Science.gov

Sample records for deterministic chaos mathematics

  1. Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico

    2009-09-01

    Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.

  2. Analysis of FBC deterministic chaos

    SciTech Connect

    Daw, C.S.

    1996-06-01

    It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.

  3. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  4. Predictability of normal heart rhythms and deterministic chaos

    NASA Astrophysics Data System (ADS)

    Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.

    1993-04-01

    The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.

  5. A three-variable model of deterministic chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Györgyi, László; Field, Richard J.

    1992-02-01

    CHAOS is exhibited by a wide variety of systems governed by nonlinear dynamic laws1-3. Its most striking feature is an apparent randomness which seems to contradict its deterministic origin. The best-studied chaotic chemical system is the Belousov-Zhabotinsky (BZ) reaction4-6 in a continuous-flow stirred-tank reactor (CSTR). Here we present a simple mechanism for the BZ reaction which allows us to develop a description in terms of a set of differential equations containing only three variables, the minimum number required to generate chaos in a continuous (non-iterative) dynamical system2. In common with experiments, our model shows aperiodicity and transitions between periodicity and chaos near bifurcations between oscillatory and steady-state behaviour, which occur at both low and high CSTR flow rates. While remaining closely related to a real chaotic chemical system, our model is sufficiently simple to allow detailed mathematical analysis. It also reproduces many other features of the BZ reaction better than does the simple Oregonator7 (which cannot produce chaos).

  6. Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System

    NASA Astrophysics Data System (ADS)

    Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan

    2004-12-01

    Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.

  7. Randomness versus deterministic chaos: Effect on invasion percolation clusters

    NASA Astrophysics Data System (ADS)

    Peng, Chung-Kang; Prakash, Sona; Herrmann, Hans J.; Stanley, H. Eugene

    1990-10-01

    What is the difference between randomness and chaos \\? Although one can define randomness and one can define chaos, one cannot easily assess the difference in a practical situation. Here we compare the results of these two antipodal approaches on a specific example. Specifically, we study how well the logistic map in its chaotic regime can be used as quasirandom number generator by calculating pertinent properties of a well-known random process: invasion percolation. Only if λ>λ*1 (the first reverse bifurcation point) is a smooth extrapolation in system size possible, and percolation exponents are retrieved. If λ≠1, a sequential filling of the lattice with the random numbers generates a measurable anisotropy in the growth sequence of the clusters, due to short-range correlations.

  8. A Unit on Deterministic Chaos for Student Teachers

    ERIC Educational Resources Information Center

    Stavrou, D.; Assimopoulos, S.; Skordoulis, C.

    2013-01-01

    A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…

  9. The deterministic chaos and random noise in turbulent jet

    SciTech Connect

    Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  10. The geodynamo as a low-dimensional deterministic system at the edge of chaos

    NASA Astrophysics Data System (ADS)

    Ryan, D. A.; Sarson, G. R.

    2008-08-01

    We perform non-linear time series analysis tests on the SINT 2000 paleomagnetic record of the Earth's virtual axial dipole moment for the past 2 Ma, and find evidence of low-dimensional deterministic chaos. We reconstruct the phase space attractor using embedded time delay vectors, and compare the result with reconstructions from time series of a turbulent mean-field dynamo model, which exhibits a similar attractor structure. Considered alongside evidence of 1/f noise and lognormality in the paleomagnetic record, this suggests an important role for multiplicative noise, which may maintain the dynamo at the edge of chaos. In contrast to characterisations of geomagnetic reversals as stochastic processes, this work supports their interpretation as the outcome of a deterministic dynamical system.

  11. The Claude Bernard Lecture, 1989 - Deterministic chaos: The science and the fiction

    NASA Astrophysics Data System (ADS)

    Ruelle, D.

    1990-02-01

    A general review of the ideas of chaos is presented. Particular attention is given to the problem of finding out whether or not various time evolutions observed in nature correspond to low-dimensional deterministic dynamics. The 'dimensions' of the order 6 that are obtained are found to be very close to the upper bound 2log(10)N permitted by the Grassberger-Procaccia algorithm (1983).

