experimentally investigated for the MIMAS MOX with 7.0 wt.% Pu. For this purpose, discs of 0.5, 1, 2, and 3 mm thickness were cut and the thermal diffusivity was measured. The same investigation was done for standard UO2, in order to verify the accuracy of the inverse technique used for the identification of the thermal diffusivity from the thermograms. The inverse technique [39] explicitly takes into account the sample thickness in the calculation of the heat losses. The results for UO2 (Fig. 6) show that the measured thermal diffusivity does not depend on sample thickness, and is in good agreement with the recommendation of Fink [16]. The results for the heterogeneous MOX (Fig. 7) also show no dependence on sample thickness.
Parpinello, Giuseppina Paola; Plumejeau, François; Maury, Chantal; Versari, Andrea
2012-04-01
The main objective of this study was to improve the structure of a Cabernet Sauvignon red wine in a short period of time by micro-oxygenation (MOX) at high rates (25 and 50 mL L(-1) month(-1) ), the effects of which were evaluated based on sensory characteristics and consumer preference. Sensory data were analysed by principal component analysis, discriminant analysis and ordinal logistic regression (OLR). MOX led to significant differences in the colour, colour stability and phenolic compounds of wine. Sensory characteristics also changed through MOX treatment, and wine experts were able to discriminate between MOX-treated and untreated samples, with olfactory intensity, complexity, astringency and roundness being the main discriminating characteristics. Ordinal logistic regression enabled identification of the sensory characteristics that drove consumer preference. MOX at high rates improved the sensory characteristics of wine and may therefore be considered a valid technique for obtaining structured wines in a short period of time, i.e. within just a few months after the vintage. The results highlight the need for (i) careful selection of the MOX dosage rate and duration (the 25 mL L(-1) month(-1) dose for 6 days provided the best result) and (ii) continuous monitoring of the MOX treatment. Copyright © 2011 Society of Chemical Industry.
Mössbauer study of modified iron-molybdenum catalysts for methanol oxidation
NASA Astrophysics Data System (ADS)
Ivanov, K. I.; Mitov, I. G.; Krustev, St. V.; Boyanov, B. S.
2010-03-01
The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Mössbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe2(MoxW1-xO4)3 and (MoxW1-x)O3. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO4)2 formation was established.
NASA Astrophysics Data System (ADS)
Insulander Björk, Klara; Kekkonen, Laura
2015-12-01
Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.
Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L
2010-09-01
Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.
Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J
2006-12-05
Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 < x < 1) were prepared by cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.
Yu, Wei; Niu, Tianshui; Xiao, Tingting; Zhang, Jing; Xiao, Yonghong
2018-01-01
Objectives The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX), cefotaxime (CTX), and cefoperazone/sulbactam (CFZ/SBT) against extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK)/pharmacodynamics model. Methods Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689) and E. coli American Type Culture Collection (ATCC)25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT) and the area between the control growth curve and bactericidal curves (IE) were employed to assess the antibacterial efficacies of all the agents. Results The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1) with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of MOX were much higher than those of CTX and CFZ/SBT (the bacterial RTs with the 3 agents were >24, <4, and <13 h, and the IEs were >110, <10, and <60 log10 CFU/mL·h−1, respectively). Conclusion MOX demonstrated excellent bactericidal effect, which is worthy of further exploration to serve as an alternative therapeutic agent against ESBL-producing Enterobacteriaceae. PMID:29391816
The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccleston, G.W.; Menlove, H.O.; Abhold, M.
1998-12-31
The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less
NASA Astrophysics Data System (ADS)
Refaat, Heba M.; Noor El-Din, Doaa A.
2018-07-01
Novel complexes of the formula [M(MOX)(Ben)Cl(H2O)m].nH2O and [Ag(MOX)(Ben)] 3.5H2O; M = Co, Ni, and Zn, n = 1.5, 2 and 1, m = 0 or 2, MOX; Moxifloxacin and Ben; benzimidazole, were synthesized. Their effect on different cancer cells together with bacterial and fungal activity was determined. Formulation of the complexes was based on elemental analyses, different spectrophotometric methods (FT-IR, UV/Vis, NMR), and magnetic studies. FT-IR data indicated that the bonding of the Co(II), Ni(II) and Zn(II) ions with MOX to be achieved through the quinolone and carboxylate oxygen atoms. On the other hand Ag(I) bonded to the MOX through hydro-pyrrolopyridine nitrogen atom. TGA and DTA studies for the metal complexes showed them to possess considerable stability. Thermodynamic parameters ΔE*, ΔS* and ΔH* were evaluated and the appearance of fractional orders suggested that the reactions proceed via complicated mechanisms. The novel mixed ligands complexes were evaluated for their biological activity against the bacterial species (S. aureus) and (E. coli) and the fungal species Aspergillus flavus and Candida albicans. The complexes were found to possess better antibacterial and antifungal activities compared to the Moxifloxacin ligand. The compounds' effects were also screened for their anti-oxidant activity by DPPH method and were tested for their cytotoxicity activity against Breast cancer cell lines (MCF-7), Colon carcinoma cells (HCT) and Hepatocellular carcinoma cells (HepG2) by viability assay method.
Horii, T; Arakawa, Y; Ohta, M; Ichiyama, S; Wacharotayankun, R; Kato, N
1993-01-01
Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam. Images PMID:8517725
3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage.
Yu, Hong; Fan, Haosen; Wang, Jiong; Zheng, Yun; Dai, Zhengfei; Lu, Yizhong; Kong, Junhua; Wang, Xin; Kim, Young Jin; Yan, Qingyu; Lee, Jong-Min
2017-06-01
3D ordered porous structures of Mo x C are prepared with different Mo to C ratios and tested for two possible promising applications: hydrogen evolution reaction (HER) through water splitting and lithium ion batteries (LIBs). Mo 2 C and MoC with 3D periodic ordered structures are prepared with a similar process but different precursors. The 3D ordered porous MoC exhibits excellent cycling stability and rate performance as an anode material for LIBs. A discharge capacity of 450.9 mA h g -1 is maintained up to 3000 cycles at 10.0 A g -1 . The Mo 2 C with a similar ordered porous structure shows impressive electrocatalytic activity for the HER in neutral, alkaline and acidic pH solutions. In particular, Mo 2 C shows an onset potential of only 33 mV versus a reversible hydrogen electrode (RHE) and a Tafel slope of 42.5 mV dec -1 in a neutral aqueous solution (1.0 M phosphate buffer solution), which is approaching that of the commercial Pt/C catalyst.
Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.; Bailly, F.; Bouvier, E.
Over the last 50 years the US has accumulated an inventory of used nuclear fuel (UNF) in the region of 64,000 metric tons in 2010, and adds an additional 2,200 metric tons each year from the current fleet of 104 Light Water Reactors. This paper considers a fuel cycle option that would be available for a future pilot U.S. recycling plant that could take advantage of the unique opportunities offered by the age and size of the large U.S. UNF inventory. For the purpose of this scenario, recycling of UNF must use the available reactor infrastructure, currently LWR's, and themore » main product of recycling is considered to be plutonium (Pu), recycled into MOX fuel for use in these reactors. Use of MOX fuels must provide the service (burn-up) expected by the reactor operator, with the required level of safety. To do so, the fissile material concentration (Pu-239, Pu-241) in the MOX must be high enough to maintain criticality, while, in current recycle facilities, the Pu-238 content has to be kept low enough to prevent excessive heat load, neutron emission, and neutron capture during recycle operations. In most countries, used MOX fuel (MOX UNF) is typically stored after one irradiation in an LWR, pending the development of the GEN IV reactors, since it is considered difficult to directly reuse the recycled MOX fuel in LWRs due to the degraded Pu fissile isotopic composition. In the US, it is possible to blend MOX UNF with LEUOx UNF from the large inventory, using the oldest UNF first. Blending at the ratio of about one MOX UNF assembly with 15 LEUOx UNF assemblies, would achieve a fissile plutonium concentration sufficient for reirradiation in new MOX fuel. The Pu-238 yield in the new fuel will be sufficiently low to meet current fuel fabrication standards. Therefore, it should be possible in the context of the US, for discharged MOX fuel to be recycled back into LWR's, using only technologies already industrially deployed worldwide. Building on that possibility, two scenarios are assessed where current US inventory is treated; Pu recycled in LWR MOX fuels, and used MOX fuels themselves are treated in a continuous partitioning-transmutation mode (case 2a) or until the whole current UNF inventory (64,000 MT in 2010) has been treated followed by disposal of the MOX UNF to a geologic repository (case 2b). In the recycling scenario, two cases (2a and 2b) are considered. Benefits achieved are compared with the once through scenario (case 1) where UNF in the current US inventory are disposed directly to a geologic repository. For each scenario, the heat load and radioactivity of the high activity wastes disposed to a geologic repository are calculated and the savings in natural resources quantified, and compared with the once-through fuel cycle. Assuming an initial pilot recycling facility with a capacity of 800 metric tons a year of heavy metal begins operation in 2030, ∼8 metric tons per year of Pu is recovered from the LEUOx UNF inventory, and is used to produce fresh MOX fuels. At a later time, additional treatment and recycling capacities are assumed to begin operation, to accommodate blending and recycling of used MOX Pu, up to 2,400 MT/yr treatment capacity to enable processing UNF slightly faster than the rate of generation. Results of this scenario analysis study show the flexibility of the recycling scenarios so that Pu is managed in a way that avoids accumulating used MOX fuels. If at some future date, the decision is made to dispose of the MOX UNF to a geologic repository (case 2b), the scenario is neutral to final repository heat load in comparison to the direct disposal of all UNF (case 1), while diminishing use of natural uranium, enrichment, UNF accumulation, and the volume of HLW. Further recycling of Pu at the end of the scenario (case 2a) would exhibit further benefits. As expected, Pu-241 and Am-241 are the source of long term HLW heat load and Am-241 and Np-237 are the source of long term radiotoxicity. When advanced technology is available, introduction of minor actinide recycling, in addition to Pu recycling, by the end of this scenario, or sooner, would have a major impact on final repository heat load and long term radiotoxicity of the HLW. This scenario is also compatible with a gradual introduction of a small number of FR's for Pu management. (authors)« less
Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less
Anderson transition in a three-dimensional kicked rotor
NASA Astrophysics Data System (ADS)
Wang, Jiao; García-García, Antonio M.
2009-03-01
We investigate Anderson localization in a three-dimensional (3D) kicked rotor. By a finite-size scaling analysis we identify a mobility edge for a certain value of the kicking strength k=kc . For k>kc dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3D Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kc we carry out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations, the number variance is linear, level repulsion is still observed, and quantum diffusion is anomalous with ⟨p2⟩∝t2/3 . We note that in the 3D kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3D kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Heuristically it is expected that localization effects will be weaker in a nonrandom potential since destructive interference will be less effective to arrest quantum diffusion. However we have found that certain choices of irrational periods enhance Anderson localization effects.
NASA Astrophysics Data System (ADS)
Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.
2011-09-01
Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.
Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L
2017-08-01
Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP
NASA Astrophysics Data System (ADS)
Tucker, Lucas Powelson
This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.
Benbouzid, Fathalah; Kodjikian, Laurent; Hartmann, Daniel; Renaud, François; Baillif, Stéphanie
2016-02-01
To compare the anti-adhesive effect of cefuroxime and moxifloxacin on the primary attachment phase of Staphylococcus epidermidis on hydrophobic acrylic intraocular lenses (IOLs). Forty hydrophobic acrylic IOLs were used. Two groups of IOLs were soaked in a moxifloxacin (Mox-T1: 0.5 mg/0.1 ml) or a cefuroxime (Cef-T1: cefuroxime 1 mg/0.1 ml) solution before incubation in a S. epidermidis bacterial suspension. Two other groups were incubated in the bacterial suspension before antibiotics (Cef-T2 and Mox-T2) were added. The control group (Ctrl) consisted of IOLs incubated in the bacterial suspension. After incubation, IOLs were sonicated and vortexed. The resultant suspension was spread over a nutritive agar plate. Bacterial colonies were counted after 24 hr of incubation. Mean number of colony-forming units per IOL was Cef-T1: 184 × 10(3) (SE: 5.24; SD: 28.21), Cef-T2: 117 × 10(3) (SE: 5.74; SD: 30.37), Mox-T1: 1.27 × 10(3) (SE: 0.12; SD: 0.61), Mox-T2: 25 × 10(3) (SE:1.98; SD: 9.72) and Ctrl: 361 × 10(3) (SE: 26.9; SD: 107.6). The number of adhering bacteria did not vary whether cefuroxime was added before or after IOL incubation in the bacterial suspension (p = 0.132). Moxifloxacin was more effective in reducing the number of adhering bacteria when used before IOL incubation (p < 0.001). Overall for T1 and T2, moxifloxacin was more effective than cefuroxime in reducing bacterial adhesion on IOLs (p < 0.001). Moxifloxacin and cefuroxime significantly reduced S. epidermidis adhesion on hydrophobic acrylic IOLs. The anti-adhesive effect was superior with moxifloxacin. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Correlation between electronic structure and electron conductivity in MoX2 (X = S, Se, and Te)
NASA Astrophysics Data System (ADS)
Muzakir, Saifful Kamaluddin
2017-12-01
Layered structure molybdenum dichalcogenides, MoX2 (X = S, Se, and Te) are in focus as reversible charge storage electrode for pseudocapacitor applications. Correlation between number of layer and bandgap of the materials has been established by previous researchers. The correlation would reveal a connection between the bandgap and charge storage properties i.e., amount of charges that could be stored, and speed of storage or dissociation. In this work, fundamental parameters viz., (i) size-offset between a monolayer and exciton Bohr radius of MoX2 and (ii) ground and excited state electron density have been studied. We have identified realistic monolayer models of MoX2 using quantum chemical calculations which explain a correlation between size-offset and charge storage properties. We conclude that as the size-offset decreases, the higher possibility of wave functions overlap between the excited state, and ground state electrons; therefore the higher the electron mobility, and conductivity of the MoX2 would be.
Yalçin, Burçe; Kalkanci, Ayşe; Gürelik, Feryal; Fidan, Işil; Kustimur, Semra; Ozdek, Sengül
2010-01-01
Contradictory results such as synergy or indifferent effect, have been reported about the interactions between quinolones and antifungal drugs in different studies. The aim of this study was to investigate the in vitro susceptibilities of Candida spp. to moxifloxacin (MOX) alone and MOX + amphotericin B (AmB) combination. A total of 20 strains were included to the study, of which 19 were clinical isolates (10 Candida albicans, 4 Candida glabrata, 2 Candida parapsilosis, 1 Candida tropicalis, 1 Candida pelliculosa ve 1 Candida sake) and 1 was a standard strain (C. albicans ATCC 90028). In vitro susceptibilities of the strains to MOX with AmB were investigated by broth microdilution method according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI), and in vitro interaction of these drugs were determined by a chequerboard titration method. Minimal inhibitory concentration (MIC) values of Candida spp. for MOX were found > or = 400 microg/ml indicating that MOX, by itself has no antifungal activity. AmB MIC values were found 1 microg/ml in 11 of the clinical isolates, and < or = 0.5 microg/ml in the other 8 clinical isolates and 1 standard strain. The inhibitor activity of AmB was slightly enhanced when combined with MOX, there being a decrease of 1-4 fold dilutions in the AmB MICs against all isolates tested. Synergistic effect between MOX and AmB, defined as a fractional inhibitory concentration (FIC) index as < or = 0.5, was observed in 90% (18/20; all were clinical isolates) of the strains, whereas indifferent effect (FIC = 1) was detected in 10% (2/20; 1 was clinical and 1 was standard strain) of the strains. Antagonistic effect was not observed for this combination even at 48th hours. It was concluded that these preliminary results should be confirmed by large-scaled in vitro and in vivo studies to evaluate MOX + AmB combination as a therapeutic option for the treatment of Candida infections.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Frisenda, Riccardo; Navarro-Moratalla, Efrén; Gant, Patricia; Pérez De Lara, David; Jarillo-Herrero, Pablo; Gorbachev, Roman V; Castellanos-Gomez, Andres
2018-01-02
Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.
NASA Astrophysics Data System (ADS)
Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.
2017-09-01
Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.
Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming
NASA Astrophysics Data System (ADS)
Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang
2017-10-01
Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.
Caillé, Soline; Samson, Alain; Wirth, Jérémie; Diéval, Jean-Baptiste; Vidal, Stéphane; Cheynier, Véronique
2010-02-15
It is widely accepted that oxygen contributes to wine development by impacting its colour, aromatic bouquet, and mouth-feel properties. The wine industry can now also take advantage of engineered solutions to deliver known amounts of oxygen into bottles through the closures. This study was aimed at monitoring the influence of oxygen pick-up, before (micro-oxygenation, Mox) and after (nano-oxygenation) bottling, on wine sensory evolution. Red Grenache wines were prepared either by flash release (FR) or traditional soaking (Trad) and with or without Mox during elevage (FR+noMox, FR+Mox, Trad+noMox, Trad+Mox). The rate of nano oxygenation was controlled by combining consistent oxygen transfer rate (OTR) closures and different oxygen controlled storage conditions. Wine sensory characteristics were analyzed by sensory profile, at bottling (T0) and after 5 and 10 months of ageing, by a panel of trained judges. Effects of winemaking techniques and OTR were analyzed by multivariate analysis (principal component analysis and agglomerative hierarchical clustering) and analysis of variance. Results showed that, at bottling, Trad wines were perceived more animal and FR wines more bitter and astringent. Mox wines showed more orange shade. At 5 and 10 months, visual and olfactory differences were observed according to the OTR levels: modalities with higher oxygen ingress were darker and fruitier but also perceived significantly less animal than modalities with lower oxygen. Along the 10 months of ageing, the influence of OTR became more important as shown by increased significance levels of the observed differences. As the mouth-feel properties of the wines were mainly dictated by winemaking techniques, OTR had only little impact on "in mouth" attributes. Copyright 2009 Elsevier B.V. All rights reserved.
New approaches for MOX multi-recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gain, T.; Bouvier, E.; Grosman, R.
Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less
Silva, M D P; Gonçalves, R F; Nogueira, I C; Longo, V M; Mondoni, L; Moron, M G; Santana, Y V; Longo, E
2016-01-15
Ag2W(1-x)MoxO4 (x=0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W(1-x)MoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W(1-x)MoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W(1-x)MoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W(1-x)MoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
Daher, Jalil; Martin, Maud; Rousseau, Alexandre; Nuyens, Vincent; Fayyad-Kazan, Hussein; Van Antwerpen, Pierre; Courbebaisse, Guy; Martiat, Philippe; Badran, Bassam; Dequiedt, Frank
2014-01-01
Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque. PMID:25530680
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2016-01-01
Despite impressive progress in the development and application of electromagnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical conductivity within the Earth, there is one question which remains poorly addressed—uncertainty quantification of the recovered conductivity models. Apparently, only an inversion based on a statistical approach provides a systematic framework to quantify such uncertainties. The Metropolis-Hastings (M-H) algorithm is the most popular technique for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. However, all statistical inverse schemes require an enormous amount of forward simulations and thus appear to be extremely demanding computationally, if not prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D modelling codes which can run large-scale 3-D models of practical interest for fractions of a second on high-performance multi-core platforms. But, even with these codes, the challenge for M-H methods is to construct proposal functions that simultaneously provide a good approximation of the target density function while being inexpensive to be sampled. In this paper we address both of these issues. First we introduce a variant of the M-H method which uses information about the local gradient and Hessian of the penalty function. This, in particular, allows us to exploit adjoint-based machinery that has been instrumental for the fast solution of deterministic inverse problems. We explain why this modification of M-H significantly accelerates sampling of the posterior probability distribution. In addition we show how Hessian handling (inverse, square root) can be made practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we discuss uncertainty analysis based on stochastic inversion results. In addition, we demonstrate how this analysis can be performed within a deterministic approach. In the second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.
MC2-3 / DIF3D Analysis for the ZPPR-15 Doppler and Sodium Void Worth Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Micheal A.; Lell, Richard M.; Lee, Changho
This manuscript covers validation efforts for our deterministic codes at Argonne National Laboratory. The experimental results come from the ZPPR-15 work in 1985-1986 which was focused on the accuracy of physics data for the integral fast reactor concept. Results for six loadings are studied in this document and focus on Doppler sample worths and sodium void worths. The ZPPR-15 loadings are modeled using the MC2-3/DIF3D codes developed and maintained at ANL and the MCNP code from LANL. The deterministic models are generated by processing the as-built geometry information, i.e. MCNP input, and generating MC2-3 cross section generation instructions and amore » drawer homogenized equivalence problem. The Doppler reactivity worth measurements are small heated samples which insert very small amounts of reactivity into the system (< 2 pcm). The results generated by the MC2-3/DIF3D codes were excellent for ZPPR-15A and ZPPR-15B and good for ZPPR-15D, compared to the MCNP solutions. In all cases, notable improvements were made over the analysis techniques applied to the same problems in 1987. The sodium void worths from MC2-3/DIF3D were quite good at 37.5 pcm while MCNP result was 33 pcm and the measured result was 31.5 pcm. Copyright © (2015) by the American Nuclear Society All rights reserved.« less
Small-angle scattering from 3D Sierpinski tetrahedron generated using chaos game
NASA Astrophysics Data System (ADS)
Slyamov, Azat
2017-12-01
We approximate a three dimensional version of deterministic Sierpinski gasket (SG), also known as Sierpinski tetrahedron (ST), by using the chaos game representation (CGR). Structural properties of the fractal, generated by both deterministic and CGR algorithms are determined using small-angle scattering (SAS) technique. We calculate the corresponding monodisperse structure factor of ST, using an optimized Debye formula. We show that scattering from CGR of ST recovers basic fractal properties, such as fractal dimension, iteration number, scaling factor, overall size of the system and the number of units composing the fractal.
Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices.
Saba, Matthias; Hamm, Joachim M; Baumberg, Jeremy J; Hess, Ortwin
2017-12-01
Topological phases derived from point degeneracies in photonic band structures show intriguing and unique behavior. Previously identified band degeneracies are based on accidental degeneracies and subject to engineering on a case-by-case basis. Here we show that deterministic pseudo Weyl points with nontrivial topology and hyperconic dispersion exist at the Brillouin zone center of chiral cubic symmetries. This conceivably allows realization of topologically protected frequency isolated surface bands in 3D and n=0 properties as demonstrated for a nanoplasmonic system and a photonic crystal.
Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices
NASA Astrophysics Data System (ADS)
Saba, Matthias; Hamm, Joachim M.; Baumberg, Jeremy J.; Hess, Ortwin
2017-12-01
Topological phases derived from point degeneracies in photonic band structures show intriguing and unique behavior. Previously identified band degeneracies are based on accidental degeneracies and subject to engineering on a case-by-case basis. Here we show that deterministic pseudo Weyl points with nontrivial topology and hyperconic dispersion exist at the Brillouin zone center of chiral cubic symmetries. This conceivably allows realization of topologically protected frequency isolated surface bands in 3D and n =0 properties as demonstrated for a nanoplasmonic system and a photonic crystal.
Molybdenum Dichalcogenides for Environmental Chemical Sensing
Zappa, Dario
2017-01-01
2D transition metal dichalcogenides are attracting a strong interest following the popularity of graphene and other carbon-based materials. In the field of chemical sensors, they offer some interesting features that could potentially overcome the limitation of graphene and metal oxides, such as the possibility of operating at room temperature. Molybdenum-based dichalcogenides in particular are among the most studied materials, thanks to their facile preparation techniques and promising performances. The present review summarizes the advances in the exploitation of these MoX2 materials as chemical sensors for the detection of typical environmental pollutants, such as NO2, NH3, CO and volatile organic compounds. PMID:29231879
The interaction of molecular hydrogen with α-radiolytic oxidants on a (U,Pu)O2 surface
NASA Astrophysics Data System (ADS)
Bauhn, Lovisa; Hansson, Niklas; Ekberg, Christian; Fors, Patrik; Delville, Rémi; Spahiu, Kastriot
2018-07-01
In order to assess the impact of α-radiolysis of water on the oxidative dissolution of spent fuel, an un-irradiated, annealed MOX fuel pellet with high content of Pu (∼24 wt%), and a specific α-activity of 4.96 GBq/gMOX, was leached in carbonate-containing solutions of low ionic strength. The high Pu content in the pellet stabilizes the (U,Pu)O2(s) matrix towards oxidative dissolution, whereas the α-decays emitted from the surface are expected to produce ∼3.6 × 10-7 mol H2O2/day, contributing to the oxidative dissolution of the pellet. Two sets of leaching tests were conducted under different redox conditions: Ar gas atmosphere and deuterium gas atmosphere. A relatively slow increase of the U and Pu concentrations was observed in the Ar case, with U concentrations increasing from 1·10-6 M after 1 h to ∼7 × 10-5 M after 58 days. Leaching under an atmosphere starting at 1 MPa deuterium gas was undertaken in order to evaluate any effect of dissolved hydrogen on the radiolytic dissolution of the pellet, as well as to investigate any potential recombination of the α-radiolytic products with dissolved deuterium. For the latter purpose, isotopic analysis of the D/H content was carried out on solution samples taken during the leaching. Despite the continuous production of radiolytic oxidants, the concentrations of U and Pu remained quite constant at the level of ∼3 × 10-8 M during the first 30 days, i.e. as long as the deuterium pressure remained higher than 0.8 MPa. These data rule out any oxidative dissolution of the pellet during the first month. The un-irradiated MOX fuel does not contain metallic ε-particles, hence it is mainly the interaction of radiolytic oxidants and dissolved deuterium with the surface of the mixed actinide oxide that causes the neutralization of the oxidants. This conclusion is supported by the steadily increasing levels of HDO measured in the leachate samples.
Catching a quantum jump in mid-flight
NASA Astrophysics Data System (ADS)
Minev, Z. K.; Mundhada, S. O.; Zalys-Geller, E.; Shankar, S.; Rheinhold, P.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
Quantum jumps provide a fundamental manifestation of the interplay between coherent dynamics and strong continuous measurements. Interestingly, the modern theoretical vantage point of quantum trajectories (Carmichael, 1993) suggests that the jump is not instantaneous, but rather smooth, coherent, and under the right conditions may present a deterministic character. We revisit the original observation of quantum jumps in a V-type, three-level atom (Berquist, 1986; Sauter, 1986), in order to ``deterministically'' catch the jump in mid-flight. We have designed and operated a V-type superconducting artificial atom with the 3 needed levels: G (for Ground), B (for Bright), and D (for Dark). The atom is coupled to a continuously monitored microwave mode that can distinguish B from the manifold formed by G and D, but without distinguishing G from D. We will present preliminary results showing how this experiment can be realized. Work supported by: ARO, ONR, AFOSR and YINQE. Discussions with H. Carmichael are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Walker, C. T.; Goll, W.; Matsumura, T.
1997-06-01
The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.
Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides
NASA Astrophysics Data System (ADS)
Yang, Yu; Zhang, Ping
2013-01-01
We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.
MOX fuel arrangement for nuclear core
Kantrowitz, M.L.; Rosenstein, R.G.
1998-10-13
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.
Mox fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-05-15
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
2001-07-17
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
MOX fuel arrangement for nuclear core
Kantrowitz, Mark L.; Rosenstein, Richard G.
1998-01-01
In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.
2011-12-01
The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.
Composing Data and Process Descriptions in the Design of Software Systems.
1988-05-01
accompanying ’data’ specification. So, for example, the bank account of Section 2.2.3 became ACC = open? d -- ACCIin(d) ACCA = payin? p --* ACCeosi(Ap) wdraw...w --* ACCtidraw(A,w) bal! balance(A) --+ ACCA I close -+ STOP where A has abstract type Account , with operators (that is, side-effect free functions...n accounts .................. 43 3.5 Non-deterministic merge ........ ........................... 45 4.1 Specification of a ticket machine system
Microoxidation in wine production.
Kilmartin, Paul A
2010-01-01
Microoxygenation (MOX) is now widely applied for the maturation of red wines as an alternative to barrel aging. The proposed improvements in wine quality arising from MOX include color stabilization, removal of unwanted off-odors, and improvements in wine mouthfeel. In this review, an outline is provided of oxygenation systems, particularly microbullage and polymer membrane delivery, and of the current understanding of wine oxidation processes. A summary of the results from published studies into red wine MOX is then provided, beginning with observations on O(2) and acetaldehyde accumulation, and the moderating effect of added sulfur dioxide. Effects upon red wine color, particularly the more rapid formation of polymeric pigments and higher color retention, have been consistently demonstrated in MOX studies, along with further effects on specific polyphenol compounds. A few reports have recently examined the effect of MOX on red wine aromas, but these have yet to identify compounds that consistently change in a manner that would explain sensory observations regarding a lowering of herbaceous and reductive odors. Likewise, tannin analyses have been undertaken in several studies, but explanations of the decline in wine astringency remain to be developed. The accelerated growth of unwanted microorganisms has also been examined in a limited number of studies, but no major problems have been identified in this area. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wenqi; Ding, Xingeng; Wu, Huating; Yang, Hui
2018-07-01
Semiconductor photocatalysis is an effective green way to combat water pollution. For the first time, this study reports a novel method to develop Bi2MoxW1-xO6 solid solution with microsphere structure through anion-exchange method. All Bi2MoxW1-xO6 samples exhibit an Aurivillius-type crystal structure without any secondary phase, confirming that in complete solid solutions as the value of x increases, the band gap energy of Bi2MoxW1-xO6 solid solutions decreases, while the optical absorption edge moves to longer wavelength. The Raman spectra research shows an increase in orthorhombic distortion with progressive replacement of W sites in Bi2WO6 with Mo6+ ions. Compared to Bi2MoO6 and Bi2WO6 samples, Bi2Mo0.4W0.6O6 sample displayed best photocatalytic activity and cycling stability for degradation of RhB dye. The enhanced photocatalytic activity of Bi2Mo0.4W0.6O6 sample can be synergetically linked to hierarchical hollow structure, enhanced light absorbance, and high carrier-separation efficiency. Additionally, the hollow Bi2MoxW1-xO6 microspheres formation can be attributed to the Kirkendall effect.
Moxidectin: a review of chemistry, pharmacokinetics and use in horses
Cobb, Rami; Boeckh, Albert
2009-01-01
This article reviews the current knowledge of the use of moxidectin (MOX) in horses, including its mode of action, pharmacokinetic and pharmacodynamic properties, efficacy, safety and resistance profile. Moxidectin is a second generation macrocyclic lactone (ML) with potent endectocide activity. It is used for parasite control in horses in an oral gel formulation. The principal mode of action of MOX and of other MLs is binding to gamma-aminobutyric (GABA) and glutamate-gated chloride channels. Moxidectin is different from other MLs in that it is a poor substrate for P-glycoproteins (P-gps) and therefore less susceptible to elimination from parasite cells through this mechanism. Due to its unique physicochemical and pharmacokinetic characteristics, MOX provides broad distribution into tissues, long half-life, significant residual antiparasitic activity, and high efficacy against encysted cyathostomin larvae. These characteristics allow for high efficacy and longer treatment interval against all important nematodes, when compared to other equine anthelmintics. A combination of MOX with praziquantel provides expanded spectrum of activity by adding activity against cestodes. Appropriate use of MOX allows for the development of strategic anthelmintic programmes that are different from those with conventional anthelmintics. Fewer treatments are required over a period of time, and therefore impose less frequent selection pressure for resistance. PMID:19778466
Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonat Sen; Gilles Youinou
2013-02-01
It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less
Digital 3D holographic display using scattering layers for enhanced viewing angle and image size
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun
2017-05-01
In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.
Environment-based pin-power reconstruction method for homogeneous core calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-07-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less
Transportation and storage of MOX and LEU assemblies at the Balakovo Nuclear Power Plant
DOT National Transportation Integrated Search
2001-01-01
The VVER-1000-type Balakovo Nuclear Power Plant has been chosen to dispose of the : plutonium created as part of Russian weapons program. The plutonium will be converted to mixed-oxide : (MOX), fabricated into assemblies and loaded into the reactor. ...
NASA Astrophysics Data System (ADS)
Contreras, Arturo Javier
This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.
Micro-oxygenation of red wine: techniques, applications, and outcomes.
Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R
2011-02-01
Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.
Lata, Manju; Sharma, Divakar; Kumar, Bhavnesh; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy
2015-01-01
Ofloxacin (OFX) and moxifloxacin (MOX) are the most promising second line drugs for tuberculosis treatment. Although the primary mechanism of action of OFX and MOX is gyrase inhibition, other possible mechanisms cannot be ruled out. Being the functional moiety of cell, the proteins act as primary targets for developing drugs, diagnostics and therapeutics. In this study we have investigated the proteomic changes of Mycobacterium tuberculosis isolates induced by OFX and MOX by applying comparative proteomic approaches based on two-dinensional gel electrophoresis (2DE) along with matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF/TOF-MS) and bioinformatic tools. The findings are likely to provide new understanding of OFX and MOX mechanisms that might be helpful in exploring new diagnostics and drug targets. Our study explored eleven proteins (Rv2889c, Rv2623, Rv0952, Rv1827, Rv1932, Rv0054, Rv1080c, Rv3418c, Rv3914, Rv1636 and Rv0009) that were overexpressed in the presence of drugs. Among them, Rv2623, Rv1827 and Rv1636 were identified as proteins with unknown function. InterProScan and molecular docking revealed that the conserved domain of hypothetical proteins interact with OFX and MOX which indicate a probable inhibition/modulation of the functioning of these proteins by both drugs, which might be overexpressed to overcome this effect.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon
2016-03-01
A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Terçariol, César Augusto Sangaletti; Martinez, Alexandre Souto
2005-08-01
Consider a medium characterized by N points whose coordinates are randomly generated by a uniform distribution along the edges of a unitary d-dimensional hypercube. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go to the nearest point which has not been visited in the preceding mu steps (deterministic tourist walk). Each trajectory generated by this dynamics has an initial nonperiodic part of t steps (transient) and a final periodic part of p steps (attractor). The neighborhood rank probabilities are parametrized by the normalized incomplete beta function Id= I1/4 [1/2, (d+1) /2] . The joint distribution S(N) (mu,d) (t,p) is relevant, and the marginal distributions previously studied are particular cases. We show that, for the memory-less deterministic tourist walk in the euclidean space, this distribution is Sinfinity(1,d) (t,p) = [Gamma (1+ I(-1)(d)) (t+ I(-1)(d) ) /Gamma(t+p+ I(-1)(d)) ] delta(p,2), where t=0, 1,2, ... infinity, Gamma(z) is the gamma function and delta(i,j) is the Kronecker delta. The mean-field models are the random link models, which correspond to d-->infinity, and the random map model which, even for mu=0 , presents nontrivial cycle distribution [ S(N)(0,rm) (p) proportional to p(-1) ] : S(N)(0,rm) (t,p) =Gamma(N)/ {Gamma[N+1- (t+p) ] N( t+p)}. The fundamental quantities are the number of explored points n(e)=t+p and Id. Although the obtained distributions are simple, they do not follow straightforwardly and they have been validated by numerical experiments.
Genetics in methylotrophic bacteria: Appendix. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lidstrom, M.E.
This research has focused primarily on promoters in Methylobacterium extorquens AM1 and in methanotrophic bacteria. In Methylobacterium extorquens work continued on the moxF promoter. The author constructed chromosomal lacZ fusions of this promoter to avoid the regulation problems of plasmid-borne fragments and has shown that this is regulated normally in the chromosome. She has constructed lacZ fusions to some of the mox genes involved in the synthesis of the cofactor, PQQ, in order to carry out similar analysis of transcription of PQQ genes. The author has continued to isolate mox genes in methanotrophs for the purpose of studying their promotersmore » and transcriptional regulation.« less
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Health risk assessment of inorganic arsenic intake of Ronphibun residents via duplicate diet study.
Saipan, Piyawat; Ruangwises, Suthep
2009-06-01
To assess health risk from exposure to inorganic arsenic via duplicate portion sampling method in Ronphibun residents. A hundred and forty samples (140 subject-days) were collected from participants in Ronphibun sub-district. Inorganic arsenic in duplicate diet sample was determined by acid digestion and hydride generation-atomic absorption spectrometry. Deterministic risk assessment is referenced throughout the present paper using United States Environmental Protection Agency (U.S. EPA) guidelines. The average daily dose and lifetime average daily dose of inorganic arsenic via duplicate diet were 0.0021 mg/kg/d and 0.00084 mg/kg/d, respectively. The risk estimates in terms of hazard quotient was 6.98 and cancer risk was 1.26 x 10(-3). The results of deterministic risk characterization both hazard quotient and cancer risk from exposure inorganic arsenic in duplicate diets were greater than safety risk levels of hazard quotient (1) and cancer risk (1 x 10(-4)).
Scoping analysis of the Advanced Test Reactor using SN2ND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolters, E.; Smith, M.; SC)
2012-07-26
A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of themore » SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature requirements for the ATR, and also to demonstrate the feasibility of performing this analysis with a deterministic transport code capable of modeling heterogeneous geometries. The work performed indicates that a minimum of 260,000 linear finite elements combined with a L3T11 cubature (96 angles on the sphere) is required for both eigenvalue and flux convergence of the ATR. A critical finding was that the fuel meat and water channels must each be meshed with at least 3 'radial zones' for accurate flux convergence. A small number of 3D calculations were also performed to show axial mesh and eigenvalue convergence for a full core problem. Finally, a brief analysis was performed with different cross sections sets generated from DRAGON and SCALE, and the findings show that more effort will be required to improve the multigroup cross section generation process. The total number of degrees of freedom for a converged 27 group, 2D ATR problem is {approx}340 million. This number increases to {approx}25 billion for a 3D ATR problem. This scoping study shows that both 2D and 3D calculations are well within the capabilities of the current SN2ND solver, given the availability of a large-scale computing center such as BlueGene/P. However, dynamics calculations are not realistic without the implementation of improvements in the solver.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3098; NRC-2011-0081] Shaw AREVA MOX Services, Mixed... following methods: Federal Rulemaking Web site: Go to http://www.regulations.gov and search for documents... publicly available documents related to this notice using the following methods: NRC's Public Document Room...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkurt, H
2001-01-11
In 1967, a series of critical experiments were conducted at the Westinghouse Reactor Evaluation Center (WREC) using mixed-oxide (MOX) PuO{sub 2}-UO{sub 2} and/or UO{sub 2} fuels in various lattices and configurations . These experiments were performed under the joint sponsorship of the Empire State Atomic Development Associates (ESADA) plutonium program and Westinghouse . The purpose of these experiments was to develop experimental data to validate analytical methods used in the design of a plutonium-bearing replacement fuel for water reactors. Three different fuels were used during the experimental program: two MOX fuels and a low-enriched UO{sub 2} fuel. The MOX fuelsmore » were distinguished by their {sup 240}Pu content: 8 wt% {sup 240}Pu and 24 wt% {sup 240}Pu. Both MOX fuels contained 2.0 wt % PuO{sub 2} in natural UO{sub 2} . The UO{sub 2} fuel with 2.72 wt % enrichment was used for comparison with the plutonium data and for use in multiregion experiments.« less
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems
Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio
2018-01-01
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673
Cross-correlation measurements with the EJ-299-33 plastic scintillator
NASA Astrophysics Data System (ADS)
Bourne, Mark M.; Whaley, Jeff; Dolan, Jennifer L.; Polack, John K.; Flaska, Marek; Clarke, Shaun D.; Tomanin, Alice; Peerani, Paolo; Pozzi, Sara A.
2015-06-01
New organic-plastic scintillation compositions have demonstrated pulse-shape discrimination (PSD) of neutrons and gamma rays. We present cross-correlation measurements of 252Cf and mixed uranium-plutonium oxide (MOX) with the EJ-299-33 plastic scintillator. For comparison, equivalent measurements were performed with an EJ-309 liquid scintillator. Offline, digital PSD was applied to each detector. These measurements show that EJ-299-33 sacrifices a factor of 5 in neutron-neutron efficiency relative to EJ-309, but could still utilize the difference in neutron-neutron efficiency and neutron single-to-double ratio to distinguish 252Cf from MOX. These measurements were modeled with MCNPX-PoliMi, and MPPost was used to convert the detailed collision history into simulated cross-correlation distributions. MCNPX-PoliMi predicted the measured 252Cf cross-correlation distribution for EJ-309 to within 10%. Greater photon uncertainty in the MOX sample led to larger discrepancy in the simulated MOX cross-correlation distribution. The modeled EJ-299-33 plastic also gives reasonable agreement with measured cross-correlation distributions, although the MCNPX-PoliMi model appears to under-predict the neutron detection efficiency.
Toxic effects of butyl elastomers on aerobic methane oxidation
NASA Astrophysics Data System (ADS)
Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina
2013-04-01
Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.S.
In the past several years researchers have identified at least 20 genes whose products were required for the oxidation of methanol to formaldehyde in three different facultative methylotrophic bacteria. These genes include structural genes for a cytochrome c{sub L} (mox G) and is a specific electron acceptor for methanol dehydrogenase (MDH), and the two structural genes that encode the large subunit (mox F) and smaller subunit (mox I) of MDH. Other genes are required for the synthesis of the prosthetic group of MDH, Pyrroloquinoline quinone (PQQ), and proteins required for assembly of the active MDH in the periplasm. Three genesmore » are believed to be required for incorporation of calcium into the MDH tetramer. The principal investigator`s group has studied the regulation of methanol oxidation in the pink-pigmented-facultative methylotroph Methylobacterium organophilum XX. The authors have mapped several genes and have sequenced the mox F gene and sequences upstream of mox F. The authors had tentatively identified several genes required for the transcription of the MDH structural genes in three methylotrophs. In the previous proposal, the P.I. proposed to establish an in-vitro transcription/translation system to study the function of the regulatory gene products. Further studies demonstrated that the regulation of transcription of these genes was far more complex than imagined at that time and the research plan was modified to determine the number and function of the regulatory genes using genetic approaches.« less
Tang, Jia-Min; Li, Fen; Cheng, Tian-Yin; Duan, De-Yong; Liu, Guo-Hua
2018-05-22
The sheep ked Melophagus ovinus is mainly found in Europe, Northwestern Africa, and Asia. Although M. ovinus is an important ectoparasite of sheep in many countries, the population genetics, molecular biology, and systematics of this ectoparasite remain poorly understood. Herein, we determined the mitochondrial (mt) genome of M. ovinus from Gansu Province, China (MOG) and compared with that of M. ovinus Xinjiang Uygur Autonomous Region, China (MOX). The mt genome sequence (15,044 bp) of M. ovinus MOG was significantly shorter (529 bp) than M. ovinus MOX. Nucleotide sequence difference in the whole mt genome except for non-coding region was 0.37% between M. ovinus MOG and MOX. For the 13 protein-coding genes, comparison revealed sequence divergences at both the nucleotide (0-1.1%) and amino acid (0-0.59%) levels between M. ovinus MOG and MOX, respectively. Interestingly, the cox1 gene of M. ovinus MOX is predicted to employ unusual mt start codons AAA, which has not been predicted previously for any parasite genome. Phylogenetic analyses showed that M. ovinus (Hippoboscoidea) is related to the superfamilies Oestroidea + Muscoidea. Our results have also indicated the paraphylies of the four families (Anthomyiidae, Calliphoridae, Muscidae, and Oestridae) and two superfamilies (Oestroidea and Muscoidea). This mt genome of M. ovinus provides useful molecular markers for studies into the population genetics, molecular biology, and systematics of this ectoparasite.
Efficient room-temperature source of polarized single photons
Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.
2007-08-07
An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.
Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA
NASA Astrophysics Data System (ADS)
Talip, Zeynep; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Valot, Christophe; Vauchy, Romain; Jégou, Christophe
2018-02-01
In this study, Raman spectroscopy technique was implemented to characterize un-irradiated MIMAS (MIcronized - MASter blend) MOX fuel samples with average 7 wt.% Pu content and different damage levels, 13 years after fabrication, one year after thermal recovery and soon after annealing, respectively. The impacts of local Pu content, deviation from stoichiometry and self-radiation damage on Raman spectrum of the studied MIMAS MOX samples were assessed. MIMAS MOX fuel has three different phases Pu-rich agglomerate, coating phase and uranium matrix. In order to distinguish these phases, Raman results were associated with Pu content measurements performed by Electron Microprobe Analysis. Raman results show that T2g frequency significantly shifts from 445 to 453 cm-1 for Pu contents increasing from 0.2 to 25 wt.%. These data are satisfactorily consistent with the calculations obtained with Gruneisen parameters. It was concluded that the position of the T2g band is mainly controlled by Pu content and self-radiation damage. Deviation from stoichiometry does not have a significant influence on T2g band position. Self-radiation damage leads to a shift of T2g band towards lower frequency (∼1-2 cm-1 for the UO2 matrix of damaged sample). However, this shift is difficult to quantify for the coating phase and Pu agglomerates given the dispersion of high Pu concentrations. In addition, 525 cm-1 band, which was attributed to sub-stoichiometric structural defects, is presented for the first time for the self-radiation damaged MOX sample. Thanks to the different oxidation resistance of each phase, it was shown that laser induced oxidation could be alternatively used to identify the phases. It is demonstrated that micro-Raman spectroscopy is an efficient technique for the characterization of heterogeneous MOX samples, due to its low spatial resolution.
Deterministic Bragg Coherent Diffraction Imaging.
Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M
2017-04-25
A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.
A XAS study of the local environments of cations in (U, Ce)O 2
NASA Astrophysics Data System (ADS)
Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier
2003-01-01
Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... established pursuant to the policies duly authorized under the National Industrial Security Program. The proxy... Influence (FOCI) in order to maintain the Facility Security Clearance held by MOX Services. No physical... Facility Security Clearance, is in accordance with the provisions of the AEA of 1954, as amended. The...
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2015-02-05
One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
[Influence factors on supply and demand changes in the field of acupuncture and moxibustion].
Liu, Bin; Li, Ping
2011-11-01
Based on principles of health economy and the present situation, the possibility and regularity on changes in the supply and demand field of acupuncture and moxibustion through various viewpoints were analyzed, which included demand and supply elasticity of acup-mox services to market price and the relevant factors, categories and nature of acup-mox services, business idea of supplier on the strength of marginal cost and marginal benefit, expenditure level and inclination of demander, complementary and substitutive treatment of acup-mox therapy, and the relevant time and geographic factors to change in quantity demand and supply. Therefore, it could be applied as reference to redaction and reform of the relevant health economics policy by health administrative management.
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.
2014-01-01
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E
2012-05-22
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.
van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander
2014-01-01
Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering.
van de Kamp, Thomas; dos Santos Rolo, Tomy; Vagovič, Patrik; Baumbach, Tilo; Riedel, Alexander
2014-01-01
Digital surface mesh models based on segmented datasets have become an integral part of studies on animal anatomy and functional morphology; usually, they are published as static images, movies or as interactive PDF files. We demonstrate the use of animated 3D models embedded in PDF documents, which combine the advantages of both movie and interactivity, based on the example of preserved Trigonopterus weevils. The method is particularly suitable to simulate joints with largely deterministic movements due to precise form closure. We illustrate the function of an individual screw-and-nut type hip joint and proceed to the complex movements of the entire insect attaining a defence position. This posture is achieved by a specific cascade of movements: Head and legs interlock mutually and with specific features of thorax and the first abdominal ventrite, presumably to increase the mechanical stability of the beetle and to maintain the defence position with minimal muscle activity. The deterministic interaction of accurately fitting body parts follows a defined sequence, which resembles a piece of engineering. PMID:25029366
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Optofluidic fabrication for 3D-shaped particles
NASA Astrophysics Data System (ADS)
Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.
2015-04-01
Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.
Predicting the Stochastic Properties of the Shallow Subsurface for Improved Geophysical Modeling
NASA Astrophysics Data System (ADS)
Stroujkova, A.; Vynne, J.; Bonner, J.; Lewkowicz, J.
2005-12-01
Strong ground motion data from numerous explosive field experiments and from moderate to large earthquakes show significant variations in amplitude and waveform shape with respect to both azimuth and range. Attempts to model these variations using deterministic models have often been unsuccessful. It has been hypothesized that a stochastic description of the geological medium is a more realistic approach. To estimate the stochastic properties of the shallow subsurface, we use Measurement While Drilling (MWD) data, which are routinely collected by mines in order to facilitate design of blast patterns. The parameters, such as rotation speed of the drill, torque, and penetration rate, are used to compute the rock's Specific Energy (SE), which is then related to a blastability index. We use values of SE measured at two different mines and calibrated to laboratory measurements of rock properties to determine correlation lengths of the subsurface rocks in 2D, needed to obtain 2D and 3D stochastic models. The stochastic models are then combined with the deterministic models and used to compute synthetic seismic waveforms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...
A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frances, N.; Timm, W.; Rossbach, D.
2012-07-01
Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less
Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.
Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio
2018-02-03
Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.
Experimental demonstration on the deterministic quantum key distribution based on entangled photons.
Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu
2016-02-10
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu
2016-01-01
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582
Burgués, Javier; Marco, Santiago
2018-08-17
Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model
NASA Astrophysics Data System (ADS)
Dtchetgnia Djeundam, S. R.; Yamapi, R.; Kofane, T. C.; Aziz-Alaoui, M. A.
2013-09-01
We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.
Martínez-Gonzáles, N E; Martínez-Chávez, L; Cabrera-Díaz, E; Martínez-Cárdenas, C; Gutiérrez-González, P; Castillo, A
2016-05-01
Polymyxin Ceftazidime Oxford Medium (PCOM), a novel selective and differential plating medium for Listeria monocytogenes was compared with Modified Oxford Agar (MOX) for efficacy to isolate L. monocytogenes and other Listeria spp. naturally present in non-pasteurized Mexican-style cheese (n = 50), non-pasteurized fresh squeezed orange juice (n = 50), raw beef chunks (n = 36), and fresh cabbage (n = 125). Samples were collected from retail markets and farms in Mexico and tested following the US Department of Agriculture enrichment technique. Listeria spp. were isolated from 23.4% of analyzed samples, and from those, 75.0% corresponded to raw beef chunks, 38.0% to non-pasteurized Mexican-style cheese, and 30.0% to fresh squeezed orange juice. No Listeria spp. were isolated from fresh cabbage samples. L. monocytogenes was recovered from 15.3% of food samples analyzed. Non-pasteurized Mexican-style cheese showed the highest proportion of L. monocytogenes positive samples (36.0%), followed by orange juice (26.0%) and raw beef (25.0%). The frequency of isolation of Listeria spp. and L. monocytogenes was not different (P > 0.05) between PCOM and MOX. The advantages of using PCOM when comparing to MOX, include the easier way to identify Listeria species, the lower cost per plate and the availability of its ingredients for Latin-American countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.
2015-01-01
This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T 1, n = 15) or 48 hours after parturition (T 2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T 1) and 96.9% (T 2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T 1 (94.8%) and T 2 (96.7%) ewes (p < 0.05). All lambs showed a significant and ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913
Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul A. Lessing; W.R. Cannon; Gerald W. Egeland
The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Single Microwave-Photon Detector using an Artificial Lambda-type Three-Level System
2016-01-11
Single microwave-photon detector using an artificial Λ-type three- level system Kunihiro Inomata,1∗†, Zhirong Lin,1†, Kazuki Koshino,2, William D...three- level system Kunihiro Inomata,1∗† Zhirong Lin,1† Kazuki Koshino,2 William D. Oliver,3,4 Jaw-Shen Tsai,1 Tsuyoshi Yamamoto,5 Yasunobu Nakamura...single-microwave-photon detector based on the deterministic switching in an artificial Λ-type three- level system implemented using the dressed states of a
Imminent: Irradiation Testing of (Th,Pu)O{sub 2} Fuel - 13560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Julian F.; Franceschini, Fausto
2013-07-01
Commercial-prototype thorium-plutonium oxide (Th-MOX) fuel pellets have been loaded into the material test reactor in Halden, Norway. The fuel is being operated at full power - with instrumentation - in simulated LWR / PHWR conditions and its behaviour is measured 'on-line' as it operates to high burn-up. This is a vital test on the commercialization pathway for this robust new thoria-based fuel. The performance data that is collected will support a fuel modeling effort to support its safety qualification. Several different samples of Th-MOX fuel will be tested, thereby collecting information on ceramic behaviours and their microstructure dependency. The fuel-cyclemore » reasoning underpinning the test campaign is that commercial Th- MOX fuels are an achievable intermediate / near-term SNF management strategy that integrates well with a fast reactor future. (authors)« less
NASA Astrophysics Data System (ADS)
Greiner, Nathan
Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.
A Clear Success for International Transport of Plutonium and MOX Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blachet, L.; Jacot, P.; Bariteau, J.P.