  12. From scale invariance to deterministic chaos in DNA sequences: towards a deterministic description of gene organization in the human genome

    NASA Astrophysics Data System (ADS)

    Nicolay, S.; Brodie of Brodie, E. B.; Touchon, M.; d'Aubenton-Carafa, Y.; Thermes, C.; Arneodo, A.

    2004-10-01

    We use the continuous wavelet transform to perform a space-scale analysis of the AT and GC skews (strand asymmetries) in human genomic sequences, which have been shown to correlate with gene transcription. This study reveals the existence of a characteristic scale ℓ c≃25±10 kb that separates a monofractal long-range correlated noisy regime at small scales (ℓ<ℓ c) from relaxational oscillatory behavior at large-scale (ℓ>ℓ c). We show that these large scale nonlinear oscillations enlighten an organization of the human genome into adjacent domains ( ≈400 kb) with preferential gene orientation. When using classical techniques from dynamical systems theory, we demonstrate that these relaxational oscillations display all the characteristic properties of the chaotic strange attractor behavior observed nearby homoclinic orbits of Shil'nikov type. We discuss the possibility that replication and gene regulation processes are governed by a low-dimensional dynamical system that displays deterministic chaos.

  13. Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems.

    PubMed

    Boyd, Alexander B; Crutchfield, James P

    2016-05-13

    We introduce a deterministic chaotic system-the Szilard map-that encapsulates the measurement, control, and erasure protocol by which Maxwellian demons extract work from a heat reservoir. Implementing the demon's control function in a dynamical embodiment, our construction symmetrizes the demon and the thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and those due to erasure. The map's degree of chaos-captured by the Kolmogorov-Sinai entropy-is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems. PMID:27232011

  14. Deterministic chaos in the Belousov-Zhabotinsky reaction: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei; Györgyi, László; Peltier, William R.

    1993-10-01

    An account of the experimental discovery of complex dynamical behavior in the continuous-flow, stirred tank reactor (CSTR) Belousov-Zhabotinsky (BZ) reaction, as well as numerical simulations based on the BZ chemistry are given. The most recent four- and three-variable models that are deduced from the well-accepted, updated chemical mechanism of the BZ reaction and which exhibit robust chaotic states are summarized. Chaos has been observed in experiments and simulations embedded in the regions of complexities at both low and high flow rates. The deterministic nature of the observed aperiodicities at low flow rates is unequivocally established. However, controversy still remains in the interpretation of certain aperiodicities observed at high flow rates.

  15. Biosemiotics--a paradigm of biology. Biological signalling on the verge of deterministic chaos.

    PubMed

    Eder, J; Rembold, H

    1992-02-01

    Biosemiotics is presented as an interdisciplinary approach to the diversity and irregularity of living systems. Emphasizing the interconnectedness by a multitude of signals as a hallmark of life, it goes beyond the scope of a new discipline. As an overarching concept and a new perspective it should be able to integrate a vast array of biological phenomena which till now appear unrelated or incompatible. The basic tenet is that biology, on all levels from molecular biology to ecosystems, can be viewed and investigated as communication, and that life processes can be defined as sign-mediated interaction. Biology thus is, in itself and in all its aspects, natural semiotics with a pronounced proximity to deterministic chaos. Pervading all of biology, the signal is a viable key and a practically feasible access to the understanding of life.

  16. Is the applicability of fractal statistics to sedimentary structures the result of scale-invariant stochastic processes or deterministic chaos

    SciTech Connect

    Turcotte, D.L. )

    1991-03-01

    Fractal statistics are the only statistics that are scale invariant. Examples in tectonics include distributions of faults, displacements on faults, distributions and permeabilities of fractures, and distributions of folds. Many aspects of sedimentology are also fractal including distributions of sedimentary sequences, variations in permeability, and shapes of boundaries. Since the underlying processes are likely to be scale invariant, it is reasonable to conclude that the number-size statistics of oil fields will be fractal. Log-normal statistics are often applied; they are not scale invariant. Two explanations for fractal statistics can be given. They may be the result of scale-invariant stochastic processes. Random walk (Brownian noise) is one example. Topography generally resembles Brownian noise, a power-law spectrum with fractal dimension D = 1.5. Alternatively fractal statistics can be the result of deterministic chaos. Turbulent flows are examples of deterministic chaos, the governing equations are deterministic but the resulting flows are statistical. Tectonic displacements can be shown to be the result of deterministic chaos; it is likely that erosion is another example.