2006-07-01
An Agreement between the United States and Russia to eliminate 68 metric tons of surplus weapons-grade plutonium provided the basis for the United States government and its agency, the Department of Energy (DOE), to enter into contracts with industry leaders to fabricate mixed oxide (MOX) fuels (a blend of uranium oxide and plutonium oxide) for use in existing domestic commercial reactors. DOE contracted with Duke, COGEMA, Stone and Webster (DCS), a limited liability company comprised of Duke Energy, COGEMA Inc. and Stone and Webster to design a Mixed Oxide Fuel Fabrication Facility (MFFF) which would be built and operated atmore » the DOE Savannah River Site (SRS) near Aiken, South Carolina. During this same time frame, DOE commissioned fabrication and irradiation of lead test assemblies in one of the Mission Reactors to assist in obtaining NRC approval for batch implementation of MOX fuel prior to the operations phase of the MFFF facility. On February 2001, DOE directed DCS to initiate a pre-decisional investigation to determine means to obtain lead assemblies including all international options for manufacturing MOX fuels. This lead to implementation of the EUROFAB project and work was initiated in earnest on EUROFAB by DCS on November 7, 2003. (authors)« less
Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha
2017-05-01
Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrochemical reduction of (U-40Pu-5Np)O 2 in molten LiCl electrolyte
NASA Astrophysics Data System (ADS)
Iizuka, Masatoshi; Sakamura, Yoshiharu; Inoue, Tadashi
2006-12-01
The electrochemical reduction of neptunium-containing MOX ((U-40Pu-5Np)O 2) was performed in molten lithium chloride melt at 923 K to investigate fundamental behavior of the transuranium elements and applicability of the method to reduction process for these materials. The Np-MOX was electrochemically reduced at the potential lower than -0.6 V vs. Bi-35 mol% Li reference electrode. The reduced metal grains in the surface region of the sample cohered with each other and made the layer of relatively high density, although it did not prevent the reduction of the sample toward the center. Complete reduction of the Np-MOX was shown by the weight change measurement through the electrochemical reduction and also by SEM-EDX observation. The chemical composition of the reduction products was homogeneous and agreed to that of the initial Np-MOX, which indicates that the reduction was completed and not selective among the actinides. The concentrations of the actinide elements, especially plutonium and americium in the electrolyte, increased with the progress of the tests, although their absolute values were very small. It is quite likely that plutonium and americium dissolve into the melt in the same manner as the lanthanide elements in the lithium reduction process.
Development of burnup dependent fuel rod model in COBRA-TF
NASA Astrophysics Data System (ADS)
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.
Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
Wang, Fagen; Zhang, Haojie; He, Dannong
2014-01-01
The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
Global solutions to random 3D vorticity equations for small initial data
NASA Astrophysics Data System (ADS)
Barbu, Viorel; Röckner, Michael
2017-11-01
One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 < p < 2, of a global mild solution to random vorticity equations associated to stochastic 3D Navier-Stokes equations with linear multiplicative Gaussian noise of convolution type, for sufficiently small initial vorticity. This resembles some earlier deterministic results of T. Kato [16] and are obtained by treating the equation in vorticity form and reducing the latter to a random nonlinear parabolic equation. The solution has maximal regularity in the spatial variables and is weakly continuous in (L3 ∩L 3p/4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.
Maia, Alexandra S; Ribeiro, Ana R; Amorim, Catarina L; Barreiro, Juliana C; Cass, Quezia B; Castro, Paula M L; Tiritan, Maria Elizabeth
2014-03-14
Antibiotics are a therapeutic class widely found in environmental matrices and extensively studied due to its persistence and implications for multi-resistant bacteria development. This work presents an integrated approach of analytical multi-techniques on assessing biodegradation of fluorinated antibiotics at a laboratory-scale microcosmos to follow removal and formation of intermediate compounds. Degradation of four fluoroquinolone antibiotics, namely Ofloxacin (OFL), Norfloxacin (NOR), Ciprofloxacin (CPF) and Moxifloxacin (MOX), at 10 mg L(-1) using a mixed bacterial culture, was assessed for 60 days. The assays were followed by a developed and validated analytical method of LC with fluorescence detection (LC-FD) using a Luna Pentafluorophenyl (2) 3 μm column. The validated method demonstrated good selectivity, linearity (r(2)>0.999), intra-day and inter-day precisions (RSD<2.74%) and accuracy. The quantification limits were 5 μg L(-1) for OFL, NOR and CPF and 20 μg L(-1) for MOX. The optimized conditions allowed picturing metabolites/transformation products formation and accumulation during the process, stating an incomplete mineralization, also shown by fluoride release. OFL and MOX presented the highest (98.3%) and the lowest (80.5%) extent of degradation after 19 days of assay, respectively. A representative number of samples was selected and analyzed by LC-MS/MS with triple quadrupole and the molecular formulas were confirmed by a quadruple time of flight analyzer (QqTOF). Most of the intermediates were already described as biodegradation and/or photodegradation products in different conditions; however unknown metabolites were also identified. The microbial consortium, even when exposed to high levels of FQ, presented high percentages of degradation, never reported before for these compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.
2016-12-01
The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum for MOx in both environments. The very low O2 requirements may reflect the adaption of water column MOB at the organismic level to O2-limited conditions, with several ecological advantages: it allows them to escape grazing pressure and to avoid the detrimental effects of oxidative stress and/or CH4 starvation in more oxygenated waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Klann, R. T.; Nuclear Engineering Division
2007-08-03
An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.
Bi-Modal Model for Neutron Emissions from PuO{sub 2} and MOX Holdup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard; Lafleur, Adrienne
2015-07-01
The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup formore » the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of PuO{sub 2} particles has been studied for several decades by health physicists, because the primary health hazard of plutonium is breathing the airborne particles. The air dispersal mechanism results from the smaller particles in the top layer of powder that are lifted into the air by the electrostatic charge buildup from the alpha decay process, and the air convection carries the particles to new more distant locations. If there is open plutonium powder in a glove-box, the surfaces at more distant locations will become contaminated over time. The range of an alpha particle in a solid or powder is a function of the particle energy, the material density, and the atomic number A of the material. The average energy of a plutonium alpha particle is ∼5.2 MeV and the range in air is ∼37 mm. The range in other materials can be estimated via the Bragg-Kleenman equation. For plutonium, A is 94, and the typical density for a single particle is ∼11.5 g/cm{sup 3}, but for a powder, the density would be less because of the air packing fraction. The significance of the small diameter is that the range of the alpha particle is ∼50 μm for powder density 2.5 and significantly less for a single particle with density 11.5, so the thin deposit of separate small particles will have a greatly reduced (α,n) yield. The average alpha transit length to the surface in the isolated MOX particle would be < 2.5 μm; whereas, the range of the alpha particle is much longer. Thus, most of the alpha particles would escape from the MOX particle and be absorbed by the walls and air. The air dispersal particles will have access to a large surface area that includes the walls, whereas, the powder contact surface area will be orders of magnitude smaller. Thus, the vast majority of the glove-box surface area does not produce the full (α,n) reaction neutron yield, even from the O{sub 2} in the PuO{sub 2} as well as any impurity contamination such as H{sub 2}O. To obtain a more quantitative estimate of the neutron (α,n) yields as a function of holdup deposit thickness, we have used MCNPX calculations to estimate the absorption of alpha particles in PuO{sub 2} holdup deposits. The powder thickness was varied from 0.1 μm to 5000 μm and the alpha particle escape probability was calculated. As would be expected, as the thickness approaches zero, the escape probability approaches 1.0, and as the thickness gets much greater than the alpha particle range (∼50 μm), the escape probability becomes small. Typically, the neutron holdup calibration measurement are performed using sealed containers of thick MOX that has all 3 sources of neutrons [SF, (α,n), and M], and no significant impurities. Thus, the calibration counting rates need to include corrections for M and (α,n) yields that are different for the holdup compared with the calibration samples. If totals neutron counting is used for the holdup measurements, the variability of the (α,n) term needs to be considered.« less
Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk
2016-08-01
Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.
Sawakuchi, Henrique O; Bastviken, David; Sawakuchi, André O; Ward, Nicholas D; Borges, Clovis D; Tsai, Siu M; Richey, Jeffrey E; Ballester, Maria Victoria R; Krusche, Alex V
2016-03-01
The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang
2018-04-01
The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x < 0.12) is obtained by crystal transformation from SrFe1‑xMoxO3‑δ perovskite via low-temperature (≤380 °C) topotactic reduction. The parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H. In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: (i) phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; (ii) methanol-dependent whole-cell oxygen consumption; (iii) the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; (iv) the absorption spectra of purified mutant methanol dehydrogenase proteins; and (v) the presence or absence ofmore » the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol.« less
Scott, B R; Lyzlov, A F; Osovets, S V
1998-05-01
During a Phase-I effort, studies were planned to evaluate deterministic (nonstochastic) effects of chronic exposure of nuclear workers at the Mayak atomic complex in the former Soviet Union to relatively high levels (> 0.25 Gy) of ionizing radiation. The Mayak complex has been used, since the late 1940's, to produce plutonium for nuclear weapons. Workers at Site A of the complex were involved in plutonium breeding using nuclear reactors, and some were exposed to relatively large doses of gamma rays plus relatively small neutron doses. The Weibull normalized-dose model, which has been set up to evaluate the risk of specific deterministic effects of combined, continuous exposure of humans to alpha, beta, and gamma radiations, is here adapted for chronic exposure to gamma rays and neutrons during repeated 6-h work shifts--as occurred for some nuclear workers at Site A. Using the adapted model, key conclusions were reached that will facilitate a Phase-II study of deterministic effects among Mayak workers. These conclusions include the following: (1) neutron doses may be more important for Mayak workers than for Japanese A-bomb victims in Hiroshima and can be accounted for using an adjusted dose (which accounts for neutron relative biological effectiveness); (2) to account for dose-rate effects, normalized dose X (a dimensionless fraction of an LD50 or ED50) can be evaluated in terms of an adjusted dose; (3) nonlinear dose-response curves for the risk of death via the hematopoietic mode can be converted to linear dose-response curves (for low levels of risk) using a newly proposed dimensionless dose, D = X(V), in units of Oklad (where D is pronounced "deh"), and V is the shape parameter in the Weibull model; (4) for X < or = Xo, where Xo is the threshold normalized dose, D = 0; (5) unlike absorbed dose, the dose D can be averaged over different Mayak workers in order to calculate the average risk of death via the hematopoietic mode for the population exposed at Site A; and (6) the expected cases of death via the hematopoietic syndrome mode for Mayak workers chronically exposed during work shifts at Site A to gamma rays and neutrons can be predicted using ln(2)B M[D]; where B (pronounced "beh") is the number of workers at risk (criticality accident victims excluded); and M[D] is the average (mean) value of D (averaged over the worker population at risk, for Site A, for the time period considered). These results can be used to facilitate a Phase II study of deterministic radiation effects among Mayak workers chronically exposed to gamma rays and neutrons.
Specialized Silicon Compilers for Language Recognition.
1984-07-01
realizations of non-deterministic automata have been reported that solve these problems in diffierent ways. Floyd and Ullman [ 281 have presented a...in Applied Mathematics, pages 19-31. American Mathematical Society, 1967. [ 281 Floyd, R. W. and J. D. Ullman. The Compilation of Regular Expressions...Shannon (editor). Automata Studies, chapter 1, pages 3-41. Princeton University Press, Princeton. N. J., 1956. [44] Kohavi, Zwi . Switching and Finite
Plenary: Progress in Regional Landslide Hazard Assessment—Examples from the USA
Baum, Rex L.; Schulz, William; Brien, Dianne L.; Burns, William J.; Reid, Mark E.; Godt, Jonathan W.
2014-01-01
Landslide hazard assessment at local and regional scales contributes to mitigation of landslides in developing and densely populated areas by providing information for (1) land development and redevelopment plans and regulations, (2) emergency preparedness plans, and (3) economic analysis to (a) set priorities for engineered mitigation projects and (b) define areas of similar levels of hazard for insurance purposes. US Geological Survey (USGS) research on landslide hazard assessment has explored a range of methods that can be used to estimate temporal and spatial landslide potential and probability for various scales and purposes. Cases taken primarily from our work in the U.S. Pacific Northwest illustrate and compare a sampling of methods, approaches, and progress. For example, landform mapping using high-resolution topographic data resulted in identification of about four times more landslides in Seattle, Washington, than previous efforts using aerial photography. Susceptibility classes based on the landforms captured 93 % of all historical landslides (all types) throughout the city. A deterministic model for rainfall infiltration and shallow landslide initiation, TRIGRS, was able to identify locations of 92 % of historical shallow landslides in southwest Seattle. The potentially unstable areas identified by TRIGRS occupied only 26 % of the slope areas steeper than 20°. Addition of an unsaturated infiltration model to TRIGRS expands the applicability of the model to areas of highly permeable soils. Replacement of the single cell, 1D factor of safety with a simple 3D method of columns improves accuracy of factor of safety predictions for both saturated and unsaturated infiltration models. A 3D deterministic model for large, deep landslides, SCOOPS, combined with a three-dimensional model for groundwater flow, successfully predicted instability in steep areas of permeable outwash sand and topographic reentrants. These locations are consistent with locations of large, deep, historically active landslides. For an area in Seattle, a composite of the three maps illustrates how maps produced by different approaches might be combined to assess overall landslide potential. Examples from Oregon, USA, illustrate how landform mapping and deterministic analysis for shallow landslide potential have been adapted into standardized methods for efficiently producing detailed landslide inventory and shallow landslide susceptibility maps that have consistent content and format statewide.
Comparative study on neutronics characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor
Ohgama, Kazuya; Aliberti, Gerardo; Stauff, Nicolas E.; ...
2017-02-28
Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions show a good agreement with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on themore » sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic approaches were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. From the detailed analysis of methodologies, it was found that the good agreement in multiplication factor from the deterministic calculations comes from the cancellation of the differences on the methodology (0.4%) and nuclear data (0.6%). The different treatment in reflector cross section generation was estimated as the major cause of the discrepancy between the multiplication factors by the JAEA and ANL deterministic methodologies. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology. Furthermore, the differences on the inelastic scattering cross sections of U-238, ν values and fission cross sections of Pu-239 and µ-average of Na-23 are the major contributors to the difference on the multiplication factors.« less
Comparative study on neutronics characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohgama, Kazuya; Aliberti, Gerardo; Stauff, Nicolas E.
Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions show a good agreement with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on themore » sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic approaches were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. From the detailed analysis of methodologies, it was found that the good agreement in multiplication factor from the deterministic calculations comes from the cancellation of the differences on the methodology (0.4%) and nuclear data (0.6%). The different treatment in reflector cross section generation was estimated as the major cause of the discrepancy between the multiplication factors by the JAEA and ANL deterministic methodologies. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology. Furthermore, the differences on the inelastic scattering cross sections of U-238, ν values and fission cross sections of Pu-239 and µ-average of Na-23 are the major contributors to the difference on the multiplication factors.« less
Carral, N; Lukas, J C; Oteo, I; Suarez, E
2015-01-01
The purpose of this report was to assess the impact of poor compliance on the efficacy of levofloxacin (LFX) and moxifloxacin (MOX), two fluoroquinolones with different pharmacokinetic (PK) and pharmacodynamic (PD) properties, in respiratory infections. The fAUC0-24h and fAUC0-24h/MIC90 ratio, a PK/PD index predictive of bacterial eradication, were extracted from previously described population PK models for LFX and MOX. The MIC90 was according to EUCAST. Monte Carlo simulations were used with LFX 500 mg every 24h (q24 h) or every 12h (q12h), LFX 750 mg q24 h and MOX 400mg q24 h in non-compliance scenarios to derive the proportion of patients achieving target ratios of fAUC0-24h/MIC90>33.8 for Streptococcus pneumoniae and >100 for Haemophilus influenzae and Moraxella catarrhalis (PTA>90%). In non-adherent dosing scenarios, LFX 500 mg q24 h was not able to reach the PK/PD index guaranteeing clinical efficacy. With LFX 500 mg q12 h or 750 mg q24 h, this probability was maintained although patients can take the dose with delays of up to 12h and 11h, respectively, for the three bacterial types. With MOX 400mg q24 h, the probability of achieving this PK/PD index is maintained with delay in dosing up to 16h. In conclusion, LFX 500 mg q24 h is the least robust treatment against S. pneumoniae, H. influenzae and M. catarrhalis in a non-adherence situation. A good choice is LFX 500 mg q12h, but in order to favour patient adherence, LFX 750 mg q24 h or MOX 400mg q24h appears as more appropriate. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0
NASA Technical Reports Server (NTRS)
Todling, Ricardo; El Akkraoui, Amal
2018-01-01
This document describes the implementation and usage of the Goddard Earth Observing System (GEOS) Hybrid Ensemble-Variational Atmospheric Data Assimilation System (Hybrid EVADAS). Its aim is to provide comprehensive guidance to users of GEOS ADAS interested in experimenting with its hybrid functionalities. The document is also aimed at providing a short summary of the state-of-science in this release of the hybrid system. As explained here, the ensemble data assimilation system (EnADAS) mechanism added to GEOS ADAS to enable hybrid data assimilation applications has been introduced to the pre-existing machinery of GEOS in the most non-intrusive possible way. Only very minor changes have been made to the original scripts controlling GEOS ADAS with the objective of facilitating its usage by both researchers and the GMAO's near-real-time Forward Processing applications. In a hybrid scenario two data assimilation systems run concurrently in a two-way feedback mode such that: the ensemble provides background ensemble perturbations required by the ADAS deterministic (typically high resolution) hybrid analysis; and the deterministic ADAS provides analysis information for recentering of the EnADAS analyses and information necessary to ensure that observation bias correction procedures are consistent between both the deterministic ADAS and the EnADAS. The nonintrusive approach to introducing hybrid capability to GEOS ADAS means, in particular, that previously existing features continue to be available. Thus, not only is this upgraded version of GEOS ADAS capable of supporting new applications such as Hybrid 3D-Var, 3D-EnVar, 4D-EnVar and Hybrid 4D-EnVar, it remains possible to use GEOS ADAS in its traditional 3D-Var mode which has been used in both MERRA and MERRA-2. Furthermore, as described in this document, GEOS ADAS also supports a configuration for exercising a purely ensemble-based assimilation strategy which can be fully decoupled from its variational component. We should point out that Release 1.0 of this document was made available to GMAO in mid-2013, when we introduced Hybrid 3D-Var capability to GEOS ADAS. This initial version of the documentation included a considerably different state-of-science introductory section but many of the same detailed description of the mechanisms of GEOS EnADAS. We are glad to report that a few of the desirable Future Works listed in Release 1.0 have now been added to the present version of GEOS EnADAS. These include the ability to exercise an Ensemble Prediction System that uses the ensemble analyses of GEOS EnADAS and (a very early, but functional version of) a tool to support Ensemble Forecast Sensitivity and Observation Impact applications.
The vertical growth of MoS2 layers at the initial stage of CVD from first-principles
NASA Astrophysics Data System (ADS)
Xue, Xiong-Xiong; Feng, Yexin; Chen, Keqiu; Zhang, Lixin
2018-04-01
Chemical vapor deposition (CVD) is the highly preferred method for mass production of transition metal dichalcogenide (TMD) layers, yet the atomic-scale knowledge is still lacking about the nucleation and growth. In this study, by using first-principles calculations, we show that, on Au(111) surface, one-dimensional (1D) MoxSy chains are first formed by coalescing of smaller feeding species and are energetically favored at the early stage of nucleation. Two-dimensional (2D) layers can be stabilized only after the number of Mo atoms exceeds ˜12. A vertical growth mode is revealed which accomplishes the structural transformation from the 1D chains to the 2D layers for the clusters while growing. The competition between intralayer and interlayer interactions is the key. These findings serve as new insights for better understanding the atomistic mechanism of the nucleation and growth of TMDs on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel
2016-10-01
A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, Jean-Marc; Eschbach, Romain; Launay, Agnes
CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of coolingmore » time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR version 5.3 uses the CEA reference calculation codes for neutron physics with the JEFF-3.1.1 nuclear data set. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.
New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less
({The) Solar System Large Planets influence on a new Maunder Miniμm}
NASA Astrophysics Data System (ADS)
Yndestad, Harald; Solheim, Jan-Erik
2016-04-01
In 1890´s G. Spörer and E. W. Maunder (1890) reported that the solar activity stopped in a period of 70 years from 1645 to 1715. Later a reconstruction of the solar activity confirms the grand minima Maunder (1640-1720), Spörer (1390-1550), Wolf (1270-1340), and the minima Oort (1010-1070) and Dalton (1785-1810) since the year 1000 A.D. (Usoskin et al. 2007). These minimum periods have been associated with less irradiation from the Sun and cold climate periods on Earth. An identification of a three grand Maunder type periods and two Dalton type periods in a period thousand years, indicates that sooner or later there will be a colder climate on Earth from a new Maunder- or Dalton- type period. The cause of these minimum periods, are not well understood. An expected new Maunder-type period is based on the properties of solar variability. If the solar variability has a deterministic element, we can estimate better a new Maunder grand minimum. A random solar variability can only explain the past. This investigation is based on the simple idea that if the solar variability has a deterministic property, it must have a deterministic source, as a first cause. If this deterministic source is known, we can compute better estimates the next expected Maunder grand minimum period. The study is based on a TSI ACRIM data series from 1700, a TSI ACRIM data series from 1000 A.D., sunspot data series from 1611 and a Solar Barycenter orbit data series from 1000. The analysis method is based on a wavelet spectrum analysis, to identify stationary periods, coincidence periods and their phase relations. The result shows that the TSI variability and the sunspots variability have deterministic oscillations, controlled by the large planets Jupiter, Uranus and Neptune, as the first cause. A deterministic model of TSI variability and sunspot variability confirms the known minimum and grand minimum periods since 1000. From this deterministic model we may expect a new Maunder type sunspot minimum period from about 2018 to 2055. The deterministic model of a TSI ACRIM data series from 1700 computes a new Maunder type grand minimum period from 2015 to 2071. A model of the longer TSI ACRIM data series from 1000 computes a new Dalton to Maunder type minimum irradiation period from 2047 to 2068.
Risk assessment for furan contamination through the food chain in Belgian children.
Scholl, Georges; Huybrechts, Inge; Humblet, Marie-France; Scippo, Marie-Louise; De Pauw, Edwin; Eppe, Gauthier; Saegerman, Claude
2012-08-01
Young, old, pregnant and immuno-compromised persons are of great concern for risk assessors as they represent the sub-populations most at risk. The present paper focuses on risk assessment linked to furan exposure in children. Only the Belgian population was considered because individual contamination and consumption data that are required for accurate risk assessment were available for Belgian children only. Two risk assessment approaches, the so-called deterministic and probabilistic, were applied and the results were compared for the estimation of daily intake. A significant difference between the average Estimated Daily Intake (EDI) was underlined between the deterministic (419 ng kg⁻¹ body weight (bw) day⁻¹) and the probabilistic (583 ng kg⁻¹ bw day⁻¹) approaches, which results from the mathematical treatment of the null consumption and contamination data. The risk was characterised by two ways: (1) the classical approach by comparison of the EDI to a reference dose (RfD(chronic-oral)) and (2) the most recent approach, namely the Margin of Exposure (MoE) approach. Both reached similar conclusions: the risk level is not of a major concern, but is neither negligible. In the first approach, only 2.7 or 6.6% (respectively in the deterministic and in the probabilistic way) of the studied population presented an EDI above the RfD(chronic-oral). In the second approach, the percentage of children displaying a MoE above 10,000 and below 100 is 3-0% and 20-0.01% in the deterministic and probabilistic modes, respectively. In addition, children were compared to adults and significant differences between the contamination patterns were highlighted. While major contamination was linked to coffee consumption in adults (55%), no item predominantly contributed to the contamination in children. The most important were soups (19%), dairy products (17%), pasta and rice (11%), fruit and potatoes (9% each).
Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Guerrero, C.; Mendoza, E.; Quesada, J. M.; Eberhardt, K.; Junghans, A. R.; Krtička, M.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.; n TOF Collaboration
2018-02-01
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on 242Pu carried out at n_TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The 242Pu(n ,γ ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n_TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu
2016-12-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
Gosangi, Rakesh; Gutierrez-Osuna, Ricardo
2011-09-01
We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean
2010-04-01
The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C
1997-10-01
In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.
NASA Astrophysics Data System (ADS)
Castanier, Eric; Paterne, Loic; Louis, Céline
2017-09-01
In the nuclear engineering, you have to manage time and precision. Especially in shielding design, you have to be more accurate and efficient to reduce cost (shielding thickness optimization), and for this, you use 3D codes. In this paper, we want to see if we can easily applicate the CADIS methods for design shielding of small pipes which go through large concrete walls. We assess the impact of the WW generated by the 3D-deterministic code ATTILA versus WW directly generated by MCNP (iterative and manual process). The comparison is based on the quality of the convergence (estimated relative error (σ), Variance of Variance (VOV) and Figure of Merit (FOM)), on time (computer time + modelling) and on the implement for the engineer.
Pendall, Elise; Betancourt, Julio L.; Leavitt, Steven W.
1999-01-01
We compared two approaches to interpreting δD of cellulose nitrate in piñon pine needles (Pinus edulis) preserved in packrat middens from central New Mexico, USA. One approach was based on linear regression between modern δD values and climate parameters, and the other on a deterministic isotope model, modified from Craig and Gordon's terminal lake evaporation model that assumes steady-state conditions and constant isotope effects. One such effect, the net biochemical fractionation factor, was determined for a new species, piñon pine. Regressions showed that δD values in cellulose nitrate from annual cohorts of needles (1989–1996) were strongly correlated with growing season (May–August) precipitation amount, and δ13C values in the same samples were correlated with June relative humidity. The deterministic model reconstructed δD values of meteoric water used by plants after constraining relative humidity effects with δ13C values; growing season temperatures were estimated via modern correlations with δD values of meteoric water. Variations of this modeling approach have been applied to tree-ring cellulose before, but not to macrofossil cellulose, and comparisons to empirical relationships have not been provided. Results from fossil piñon needles spanning the last ∼40,000 years showed no significant trend in δD values of cellulose nitrate, suggesting either no change in the amount of summer precipitation (based on the transfer function) or δD values of meteoric water or temperature (based on the deterministic model). However, there were significant differences in δ13C values, and therefore relative humidity, between Pleistocene and Holocene.
Geurden, Thomas; Hodge, Andrew; Noé, Laura; Winstanley, Dana; Bartley, David J; Taylor, Mike; Morgan, Colin; Fraser, Sarah J; Maeder, Steven; Bartram, David
2012-10-26
The objective of the present studies was to evaluate the efficacy of a combined formulation (Startect(®) Dual Active Oral Solution for Sheep, Pfizer Animal Health) of derquantel (DQL) and abamectin (ABA) for the treatment of: (1) sheep experimentally infected with a moxidectin (MOX)-resistant isolate of Teladorsagia circumcincta, and (2) multi-drug resistant gastrointestinal nematode parasites under UK field conditions. In the first study, a total of 40 animals were allocated into 4 treatment groups, and were either left untreated or treated with DQL+ABA, MOX or ABA. Faecal samples were collected on days 1-5 and on day 7 after treatment to examine the reduction in faecal egg excretion and to evaluate the egg viability. On day 14 post treatment all animals were euthanised for abomasal worm counts. There was a 100% reduction in geometric mean worm counts for the DQL+ABA treated animals compared to the untreated control animals (P<0.0001), whereas the percentage reduction in worm counts for the MOX- (P>0.05) and ABA-treated (P=0.0004) animals was 12.4% and 71.8%, respectively. The data from the egg hatch assay (EHA) indicated that in the MOX-treated and the ABA-treated animals, the majority of the eggs hatched after treatment. In the field study, performed on four farms, animals were allocated into 6 groups of 11-15 animals each in order to conduct a faecal egg count reduction test (FECRT), based on arithmetic mean egg counts. One group of animals remained untreated, whereas the other animals were treated with DQL+ABA, MOX, fenbendazole (FBZ), levamisole (LV) or ivermectin (IVM). On each of the farms the reduction in egg excretion after treatment with FBZ, LV or IVM was below 95.0%, indicating anthelmintic resistance. The efficacy of DQL+ABA ranged from 99.1 to 100%, yielding significantly lower egg counts compared to the untreated control group (P ≤ 0.003). For MOX the egg counts were significantly (P ≤ 0.003) lower compared to the untreated group at each farm, with reductions varying from 98.2 to 100%. The post-treatment copro-cultures for larva identification indicated that T. circumcincta was the most abundant worm species after treatment (52-99% of the larvae). The results of these studies confirm the high efficacy of the DQL+ABA combination formulation against anthelmintic resistant nematodes in the UK. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2000-02-18
The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.« less
NASA Astrophysics Data System (ADS)
Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao
2012-11-01
The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.
Self-assembled three dimensional network designs for soft electronics
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-01-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors. PMID:28635956
Self-assembled three dimensional network designs for soft electronics
NASA Astrophysics Data System (ADS)
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-06-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.
Impact of conversion to mixed-oxide fuels on reactor structural components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yahr, G.T.
1997-04-01
The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.
Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
NASA Astrophysics Data System (ADS)
Zhang, Yihui; Zhang, Fan; Yan, Zheng; Ma, Qiang; Li, Xiuling; Huang, Yonggang; Rogers, John A.
2017-03-01
A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.
Sperm navigation along helical paths in 3D chemoattractant landscapes
Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin
2015-01-01
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469
2017-01-01
Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600
Sperm navigation along helical paths in 3D chemoattractant landscapes.
Jikeli, Jan F; Alvarez, Luis; Friedrich, Benjamin M; Wilson, Laurence G; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U Benjamin
2015-08-17
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca(2+) response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.
Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin-Lafleche, A.; Smith, M. A.; Lee, C.
2013-07-01
A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)
Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco
2014-12-01
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.
Experimental validation of the DARWIN2.3 package for fuel cycle applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
San-Felice, L.; Eschbach, R.; Bourdot, P.
2012-07-01
The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Deterministic Mean-Field Ensemble Kalman Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Utilizing a Value of Information Framework to Improve Ore Collection and Classification Procedures
2006-05-01
account for uncertainty in revenues or costs. Studies that utilize this type of deterministic modeling are: Boshkov & Wright (1973); Laubscher (1981... Disney & Peters, 2003). Disney & Peters (2003) reference a number of applications in both the veterinary and agricultural sectors. Agricultural studies...covered by revenue made from selling the end product. Because the cost data are aggregated for the BI and D3 mills at Kiruna, we have to allocate the
Parallel deterministic neutronics with AMR in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C.; Ferguson, J.; Hendrickson, C.
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
Laser targets compensate for limitations in inertial confinement fusion drivers
NASA Astrophysics Data System (ADS)
Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.
2005-10-01
Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.
Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor
2017-04-12
Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.
CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning
NASA Astrophysics Data System (ADS)
Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime
2018-05-01
CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.
Sustained Recycle in Light Water and Sodium-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven J. Piet; Samuel E. Bays; Michael A. Pope
2010-11-01
From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in freshmore » fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.« less
Precursor of transition to turbulence: spatiotemporal wave front.
Bhaumik, S; Sengupta, T K
2014-04-01
To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution of governing NSE.
Wolschner, Christina; Giese, Armin; Kretzschmar, Hans A.; Huber, Robert; Moroder, Luis; Budisa, Nediljko
2009-01-01
Prion disease is characterized by the α→β structural conversion of the cellular prion protein (PrPC) into the misfolded and aggregated “scrapie” (PrPSc) isoform. It has been speculated that methionine (Met) oxidation in PrPC may have a special role in this process, but has not been detailed and assigned individually to the 9 Met residues of full-length, recombinant human PrPC [rhPrPC(23-231)]. To better understand this oxidative event in PrP aggregation, the extent of periodate-induced Met oxidation was monitored by electrospray ionization-MS and correlated with aggregation propensity. Also, the Met residues were replaced with isosteric and chemically stable, nonoxidizable analogs, i.e., with the more hydrophobic norleucine (Nle) and the highly hydrophilic methoxinine (Mox). The Nle-rhPrPC variant is an α-helix rich protein (like Met-rhPrPC) resistant to oxidation that lacks the in vitro aggregation properties of the parent protein. Conversely, the Mox-rhPrPC variant is a β-sheet rich protein that features strong proaggregation behavior. In contrast to the parent Met-rhPrPC, the Nle/Mox-containing variants are not sensitive to periodate-induced in vitro aggregation. The experimental results fully support a direct correlation of the α→β secondary structure conversion in rhPrPC with the conformational preferences of Met/Nle/Mox residues. Accordingly, sporadic prion and other neurodegenerative diseases, as well as various aging processes, might also be caused by oxidative stress leading to Met oxidation. PMID:19416900
NASA Astrophysics Data System (ADS)
Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa
2015-11-01
In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.
Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Saxena, Nitin
Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less
Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam
2015-03-01
Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less
Statistical Energy Analysis for Designers. Part 1. Basic Theory
1974-09-01
deterministic system. That is a possible answer, but it may not be the most useful one. The most glaring deficiency of SEA is its inability to deal with...present whether this represents the "next logical step" in the chain that we spoke of, but it bears examination. 13 A second deficiency of SEA is its...undamped string, p = lineal density, r = 0, and A=-T(D/ax) 2. Thus, Eq. (2.3.2) becomes Tk2 = pw2, or k = ±w/c , (2.3.3) where c=VT- is the speed of
Patients' understanding of and responses to multiplex genetic susceptibility test results.
Kaphingst, Kimberly A; McBride, Colleen M; Wade, Christopher; Alford, Sharon Hensley; Reid, Robert; Larson, Eric; Baxevanis, Andreas D; Brody, Lawrence C
2012-07-01
Examination of patients' responses to direct-to-consumer genetic susceptibility tests is needed to inform clinical practice. This study examined patients' recall and interpretation of, and responses to, genetic susceptibility test results provided directly by mail. This observational study had three prospective assessments (before testing, 10 days after receiving results, and 3 months later). Participants were 199 patients aged 25-40 years who received free genetic susceptibility testing for eight common health conditions. More than 80% of the patients correctly recalled their results for the eight health conditions. Patients were unlikely to interpret genetic results as deterministic of health outcomes (mean = 6.0, s.d. = 0.8 on a scale of 1-7, 1 indicating strongly deterministic). In multivariate analysis, patients with the least deterministic interpretations were white (P = 0.0098), more educated (P = 0.0093), and least confused by results (P = 0.001). Only 1% talked about their results with a provider. Findings suggest that most patients will correctly recall their results and will not interpret genetics as the sole cause of diseases. The subset of those confused by results could benefit from consultation with a health-care provider, which could emphasize that health habits currently are the best predictors of risk. Providers could leverage patients' interest in genetic tests to encourage behavior changes to reduce disease risk.
NASA Astrophysics Data System (ADS)
Crowley, Christopher J.; Krygier, Michael; Grigoriev, Roman O.; Schatz, Michael F.
2017-11-01
Recent theoretical and experimental work suggests that the dynamics of turbulent flows are guided by unstable nonchaotic solutions to the Navier-Stokes equations. These solutions, known as exact coherent structures (ECS), play a key role in a fundamentally deterministic description of turbulence. In order to quantitatively demonstrate that actual turbulence in 3D flows is guided by ECS, high resolution, 3D-3C experimental measurements of the velocity need to be compared to solutions from direct numerical simulation of the Navier-Stokes equations. In this talk, we will present experimental measurements of fully time resolved, velocity measurements in a volume of turbulence in a counter-rotating, small aspect ratio Taylor-Couette flow. This work is supported by the Army Research Office (Contract # W911NF-16-1-0281).
Programmable growth of branched silicon nanowires using a focused ion beam.
Jun, Kimin; Jacobson, Joseph M
2010-08-11
Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.
Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.
Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2006-12-01
Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.
Confirmation of shutdown cooling effects
NASA Astrophysics Data System (ADS)
Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro
2015-12-01
After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.
Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks
McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2018-01-01
Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursin, M.; Koeberl, O.; Perret, G.
2012-07-01
High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivitymore » Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)« less
Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Jung, Stephanie; Manu, David K; Mendonça, Aubrey F; Brehm-Stecher, Byron F; Stock, Joseph; Stalder, Kenneth J
2014-05-01
A sublethally injured bacterial cell has been defined as a cell that survives a stress such as heating, freezing, acid treatment, or other antimicrobial intervention but can repair the cellular damage exerted by the stressor and later regain its original ability to grow. Consequently, sublethally injured cells are not likely to be included in conventional enumeration procedures, which could result in unrealistically low counts unless efforts are made to encourage recovery of the injured cells before enumeration. The objective of this study was to evaluate the use of the thin agar layer (TAL) method for the recovery of pressure-injured and heat-injured Listeria monocytogenes in a tryptic soy broth with 0.6% yeast extract system. Pressure injury consisted of treatment of a culture of mixed L. monocytogenes strains with high hydrostatic pressure at 400 or 600 MPa for 1 s, 2 min, 4 min, or 6 min at a process temperature of 12±2 °C. Heat injury consisted of treatment of a culture of mixed L. monocytogenes strains at 60±1 °C for 3, 6, or 9 min. Growth media were tryptic soy agar (TSA) with 0.6% yeast extract, modified Oxford medium (MOX), and TAL, which consisted of a 7-ml layer of TSA overlaid onto solidified MOX. Counts of viable L. monocytogenes on TAL were higher than those on MOX in the heat-injury experiment but not in the pressure-injury experiment. Therefore, the effectiveness of the TAL method may be specific to the type of injury applied to the microorganism and should be investigated in a variety of cellular injury scenarios.
An ITK framework for deterministic global optimization for medical image registration
NASA Astrophysics Data System (ADS)
Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.
2006-03-01
Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, Jon; Hayes, Steven; Walters, L. C.
This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2016-04-25
Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.
NASA Astrophysics Data System (ADS)
Ravishankar, Bharani
Conventional space vehicles have thermal protection systems (TPS) that provide protection to an underlying structure that carries the flight loads. In an attempt to save weight, there is interest in an integrated TPS (ITPS) that combines the structural function and the TPS function. This has weight saving potential, but complicates the design of the ITPS that now has both thermal and structural failure modes. The main objectives of this dissertation was to optimally design the ITPS subjected to thermal and mechanical loads through deterministic and reliability based optimization. The optimization of the ITPS structure requires computationally expensive finite element analyses of 3D ITPS (solid) model. To reduce the computational expenses involved in the structural analysis, finite element based homogenization method was employed, homogenizing the 3D ITPS model to a 2D orthotropic plate. However it was found that homogenization was applicable only for panels that are much larger than the characteristic dimensions of the repeating unit cell in the ITPS panel. Hence a single unit cell was used for the optimization process to reduce the computational cost. Deterministic and probabilistic optimization of the ITPS panel required evaluation of failure constraints at various design points. This further demands computationally expensive finite element analyses which was replaced by efficient, low fidelity surrogate models. In an optimization process, it is important to represent the constraints accurately to find the optimum design. Instead of building global surrogate models using large number of designs, the computational resources were directed towards target regions near constraint boundaries for accurate representation of constraints using adaptive sampling strategies. Efficient Global Reliability Analyses (EGRA) facilitates sequentially sampling of design points around the region of interest in the design space. EGRA was applied to the response surface construction of the failure constraints in the deterministic and reliability based optimization of the ITPS panel. It was shown that using adaptive sampling, the number of designs required to find the optimum were reduced drastically, while improving the accuracy. System reliability of ITPS was estimated using Monte Carlo Simulation (MCS) based method. Separable Monte Carlo method was employed that allowed separable sampling of the random variables to predict the probability of failure accurately. The reliability analysis considered uncertainties in the geometry, material properties, loading conditions of the panel and error in finite element modeling. These uncertainties further increased the computational cost of MCS techniques which was also reduced by employing surrogate models. In order to estimate the error in the probability of failure estimate, bootstrapping method was applied. This research work thus demonstrates optimization of the ITPS composite panel with multiple failure modes and large number of uncertainties using adaptive sampling techniques.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1986-01-01
Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighat, A.; Sjoden, G.E.; Wagner, J.C.
In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less
Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B.; Ibrahim, Ahmad M.
2017-05-01
This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert
Deterministically bending and twisting two-dimensional structures in the three-dimensional (3D) space provide means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. The recent developments of 3D curved magnetic geometries, ranging from theoretical predictions over fabrication to characterization using integral means as well as advanced magnetic tomography, will be reviewed. Theoretical works predict a curvature-induced effective anisotropy and effective Dzyaloshinskii-Moriya interaction resulting in a vast of novel effects including magnetochiral effects (chirality symmetry breaking) and topologically induced magnetization patterning. The remarkable development of nanotechnology, e.g. preparation of high-quality extended thin films, nanowires and frameworks via chemical and physical deposition as well as 3D nano printing, has granted first insights into the fundamental properties of 3D shaped magnetic objects. Optimizing magnetic and structural properties of these novel 3D architectures demands new investigation methods, particularly those based on vector tomographic imaging. Magnetic neutron tomography and electron-based 3D imaging, such as electron holography and vector field electron tomography, are well-established techniques to investigate macroscopic and nanoscopic samples, respectively. At the mesoscale, the curved objects can be investigated using the novel method of magnetic X-ray tomography. In spite of experimental challenges to address the appealing theoretical predictions of curvature-induced effects, those 3D magnetic architectures have already proven their application potential for life sciences, targeted delivery, realization of 3D spin-wave filters, and magneto-encephalography devices, to name just a few. DOE BES MSED (DE-AC02-05-CH11231).
Sensitivity and Uncertainty Analysis of the GFR MOX Fuel Subassembly
NASA Astrophysics Data System (ADS)
Lüley, J.; Vrban, B.; Čerba, Š.; Haščík, J.; Nečas, V.; Pelloni, S.
2014-04-01
We performed sensitivity and uncertainty analysis as well as benchmark similarity assessment of the MOX fuel subassembly designed for the Gas-Cooled Fast Reactor (GFR) as a representative material of the core. Material composition was defined for each assembly ring separately allowing us to decompose the sensitivities not only for isotopes and reactions but also for spatial regions. This approach was confirmed by direct perturbation calculations for chosen materials and isotopes. Similarity assessment identified only ten partly comparable benchmark experiments that can be utilized in the field of GFR development. Based on the determined uncertainties, we also identified main contributors to the calculation bias.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-07-11
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-01-01
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector. PMID:25019637
Retrospective dosimetry analyses of reactor vessel cladding samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.
2011-07-01
Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combinedmore » with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)« less
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.
2014-03-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. The user study provided trends and location-specific information on pollutants, and affected change in user behavior. The study demonstrated the utility of the M-Pod as a tool to assess personal exposure.
Zorgani, Abdulaziz; Daw, Hiyam; Sufya, Najib; Bashein, Abdullah; Elahmer, Omar; Chouchani, Chedly
2017-01-01
Introduction: Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Klebsiella pneumoniae and Escherichia coli isolates. Objective: The aim of the study was to investigate the occurrence of AmpC-type β-lactamase producers isolated from two hospitals in Tripoli, Libya. Methods: All clinical isolates (76 K. pneumoniae and 75 E. coli) collected over two years (2013-2014) were evaluated for susceptibility to a panel of antimicrobials and were analyzed phenotypically for the ESBL and AmpC phenotype using E-test and ESBL and AmpC screen disc test. Both ESBL and AmpC-positive isolates were then screened for the presence of genes encoding plasmid-mediated AmpC β-lactamases by polymerase chain reaction (PCR). Results: Of the K. pneumoniae and E. coli tested, 75% and 16% were resistant to gentamicin, 74% and 1.3% to imipenem, 71% and 12% to cefoxitin, 80% and 12% to cefepime, 69% and 22.6% to ciprofloxacin, respectively. None of the E. coli isolates were multidrug resistant compared with K. pneumoniae (65.8%). K. pneumoniae ESBL producers were significantly higher (85.5%) compared with (17.3%) E. coli isolates (P <0.0001, OR=4.93). Plasmid-mediated AmpC genes were detected in 7.9% of K. pneumoniae, and 4% E. coli isolates. There was low agreement between phenotypic and genotypic methods, phenotypic testing underestimated detection of AmpC enzyme and did not correlate well with molecular results. The gene encoding CMY enzyme was the most prevalent (66.6%) of AmpC positive isolates followed by MOX, DHA and EBC. Only one AmpC gene was detected in 5/9 isolates, i.e, blaCMY (n=3), bla MOX (n=1), blaDHA (n=1). However, co-occurrence of AmpC genes were evident in 3/9 isolates with the following distribution: bla CMY and blaEBC (n=1), and blaCMY and blaMOX (n=2). Neither blaFOX nor blaACC was detected in all tested isolates. All AmpC positive strains were resistant to cefoxitin and isolated from patients admitted to intensive care units. Conclusion: Further studies are needed for detection of other AmpC variant enzyme production among such isolates. Continued surveillance and judicious antibiotic usage together with the implementation of efficient infection control measures are absolutely required. PMID:29151996
Zorgani, Abdulaziz; Daw, Hiyam; Sufya, Najib; Bashein, Abdullah; Elahmer, Omar; Chouchani, Chedly
2017-01-01
Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Klebsiella pneumoniae and Escherichia coli isolates. The aim of the study was to investigate the occurrence of AmpC-type β-lactamase producers isolated from two hospitals in Tripoli, Libya. All clinical isolates (76 K. pneumoniae and 75 E. coli ) collected over two years (2013-2014) were evaluated for susceptibility to a panel of antimicrobials and were analyzed phenotypically for the ESBL and AmpC phenotype using E-test and ESBL and AmpC screen disc test. Both ESBL and AmpC-positive isolates were then screened for the presence of genes encoding plasmid-mediated AmpC β-lactamases by polymerase chain reaction (PCR). Of the K. pneumoniae and E. coli tested, 75% and 16% were resistant to gentamicin, 74% and 1.3% to imipenem, 71% and 12% to cefoxitin, 80% and 12% to cefepime, 69% and 22.6% to ciprofloxacin, respectively. None of the E. coli isolates were multidrug resistant compared with K. pneumoniae (65.8%). K. pneumoniae ESBL producers were significantly higher (85.5%) compared with (17.3%) E. coli isolates (P <0.0001, OR=4.93). Plasmid-mediated AmpC genes were detected in 7.9% of K. pneumoniae , and 4% E. coli isolates. There was low agreement between phenotypic and genotypic methods, phenotypic testing underestimated detection of AmpC enzyme and did not correlate well with molecular results. The gene encoding CMY enzyme was the most prevalent (66.6%) of AmpC positive isolates followed by MOX, DHA and EBC. Only one AmpC gene was detected in 5/9 isolates, i.e, bla CMY (n=3), bla MOX (n=1), bla DHA (n=1). However, co-occurrence of AmpC genes were evident in 3/9 isolates with the following distribution: bla CMY and bla EBC (n=1), and bla CMY and bla MOX (n=2). Neither bla FOX nor bla ACC was detected in all tested isolates. All AmpC positive strains were resistant to cefoxitin and isolated from patients admitted to intensive care units. Further studies are needed for detection of other AmpC variant enzyme production among such isolates. Continued surveillance and judicious antibiotic usage together with the implementation of efficient infection control measures are absolutely required.
Hybrid deterministic-stochastic modeling of x-ray beam bowtie filter scatter on a CT system.
Liu, Xin; Hsieh, Jiang
2015-01-01
Knowledge of scatter generated by bowtie filter (i.e. x-ray beam compensator) is crucial for providing artifact free images on the CT scanners. Our approach is to use a hybrid deterministic-stochastic simulation to estimate the scatter level generated by a bowtie filter made of a material with low atomic number. First, major components of CT systems, such as source, flat filter, bowtie filter, body phantom, are built into a 3D model. The scattered photon fluence and the primary transmitted photon fluence are simulated by MCNP - a Monte Carlo simulation toolkit. The rejection of scattered photon by the post patient collimator (anti-scatter grid) is simulated with an analytical formula. The biased sinogram is created by superimposing scatter signal generated by the simulation onto the primary x-ray beam signal. Finally, images with artifacts are reconstructed with the biased signal. The effect of anti-scatter grid height on scatter rejection are also discussed and demonstrated.
Huan, Zhibo; Xu, Zhi; Luo, Jinhui; Xie, Defang
2016-11-01
Residues of 14 pesticides were determined in 150 cowpea samples collected in five southern Chinese provinces in 2013 and 2014.70% samples were detected one or more residues. 61.3% samples were illegal mainly because of detection of unauthorized pesticides. 14.0% samples contained more than three pesticides. Deterministic and probabilistic methods were used to assess the chronic and acute risk of pesticides in cowpea to eight subgroups of people. Deterministic assessment showed that the estimated short-term intakes (ESTIs) of carbofuran were 1199.4%-2621.9% of the acute reference doses (ARfD) while the rates were 985.9%-4114.7% using probabilistic assessment. Probabilistic assessment showed 4.2%-7.8% subjects may suffer from unacceptable acute risk from carbofuran contaminated cowpeas from the five provinces (especially children). But undue concern is not necessary, because all the estimations are based on conservative assumption. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N.; Zhang, Long; Blau, Werner J.; Wang, Jun
2014-08-01
A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc. Electronic supplementary information (ESI) available: Electron scattering patterns from TEM characterizations of MX2 nanosheets; CA Z-scan results of graphene dispersions in the ps region. See DOI: 10.1039/c4nr02634a
Process influences and correction possibilities for high precision injection molded freeform optics
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2016-08-01
Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.
Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting
Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen
2016-01-01
The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399
Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen
2016-02-23
The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model
NASA Astrophysics Data System (ADS)
Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber
2016-04-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.
Randomly chosen chaotic maps can give rise to nearly ordered behavior
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł; Islam, Md. Shafiqul
2005-10-01
Parrondo’s paradox [J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85 (2000), 5226-5229] (see also [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72]) states that two losing gambling games when combined one after the other (either deterministically or randomly) can result in a winning game: that is, a losing game followed by a losing game = a winning game. Inspired by this paradox, a recent study [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] asked an analogous question in discrete time dynamical system: can two chaotic systems give rise to order, namely can they be combined into another dynamical system which does not behave chaotically? Numerical evidence is provided in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] that two chaotic quadratic maps, when composed with each other, create a new dynamical system which has a stable period orbit. The question of what happens in the case of random composition of maps is posed in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] but left unanswered. In this note we present an example of a dynamical system where, at each iteration, a map is chosen in a probabilistic manner from a collection of chaotic maps. The resulting random map is proved to have an infinite absolutely continuous invariant measure (acim) with spikes at two points. From this we show that the dynamics behaves in a nearly ordered manner. When the foregoing maps are applied one after the other, deterministically as in [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72], the resulting composed map has a periodic orbit which is stable.
Juskova, Petra; Ollitrault, Alexis; Serra, Marco; Viovy, Jean-Louis; Malaquin, Laurent
2018-02-13
The vast majority of current microfluidic devices are produced using soft lithography, a technique with strong limitations regarding the fabrication of three-dimensional architectures. Additive manufacturing holds great promises to overcome these limitations, but conventional machines still lack the resolution required by most microfluidic applications. 3D printing machines based on two-photon lasers, in contrast, have the needed resolution but are too limited in speed and size of the global device. Here we demonstrate how the resolution of conventional stereolithographic machines can be improved by a direct programming of the laser path and can contribute to bridge the gap between the two above technologies, allowing the direct printing of features between 10 and 100 μm, corresponding to a large fraction of microfluidic applications. This strategy allows to achieve resolutions limited only by the physical size of the laser beam, decreasing by a factor at least 2× the size of the smallest features printable, and increasing their reproducibility by a factor 5. The approach was applied to produce an open microfluidic device with the reversible seal, integrating periodical patterns using the simple motifs, and validated by the fabrication of a deterministic lateral displacement particles sorting device. The sorting of polystyrene beads (diameter: 20 μm and 45 μm) was achieved with a specificity >95%, comparable with that achieved with arrays prepared by microlithography. Copyright © 2017 Elsevier B.V. All rights reserved.