  17. Deterministic chaos in a simulated sequence of slip events on a single isolated asperity

    NASA Astrophysics Data System (ADS)

    Kato, Naoyuki

    2014-08-01

    Numerical simulation of repeated occurrences of slip events on a fault patch (asperity) is used to interpret the mechanism of irregular sequences of slip events. The fault is uniformly shear loaded at a constant rate, and the frictional stress acting on the fault is assumed to obey a rate- and state-dependent friction (RSF) law. A circular patch with velocity-weakening frictional property is embedded in the fault, which apart from this has velocity-strengthening frictional property. The numerical simulations are conducted using various characteristic slip distances L of the RSF law. For small values of L seismic slip events (earthquakes) repeatedly occur at regular intervals. With increasing L, the recurrence of slip events becomes more complex. A period doubled slip pattern, where seismic and aseismic slip events alternately occur, multiperiodic patterns and aperiodic patterns occur. At the same time, slip tends to become aseismic with increasing L. The distributions of shear stress on the fault just before slip events are variable because of variation in the residual stress of the preceding slip event and the shear stress generated by aseismic sliding during interseismic periods. These variations in shear stress cause the complex sequence of slip events seen here. An iteration map of the recurrence intervals of slip events for an aperiodic sequence of slip events is expressed by a simple curve, indicating that the timing of an event is predictable from the previous time interval, and the sequence of slip events exhibits deterministic chaos. To help interpret these results for a sequence of slip events on a velocity-weakening patch embedded in a velocity-strengthening region, a numerical simulation is conducted of slip on a velocity-weakening patch enclosed by a permanently locked region. In this case, no complex recurrence of slip events is observed. When L is less than a critical value, seismic slip events repeatedly occur at a constant interval. Stable sliding

  18. Neural nets with terminal chaos for simulation of non-deterministic patterns

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1993-01-01

    Models for simulating some aspects of neural intelligence are presented and discussed. Special attention is given to terminal neurodynamics as a particular architecture of terminal dynamics suitable for modeling information flows. Applications of terminal chaos to information fusion as well as to planning and modeling coordination among neurons in biological systems are disussed.

  19. Deterministic Chaos: Proposal of an Informal Educational Activity Aimed at High School Students

    ERIC Educational Resources Information Center

    Greco, Valeria; Spagnolo, Salvatore

    2016-01-01

    Chaos theory is not present in the Italian school curricula and textbooks in spite of being present in many topics of classical physics and in everyday life. Chaotic dynamics, in fact, are involved in phenomena easily accessible to everyone or in events experienced by most people in their lives (the dripping of a faucet which keeps people awoken…

  20. Sensitivity analysis in a Lassa fever deterministic mathematical model

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman

    2015-05-01

    Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.

  1. Deterministic temporal chaos from a mid-infrared external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Grillot, Frédéric; Jumpertz, Louise; Schires, Kevin; Carras, Mathieu; Sciamanna, Marc

    2016-02-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers offering access to wavelengths from the mid-infrared (IR) to the terahertz domain and promising impact on various applications such as free-space communications, high-resolution spectroscopy, LIDAR remote sensing or optical countermeasures. Unlike bipolar semiconductor lasers, stimulated emission in QCLs is obtained via electronic transitions between discrete energy states inside the conduction band. Recent technological progress has led to QCLs operating in pulsed or continuous wave mode, at room temperature in single- or multi-mode operation, with high powers up to a few watts for mid-IR devices. This spectacular development raises multiple interrogations on the stability of QCLs as little is known on their dynamical properties. Very recently, experiments based on optical spectrum measurements have unveiled the existence of five distinct feedback regimes without, however, identifying the complex dynamics dwelling within the QCL. In this article we provide the first experimental evidence of a route to chaos in a QCL emitting at mid-IR wavelength. When applying optical feedback with an increasing strength, the QCL dynamics bifurcate to periodic dynamics at the external cavity frequency and later to chaos without an undamping of relaxation oscillations, hence contrasting with the well-known scenarios occurring in interband laser diodes.