Savadelis, Molly D; Ohmes, Cameon M; Hostetler, Joe A; Settje, Terry L; Zolynas, Robert; Dzimianski, Michael T; Moorhead, Andrew R
2017-05-19
Anecdotal reports support the position that the adulticidal heartworm treatment utilizing doxycycline and Advantage Multi®/Advocate® for Dogs (10% imidacloprid + 2.5% moxidectin) has successfully converted antigen-positive dogs to antigen-negative. To date, no controlled experimental studies have demonstrated the adulticidal efficacy of this treatment regimen. The aim of this study was to evaluate the parasitological and clinical efficacy of Advantage Multi® for Dogs (IMD + MOX) and doxycycline in heartworm-infected beagles. This study utilized 16 dogs, 8 dogs in each of non-treated control and treated groups. A total of 16 adult Dirofilaria immitis (Missouri strain) were surgically transplanted into the jugular vein of each study dog. The treatment regimen of monthly IMD + MOX topically (per labeled dosage and administration) for 10 months and 10 mg/kg doxycycline BID orally for 30 days was initiated 30 days post-surgical transplant. Echocardiograms, radiographs, complete blood counts, clinical chemistry profiles, heartworm antigenemia and microfilaremia were evaluated every 4 weeks. Serum samples were assayed for heartworm antigen using the DiroCHEK® heartworm antigen test. The DiroCHEK® was performed according to the manufacturer's recommendations and read using a spectrophotometer at 490 nm. All dogs tested positive for the presence of heartworm antigen post-surgical transplant and prior to treatment. Heartworm antigen levels began declining in treated dogs 3 months post-treatment. Non-treated control dogs remained antigen-positive. No microfilariae were detected in treated dogs after 21 days post-treatment. At necropsy, adult heartworms were recovered from all non-treated control dogs with a range of 10-12 adult worms/dog for an average recovery of 10.6 adult heartworms/dog. In the IMD + MOX- and doxycycline-treated dogs, the range of adult heartworms recovered was 0-2 adult worms/dog, with five dogs having no adult heartworms present. The average adult heartworm recovery was 0.6/dog in the treated group. This treatment regimen demonstrated a 95.9% efficacy in eliminating adult heartworms (P < 0.0001). This study demonstrated that this treatment regimen successfully eliminated D. immitis microfilariae by 21 days post-treatment, reduced heartworm antigen concentration over time, and had a 95.9% efficacy in the elimination of mature adult heartworms. Based on this study, we conclude that this treatment regimen is a relatively quick, reliable and safe option to treat canine heartworm infection as compared to other treatment regimens involving macrocyclic lactones, when the approved drug melarsomine dihydrochloride is unavailable, contraindicated or declined by an owner unable to afford the more costly treatment or concerned about the potential side effects.
NASA Astrophysics Data System (ADS)
Danilovic, Dusan S.
Magnetic properties of three families of metal-organic coordinated networks which have the general form of M(II)A(4,4'-bipyridine), where M=Fe, Ni, Co, and Cu and A=Cl2, (ox) and (N3)2, are studied in this dissertation. Novel Ni(N3)2(4,4'-bipyridine), Co(N3)2(4,4'-bipyridine) and Cu(N 3)2(4,4'-bipyridine) have been synthesized. We applied different synthesis procedures and produced Ni, Co, and Cu azide compounds for the first time, thus leaving the hydrothermal route procedure. Powder x-ray diffraction at room temperature was done in order to establish the crystal structure of the members of these three families. It was found that all of them crystallize in orthorhombic structure, where transitional metals have an octahedral coordination. Since all three families have identical crystal structure we got opportunity to examine how ligands facilitate magnetic interaction between metallic centers and also to test existing magnetic theoretical models. Since 4,4'-bipyridine is much longer than other ligands, our systems can be considered as 1-D magnetic systems. Their interchain magnetic interactions are very weak, and they order magnetically at very low temperatures of the order of few K. Measurements of M(H) at temperatures T=1.9K and T=2K and chi(T) in different external magnetic fields in zero field and field cooled modes have been made. In the case of MCl2(4,4'-bipyridine) family of compounds, we observed ferromagnetic interactions between metal ions within the chains and antiferromagnetic interactions between adjacent chains. M(ox)(4,4'-bipyridine) family of metal-organic compounds has antiferromagnetic interactions between the transitional metal ions within the chain, while weak ferromagnetic interaction exists between the chains. All members in the M(N3)2(4,4'-bipyridine) family except in the case of the copper compound were found to have ferromagnetic interactions between metal ions within the chains and then antiferromagnetic interactions between adjacent chains. The copper compound does not show magnetic ordering in the temperature range we considered. All the metal ions in these compounds were detected in high spin states. The magnetic susceptibility data was fit to appropriate 1-D models, which in the case of MCl2(4,4'-bipyridine) and M(N3)2(4,4'-bipyridine) were the Classical Spin Fisher model, and the Bonner Fisher model in the case M(ox)(4,4'-bipyridine). The experimental results and fitting to the appropriate model with the accuracy of 0.995 suggests that shorter Cl-M-Cl distances facilitate ferromagnetic interactions, which are more sensitive to the total spin value then to the sole distance between metal ions. The magnetic behavior of M(N3) 2(4,4'-bipyridine) family of coordinated metal-organic compounds is very interesting because family members exhibit both ferromagnetic and antiferromagnetic behavior. The ferromagnetic characteristics decrease with decreasing spin. Fitting the results for all compounds of the M(ox)(4,4'-bipyridine) family have shown that strong anisotropy exists in all of them, being highest in Ni(ox)(4,'4-bipyridine) and lowest in Co(ox)(4,4'-bipyridine). Specific heat measurements were performed in the case of cobalt and copper azide compounds and then compared with previously obtained results for the iron coordinated network of the same family. Although none of these compounds show the characteristic lambda shaped transition indicating magnetic ordering, all of them have unusually large values of the constant gamma, which indicates significant magnetic contribution to the observed specific heat, since the free electron contribution in these observed families is negligible. We have concluded that total spin of the transitional metal plays a more important role than the distance between ions within the chain in determining magnitude of interaction, and that (N3)2 is a better facilitator of ferromagnetic interaction between ions than Cl2.
Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
Sengupta, T K; Bhaumik, S; Bhumkar, Y G
2012-02-01
Deterministic route to turbulence creation in 2D wall boundary layer is shown here by solving full Navier-Stokes equation by dispersion relation preserving (DRP) numerical methods for flow over a flat plate excited by wall and free stream excitations. Present results show the transition caused by wall excitation is predominantly due to nonlinear growth of the spatiotemporal wave front, even in the presence of Tollmien-Schlichting (TS) waves. The existence and linear mechanism of creating the spatiotemporal wave front was established in Sengupta, Rao and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] via the solution of Orr-Sommerfeld equation. Effects of spatiotemporal front(s) in the nonlinear phase of disturbance evolution have been documented by Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a flow is taken from the receptivity stage to the fully developed 2D turbulent state exhibiting a k(-3) energy spectrum by solving the Navier-Stokes equation without any artifice. The details of this mechanism are presented here for the first time, along with another problem of forced excitation of the boundary layer by convecting free stream vortices. Thus, the excitations considered here are for a zero pressure gradient (ZPG) boundary layer by (i) monochromatic time-harmonic wall excitation and (ii) free stream excitation by convecting train of vortices at a constant height. The latter case demonstrates neither monochromatic TS wave, nor the spatiotemporal wave front, yet both the cases eventually show the presence of k(-3) energy spectrum, which has been shown experimentally for atmospheric dynamics in Nastrom, Gage and Jasperson [Nature 310, 36 (1984)]. Transition by a nonlinear mechanism of the Navier-Stokes equation leading to k(-3) energy spectrum in the inertial subrange is the typical characteristic feature of all 2D turbulent flows. Reproduction of the spectrum noted in atmospheric data (showing dominance of the k(-3) spectrum over the k(-5/3) spectrum in Nastrom et al.) in laboratory scale indicates universality of this spectrum for all 2D turbulent flows. Creation of universal features of 2D turbulence by a deterministic route has been established here for the first time by solving the Navier-Stokes equation without any modeling, as has been reported earlier in the literature by other researchers.
Deterministic Squeezed States with Collective Measurements and Feedback.
Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K
2016-03-04
We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5} atoms. This is one of the largest reported entanglement enhancements to date in any system.
Specific low temperature release of 131Xe from irradiated MOX fuel
NASA Astrophysics Data System (ADS)
Hiernaut, J.-P.; Wiss, T.; Rondinella, V. V.; Colle, J.-Y.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.
2009-08-01
A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ˜1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.
2018-05-01
Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.
On-line range images registration with GPGPU
NASA Astrophysics Data System (ADS)
Będkowski, J.; Naruniec, J.
2013-03-01
This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.
Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa
2016-01-01
Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy—the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom. PMID:27265180
Müller, Fabian; Stookey, Stephanie; Cunningham, Tyler; Pastan, Ira
2017-05-09
CD22-targeted recombinant immunotoxins (rIT) are active in hairy cell leukemia or acute lymphoblastic leukemia (ALL), but not in mantle cell lymphoma (MCL) patients. The goal was to enhance rIT efficacy in vivo and to define a strong combination treatment. Activity of Moxetumomab pasudotox (Moxe) and LR combined with paclitaxel was tested against MCL cell lines in vitro and as bolus doses or continuous infusion in xenograft models. In the KOPN-8 ALL xenograft, Moxe or paclitaxel alone was active, but all mice died from leukemia; when combined, 60% of the mice achieved a sustained complete remission. Against MCL cells in vitro, LR was more active than Moxe and the cells had to be exposed to rIT for more than 24 hours for them to die. To maintain high blood levels in vivo, LR was administered continuously by 7-day pumps achieving a well-tolerated steady plasma concentration of 45 ng/ml. In JeKo-1 xenografts, continuously administered LR was 14-fold more active than bolus doses and the combination with paclitaxel additionally improved responses by 135-fold. Maintaining high rIT-plasma levels greatly improves responses in the JeKo-1 model and paclitaxel substantially enhances bolus and continuously infused rIT, supporting a clinical evaluation against B-cell malignancies.
Bio-Benchmarking of Electronic Nose Sensors
Berna, Amalia Z.; Anderson, Alisha R.; Trowell, Stephen C.
2009-01-01
Background Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. Methodology Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). Principal Findings Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. Conclusions The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system. PMID:19641604
Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa
2016-06-06
Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy-the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom.
Teixeira, Roseane Andrade; Flores, Diego Hernando Ângulo; da Silva, Ricky Cássio Santos; Dutra, Flávia Viana Avelar; Borges, Keyller Bastos
2018-10-01
A simple HPLC method was developed for the determination of abamectin (ABA), eprinomectin (EPR), and moxidectin (MOX). Pipette-tip molecularly imprinted polymer solid-phase extraction (PT-MIP-SPE) using poly(1-vinylimidazole-co-trimethylolpropane trimethacrylate) as a selective adsorbent material was studied in detail, including the washing solvent, type and volume of eluent, pH, quantity of adsorbent material and sample volume. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, robustness and stability have been assessed and were within the recommended guidelines. The mean extraction recoveries/relative standard deviation for ABA 1b, EPR, ABA 1a and MOX were 98.77 ± 3.82%, 88.19 ± 2.57%, 110.54 ± 1.52% and 100.42 ± 0.59%, respectively. Finally, the results proved that PT-MIP-SPE coupled to HPLC-UV is an economical, simple and easy-to-perform technique, and presented a high potential for extraction of macrocyclic lactones in mineral water and grape and juice samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.
The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less
Shane, D D; Larson, R L; Sanderson, M W; Miesner, M; White, B J
2017-04-01
The duration of postpartum anestrus (dPPA) is important to consider for reproductive performance and efficiency in cow-calf operations. We developed a deterministic, dynamic systems model of cow-calf production over a 10-yr horizon to model the effects that dPPA had on measures of herd productivity, including the percentage of cows cycling before the end of the first 21 d of the breeding season (%C21), the percentage of cows pregnant at pregnancy diagnosis (%PPD), the distribution of pregnancy by 21-d breeding intervals, the kilograms of calf weaned (KW), the kilograms of calf weaned per cow exposed (KPC), and the replacement percentage. A 1,000-animal herd was modeled, with the beginning and ending dates for a 63-d natural service breeding season being the same for eligible replacement heifers (nulliparous cows) and cows (primiparous and multiparous cows). Herds were simulated to have a multiparous cow dPPA of 50, 60, 70, or 80 d, with the dPPA for primiparous cows being set to 50, 60, 70, 80, 90, 100, or 110 d. Only combinations where the primiparous dPPA was greater than or equal to the multiparous dPPA were included, resulting in 22 model herds being simulated in the analysis. All other model parameters were held constant between simulations. In model season 10, the %C21 was 96.2% when the multiparous cow and primiparous cow dPPA was 50 d and was 48.3% when the multiparous cow and primiparous cow dPPA was 80 d. The %PPD in model season 10 for these same herds was 95.1% and 86.0%, respectively. The percentage of the herd becoming pregnant in the first 21 d of the breeding season also differed between these herds (61.8% and 31.3%, respectively). The 10-yr total KW was more than 275,000 kg greater for the herd with a 50-d multiparous cow and primiparous cow dPPA when compared with the herd with the 80-d multiparous and primiparous cow dPPA and had a model season 10 KPC of 180.8 kg compared with 151.4 kg for the longer dPPA. The model results show that both the multiparous cow and primiparous cow dPPA affect herd productivity outcomes and that a dPPA less than 60 d results in improved production outcomes relative to longer dPPA. Veterinarians and producers should consider determining the dPPA to aid in making management decisions to improve reproductive performance of cow-calf herds.
Fate of methane in aquatic systems dominated by free-floating plants.
Kosten, Sarian; Piñeiro, Marcia; de Goede, Eefje; de Klein, Jeroen; Lamers, Leon P M; Ettwig, Katharina
2016-11-01
Worldwide the area of free-floating plants is increasing, which can be expected to alter methane (CH 4 ) emissions from aquatic systems in several ways. A large proportion of the CH 4 produced may become oxidized below the plants due to the accumulation of CH 4 as a result of a decrease in the diffusive water-atmosphere flux and the entrapment of part of the ebullitive CH 4 , in combination with suitable conditions for methane oxidizing (MOX) bacteria in the aerobic rhizosphere. We used a set of essays to test this hypothesis and to explore the effect of different densities for three widespread free-floating species: Azolla filiculoides, Salvinia natans, and Eichhornia crassipes. The gas exchange velocity, proportion of CH 4 bubbles trapped by the plants, occurrence of radial oxygen loss from roots, and MOX rates on the roots were assessed. We subsequently used the outcome of these experiments to parameterize a simple model. With this model we estimated the proportion of the produced CH 4 that is oxidized, for different plant species and different densities. We found that in a shallow (1 m) system up to 70% of the CH 4 produced may become oxidized as a result of a strong decrease in gas exchange combined with high MOX activity of the rhizosphere microbiome. As floating plants also are likely to increase CH 4 production by organic matter production, especially when their presence induces anaerobic conditions, the overall effect on CH 4 emission will strongly depend on local conditions. This explains the contrasting effects of floating plants on CH 4 emissions in literature as reviewed here. As the effect of floating plants on CH 4 emissions, including the high MOX rates we show here, can be substantial, there is an urgent need to consider this impact when assessing greenhouse gas budgets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of a fuel element for a lead-cooled fast reactor
NASA Astrophysics Data System (ADS)
Sobolev, V.; Malambu, E.; Abderrahim, H. Aït
2009-03-01
The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.
An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling
NASA Astrophysics Data System (ADS)
Qiu, X. N.; Lau, H. Y. K.
The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Deterministic secure quantum communication using a single d-level system.
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-22
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Marshak, Alexander
2010-01-01
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
Low-power lead-cooled fast reactor loaded with MOX-fuel
NASA Astrophysics Data System (ADS)
Sitdikov, E. R.; Terekhova, A. M.
2017-01-01
Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
Large-Amplitude Forced Response of Dynamic Systems
1992-11-01
Blacksburg, VA, June 25-27, 1990. 11. A. Abou- Rayan , A. H. Nayfeh, D. T. Mook, and M. A. Nayfeh, "Nonlinear Analysis of a Parametrically Excited...34 62nd Shock and Vibration Symposium, Springfield, VA, October 29-31, 1991. 23. A. Abou- Rayan , A. H. Nayfeh, D. T. Mook, and M. A. Nayfeh...Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1991. 6. A. Abou- Rayan , Ph.D., "Deterministic and Stochastic Responses
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
NASA Astrophysics Data System (ADS)
Chu, Peter C.
2018-03-01
SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corresponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale, strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.
A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bal, Guillaume, E-mail: gb2030@columbia.edu; Davis, Anthony B., E-mail: Anthony.B.Davis@jpl.nasa.gov; Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030
2011-08-20
Highlights: {yields} We introduce a variance reduction scheme for Monte Carlo (MC) transport. {yields} The primary application is atmospheric remote sensing. {yields} The technique first solves the adjoint problem using a deterministic solver. {yields} Next, the adjoint solution is used as an importance function for the MC solver. {yields} The adjoint problem is solved quickly since it ignores the volume. - Abstract: A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or amore » airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.« less
NASA Technical Reports Server (NTRS)
Jones, D. H.
1985-01-01
A new flexible model of pilot instrument scanning behavior is presented which assumes that the pilot uses a set of deterministic scanning patterns on the pilot's perception of error in the state of the aircraft, and the pilot's knowledge of the interactive nature of the aircraft's systems. Statistical analyses revealed that a three stage Markov process composed of the pilot's three predicted lookpoints (LP), occurring 1/30, 2/30, and 3/30 of a second prior to each LP, accurately modelled the scanning behavior of 14 commercial airline pilots while flying steep turn maneuvers in a Boeing 737 flight simulator. The modelled scanning data for each pilot were not statistically different from the observed scanning data in comparisons of mean dwell time, entropy, and entropy rate. These findings represent the first direct evidence that pilots are using deterministic scanning patterns during instrument flight. The results are interpreted as direct support for the error dependent model and suggestions are made for further research that could allow for identification of the specific scanning patterns suggested by the model.
Deterministic Parsing and Linguistic Explanation. Revision,
1985-06-01
near the town can have any of the following intepretations : 2"See Zubizarretta (1082) wrod StoweU (1081). 17...Department of Linguistics and Philosophy. 43 ... FILMED " -85 D I’ DTIC " , S . I * -J’ . p -#-
2015-08-05
to increased doping levels in indirect semiconductors [84]. The slope, and magnitude of the transmission curves continue to decrease alongside UL...periodically aluminium- doped zinc oxide thin films, Thin Solid Films 519 (2011) 2280–2286. [2] T. Minami, H. Nanto, S. Takata, Highly conductive and...transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. 23 (1984) L280. [3] T. Minami, Present status of
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricco, A.J.; Butler, M.A.; Grunthaner, F.J.
The authors have designed and built the prototype of an instrument that will use fiber optic micromirror-based chemical sensors to investigate the surprising reactivity of martian soil reported by several Viking Lander Experiments in the mid 1970s. The MOx (Mars Oxidant Experiment) Instrument, which will probe the reactivity of the near-surface martian atmosphere as well as soil, utilizes an array of chemically sensitive thin films including metals, organometallics, and organic dyes to produce a pattern of reflectivity changes characteristic of the species interacting with these sensing layers. The 850-g system includes LED light sources, optical fiber light guides, silicon micromachinedmore » fixtures, a line-array CCD detector, control-and-measurement electronics, microprocessor, memory, interface, batteries, and housing. This instrument monitors real-time reflectivities from an array of {approximately}200 separate micromirrors. The unmanned Russian Mars 96 mission is slated to carry the MOx Instrument along with experiments from several other nations. The principles of the chemically sensitive micromirror upon which this instrument is based will be described and preliminary data for reactions of micromirrors with oxidant materials believed to be similar to those on Mars will be presented. The general design of the instrument, including Si micromachined components, as well as the range of coatings and the rationale for their selection, will be discussed as well.« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles J.
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
Youinou, Gilles J.
2017-05-04
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
1985-03-15
the avalanche field(8). These points are marked Ecrit in the figure and it is seen that they correspond well with the voltage at which Idc begins to...0 *~10-10- Ecrit 10 -11 - I -e --- -- T 20 25 30 35 40 45 50 55 60 vMox (V) Fig. 3-3 I/v characteristics of devices on wafers implanted with...start, the relationship (8) between ND and the field Ecrit was used. Ecrit was the field which will cause avalanching. Clearly, Ecrit also represents the
NASA Astrophysics Data System (ADS)
Galisteo-López, Juan F.
2017-02-01
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s ...
The Role of Probability and Intentionality in Preschoolers' Causal Generalizations
ERIC Educational Resources Information Center
Sobel, David M.; Sommerville, Jessica A.; Travers, Lea V.; Blumenthal, Emily J.; Stoddard, Emily
2009-01-01
Three experiments examined whether preschoolers recognize that the causal properties of objects generalize to new members of the same set given either deterministic or probabilistic data. Experiment 1 found that 3- and 4-year-olds were able to make such a generalization given deterministic data but were at chance when they observed probabilistic…
2015-07-06
preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states; (4) Demonstration of nonlocal nuclear...Demonstration of a flying qubit by entanglement of the quantum dot spin polarization with the polarization of a spontaneously emitted photon. Future...coherent optical control steps in preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states in
Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo
2017-02-08
Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim
2017-06-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim
2018-01-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035
Ponzoni, Andrea; Comini, Elisabetta; Concina, Isabella; Ferroni, Matteo; Falasconi, Matteo; Gobbi, Emanuela; Sberveglieri, Veronica; Sberveglieri, Giorgio
2012-01-01
In this work we report on metal oxide (MOX) based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO) to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control. PMID:23235445
A Summary Report on the NPH Evaluation of 105-L Disassembly Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, J.R.
2002-04-30
The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOEmore » Order 420.1.« less
Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe
2015-01-01
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312
Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe
2015-02-11
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.; Hinnov, Linda A.
2010-08-01
Deterministic orbital controls on climate variability are commonly inferred to dominate across timescales of 104-106 years, although some studies have suggested that stochastic processes may be of equal or greater importance. Here we explicitly quantify changes in deterministic orbital processes (forcing and/or pacing) versus stochastic climate processes during the Plio-Pleistocene, via time-frequency analysis of two prominent foraminifera oxygen isotopic stacks. Our results indicate that development of the Northern Hemisphere ice sheet is paralleled by an overall amplification of both deterministic and stochastic climate energy, but their relative dominance is variable. The progression from a more stochastic early Pliocene to a strongly deterministic late Pleistocene is primarily accommodated during two transitory phases of Northern Hemisphere ice sheet growth. This long-term trend is punctuated by “stochastic events,” which we interpret as evidence for abrupt reorganization of the climate system at the initiation and termination of the mid-Pleistocene transition and at the onset of Northern Hemisphere glaciation. In addition to highlighting a complex interplay between deterministic and stochastic climate change during the Plio-Pleistocene, our results support an early onset for Northern Hemisphere glaciation (between 3.5 and 3.7 Ma) and reveal some new characteristics of the orbital signal response, such as the puzzling emergence of 100 ka and 400 ka cyclic climate variability during theoretical eccentricity nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, B; Liu, B; Li, Y
2016-06-15
Purpose: Treatment plan optimization in multi-Co60 source focused radiotherapy with multiple isocenters is challenging, because dose distribution is normalized to maximum dose during optimization and evaluation. The objective functions are traditionally defined based on relative dosimetric distribution. This study presents an alternative absolute dose-volume constraint (ADC) based deterministic optimization framework (ADC-DOF). Methods: The initial isocenters are placed on the eroded target surface. Collimator size is chosen based on the area of 2D contour on corresponding axial slice. The isocenter spacing is determined by adjacent collimator sizes. The weights are optimized by minimizing the deviation from ADCs using the steepest descentmore » technique. An iterative procedure is developed to reduce the number of isocenters, where the isocenter with lowest weight is removed without affecting plan quality. The ADC-DOF is compared with the genetic algorithm (GA) using the same arbitrary shaped target (254cc), with a 15mm margin ring structure representing normal tissues. Results: For ADC-DOF, the ADCs imposed on target and ring are (D100>10Gy, D50,10, 0<12Gy, 15Gy and 20Gy) and (D40<10Gy). The resulting D100, 50, 10, 0 and D40 are (9.9Gy, 12.0Gy, 14.1Gy and 16.2Gy) and (10.2Gy). The objectives of GA are to maximize 50% isodose target coverage (TC) while minimize the dose delivered to the ring structure, which results in 97% TC and 47.2% average dose in ring structure. For ADC-DOF (GA) techniques, 20 out of 38 (10 out of 12) initial isocenters are used in the final plan, and the computation time is 8.7s (412.2s) on an i5 computer. Conclusion: We have developed a new optimization technique using ADC and deterministic optimization. Compared with GA, ADC-DOF uses more isocenters but is faster and more robust, and achieves a better conformity. For future work, we will focus on developing a more effective mechanism for initial isocenter determination.« less
Controllability of Deterministic Networks with the Identical Degree Sequence
Ma, Xiujuan; Zhao, Haixing; Wang, Binghong
2015-01-01
Controlling complex network is an essential problem in network science and engineering. Recent advances indicate that the controllability of complex network is dependent on the network's topology. Liu and Barabási, et.al speculated that the degree distribution was one of the most important factors affecting controllability for arbitrary complex directed network with random link weights. In this paper, we analysed the effect of degree distribution to the controllability for the deterministic networks with unweighted and undirected. We introduce a class of deterministic networks with identical degree sequence, called (x,y)-flower. We analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by exact controllability theory in detail and give accurate results of the minimum number of driver nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower networks. Our results show that the family of (x,y)-flower networks have the same degree sequence, but their controllability is totally different. So the degree distribution itself is not sufficient to characterize the controllability of deterministic networks with unweighted and undirected. PMID:26020920
NASA Astrophysics Data System (ADS)
Pignalosa, Antonio; Di Crescenzo, Giuseppe; Marino, Ermanno; Terracciano, Rosario; Santo, Antonio
2015-04-01
The work here presented concerns a case study in which a complete multidisciplinary workflow has been applied for an extensive assessment of the rockslide susceptibility and hazard in a common scenario such as a vertical and fractured rocky cliffs. The studied area is located in a high-relief zone in Southern Italy (Sacco, Salerno, Campania), characterized by wide vertical rocky cliffs formed by tectonized thick successions of shallow-water limestones. The study concerned the following phases: a) topographic surveying integrating of 3d laser scanning, photogrammetry and GNSS; b) gelogical surveying, characterization of single instabilities and geomecanichal surveying, conducted by geologists rock climbers; c) processing of 3d data and reconstruction of high resolution geometrical models; d) structural and geomechanical analyses; e) data filing in a GIS-based spatial database; f) geo-statistical and spatial analyses and mapping of the whole set of data; g) 3D rockfall analysis; The main goals of the study have been a) to set-up an investigation method to achieve a complete and thorough characterization of the slope stability conditions and b) to provide a detailed base for an accurate definition of the reinforcement and mitigation systems. For this purposes the most up-to-date methods of field surveying, remote sensing, 3d modelling and geospatial data analysis have been integrated in a systematic workflow, accounting of the economic sustainability of the whole project. A novel integrated approach have been applied both fusing deterministic and statistical surveying methods. This approach enabled to deal with the wide extension of the studied area (near to 200.000 m2), without compromising an high accuracy of the results. The deterministic phase, based on a field characterization of single instabilities and their further analyses on 3d models, has been applied for delineating the peculiarity of each single feature. The statistical approach, based on geostructural field mapping and on punctual geomechanical data from scan-line surveying, allowed the rock mass partitioning in homogeneous geomechanical sectors and data interpolation through bounded geostatistical analyses on 3d models. All data, resulting from both approaches, have been referenced and filed in a single spatial database and considered in global geo-statistical analyses for deriving a fully modelled and comprehensive evaluation of the rockslide susceptibility. The described workflow yielded the following innovative results: a) a detailed census of single potential instabilities, through a spatial database recording the geometrical, geological and mechanical features, along with the expected failure modes; b) an high resolution characterization of the whole slope rockslide susceptibility, based on the partitioning of the area according to the stability and mechanical conditions which can be directly related to specific hazard mitigation systems; c) the exact extension of the area exposed to the rockslide hazard, along with the dynamic parameters of expected phenomena; d) an intervention design for hazard mitigation.
Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II
NASA Astrophysics Data System (ADS)
Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang
2017-09-01
The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha
Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.
The Application of materials attractiveness in a graded approach to nuclear materials security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbinghaus, B.; Bathke, C.; Dalton, D.
2013-07-01
The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that ismore » necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.« less
Multi-Algorithm Particle Simulations with Spatiocyte.
Arjunan, Satya N V; Takahashi, Koichi
2017-01-01
As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .
Robust Fixed-Structure Control
1994-10-30
Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp
The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes
NASA Astrophysics Data System (ADS)
Bogdanova, E. V.; Kuznetsov, A. N.
2017-01-01
The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.
Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.; ...
2017-02-17
Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less
Deterministic secure quantum communication using a single d-level system
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-01-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557
Soft tubular microfluidics for 2D and 3D applications
Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck
2017-01-01
Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968
Soft tubular microfluidics for 2D and 3D applications
NASA Astrophysics Data System (ADS)
Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee
2017-10-01
Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.
IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilles Youinou; Andrea Alfonsi
2012-03-01
This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis,more » the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.« less
Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels
NASA Astrophysics Data System (ADS)
Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.
2018-01-01
In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.
BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel
2015-09-01
BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less
Oxygen chemical diffusion in hypo-stoichiometric MOX
NASA Astrophysics Data System (ADS)
Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki
2009-06-01
Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.
Real-time logic modelling on SpaceWire
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Ma, Yunpeng; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. However, it cannot meet the deterministic requirement for safety/time critical application in spacecraft, where the delay of real-time (RT) message streams must be guaranteed. Therefore, SpaceWire-D is developed that provides deterministic delivery over a SpaceWire network. Formal analysis and verification of real-time systems is critical to their development and safe implementation, and is a prerequisite for obtaining their safety certification. Failure to meet specified timing constraints such as deadlines in hard real-time systems may lead to catastrophic results. In this paper, a formal verification method, Real-Time Logic (RTL), has been proposed to specify and verify timing properties of SpaceWire-D network. Based on the principal of SpaceWire-D protocol, we firstly analyze the timing properties of fundamental transactions, such as RMAP WRITE, and RMAP READ. After that, the RMAP WRITE transaction structure is modeled in Real-Time Logic (RTL) and Presburger Arithmetic representations. And then, the associated constraint graph and safety analysis is provided. Finally, it is suggested that RTL method can be useful for the protocol evaluation and provision of recommendation for further protocol evolutions.
Deterministic and unambiguous dense coding
NASA Astrophysics Data System (ADS)
Wu, Shengjun; Cohen, Scott M.; Sun, Yuqing; Griffiths, Robert B.
2006-04-01
Optimal dense coding using a partially-entangled pure state of Schmidt rank Dmacr and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most Ld messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τx ) Bob knows for sure that Alice sent message x , and when it fails (probability 1-τx ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For Dmacr ⩽D a bound is obtained for Ld in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes [Phys. Rev. A71, 012311 (2005)]. For Dmacr >D it is shown that Ld is strictly less than D2 unless Dmacr is an integer multiple of D , in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for Dmacr ⩽D , assuming τx>0 for a set of Dmacr D messages, and a bound is obtained for the average ⟨1/τ⟩ . A bound on the average ⟨τ⟩ requires an additional assumption of encoding by isometries (unitaries when Dmacr =D ) that are orthogonal for different messages. Both bounds are saturated when τx is a constant independent of x , by a protocol based on one-shot entanglement concentration. For Dmacr >D it is shown that (at least) D2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states.
Entanglement sensitivity to signal attenuation and amplification
NASA Astrophysics Data System (ADS)
Filippov, Sergey N.; Ziman, Mário
2014-07-01
We analyze general laws of continuous-variable entanglement dynamics during the deterministic attenuation and amplification of the physical signal carrying the entanglement. These processes are inevitably accompanied by noises, so we find fundamental limitations on noise intensities that destroy entanglement of Gaussian and non-Gaussian input states. The phase-insensitive amplification Φ1⊗Φ2⊗⋯ΦN with the power gain κi≥2 (≈3 dB, i =1,...,N) is shown to destroy entanglement of any N-mode Gaussian state even in the case of quantum-limited performance. In contrast, we demonstrate non-Gaussian states with the energy of a few photons such that their entanglement survives within a wide range of noises beyond quantum-limited performance for any degree of attenuation or gain. We detect entanglement preservation properties of the channel Φ1⊗Φ2, where each mode is deterministically attenuated or amplified. Gaussian states of high energy are shown to be robust to very asymmetric attenuations, whereas non-Gaussian states are at an advantage in the case of symmetric attenuation and general amplification. If Φ1=Φ2, the total noise should not exceed 1/2√κ2+1 to guarantee entanglement preservation.
Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications
NASA Astrophysics Data System (ADS)
Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.
2017-09-01
A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo
2017-01-01
Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735
Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research projects.« less
NASA Astrophysics Data System (ADS)
Clay, London; Menger, Karl; Rota, Gian-Carlo; Euclid, Alexandria; Siegel, Edward
P ≠NP MP proof is by computer-''science''/SEANCE(!!!)(CS) computational-''intelligence'' lingo jargonial-obfuscation(JO) NATURAL-Intelligence(NI) DISambiguation! CS P =(?) =NP MEANS (Deterministic)(PC) = (?) =(Non-D)(PC) i.e. D(P) =(?) = N(P). For inclusion(equality) vs. exclusion (inequality) irrelevant (P) simply cancels!!! (Equally any/all other CCs IF both sides identical). Crucial question left: (D) =(?) =(ND), i.e. D =(?) = N. Algorithmics[Sipser[Intro. Thy.Comp.(`97)-p.49Fig.1.15!!!
On stochastic control and optimal measurement strategies. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kramer, L. C.
1971-01-01
The control of stochastic dynamic systems is studied with particular emphasis on those which influence the quality or nature of the measurements which are made to effect control. Four main areas are discussed: (1) the meaning of stochastic optimality and the means by which dynamic programming may be applied to solve a combined control/measurement problem; (2) a technique by which it is possible to apply deterministic methods, specifically the minimum principle, to the study of stochastic problems; (3) the methods described are applied to linear systems with Gaussian disturbances to study the structure of the resulting control system; and (4) several applications are considered.
Kahle, Maximilian; Ter Beek, Josy; Hosler, Jonathan P; Ädelroth, Pia
2018-06-03
Bacterial NO reductases (NOR) catalyze the reduction of NO into N 2 O, either as a step in denitrification or as a detoxification mechanism. cNOR from Paracoccus (P.) denitrificans is expressed from the norCBQDEF operon, but only the NorB and NorC proteins are found in the purified NOR complex. Here, we established a new purification method for the P. denitrificans cNOR via a His-tag using heterologous expression in E. coli. The His-tagged enzyme is both structurally and functionally very similar to non-tagged cNOR. We were also able to express and purify cNOR from the structural genes norCB only, in absence of the accessory genes norQDEF. The produced protein is a stable NorCB complex containing all hemes and it can bind gaseous ligands (CO) to heme b 3 , but it is catalytically inactive. We show that this deficient cNOR lacks the non-heme iron cofactor Fe B . Mutational analysis of the nor gene cluster revealed that it is the norQ and norD genes that are essential to form functional cNOR. NorQ belongs to the family of MoxR P-loop AAA+ ATPases, which are in general considered to facilitate enzyme activation processes often involving metal insertion. Our data indicates that NorQ and NorD work together in order to facilitate non-heme Fe insertion. This is noteworthy since in many cases Fe cofactor binding occurs spontaneously. We further suggest a model for NorQ/D-facilitated metal insertion into cNOR. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakamura, Koichi
2018-06-01
Thermoelectric properties of transition metal dichalcogenide (TMDC) monolayer models, such as Seebeck coefficient and lattice heat capacity, were simulated on the basis of first-principles calculations. The calculated Seebeck coefficients are appropriate for the thermoelectric element of all the TMDC monolayer models introduced in this study. In the MoX2/WX2 (X = S, Se, and Te) heterojunction structure, carrier electrons and holes are respectively distributed in the MoX2 and WX2 regions by adopting a common Fermi energy for both electronic structures. In particular, in the X = Te case, the practical carrier concentration with a large Seebeck coefficient can be evaluated without doping. The lattice heat capacities and their temperature dependence tendencies can be classified on the basis of the minimum frequencies of the optical modes. The quotient of the lattice thermal conductivity over the phonon relaxation time gives the temperature-independent specific values according to the kind of TMDC monolayer.
High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.
The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less
From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities
NASA Astrophysics Data System (ADS)
Kunjwal, Ravi; Spekkens, Robert W.
2018-05-01
The Kochen-Specker theorem rules out models of quantum theory wherein projective measurements are assigned outcomes deterministically and independently of context. This notion of noncontextuality is not applicable to experimental measurements because these are never free of noise and thus never truly projective. For nonprojective measurements, therefore, one must drop the requirement that an outcome be assigned deterministically in the model and merely require that it be assigned a distribution over outcomes in a manner that is context-independent. By demanding context independence in the representation of preparations as well, one obtains a generalized principle of noncontextuality that also supports a quantum no-go theorem. Several recent works have shown how to derive inequalities on experimental data which, if violated, demonstrate the impossibility of finding a generalized-noncontextual model of this data. That is, these inequalities do not presume quantum theory and, in particular, they make sense without requiring an operational analog of the quantum notion of projectiveness. We here describe a technique for deriving such inequalities starting from arbitrary proofs of the Kochen-Specker theorem. It extends significantly previous techniques that worked only for logical proofs, which are based on sets of projective measurements that fail to admit of any deterministic noncontextual assignment, to the case of statistical proofs, which are based on sets of projective measurements that d o admit of some deterministic noncontextual assignments, but not enough to explain the quantum statistics.
NASA Astrophysics Data System (ADS)
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu
2016-08-15
Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, B. B.; Sleaford, Brad W.
2009-07-09
This paper is an extension to earlier studies [1,2] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs tomore » be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities [3]. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
3D Dynamic Rupture Simulations along the Wasatch Fault, Utah, Incorporating Rough-fault Topography
NASA Astrophysics Data System (ADS)
Withers, Kyle; Moschetti, Morgan
2017-04-01
Studies have found that the Wasatch Fault has experienced successive large magnitude (>Mw 7.2) earthquakes, with an average recurrence interval near 350 years. To date, no large magnitude event has been recorded along the fault, with the last rupture along the Salt Lake City segment occurring 1300 years ago. Because of this, as well as the lack of strong ground motion records in basins and from normal-faulting earthquakes worldwide, seismic hazard in the region is not well constrained. Previous numerical simulations have modeled deterministic ground motion in the heavily populated regions of Utah, near Salt Lake City, but were primarily restricted to low frequencies ( 1 Hz). Our goal is to better assess broadband ground motions from the Wasatch Fault Zone. Here, we extend deterministic ground motion prediction to higher frequencies ( 5 Hz) in this region by using physics-based spontaneous dynamic rupture simulations along a normal fault with characteristics derived from geologic observations. We use a summation by parts finite difference code (Waveqlab3D) with rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) and include off-fault plasticity to simulate ruptures > Mw 6.5. Geometric complexity along fault planes has previously been shown to generate broadband sources with spectral energy matching that of observations. We investigate the impact of varying the hypocenter location, as well as the influence that multiple realizations of rough-fault topography have on the rupture process and resulting ground motion. We utilize Waveqlab3's computational efficiency to model wave-propagation to a significant distance from the fault with media heterogeneity at both long and short spatial wavelengths. These simulations generate a synthetic dataset of ground motions to compare with GMPEs, in terms of both the median and inter and intraevent variability.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668
Griffiths, Nina M; Coudert, Sylvie; Molina, Thibaut; Wilk, Jean-Claude; Renault, Daniel; Berard, Philippe; Van der Meeren, Anne
2014-11-01
Americium-241 ((241)Am) presents a potential risk for nuclear industry workers associated with reactor decommissioning and aging combustible materials. The purpose of this study was to investigate Am renal retention after actinide contamination by wounding in the rat. Anesthetized rats were contaminated with Mixed Oxide (MOX) (7.1% Plutonium [Pu] by mass and containing 27% Am as % total alpha activity), Pu or Am nitrate following an incision wound of the hind leg. Times of euthanasia ranged from 2 hours to 5 months after contamination. Pu and Am levels were quantified following radiochemistry and alpha-spectrophotometry. Initial data show that over the experimental period the proportion of Am in kidneys as a fraction of total kidney alpha activity was elevated as compared to MOX powder indicating a specific retention in this organ. The percentage of Pu was similar to the powder. After MOX contamination, kidney to liver ratios appeared to increase more markedly for Am (from 0.2 at 7 days to 0.6 at 90 days) as compared with Pu (0.1 at 7 days to 0.2 at 90 days). In accordance with tissue actinide retention the dose from Am to the kidney increases with time. For comparison, the ratio of estimated equivalent doses due to Am to kidney is 1.5-fold greater than for Pu (around 90 versus 60 mSv). After actinide contamination of wounds, Am is concentrated in the kidneys as compared to Pu leading to potential exposure of renal tissue to both alpha particles and gamma radiation.
Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.
1994-08-01
Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gammamore » spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.« less
Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Sarji, Sazilah Ahmad; Chung, Lip Yong; Nyamathulla, Shaik; Noordin, Mohamed Ibrahim
2015-01-01
The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of 153Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern. PMID:26124637
Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foare, Genevieve; Meze, Florian; Bader, Sven
2013-07-01
Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less
Fuel clad chemical interactions in fast reactor MOX fuels
NASA Astrophysics Data System (ADS)
Viswanathan, R.
2014-01-01
Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu; Beg, Muhammad S.; Das, Prajnan
2014-07-15
Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivitymore » analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.« less
NASA Astrophysics Data System (ADS)
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-04-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-04-10
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-01-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911
NASA Astrophysics Data System (ADS)
Restrepo, Doriam; Bielak, Jacobo; Serrano, Ricardo; Gómez, Juan; Jaramillo, Juan
2016-03-01
This paper presents a set of deterministic 3-D ground motion simulations for the greater metropolitan area of Medellín in the Aburrá Valley, an earthquake-prone region of the Colombian Andes that exhibits moderate-to-strong topographic irregularities. We created the velocity model of the Aburrá Valley region (version 1) using the geological structures as a basis for determining the shear wave velocity. The irregular surficial topography is considered by means of a fictitious domain strategy. The simulations cover a 50 × 50 × 25 km3 volume, and four Mw = 5 rupture scenarios along a segment of the Romeral fault, a significant source of seismic activity in Colombia. In order to examine the sensitivity of ground motion to the irregular topography and the 3-D effects of the valley, each earthquake scenario was simulated with three different models: (i) realistic 3-D velocity structure plus realistic topography, (ii) realistic 3-D velocity structure without topography, and (iii) homogeneous half-space with realistic topography. Our results show how surface topography affects the ground response. In particular, our findings highlight the importance of the combined interaction between source-effects, source-directivity, focusing, soft-soil conditions, and 3-D topography. We provide quantitative evidence of this interaction and show that topographic amplification factors can be as high as 500 per cent at some locations. In other areas within the valley, the topographic effects result in relative reductions, but these lie in the 0-150 per cent range.
Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere
2017-12-13
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, Srimanta; Meyers, Derek J.; Doennig, D.
2016-02-05
Deterministic control over the periodic geometrical arrangement of the constituent atoms is the backbone of the material properties, which, along with the interactions, define the electronic and magnetic ground state. Following this notion, a bilayer of a prototypical rare-earth nickelate, NdNiO3, combined with a dielectric spacer, LaAlO3, has been layered along the pseudocubic [111] direction. The resulting artificial graphenelike Mott crystal with magnetic 3d electrons has antiferromagnetic correlations. In addition, a combination of resonant X-ray linear dichroism measurements and ab initio calculations reveal the presence of an ordered orbital pattern, which is unattainable in either bulk nickelates or nickelate basedmore » heterostructures grown along the [001] direction. These findings highlight another promising venue towards designing new quantum many-body states by virtue of geometrical engineering.« less
Scaling theory for the quasideterministic limit of continuous bifurcations.
Kessler, David A; Shnerb, Nadav M
2012-05-01
Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities.
Do rational numbers play a role in selection for stochasticity?
Sinclair, Robert
2014-01-01
When a given tissue must, to be able to perform its various functions, consist of different cell types, each fairly evenly distributed and with specific probabilities, then there are at least two quite different developmental mechanisms which might achieve the desired result. Let us begin with the case of two cell types, and first imagine that the proportion of numbers of cells of these types should be 1:3. Clearly, a regular structure composed of repeating units of four cells, three of which are of the dominant type, will easily satisfy the requirements, and a deterministic mechanism may lend itself to the task. What if, however, the proportion should be 10:33? The same simple, deterministic approach would now require a structure of repeating units of 43 cells, and this certainly seems to require a far more complex and potentially prohibitive deterministic developmental program. Stochastic development, replacing regular units with random distributions of given densities, might not be evolutionarily competitive in comparison with the deterministic program when the proportions should be 1:3, but it has the property that, whatever developmental mechanism underlies it, its complexity does not need to depend very much upon target cell densities at all. We are immediately led to speculate that proportions which correspond to fractions with large denominators (such as the 33 of 10/33) may be more easily achieved by stochastic developmental programs than by deterministic ones, and this is the core of our thesis: that stochastic development may tend to occur more often in cases involving rational numbers with large denominators. To be imprecise: that simple rationality and determinism belong together, as do irrationality and randomness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okladnikova, N.; Pesternikova, V.; Sumina, M.
1998-12-01
Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects;more » creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.« less
Automatic 2D-to-3D image conversion using 3D examples from the internet
NASA Astrophysics Data System (ADS)
Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.
2012-03-01
The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D repository. While far from perfect, the presented results demonstrate that on-line repositories of 3D content can be used for effective 2D-to-3D image conversion. With the continuously increasing amount of 3D data on-line and with the rapidly growing computing power in the cloud, the proposed framework seems a promising alternative to operator-assisted 2D-to-3D conversion.
Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)
NASA Astrophysics Data System (ADS)
Kędra, Mariola
2014-02-01
Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNcemore » reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).« less
Investing to Survive in a Duopoly Model
NASA Astrophysics Data System (ADS)
Pinto, Alberto A.; Oliveira, Bruno M. P. M.; Ferreira, Fernanda A.; Ferreira, Miguel
We present deterministic dynamics on the production costs of Cournot competitions, based on perfect Nash equilibria of nonlinear R&D investment strategies to reduce the production costs of the firms at every period of the game. We analyse the effects that the R&D investment strategies can have in the profits of the firms along the time. We show that small changes in the initial production costs or small changes in the parameters that determine the efficiency of the R&D programs or of the firms can produce strong economic effects in the long run of the profits of the firms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
...--8:30 a.m. Until 5 p.m. The Subcommittee will review the MOX Fuel Fabrication Facility (Shaw-Areva... presentations by and hold discussions with representatives of the NRC staff, Shaw-Areva, LLC, and other...
The Mars '94 Oxidant Experiment (MOx): Creation of Something From Nothing in 1 Year
NASA Technical Reports Server (NTRS)
Lane, Arthur L.
1994-01-01
The scientific intent of this experiment is to measure the chemical activity of martian soil and atmosphere by examining the activity level of one or more compositionally unknown oxidants inferred from the Viking soil analysis experiments.
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
NASA Astrophysics Data System (ADS)
Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey
2014-01-01
The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.
NASA Astrophysics Data System (ADS)
Russo, David; Laufer, Asher; Shapira, Roi H.; Kurtzman, Daniel
2013-02-01
Detailed numerical simulations were used to analyze water flow and transport of nitrate, chloride, and a tracer solute in a 3-D, spatially heterogeneous, variably saturated soil, originating from a citrus orchard irrigated with treated sewage water (TSW) considering realistic features of the soil-water-plant-atmosphere system. Results of this study suggest that under long-term irrigation with TSW, because of nitrate uptake by the tree roots and nitrogen transformations, the vadose zone may provide more capacity for the attenuation of the nitrate load in the groundwater than for the chloride load in the groundwater. Results of the 3-D simulations were used to assess their counterparts based on a simplified, deterministic, 1-D vertical simulation and on limited soil monitoring. Results of the analyses suggest that the information that may be gained from a single sampling point (located close to the area active in water uptake by the tree roots) or from the results of the 1-D simulation is insufficient for a quantitative description of the response of the complicated, 3-D flow system. Both might considerably underestimate the movement and spreading of a pulse of a tracer solute and also the groundwater contamination hazard posed by nitrate and particularly by chloride moving through the vadose zone. This stems mainly from the rain that drove water through the flow system away from the rooted area and could not be represented by the 1-D model or by the single sampling point. It was shown, however, that an additional sampling point, located outside the area active in water uptake, may substantially improve the quantitative description of the response of the complicated, 3-D flow system.
Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges
2016-01-01
A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.
Reactor physics behavior of transuranic-bearing TRISO-particle fuel in a pressurized water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, M. A.; Sen, R. S.; Ougouag, A. M.
2012-07-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) - only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space availablemore » for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is retained. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint. (authors)« less
Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag
2012-04-01
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel,more » the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.« less
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.
2014-10-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study was also conducted to assess uncertainty estimates and sensor variability. In this study, 9 M-Pods were calibrated via collocation multiple times over 4 weeks, and sensor drift was analyzed, with the result being a calibration function that included baseline drift. Three pairs of M-Pods were deployed, while users individually carried the other three. The user study suggested that inter-M-Pod variability between paired units was on the same order as calibration uncertainty; however, it is difficult to make conclusions about the actual personal exposure levels due to the level of user engagement. The user study provided real-world sensor drift data, showing limited CO drift (under -0.05 ppm day-1), and higher for O3 (-2.6 to 2.0 ppb day-1), NO2 (-1.56 to 0.51 ppb day-1), and CO2 (-4.2 to 3.1 ppm day-1). Overall, the user study confirmed the utility of the M-Pod as a low-cost tool to assess personal exposure.
New developments and prospects on COSI, the simulation software for fuel cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.
2013-07-01
COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyser, E. A.; King, W. D.
2012-07-31
Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less
HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyser, E.; King, W.
2012-04-25
Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less
Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick
2015-01-01
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.
Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago
2018-07-12
The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of UWCC MOX fuel measurements to MCNP-REN calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.; Baker, M.; Jie, R.
1998-12-31
The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less
Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco
2017-01-01
Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage. PMID:28590429
Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco
2017-06-07
Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.
Holographic Patterning of High Performance on-chip 3D Lithium-ion Microbatteries
Ning, Hailong; Pikul, James H.; Wang, Runyu; ...
2015-05-11
As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here in this paper, we demonstrate an on-chip compatible method tomore » fabricate high energy density (6.5 μWh cm -2∙μm -1) 3D mesostructured Li-ion microbatteries based on LiMnO 2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm(-2)∙μm(-1) peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm 2 for 200 cycles with only 12% capacity fade. Lastly, a combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application.« less
Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries
Ning, Hailong; Pikul, James H.; Zhang, Runyu; Li, Xuejiao; Xu, Sheng; Wang, Junjie; Rogers, John A.; King, William P.; Braun, Paul V.
2015-01-01
As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 μWh cm−2⋅μm−1) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm−2⋅μm−1 peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm2 for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application. PMID:25964360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.
Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less
3D J-Integral Capability in Grizzly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam
2014-09-01
This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a largermore » effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.« less
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Han, Jinkyu; McBean, Coray; Wang, Lei; ...
2015-02-10
As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋ xMo xO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output uponmore » nanowire chemical composition with our 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋ xMo xO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.« less
van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R
2013-05-21
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.
2013-05-01
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen
2014-09-08
A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-03
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Large conditional single-photon cross-phase modulation
NASA Astrophysics Data System (ADS)
Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan
2016-05-01
Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes.
Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C
2017-04-01
Subsurface groundwater-surface water mixing zones (hyporheic zones) have enhanced biogeochemical activity, but assembly processes governing subsurface microbiomes remain a critical uncertainty in understanding hyporheic biogeochemistry. To address this obstacle, we investigated (a) biogeographical patterns in attached and waterborne microbiomes across three hydrologically-connected, physicochemically-distinct zones (inland hyporheic, nearshore hyporheic and river); (b) assembly processes that generated these patterns; (c) groups of organisms that corresponded to deterministic changes in the environment; and (d) correlations between these groups and hyporheic metabolism. All microbiomes remained dissimilar through time, but consistent presence of similar taxa suggested dispersal and/or common selective pressures among zones. Further, we demonstrated a pronounced impact of deterministic assembly in all microbiomes as well as seasonal shifts from heterotrophic to autotrophic microorganisms associated with increases in groundwater discharge. The abundance of one statistical cluster of organisms increased with active biomass and respiration, revealing organisms that may strongly influence hyporheic biogeochemistry. Based on our results, we propose a conceptualization of hyporheic zone metabolism in which increased organic carbon concentrations during surface water intrusion support heterotrophy, which succumbs to autotrophy under groundwater discharge. These results provide new opportunities to enhance microbially-explicit ecosystem models describing hyporheic zone biogeochemistry and its influence over riverine ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Steinbach, Tanja; Bauer, Christian; Sasse, Hermann; Baumgärtner, Wolfgang; Rey-Moreno, Cecilia; Hermosilla, Carlos; Damriyasa, I Made; Zahner, Horst
2006-06-30
The study was undertaken to evaluate adverse effects of larvicidal treatment in horses naturally infected with cyathostomins. Out of 24 ponies kept on pasture, four animals were housed in September and anthelmintically cured to serve as worm-free controls (group C-0). The others were housed in December. Eight animals each were treated 8 weeks later with 5 x 7.5mg/kg fenbendazole (FBZ) or 1 x 0.4 mg/kg moxidectin (MOX). Four animals remained untreated (group C-i). Two, 4, 6 and 14 days after the end of treatment two animals of each of the treated groups were necropsied together with group C-0 and C-i animals. Infected animals before treatment showed weight loss, eosinophilia, increased plasma protein and globulin contents. Treatment was followed by weight gain and temporal plasma protein and globulin increase. Proportions of CD4+ and CD8+ T lymphocytes in the peripheral blood did not differ between the groups before treatment but dropped significantly temporally after FBZ treatment. Group C-0 was worm-free at necropsy. Group C-i animals contained variable numbers of luminal and tissue cyathostomins. Histological sections showed larval stages in the lamina propria und submucosa surrounded by macrophages. Either treatment was effective against luminal parasites and reduced the number of larvae in the bowel wall beginning 4-6 days after FBZ and 6-14 days after MOX treatment. Histologically, as a first reaction after FBZ application T lymphocytes accumulated around morphologically intact L4 in the submucosa. Subsequently T lymphocytes associated with eosinophils infiltrated the submucosa. Parasites became enclosed by granulomas with eosinophils adhering to and invading the larvae which started to disintegrate on day 4. Later on, particularly on day 14 inflammation extended into the mucosa and was frequently associated with ulcerations. Third stage larvae in general and L4 in the lamina propria, however, seemed not to be affected until day 14 and even then, parasites did usually not generate extensive inflammation. After MOX treatment severe morphologically detectable alterations of tissue larvae could not be observed earlier than day 14. Different from FBZ treatment, larvae disintegrated and were obviously resorbed without causing severe inflammation in the gut wall. In conclusion treatment with either drug was efficacious against tissue larvae of cyathostomins but there may be different clinical consequences: in contrast to MOX effects, killing of larvae due to FBZ was associated with severe tissue damage, which clinically may correspond to reactions caused by synchronous mass emergence of fourth stage larvae, i.e., may mimic larval cyathostominosis.