  2. Area-Preserving Mappings and Deterministic Chaos for Nearly Parabolic Motions

    NASA Astrophysics Data System (ADS)

    Petrosky, T. Y.; Broucke, R.

    1987-03-01

    The present work investigates a mechanism of capturing processes in the restricted three-body problem. The work has been done in a set of variables which is close to Delaunay's elements but which allows for the transition from elliptic to hyperbolic orbits. The small denominator difficulty in the perturbation theory is overcome by embedding the small denominator in an analytic function through a suitable analytic continuation. The results indicate that motions in nearly parabolic orbits can become chaotic even though the model is deterministic. The theoretical results are compared with numerical results, showing an agreement of about one percent. Some possible applications to cometary orbits are also given.

  3. Area-preserving mappings and deterministic chaos for nearly parabolic motions

    NASA Astrophysics Data System (ADS)

    Petrosky, T. Y.; Broucke, R.

    The present work investigates a mechanism of capturing processes in the restricted three-body problem. The work has been done in a set of variables which is close to Delaunay's elements, but which allows for the transition from elliptic to hyperbolic orbits. The results indicate that motions in nearly parabolic orbits can become chaotic even though the model is deterministic. The theoretical results are compared with numerical results, showing an agreement of about 1 percent. Some possible applications to cometary orbits are also given.

  4. Deterministic convergence of chaos injection-based gradient method for training feedforward neural networks.

    PubMed

    Zhang, Huisheng; Zhang, Ying; Xu, Dongpo; Liu, Xiaodong

    2015-06-01

    It has been shown that, by adding a chaotic sequence to the weight update during the training of neural networks, the chaos injection-based gradient method (CIBGM) is superior to the standard backpropagation algorithm. This paper presents the theoretical convergence analysis of CIBGM for training feedforward neural networks. We consider both the case of batch learning as well as the case of online learning. Under mild conditions, we prove the weak convergence, i.e., the training error tends to a constant and the gradient of the error function tends to zero. Moreover, the strong convergence of CIBGM is also obtained with the help of an extra condition. The theoretical results are substantiated by a simulation example.

  5. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  6. "Chaos."

    ERIC Educational Resources Information Center

    Samson, Ilan

    1997-01-01

    Discusses what is meant by a process being described as chaotic and how such situations come about. Argues that clarifying this concept is particularly important because understanding chaos helps cure far more fundamental common misconceptions. (ASK)

  7. Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Crutchfield, James P.

    2016-05-01

    We introduce a deterministic chaotic system—the Szilard map—that encapsulates the measurement, control, and erasure protocol by which Maxwellian demons extract work from a heat reservoir. Implementing the demon's control function in a dynamical embodiment, our construction symmetrizes the demon and the thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and those due to erasure. The map's degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems.

  8. Decoherence, determinism and chaos revisited

    SciTech Connect

    Noyes, H.P.

    1994-11-15

    We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes` contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools.

  9. Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report

    SciTech Connect

    Clapp, N.E.; Hively, L.M.; Stickney, R.E.

    1999-03-01

    It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

  10. Noisy Chaos

    NASA Astrophysics Data System (ADS)

    Crutchfield, James Patrick, Jr.