Empowering smartphone users with sensor node for air quality measurement
NASA Astrophysics Data System (ADS)
Oletic, Dinko; Bilas, Vedran
2013-06-01
We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.
Multi-Year Revenue and Expenditure Forecasting for Small Municipal Governments.
1981-03-01
Management Audit Econometric Revenue Forecast Gap and Impact Analysis Deterministic Expenditure Forecast Municipal Forecasting Municipal Budget Formlto...together with a multi-year revenue and expenditure forecasting model for the City of Monterey, California. The Monterey model includes an econometric ...65 5 D. FORECAST BASED ON THE ECONOMETRIC MODEL ------- 67 E. FORECAST BASED ON EXPERT JUDGMENT AND TREND ANALYSIS
Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley
2013-07-08
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.
A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments
NASA Astrophysics Data System (ADS)
Gokhale, Sharad; Khare, Mukesh
Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).
Microenvironmental Stiffness of 3D Polymeric Structures to Study Invasive Rates of Cancer Cells.
Lemma, Enrico Domenico; Spagnolo, Barbara; Rizzi, Francesco; Corvaglia, Stefania; Pisanello, Marco; De Vittorio, Massimo; Pisanello, Ferruccio
2017-11-01
Cells are highly dynamic elements, continuously interacting with the extracellular environment. Mechanical forces sensed and applied by cells are responsible for cellular adhesion, motility, and deformation, and are heavily involved in determining cancer spreading and metastasis formation. Cell/extracellular matrix interactions are commonly analyzed with the use of hydrogels and 3D microfabricated scaffolds. However, currently available techniques have a limited control over the stiffness of microscaffolds and do not allow for separating environmental properties from biological processes in driving cell mechanical behavior, including nuclear deformability and cell invasiveness. Herein, a new approach is presented to study tumor cell invasiveness by exploiting an innovative class of polymeric scaffolds based on two-photon lithography to control the stiffness of deterministic microenvironments in 3D. This is obtained by fine-tuning of the laser power during the lithography, thus locally modifying both structural and mechanical properties in the same fabrication process. Cage-like structures and cylindric stent-like microscaffolds are fabricated with different Young's modulus and stiffness gradients, allowing obtaining new insights on the mechanical interplay between tumor cells and the surrounding environments. In particular, cell invasion is mostly driven by softer architectures, and the introduction of 3D stiffness "weak spots" is shown to boost the rate at which cancer cells invade the scaffolds. The possibility to modulate structural compliance also allowed estimating the force distribution exerted by a single cell on the scaffold, revealing that both pushing and pulling forces are involved in the cell-structure interaction. Overall, exploiting this method to obtain a wide range of 3D architectures with locally engineered stiffness can pave the way for unique applications to study tumor cell dynamics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.
1996-12-31
Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.
1996-01-01
Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less
Universal photonic quantum computation via time-delayed feedback
Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.
2017-01-01
We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057
Optimal port-based teleportation
NASA Astrophysics Data System (ADS)
Mozrzymas, Marek; Studziński, Michał; Strelchuk, Sergii; Horodecki, Michał
2018-05-01
Deterministic port-based teleportation (dPBT) protocol is a scheme where a quantum state is guaranteed to be transferred to another system without unitary correction. We characterise the best achievable performance of the dPBT when both the resource state and the measurement is optimised. Surprisingly, the best possible fidelity for an arbitrary number of ports and dimension of the teleported state is given by the largest eigenvalue of a particular matrix—Teleportation Matrix. It encodes the relationship between a certain set of Young diagrams and emerges as the optimal solution to the relevant semidefinite programme.
Characterizing Uncertainty and Variability in PBPK Models ...
Mode-of-action based risk and safety assessments can rely upon tissue dosimetry estimates in animals and humans obtained from physiologically-based pharmacokinetic (PBPK) modeling. However, risk assessment also increasingly requires characterization of uncertainty and variability; such characterization for PBPK model predictions represents a continuing challenge to both modelers and users. Current practices show significant progress in specifying deterministic biological models and the non-deterministic (often statistical) models, estimating their parameters using diverse data sets from multiple sources, and using them to make predictions and characterize uncertainty and variability. The International Workshop on Uncertainty and Variability in PBPK Models, held Oct 31-Nov 2, 2006, sought to identify the state-of-the-science in this area and recommend priorities for research and changes in practice and implementation. For the short term, these include: (1) multidisciplinary teams to integrate deterministic and non-deterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through more complete documentation of the model structure(s) and parameter values, the results of sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include: (1) theoretic and practical methodological impro
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
75 FR 51500 - Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
..., October 14, 2009 (74 FR 52829-52830). Thursday, September 9, 2010, Conference Room T2-B1, Two White Flint... Fabrication Facility and the Associated Safety Evaluation Report (Open/ Closed)--The Committee will hold... the MOX Fuel Fabrication Facility and the associated Safety Evaluation Report. [Note: A portion of...
NASA Astrophysics Data System (ADS)
Wang, Fengyu
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
Structural Deterministic Safety Factors Selection Criteria and Verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
Large conditional single-photon cross-phase modulation
Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan
2016-01-01
Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798
Probabilistic Finite Element Analysis & Design Optimization for Structural Designs
NASA Astrophysics Data System (ADS)
Deivanayagam, Arumugam
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas
2007-07-01
Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code systemmore » ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)« less
Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M
2017-06-01
This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas
2017-12-01
Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.
Deterministic Aperiodic Structures for on-chip Nanophotonics and Nanoplasmonics Device Applications
2013-04-01
the origin of the superior field enhancement and localization observed in several aperiodic plasmonic structures. Due to the ...removed by hot acetone bath, resulting in the Si nano-hole master . The Si master is first treated with a silanizing agent to reduce the adhesion of ...arrays needs to be utilized, as illustrated in Figs. 7(a-d). The nanodot master fabrication proceeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOSTELLER, RUSSELL D.
Previous studies have indicated that ENDF/B-VII preliminary releases {beta}-2 and {beta}-3, predecessors to the recent initial release of ENDF/B-VII.0, produce significantly better overall agreement with criticality benchmarks than does ENDF/B-VI. However, one of those studies also suggests that improvements still may be needed for thermal plutonium cross sections. The current study substantiates that concern by examining criticality benchmarks for unreflected spheres of plutonium-nitrate solutions and for slightly and heavily borated mixed-oxide (MOX) lattices. Results are presented for the JEFF-3.1 and JENDL-3.3 nuclear data libraries as well as ENDF/B-VII.0 and ENDF/B-VI. It is shown that ENDF/B-VII.0 tends to overpredict reactivity formore » thermal plutonium benchmarks over at least a portion of the thermal range. In addition, it is found that additional benchmark data are needed for the deep thermal range.« less
NASA Astrophysics Data System (ADS)
Xia, H.; Shen, X. M.; Yang, X. C.; Xiong, Y.; Jiang, G. L.
2018-01-01
Deterministic electroplating repair is a novel method for rapidly repairing the attrited parts. By the qualitative contrast and quantitative comparison, influences of the current density on performances of the chrome-plated layer were concluded in this study. The chrome-plated layers were fabricated under different current densities when the other parameters were kept constant. Hardnesses, thicknesses and components, surface morphologies and roughnesses, and wearability of the chrome-plated layers were detected by the Vickers hardness tester, scanning electron microscope / energy dispersive X-ray detector, digital microscope in the 3D imaging mode, and the ball-milling instrument with profilograph, respectively. In order to scientifically evaluate each factor, the experimental data was normalized. A comprehensive evaluation model was founded to quantitative analyse influence of the current density based on analytic hierarchy process method and the weighted evaluation method. The calculated comprehensive evaluation indexes corresponding to current density of 40A/dm2, 45A/dm2, 50A/dm2, 55A/dm2, 60A/dm2, and 65A/dm2 were 0.2246, 0.4850, 0.4799, 0.4922, 0.8672, and 0.1381, respectively. Experimental results indicate that final optimal option was 60A/dm2, and the priority orders were 60A/dm2, 55A/dm2, 45A/dm2, 50A/dm2, 40A/dm2, and 65A/dm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin Popp; Zander Mausolff; Sedat Goluoglu
We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less
Potential of pin-by-pin SPN calculations as an industrial reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliscounakis, M.; Girardi, E.; Courau, T.
2012-07-01
This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less
a New Method for Calculating the Fractal Dimension of Surface Topography
NASA Astrophysics Data System (ADS)
Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan
2015-06-01
A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.
Vaerenberg, Bart; Govaerts, Paul J; de Ceulaer, Geert; Daemers, Kristin; Schauwers, Karen
2011-01-01
This report describes the application of the software tool "Fitting to Outcomes eXpert" (FOX) in programming the cochlear implant (CI) processor in new users. FOX is an intelligent agent to assist in the programming of CI processors. The concept of FOX is to modify maps on the basis of specific outcome measures, achieved using heuristic logic and based on a set of deterministic "rules". A prospective study was conducted on eight consecutive CI-users with a follow-up of three months. Eight adult subjects with postlingual deafness were implanted with the Advanced Bionics HiRes90k device. The implants were programmed using FOX, running a set of rules known as Eargroup's EG0910 advice, which features a set of "automaps". The protocol employed for the initial 3 months is presented, with description of the map modifications generated by FOX and the corresponding psychoacoustic test results. The 3 month median results show 25 dBHL as PTA, 77% (55 dBSPL) and 71% (70 dBSPL) phoneme score at speech audiometry and loudness scaling in or near to the normal zone at different frequencies. It is concluded that this approach is feasible to start up CI fitting and yields good outcome.
On the kinetics of dendritic sidebranching: A three dimensional phase field study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Shan; Guo, Zhipeng; Han, Zhiqiang, E-mail: zqhan@tsinghua.edu.cn
2016-04-28
The underlying mechanism for dendritic sidebranching was studied using 3-D phase field modeling. Results showed that in 3-D the requirement of applying the random thermal noise to induce dendritic sidebranching (i.e., normally the case for 2-D phase field simulations) was fully relaxed. The stretching of the secondary or higher order arms occurred spontaneously and symmetrically as the growth of the dendrite. With periodic external perturbation and if the stimulating frequency was lower than a critical value, both tip velocity and sidebranching would get completely synchronized with the perturbation. Whereas if the perturbation frequency was higher than the critical value, rathermore » than increasing, the sidebranching frequency would become stable and maintain at the same magnitude as that of the natural sidebranching, i.e., when no external perturbation was applied. It was shown that the underlying mechanism for sidebranching was deterministic rather than stochastic, and anisotropy tendency and curvature effect were shown to be the most important influence factors. Moreover, the difference of the anisotropy tendency would lead to an uneven distribution of curvature on the solid/liquid interface, i.e., formation of concave and convex geometries. The growth of these geometries would subsequently break the initial spherical structure of solid seed and lead to further sidebranching.« less
Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu
A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which hasmore » the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.« less
Impact of refining the assessment of dietary exposure to cadmium in the European adult population.
Ferrari, Pietro; Arcella, Davide; Heraud, Fanny; Cappé, Stefano; Fabiansson, Stefan
2013-01-01
Exposure assessment constitutes an important step in any risk assessment of potentially harmful substances present in food. The European Food Safety Authority (EFSA) first assessed dietary exposure to cadmium in Europe using a deterministic framework, resulting in mean values of exposure in the range of health-based guidance values. Since then, the characterisation of foods has been refined to better match occurrence and consumption data, and a new strategy to handle left-censoring in occurrence data was devised. A probabilistic assessment was performed and compared with deterministic estimates, using occurrence values at the European level and consumption data from 14 national dietary surveys. Mean estimates in the probabilistic assessment ranged from 1.38 (95% CI = 1.35-1.44) to 2.08 (1.99-2.23) µg kg⁻¹ bodyweight (bw) week⁻¹ across the different surveys, which were less than 10% lower than deterministic (middle bound) mean values that ranged from 1.50 to 2.20 µg kg⁻¹ bw week⁻¹. Probabilistic 95th percentile estimates of dietary exposure ranged from 2.65 (2.57-2.72) to 4.99 (4.62-5.38) µg kg⁻¹ bw week⁻¹, which were, with the exception of one survey, between 3% and 17% higher than middle-bound deterministic estimates. Overall, the proportion of subjects exceeding the tolerable weekly intake of 2.5 µg kg⁻¹ bw ranged from 14.8% (13.6-16.0%) to 31.2% (29.7-32.5%) according to the probabilistic assessment. The results of this work indicate that mean values of dietary exposure to cadmium in the European population were of similar magnitude using determinist or probabilistic assessments. For higher exposure levels, probabilistic estimates were almost consistently larger than deterministic counterparts, thus reflecting the impact of using the full distribution of occurrence values to determine exposure levels. It is considered prudent to use probabilistic methodology should exposure estimates be close to or exceeding health-based guidance values.
Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J
2011-10-07
Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.
Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge
2014-01-01
Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used. © 2013.
Sheridan, Robert; Desjardins, Lucille
2006-01-01
The avermectin and milbemycin families of compounds are derived from naturally occurring yeasts. They have proven to be potent preventatives against a variety of pests such as insects and parasites. Only eprinomectin and moxidectin are currently approved for use on lactating cattle with tolerances in milk of 12 microg/kg for eprinomectin and 40 microg/kg for moxidectin. Detection of misuse or inadvertent contamination in milk requires a sensitive and definitive analytical method. A method has been developed for the determination of 5 avermectins and 1 milbemycin in milk using a simple liquid-liquid extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. Ivermectin (IVR), doramectin (DOR), abamectin (ABA), eprinomectin (EPR), emamectin (EMA), and moxidectin (MOX) were extracted from whole milk by partitioning into acetonitrile with a subsequent solvent exchange into methanol-water. Simultaneous confirmation and quantification were achieved with LC separation, positive electrospray ionization (ESI+), and MS/MS. The limits of detection ranged from 16 pg/g (ppt) for EMA to 1.7 microg/g (ppb) for MOX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidasemore » fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.« less
Generalized Detectability for Discrete Event Systems
Shu, Shaolong; Lin, Feng
2011-01-01
In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432
High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State
NASA Astrophysics Data System (ADS)
Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.
2017-04-01
Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.
Deterministic quantum dense coding networks
NASA Astrophysics Data System (ADS)
Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal
2018-07-01
We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.
Parallel Stochastic discrete event simulation of calcium dynamics in neuron.
Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W
2017-09-26
The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.
Direct visualization of the Wntless-induced redistribution of WNT1 in developing chick embryos.
Galli, Lisa M; Santana, Frederick; Apollon, Chantilly; Szabo, Linda A; Ngo, Keri; Burrus, Laura W
2018-04-30
Paracrine Wnt signals are critical regulators of cell proliferation, specification, and differentiation during embryogenesis. Consistent with the discovery that Wnt ligands are post-translationally modified with palmitoleate (a 16 carbon mono-unsaturated fatty acid), our studies show that the vast majority of bioavailable chick WNT1 (cWNT1) produced in stably transfected L cells is cell-associated. Thus, it seems unlikely that the WNT1 signal is propagated by diffusion alone. Unfortunately, the production and transport of vertebrate Wnt proteins has been exceedingly difficult to study as few antibodies are able to detect endogenous Wnt proteins and fixation is known to disrupt the architecture of cells and tissues. Furthermore, vertebrate Wnts have been extraordinarily refractory to tagging. To help overcome these obstacles, we have generated a number of tools that permit the detection of WNT1 in palmitoylation assays and the visualization of chick and zebrafish WNT1 in live cells and tissues. Consistent with previous studies in fixed cells, live imaging of cells and tissues with overexpressed cWNT1-moxGFP shows predominant localization of the protein to a reticulated network that is likely to be the endoplasmic reticulum. As PORCN and WLS are important upstream regulators of Wnt gradient formation, we also undertook the generation of mCherry-tagged variants of both proteins. While co-expression of PORCN-mCherry had no discernible effect on the localization of WNT1-moxGFP, co-expression of WLS-mCherry caused a marked redistribution of WNT1-moxGFP to the cell surface and cellular projections in cultured cells as well as in neural crest and surface ectoderm cells in developing chick embryos. Our studies further establish that the levels of WLS, and not PORCN, are rate limiting with respect to WNT1 trafficking. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.
2017-12-01
Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate
Progress in the Assessment of Waste-forms for the Immobilisation of UK Civil Plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, M.T.; Scales, C.R.; Maddrell, E.R.
The alternatives for the disposition of the UK's civil plutonium stocks are currently being investigated by Nexia Solutions Ltd. on behalf of the Nuclear Decommissioning Authority (NDA). A number of scenarios are currently being considered depending on the strategic requirements of the UK. The two main disposition options are: re-use as MOX (Mixed Oxide) fuel in reactors, or immobilisation in the event of any material being declared surplus to requirements. The amount of Pu which will require immobilisation will depend on future UK nuclear strategy, along with the extent of any stocks deemed unsuitable for re-use. However, it is likelymore » that some portion will have to be immobilised and therefore three credible waste-forms are under consideration; ceramic, glass and 'immobilisation' MOX. These are currently being developed and assessed in a systematic programme that involves periodic evaluation against a range of criteria. In this way, by down-selecting on the basis of robust and technical review, the most appropriate option for immobilising surplus civil plutonium in the UK can be recommended. The latest results from the immobilisation experimental programme are presented following the de-selection of the least favourable glass and ceramic candidates. The main criteria for this decision were waste loading, durability, processability, criticality and proliferation resistance. In addition, the durability of unirradiated MOX fuel is being examined to determine its potential as a wasteform for Pu, and recent leach test data is discussed. The current evaluation comprises not only a comparison of the relevant physical properties of the various waste-forms, but also key processing parameters, e.g. glass viscosity and melter technology, ceramic fabrication routes, and criticality issues. Other important aspects of the long-term behaviour of the waste-forms under consideration in a potential repository environment, such as radiation damage, criticality control and the properties of any neutron poisons present, are also included. (authors)« less
Computer modeling of dynamic necking in bars
NASA Astrophysics Data System (ADS)
Partom, Yehuda; Lindenfeld, Avishay
2017-06-01
Necking of thin bodies (bars, plates, shells) is one form of strain localization in ductile materials that may lead to fracture. The phenomenon of necking has been studied extensively, initially for quasistatic loading and then also for dynamic loading. Nevertheless, many issues concerning necking are still unclear. Among these are: 1) is necking a random or deterministic process; 2) how does the specimen choose the final neck location; 3) to what extent do perturbations (material or geometrical) influence the neck forming process; and 4) how do various parameters (material, geometrical, loading) influence the neck forming process. Here we address these issues and others using computer simulations with a hydrocode. Among other things we find that: 1) neck formation is a deterministic process, and by changing one of the parameters influencing it monotonously, the final neck location moves monotonously as well; 2) the final neck location is sensitive to the radial velocity of the end boundaries, and as motion of these boundaries is not fully controlled in tests, this may be the reason why neck formation is sometimes regarded as a random process; and 3) neck formation is insensitive to small perturbations, which is probably why it is a deterministic process.
NASA Astrophysics Data System (ADS)
Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.
2015-07-01
The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation state for plutonium in solution under highly oxidizing conditions. Furthermore, the Raman spectroscopy monitoring of the sample surface oxidation states did not point to any significant effect from the high Pu content of the aggregates (10-15%) and therefore did not indicate a better aggregate stability under radiolysis compared to the mainly UO2 matrix. This is because acidic pH conditions do not favor the development of oxidized layers on a fuel surface, with the exception of secondary phases.
NASA Astrophysics Data System (ADS)
Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun
2018-05-01
A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
Dynamical Epidemic Suppression Using Stochastic Prediction and Control
2004-10-28
initial probability density function (PDF), p: D C R2 -- R, is defined by the stochastic Frobenius - Perron For deterministic systems, normal methods of...induced chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius - Perron operator [L. Billings et al., Phys. Rev. Lett...transition matrix describing the probability of transport from one region of phase space to another, which approximates the stochastic Frobenius - Perron
Stochastic Dynamic Mixed-Integer Programming (SD-MIP)
2015-05-05
stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g
Sattar, Ahmed M.A.; Raslan, Yasser M.
2013-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476
NASA Astrophysics Data System (ADS)
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2015-04-01
Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.
Sattar, Ahmed M A; Raslan, Yasser M
2014-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.
NASA Astrophysics Data System (ADS)
West, Loyd Travis
Site characterization is an essential aspect of hazard analysis and the time-averaged shear-wave velocity to 30 m depth "Vs30" for site-class has become a critical parameter in site-specific and probabilistic hazard analysis. Yet, the general applicability of Vs30 can be ambiguous and much debate and research surround its application. In 2007, in part to mitigate the uncertainty associated with the use of Vs30 in Las Vegas Valley, the Clark County Building Department (CCBD) in collaboration with the Nevada System of Higher Education (NSHE) embarked on an endeavor to map Vs30 using a geophysical methods approach for a site-class microzonation map of over 500 square miles (1500 km2) in southern Nevada. The resulting dataset, described by Pancha et al. (2017), contains over 10,700 1D shear-wave-velocity-depth profiles (SWVP) that constitute a rich database of 3D shear-wave velocity structure that is both laterally and vertical heterogenous. This study capitalizes on the uniquely detailed and spatially dense CCBD database to carry out sensitivity tests on the detailed shear-wave-velocity-profiles and the Vs30 utilizing 1D and 3D site-response approaches. Sensitivity tests are derived from the 1D oscillator response of a single-degree-of-freedom-oscillator and from 3D finite-difference deterministic simulations up to 15 Hz frequency using similar model parameters. Results demonstrate that the detailed SWVP are amplifying ground motions by roughly 50% over the simple Vs30 models, above 4.6 Hz frequency. Numerical simulations also depict significant lateral resonance, focusing, and scattering from seismic energy attributed to the 3D small-scale heterogeneities of the shear-wave-velocity profiles that result in a 70% increase in peak ground velocity. Additionally, PGV ratio maps clearly establish that the increased amplification from the detailed SWVPs is consistent throughout the model space. As a corollary, this study demonstrates the use of finite-differencing numerical based methods to simulate ground motions at high frequencies, up to 15 Hz.
The relationship between stochastic and deterministic quasi-steady state approximations.
Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R
2015-11-23
The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
NASA Astrophysics Data System (ADS)
Modgil, Girish A.
Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single Stage (HWSS) turbine blisk provides a baseline to demonstrate the process. The generalized polynomial chaos (gPC) toolbox which was developed includes sampling methods and constructs polynomial approximations. The toolbox provides not only the means for uncertainty quantification of the final blade design, but also facilitates construction of the surrogate models used for the blade optimization. This paper shows that gPC , with a small number of samples, achieves very fast rates of convergence and high accuracy in describing probability distributions without loss of detail in the tails . First, an optimization problem maximizes stage efficiency using turbine aerodynamic design rules as constraints; the function evaluations for this optimization are surrogate models from detailed 3D steady Computational Fluid Dynamics (CFD) analyses. The resulting optimal shape provides a starting point for the 3D high-fidelity aeromechanics (unsteady CFD and 3D Finite Element Analysis (FEA)) UQ study assuming three uncertain input parameters. This investigation seeks to find the steady and vibratory stresses associated with the first torsion mode for the HWSS turbine blisk near maximum operating speed of the engine. Using gPC to provide uncertainty estimates of the steady and vibratory stresses enables the creation of a Probabilistic Goodman Diagram, which - to the authors' best knowledge - is the first of its kind using high fidelity aeromechanics for turbomachinery blades. The Probabilistic Goodman Diagram enables turbine blade designers to make more informed design decisions and it allows the aeromechanics expert to assess quantitatively the risk associated with HCF for any mode crossing based on high fidelity simulations.
NASA Astrophysics Data System (ADS)
Dixon, Kenneth
A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.
Deterministic Walks with Choice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki
2012-06-06
Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spentmore » fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.« less
DCBRP: a deterministic chain-based routing protocol for wireless sensor networks.
Marhoon, Haydar Abdulameer; Mahmuddin, M; Nor, Shahrudin Awang
2016-01-01
Wireless sensor networks (WSNs) are a promising area for both researchers and industry because of their various applications The sensor node expends the majority of its energy on communication with other nodes. Therefore, the routing protocol plays an important role in delivering network data while minimizing energy consumption as much as possible. The chain-based routing approach is superior to other approaches. However, chain-based routing protocols still expend substantial energy in the Chain Head (CH) node. In addition, these protocols also have the bottleneck issues. A novel routing protocol which is Deterministic Chain-Based Routing Protocol (DCBRP). DCBRP consists of three mechanisms: Backbone Construction Mechanism, Chain Head Selection (CHS), and the Next Hop Connection Mechanism. The CHS mechanism is presented in detail, and it is evaluated through comparison with the CCM and TSCP using an ns-3 simulator. It show that DCBRP outperforms both CCM and TSCP in terms of end-to-end delay by 19.3 and 65%, respectively, CH energy consumption by 18.3 and 23.0%, respectively, overall energy consumption by 23.7 and 31.4%, respectively, network lifetime by 22 and 38%, respectively, and the energy*delay metric by 44.85 and 77.54%, respectively. DCBRP can be used in any deterministic node deployment applications, such as smart cities or smart agriculture, to reduce energy depletion and prolong the lifetimes of WSNs.
Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope
NASA Astrophysics Data System (ADS)
Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello
2016-04-01
This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior orientation. The coordinates of GCPs were calculated through the post-processing of data collected by using two GPS receivers, operating in static modality, and a Total Station. The photogrammetric processing of image blocks allowed us to create the 3D point cloud, DTM, orthophoto, and 3D textured model with high level of cartographic detail. Discontinuities were deterministically characterized in terms of attitude, persistence, and spacing. Moreover, the main discontinuity sets were identified through a density analysis of attitudes in stereographic projection. In addition, the size and shape of potentially unstable blocks identified along the rock slope were measured. Finally, using additional data from traditional engineering-geological surveys executed in accessible outcrops, the kinematic and dynamic stability analysis of the rocky slope was performed. Results from this step have indicated the deterministic safety factors of rock blocks and wedges, and will be used by local Authorities to plan the protection works for safety guarantee. Results from this application show the great advantage of modern RPAS that can be successfully applied for the analysis of sub-vertical rocky slopes, especially in areas either difficult to access with traditional techniques or masked by the presence of vegetation. KEY WORDS: 3D point cloud, RPAS photogrammetry, Terrestrial laser scanning, Rock slope, Fracture mapping, Stability analysis
Field evaluation of an avian risk assessment model
Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Borges, S.L.; Bennett, R.S.; Torrez, M.; Williams, B.I.; Leffel, R.
2006-01-01
We conducted two laboratory subacute dietary toxicity tests and one outdoor subacute dietary toxicity test to determine the effectiveness of the U.S. Environmental Protection Agency's deterministic risk assessment model for evaluating the potential of adverse effects to birds in the field. We tested technical-grade diazinon and its D Z N- 50W (50% diazinon active ingredient wettable powder) formulation on Canada goose (Branta canadensis) goslings. Brain acetylcholinesterase activity was measured, and the feathers and skin, feet. and gastrointestinal contents were analyzed for diazinon residues. The dose-response curves showed that diazinon was significantly more toxic to goslings in the outdoor test than in the laboratory tests. The deterministic risk assessment method identified the potential for risk to birds in general, but the factors associated with extrapolating from the laboratory to the field, and from the laboratory test species to other species, resulted in the underestimation of risk to the goslings. The present study indicates that laboratory-based risk quotients should be interpreted with caution.
Experimental realization of real-time feedback-control of single-atom arrays
NASA Astrophysics Data System (ADS)
Kim, Hyosub; Lee, Woojun; Ahn, Jaewook
2016-05-01
Deterministic loading of neutral atoms on particular locations has remained a challenging problem. Here we show, in a proof-of-principle experimental demonstration, that such deterministic loading can be achieved by rearrangement of atoms. In the experiment, cold rubidium atom were trapped by optical tweezers, which are the hologram images made by a liquid-crystal spatial light modulator (LC-SLM). After the initial occupancy was identified, the hologram was actively controlled to rearrange the captured atoms on to unfilled sites. For this, we developed a new flicker-free hologram algorithm that enables holographic atom translation. Our demonstration show that up to N=9 atoms were simultaneously moved in the 2D plane with the movable degrees of freedom of 2N=18 and the fidelity of 99% for single-atom 5- μm translation. It is hoped that our in situ atom rearrangement becomes useful in scaling quantum computers. Samsung Science and Technology Foundation [SSTF-BA1301-12].
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TN; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2011-05-17
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente
2009-12-20
This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.
NASA Astrophysics Data System (ADS)
Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.
2013-04-01
Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2017-09-01
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.
Stochastic and Deterministic Fluctuations in Stimulated Brillouin Scattering
1990-10-01
and J. R. Ackerhalt, "Instabilities in the Propagation of Arbitrarily Polarized Counterpropagating Waves in a Nonlinear Kerr Medium," Optical...Ackerhalt, and P. W. Milonni, "Instabilities and Chaos in the Polarizations of Counterpropagating Light Fields," Phys. Rev. Lett. 58, 2432 (1987). iv P...Plenum, New York (1990). V D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, " Polarization Bistability of Counterpropagating Beams," Phys. Rev
Experience Catalysts: How They Fill the Acquisition Experience Gap for the DoD
2012-01-01
Russ- Eft , 1997). Other studies have shown that “the more managers are trained in how to support and coach the skills their employees learn, the more...efficacy, age, etc. (Bassi and Russ- Eft , 1997). Making a deterministic forecast is difficult. Experience Catalysts: How They Fill the Acquisition... tap freely. Provide easy access to sources of expertise. It deepens their knowledge base, expands per- spectives, and fuels their experience engine
2007-09-30
if the traditional models adequately parameterize and characterize the actual mixing. As an example of the application of this method , we have...2) Deterministic Modelling Results. As noted above, we are working on a stochastic method of modelling transient and short-lived tracers...heterogeneity. RELATED PROJECTS We have worked in collaboration with Peter Jumars (Univ. Maine), and his PhD student Kelley Dorgan, who are measuring
NASA Astrophysics Data System (ADS)
van de Wall, Allan George
The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. A transport model assuming incompressible flow and using linear theory was developed to take this process into account in the computation of time-average multistage turbomachinery flows. The upstream vortical structures are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (Uke ) associated with the incoming disturbance. The model was applied to compressor and turbine geometry. For compressors, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows is reduced as a result of the interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the Uke by inviscid effects but results in a substantial loss. Any disturbance passing through a turbine blade row results in a larger loss than if the disturbance was mixedout prior to entering the blade row.
NASA Astrophysics Data System (ADS)
Ishizawa, O. A.; Clouteau, D.
2007-12-01
Long-duration, amplifications and spatial response's variability of the seismic records registered in Mexico City during the September 1985 earthquake cannot only be explained by the soil velocity model. We will try to explain these phenomena by studying the extent of the effect of buildings' diffracted wave fields during an earthquake. The main question is whether the presence of a large number of buildings can significantly modify the seismic wave field. We are interested in the interaction between the incident wave field propagating in a stratified half- space and a large number of structures at the free surface, i.e., the coupled city-site effect. We study and characterize the seismic wave propagation regimes in a city using the theory of wave propagation in random media. In the coupled city-site system, the buildings are modeled as resonant scatterers uniformly distributed at the surface of a deterministic, horizontally layered elastic half-space representing the soil. Based on the mean-field and the field correlation equations, we build a theoretical model which takes into account the multiple scattering of seismic waves and allows us to describe the coupled city-site system behavior in a simple and rapid way. The results obtained for the configurationally averaged field quantities are validated by means of 3D results for the seismic response of a deterministic model. The numerical simulations of this model are computed with MISS3D code based on classical Soil-Structure Interaction techniques and on a variational coupling between Boundary Integral Equations for a layered soil and a modal Finite Element approach for the buildings. This work proposes a detailed numerical and a theoretical analysis of the city-site interaction (CSI) in Mexico City area. The principal parameters in the study of the CSI are the buildings resonant frequency distribution, the soil characteristics of the site, the urban density and position of the buildings in the city, as well as the type of incident wave. The main results of the theoretical and numerical models allow us to characterize the seismic movement in urban areas.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Astrophysics Data System (ADS)
Breen, S. J.; Lochbuehler, T.; Detwiler, R. L.; Linde, N.
2013-12-01
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic ERT inversion approaches, probabilistic inversion provides not only a single saturation model but a full posterior probability density function for each model parameter. Furthermore, the uncertainty inherent in the underlying petrophysics (e.g., Archie's Law) can be incorporated in a straightforward manner. In this study, the data are from bench-scale ERT experiments conducted during gas injection into a quasi-2D (1 cm thick), translucent, brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. We estimate saturation fields by Markov chain Monte Carlo sampling with the MT-DREAM(ZS) algorithm and compare them quantitatively to independent saturation measurements from a light transmission technique, as well as results from deterministic inversions. Different model parameterizations are evaluated in terms of the recovered saturation fields and petrophysical parameters. The saturation field is parameterized (1) in cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values and gradients in structural elements defined by a gaussian bell of arbitrary shape and location. Synthetic tests reveal that a priori knowledge about the expected geologic structures (as in parameterization (3)) markedly improves the parameter estimates. The number of degrees of freedom thus strongly affects the inversion results. In an additional step, we explore the effects of assuming that the total volume of injected gas is known a priori and that no gas has migrated away from the monitored region.
VASP-4096: a very high performance programmable device for digital media processing applications
NASA Astrophysics Data System (ADS)
Krikelis, Argy
2001-03-01
Over the past few years, technology drivers for microprocessors have changed significantly. Media data delivery and processing--such as telecommunications, networking, video processing, speech recognition and 3D graphics--is increasing in importance and will soon dominate the processing cycles consumed in computer-based systems. This paper presents the architecture of the VASP-4096 processor. VASP-4096 provides high media performance with low energy consumption by integrating associative SIMD parallel processing with embedded microprocessor technology. The major innovations in the VASP-4096 is the integration of thousands of processing units in a single chip that are capable of support software programmable high-performance mathematical functions as well as abstract data processing. In addition to 4096 processing units, VASP-4096 integrates on a single chip a RISC controller that is an implementation of the SPARC architecture, 128 Kbytes of Data Memory, and I/O interfaces. The SIMD processing in VASP-4096 implements the ASProCore architecture, which is a proprietary implementation of SIMD processing, operates at 266 MHz with program instructions issued by the RISC controller. The device also integrates a 64-bit synchronous main memory interface operating at 133 MHz (double-data rate), and a 64- bit 66 MHz PCI interface. VASP-4096, compared with other processors architectures that support media processing, offers true performance scalability, support for deterministic and non-deterministic data processing on a single device, and software programmability that can be re- used in future chip generations.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.
Morota, Gota
2017-12-20
Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
..., which is currently under review. In its August 30, 2012, application, MOX Services proposes to make... of the proceeding, and is material to the findings that NRC must make to support the granting of a... permitted to make a limited appearance pursuant to the provisions of 10 CFR 2.315(a), by making an oral or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... suitable for MOX fuel fabrication is disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico... Waste Processing Facility at SRS or disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. On... are safety (criticality) limits on how much plutonium can be sent to the Defense Waste Processing...
CHF considerations for highly moderated 100% MOX fuels PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saphier, D.; Raymond, P.
1995-09-01
A feasibility study on using 100% MOX fuel in a PWR with increased moderating ratio, RMA, was initiated. In the proposed design all the parameters were chosen identical to the French 1450MW PWR, except the fuel pin diameter which was reduced to achieve higher moderating ratios, V{sub M}/V{sub F}, where V{sub M} and V{sub F} are the moderator and fuel volume respectively. Moderating ratios from 2 to 4 were considered. In the present study the thermal-hydraulic feasibility of using fuel assemblies with smaller diameter fuel pins was investigated. The major design constrain in this study was the critical heat fluxmore » (CHF). In order to maintain the fuel pin integrity under nominal operating and transient conditions, the minimum DNBR, (Departure from Nucleate Boiling Ratio given by CHF/q{close_quotes}{sub local}, where q{close_quotes}{sub local} is the local heat flux), has to be above a given value. The limitations of the existing CHF correlations for the present study are outlined. Two designs based on the conventional 17x17 fuel assembly and on the advanced 19x19 assembly meeting the MDNBR criteria and satisfying the control margin requirements, are proposed.« less
Fuel cycle cost uncertainty from nuclear fuel cycle comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; McNelis, D.; Yim, M.S.
2013-07-01
This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for themore » discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.« less
TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors
Pashami, Sepideh; Lilienthal, Achim J.; Schaffernicht, Erik; Trincavelli, Marco
2013-01-01
Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time. PMID:23736853
CASMO5 JENDL-4.0 and ENDF/B-VII.1beta4 libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, J.; Gheorghiu, N.; Ferrer, R.
2012-07-01
This paper details the generation of neutron data libraries for the CASMO5 lattice physics code based on the recently released JENDL-4.0 and ENDF/B-VII.1beta4 nuclear data evaluations. This data represents state-of-the-art nuclear data for late-2011. The key features of the new evaluations are briefly described along with the procedure for processing of this data into CASMO5, 586-energy group neutron data libraries. Finally some CASMO5 results for standard UO{sub 2} and MOX critical experiments for the two new libraries and the current ENDF/B-VII.0 CASMO5 library are presented including the B and W 1810 series, DIMPLE S06A, S06B, TCA reflector criticals with ironmore » plates and the PNL-30-35 MOX criticals. The results show that CASMO5 with the new libraries is performing well for these criticals with a very slight edge in results to the JENDL-4.0 nuclear data evaluation over the ENDF/B-VII.1beta4 evaluation. Work is currently underway to generate a CASMO5 library based on the final ENDF/B-VII.R1 evaluation released Dec. 22, 2011. (authors)« less
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
Hybrid Gama Emission Tomography (HGET): FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Erin A.; Smith, Leon E.; Wittman, Richard S.
2017-02-01
Current International Atomic Energy Agency (IAEA) methodologies for the verification of fresh low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies are volume-averaging methods that lack sensitivity to individual pins. Further, as fresh fuel assemblies become more and more complex (e.g., heavy gadolinium loading, high degrees of axial and radial variation in fissile concentration), the accuracy of current IAEA instruments degrades and measurement time increases. Particularly in light of the fact that no special tooling is required to remove individual pins from modern fuel assemblies, the IAEA needs new capabilities for the verification of unirradiated (i.e., fresh LEU and MOX)more » assemblies to ensure that fissile material has not been diverted. Passive gamma emission tomography has demonstrated potential to provide pin-level verification of spent fuel, but gamma-ray emission rates from unirradiated fuel emissions are significantly lower, precluding purely passive tomography methods. The work presented here introduces the concept of Hybrid Gamma Emission Tomography (HGET) for verification of unirradiated fuels, in which a neutron source is used to actively interrogate the fuel assembly and the resulting gamma-ray emissions are imaged using tomographic methods to provide pin-level verification of fissile material concentration.« less
Proliferation resistance of small modular reactors fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polidoro, F.; Parozzi, F.; Fassnacht, F.
2013-07-01
In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. Inmore » the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
...The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license applications and integrated safety analysis (ISA) summaries described in the current version of NUREG-1718, ``Standard Review Plan for the Review of an Application for a Mixed Oxide (MOX) Fuel Fabrication Facility,'' as a method that the NRC staff finds acceptable for meeting the regulatory requirements of Title 10 of the Code of Federal Regulations (10 CFR) part 70, ``Domestic Licensing of Special Nuclear Material'' for mixed oxide fuel fabrication facilities.
NASA Astrophysics Data System (ADS)
LaFleur, Adrienne Marie
The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The calibration of SINRD at one reactor facility carries over to reactor sites in different countries because it uses the ratio of fission chambers (FCs) that are not facility dependent. (5) SINRD can distinguish fresh and 1-cycle spent MOX fuel from 3- and 4-cycles spent LEU fuel without using reactor burnup codes.
Development of high-fidelity multiphysics system for light water reactor analysis
NASA Astrophysics Data System (ADS)
Magedanz, Jeffrey W.
There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)
CyberShake Physics-Based PSHA in Central California
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Goulet, C. A.; Milner, K. R.; Graves, R. W.; Olsen, K. B.; Jordan, T. H.
2017-12-01
The Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, which performs physics-based probabilistic seismic hazard analyis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a wavefield of Strain Green Tensors. An earthquake rupture forecast (ERF) is then extended by varying hypocenters and slips on finite faults, generating about 500,000 events per site of interest. Seismic reciprocity is used to calculate synthetic seismograms, which are processed to obtain intensity measures (IMs) such as RotD100. These are combined with ERF probabilities to produce hazard curves. PSHA results from hundreds of locations across a region are interpolated to produce a hazard map. CyberShake simulations with SCEC 3D Community Velocity Models have shown how the site and path effects vary with differences in upper crustal structure, and they are particularly informative about epistemic uncertainties in basin effects, which are not well parameterized by depths to iso-velocity surfaces, common inputs to GMPEs. In 2017, SCEC performed CyberShake Study 17.3, expanding into Central California for the first time. Seismic hazard calculations were performed at 1 Hz at 438 sites, using both a 3D tomographically-derived central California velocity model and a regionally averaged 1D model. Our simulation volumes extended outside of Central California, so we included other SCEC velocity models and developed a smoothing algorithm to minimize reflection and refraction effects along interfaces. CyberShake Study 17.3 ran for 31 days on NCSA's Blue Waters and ORNL's Titan supercomputers, burning 21.6 million core-hours and producing 285 million two-component seismograms and 43 billion IMs. These results demonstrate that CyberShake can be successfully expanded into new regions, and lend insights into the effects of directivity-basin coupling associated with basins near major faults such as the San Andreas. In particular, we observe in the 3D results that basin amplification for sites in the southern San Joaquin Valley is less than for sites in smaller basins such as around Ventura. We will present CyberShake hazard estimates from the 1D and 3D models, compare results to those from previous CyberShake studies and GMPEs, and describe our future plans.
Reinemeyer, C R; Prado, J C; Nielsen, M K
2015-11-30
Despite widespread acknowledgement of cyathostomin resistance to adult icidal dosages of benzimidazole (BZD) anthelmintics, many strongyle control programs continue to feature regularly scheduled larvicidal treatment with fenbendazole (FBZ). However, no studies have been conducted to evaluate the efficacy of larvicidal regimens against encysted cyathostomins in a BZD-resistant (BZD-R) population. A masked, randomized, controlled clinical study was conducted with 18 juvenile horses harboring populations of cyathostomins that were considered BZD-R on the basis of fecal egg count reduction (FECR). Horses were blocked by prior history, ranked by egg counts, and allocated randomly to one of three treatment groups: 1--control, 2--FBZ >10mg/kg once daily for five consecutive days, or 3--moxidectin (MOX) >0.4 mg/kg once. Fecal samples were collected prior to treatment and seven and 14 days after the final dose of anthelmintic. On Days 18-20, complete replicates of horses were euthanatized and necropsied, and 1% aliquots of large intestinal contents were recovered for determination of complete worm counts. The cecum and ventral colon were weighed, and measured proportions of the respective organ walls were processed for quantitation and characterization of encysted cyathostomin populations. The five-day regimen of FBZ achieved 44.6% fecal egg count reduction, had 56.4% activity against luminal adults and larvae, and was 38.6% and 71.2% effective against encysted early third stage (EL3) and late third stage/ fourth stage (LL3/L4) cyathostomin larvae, respectively. In contrast, MOX provided 99.9% FECR, removed 99.8% of luminal stages, and exhibited 63.6% and 85.2% efficacy against EL3 and LL3/L4 mucosal cyathostomins, respectively. Although BZD-R was the most feasible explanation for the lower larvicidal efficacies of FBZ, mean larval counts of moxidectin-treated horses were not significantly different from controls or those treated with FBZ. The lack of significant differences between larvicidal treatments was partially attributed to a small sample size and high variability among worm burdens. Historical differences in the time intervals between treatment and necropsy were identified as a confounding factor for accurate estimation of larvicidal efficacy. Determining appropriate post-treatment intervals for measuring larvicidal efficacy remains a critical regulatory and scientific challenge for this therapeutic area. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Bush, K; Han, B
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less
Excitation of Crossflow Instabilities in a Swept Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Choudhari, Meelan; Li, Fei; Streett, Craig L.; Chang, Chau-Lyan
2010-01-01
The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
Lopez-Iturri, Peio; de Miguel-Bilbao, Silvia; Aguirre, Erik; Azpilicueta, Leire; Falcone, Francisco; Ramos, Victoria
2015-01-01
The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied. PMID:25705676
Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow
NASA Astrophysics Data System (ADS)
Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne
2014-05-01
3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from 3D outcrop data, including geostatistical modelling and fluid flow simulations The case study is a turbidite reservoir analog in Northern Spain (Ainsa). In this case study, we can compare reservoir models that have been built with conventional data set (1D pseudowells), and reservoir model built from 3D outcrop data directly used to constrain the reservoir architecture. This approach allows us to assess the benefits of integrating geotagged 3D outcrop data into reservoir models. References: HODGETTS, D., (2013): Laser scanning and digital outcrop geology in the petroleum industry : a review. Marine and Petroleum Geology, 46, 335-354. McCAFFREY, K.J.W., JONES, R.R., HOLDSWORTH, R.E., WILSON, R.W., CLEGG, P., IMBER, J., HOLLIMAN, N., TRINKS, I., (2005): Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society 162, 927-938 PRINGLE, J.K., HOWELL, J.A., HODGETTS, D., WESTERMAN, A.R., HODGSON, D.M., 2006. Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break 24, 33-42.
On the Feedback Phenomenon of an Impinging Jet
1979-09-01
the double-structured nature of turbulent flows: time dependent quasi- ordered large scale structures, and fine-scale random structures. Numerous ...downstream and upstream waves d Nozzle diameter f Frequency (Hz) Gf Normalized power si.c ,ur’ of i G ,(f) Normalized cr,- tr bee -en i(t) and J(t) I ,j xiv...1975) suggested that these quasi- ordered structures are deterministic, in the sense that they have a characteristic shape, size and convection motion
The past, present and future of cyber-physical systems: a focus on models.
Lee, Edward A
2015-02-26
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Lee, Edward A.
2015-01-01
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486
Dynamical Localization for Unitary Anderson Models
NASA Astrophysics Data System (ADS)
Hamza, Eman; Joye, Alain; Stolz, Günter
2009-11-01
This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes.
On the generation of tangential ground motion by underground explosions in jointed rocks
NASA Astrophysics Data System (ADS)
Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis
2015-03-01
This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Setoguchi, Soko; Zhu, Ying; Jalbert, Jessica J; Williams, Lauren A; Chen, Chih-Ying
2014-05-01
Linking patient registries with administrative databases can enhance the utility of the databases for epidemiological and comparative effectiveness research. However, registries often lack direct personal identifiers, and the validity of record linkage using multiple indirect personal identifiers is not well understood. Using a large contemporary national cardiovascular device registry and 100% Medicare inpatient data, we linked hospitalization-level records. The main outcomes were the validity measures of several deterministic linkage rules using multiple indirect personal identifiers compared with rules using both direct and indirect personal identifiers. Linkage rules using 2 or 3 indirect, patient-level identifiers (ie, date of birth, sex, admission date) and hospital ID produced linkages with sensitivity of 95% and specificity of 98% compared with a gold standard linkage rule using a combination of both direct and indirect identifiers. Ours is the first large-scale study to validate the performance of deterministic linkage rules without direct personal identifiers. When linking hospitalization-level records in the absence of direct personal identifiers, provider information is necessary for successful linkage. © 2014 American Heart Association, Inc.
The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking
NASA Astrophysics Data System (ADS)
Wei, Shengji; Chen, Meng; Wang, Xin; Graves, Robert; Lindsey, Eric; Wang, Teng; Karakaş, Çağıl; Helmberger, Don
2018-01-01
To better quantify the relatively long period (< 0.3 Hz) shaking experienced during the 2015 Gorkha (Nepal) earthquake sequence, we study the finite rupture processes and the associated 3D ground motion of the Mw7.8 mainshock and the Mw7.2 aftershock. The 3D synthetics are then used in the broadband ground shaking in Kathmandu with a hybrid approach, summarized in a companion paper (Chen and Wei, 2017, submitted together). We determined the coseismic rupture process of the mainshock by joint inversion of InSAR/SAR, GPS (static and high-rate), strong motion and teleseismic waveforms. Our inversion for the mainshock indicates unilateral rupture towards the ESE, with an average rupture speed of 3.0 km/s and a total duration of 60 s. Additionally, we find that the beginning part of the rupture (5-18 s) has about 40% longer rise time than the rest of the rupture, as well as slower rupture velocity. Our model shows two strong asperities occurring 24 s and 36 s after the origin and located 30 km to the northwest and northeast of the Kathmandu valley, respectively. In contrast, the Mw7.2 aftershock is more compact both in time and space, as revealed by joint inversion of teleseismic body waves and InSAR data. The different rupture features between the mainshock and the aftershock could be related to difference in fault zone structure. The mainshock and aftershock ground motions in the Kathmandu valley, recorded by both strong motion and high-rate GPS stations, exhibited strong amplification around 0.2 Hz. A simplified 3D basin model, calibrated by an Mw5.2 aftershock, can match the observed waveforms reasonably well at 0.3 Hz and lower frequency. The 3D simulations indicate that the basin structure trapped the wavefield and produced an extensive ground vibration. Our study suggests that the combination of rupture characteristics and propagational complexity are required to understand the ground shaking produced by hazardous earthquakes such as the Gorkha event.
Liu, Tong; Su, Qi-Ping; Yang, Jin-Hu; Zhang, Yu; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping
2017-08-01
A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.
Robust Planning for Effects-Based Operations
2006-06-01
Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models
Stochasticity, succession, and environmental perturbations in a fluidic ecosystem.
Zhou, Jizhong; Deng, Ye; Zhang, Ping; Xue, Kai; Liang, Yuting; Van Nostrand, Joy D; Yang, Yunfeng; He, Zhili; Wu, Liyou; Stahl, David A; Hazen, Terry C; Tiedje, James M; Arkin, Adam P
2014-03-04
Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.
Deterministic ion beam material adding technology for high-precision optical surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2013-02-20
Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.
NASA Astrophysics Data System (ADS)
Guo, Dongyun; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng; Li, Meiya; Liu, Jun
2008-12-01
The series of (Bi0.9Ho0.1)4-2x/3Ti3-xMoxO12 (BHTM) (x=0, 0.9%, 1.5%, 3.0%, and 6.0%) thin films on Pt/Ti/SiO2/Si substrates is prepared by sol-gel method, and the effect of Mo content on the microstructure and ferroelectric properties of these films are investigated. When the Mo content is not excessive, the BHTM films consisted of the single phase of Bi-layered Aurivillius phase. The B-site substitution with high-valent cation of Mo6+, in Bi3.6Ho0.4Ti3O12 films, enhanced the 2Pr (remanent polarization) and reduced the 2Ec (coercive field) of these films. The BHTM thin film with x =1.5% exhibited the best electrical properties with 2Pr of 48.4 μC/cm2, 2Ec of 263.5 kV/cm, dielectric constant of 391 (at 1 MHz), good insulting behavior, as well as the fatigue-free characteristic.
The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor
NASA Astrophysics Data System (ADS)
May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.
2000-07-01
BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.