    Deterministic dynamics often leads to complex, unpredictable behavior. This randomness or chaos produces information and limits one's ability to predict future events. There are two components to this imposed ignorance. The first arises in a mathematical context from highly convoluted orbit structures in state space. These allow a system to rapidly visit many regions of state space. In a physical context, the second comes from the coupling of the system -under-study to other systems that provide information to it. Extrinsic information sources preclude the exact determination of the system's state. By the mechanism of their complex orbits, chaotic systems amplify this uncertainty into unpredictable macroscopic behavior. The physical study of chaotic dynamical systems is incomplete without an appreciation of how external fluctuations affect their predictability. Using information theory we describe how to measure the unpredictability of (i) deterministic chaotic systems (without extrinsic noise), and (ii) nondeterministic chaotic systems (coupled to extrinsic noise). Scaling concepts are invaluable tools in this. Scaling reveals that extrinsic noise acts as a disordering field for chaos. Furthermore, even for systems with extrinsic noise, scaling captures fundamental features of chaotic behavior. It provides a unified framework for the topological, metric, and Renyi dimensions and entropies. The physical relevance of these concepts lies in their ability to analyze noisy chaotic signals. The information theoretic approach to temporally complex behavior is applied to chaotic signals from two hydrodynamic experiments. In addition, the dynamic aspects of pattern evolution and the possible breakdown of (naive) dynamical systems theory is discussed for experiments with an image processing system. The first appendix contains descriptions of algorithms for dynamical systems studies. The second discusses a movie on the geometric structure of chaotic driven oscillators using

  11. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  12. Operation Everest II: an indication of deterministic chaos in human heart rate variability at simulated extreme altitude.

    PubMed

    Yamamoto, Y; Hughson, R L; Sutton, J R; Houston, C S; Cymerman, A; Fallen, E L; Kamath, M V

    1993-01-01

    It has been shown that fluctuation of human heartbeat intervals (heart rate variability, HRV) reflects variations in autonomic nervous system activity. We studied HRV at simulated altitudes of over 6000 m from Holter electrocardiograms recorded during the Operation Everest II study (Houston et al. 1987). Stationary, approximately 30-min segments of HRV data from six subjects at sea level and over 6000 m were supplied to (1) spectral analysis to evaluate sympathetic and parasympathetic nervous system (SNS, PNS) activity, (2) the analysis of Poincaré section of the phase space trajectory reconstructed on a delayed coordinate system to evaluate whether there was fluctuation with deterministic dynamics, (3) the estimation of the correlation dimension to evaluate a static property of putative attractors, and (4) the analysis of nonlinear predictability of HRV time series which could reflect a dynamic property of the attractor. Unlike HRV at sea level, the recordings at over 6000 m showed a strong periodicity (period of about 20 s) with small cycle-to-cycle perturbation. When this perturbation was expressed on a Poincaré section, it seemed to be likely that the perturbation itself obeyed a deterministic law. The correlation dimensions of these recordings showed low dimensional values (3.5 +/- 0.4, mean +/- SD), whereas those of the isospectral surrogates showed significantly (P < 0.05) higher values (5.3 +/- 0.5) with embedding dimensions of 5.6 +/- 0.9.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    2015-12-01

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle.

  14. Chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Field, Richard J.

    The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle...

  15. A history of chaos theory.

    PubMed

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  16. A history of chaos theory

    PubMed Central

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  17. The Case for Chaos.

    ERIC Educational Resources Information Center

    Bedford, Crayton W.

    1998-01-01

    Outlines a course on fractal geometry and chaos theory. Discusses how chaos theory and fractal geometry have begun to appear as separate units in the mathematics curriculum and offers an eight unit course by pulling together units related to chaos theory and fractal geometry. Contains 25 references. (ASK)

  18. Teaching Deterministic Chaos through Music.

    ERIC Educational Resources Information Center

    Chacon, R.; And Others

    1992-01-01

    Presents music education as a setting for teaching nonlinear dynamics and chaotic behavior connected with fixed-point and limit-cycle attractors. The aim is not music composition but a first approach to an interdisciplinary tool suitable for a single-session class, at either the secondary or undergraduate level, for the introduction of these…

  19. Chaos, Topology, and Social Organization.

    ERIC Educational Resources Information Center

    Marion, Russ

    1992-01-01

    Applies chaos theory to complex social organization, beginning with a mathematical definition of chaos. Shows how a nonlinear equation might be used to describe organization. The conclusion section identifies three approaches to analyzing chaos in social organization: metaphorical analysis, mathematical modeling, and data collection. (36…

  20. Introduction to the focus issue: Fifty years of chaos: Applied and theoretical

    NASA Astrophysics Data System (ADS)

    Hikihara, Takashi; Holmes, Philip; Kambe, Tsutomu; Rega, Giuseppe

    2012-12-01

    The discovery of deterministic chaos in the late nineteenth century, its subsequent study, and the development of mathematical and computational methods for its analysis have substantially influenced the sciences. Chaos is, however, only one phenomenon in the larger area of dynamical systems theory. This Focus Issue collects 13 papers, from authors and research groups representing the mathematical, physical, and biological sciences, that were presented at a symposium held at Kyoto University from November 28 to December 2, 2011. The symposium, sponsored by the International Union of Theoretical and Applied Mechanics, was called 50 Years of Chaos: Applied and Theoretical. Following some historical remarks to provide a background for the last 50 years, and for chaos, this Introduction surveys the papers and identifies some common themes that appear in them and in the theory of dynamical systems.

  1. Chaos and microbial systems

    SciTech Connect

    Kot, M.

    1990-07-01

    A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.

  2. A bound on chaos

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas

    2016-08-01

    We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2π k B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

  3. "Chaos" Theory: Implications for Educational Research.

    ERIC Educational Resources Information Center

    Lindsay, Jean S.

    "Chaos" theory is a revolutionary new paradigm developed by scientists to study the behavior of natural systems. "Chaos" refers to the tendency of dynamic non-linear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Major tenets of the theory are presented. The precedent for use of models developed in the natural…

  4. Integrability and Chaos: The Classical Uncertainty

    ERIC Educational Resources Information Center

    Masoliver, Jaume; Ros, Ana

    2011-01-01

    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now referred to as deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical…

  5. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    PubMed

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems. PMID:26428558

  6. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science

    NASA Astrophysics Data System (ADS)

    Ecke, Robert E.

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  7. The Chinese chaos game

    NASA Astrophysics Data System (ADS)

    Matsushita, Raul; Gleria, Iram; Figueiredo, Annibal; Da Silva, Sergio

    2007-05-01

    The yuan-dollar returns prior to the 2005 revaluation show a Sierpinski triangle in an iterated function system clumpiness test. Yet the fractal vanishes after the revaluation. The Sierpinski commonly emerges in the chaos game, where randomness coexists with deterministic rules (M.F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988; H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, New York, 1992). Here, it is explained by the yuan's pegs to the US dollar, which made more than half of the data points close to zero. Extra data from the Brazilian and Argentine experiences do confirm that the fractal emerges whenever exchange rate pegs are kept for too long.

  8. Between order and chaos

    NASA Astrophysics Data System (ADS)

    Crutchfield, James P.

    2012-01-01

    What is a pattern? How do we come to recognize patterns never seen before? Quantifying the notion of pattern and formalizing the process of pattern discovery go right to the heart of physical science. Over the past few decades physics' view of nature's lack of structure--its unpredictability--underwent a major renovation with the discovery of deterministic chaos, overthrowing two centuries of Laplace's strict determinism in classical physics. Behind the veil of apparent randomness, though, many processes are highly ordered, following simple rules. Tools adapted from the theories of information and computation have brought physical science to the brink of automatically discovering hidden patterns and quantifying their structural complexity.

  9. Advanced chaos forecasting

    NASA Astrophysics Data System (ADS)

    Doerner, R.; Hübinger, B.; Martienssen, W.

    1994-07-01

    The exponential separation of initially adjacent trajectories restricts the predictability of deterministic chaotic motions. The predictability depends on the initial state from where the trajectory starts that shall be forecasted. By calculating the predictability simultaneously with the forecast, we are able to reject forecasts with low reliability immediately, thereby decreasing drastically the average forecast error. We test this scheme experimentally on Chua's circuit [Komuro, Tokunaga, Matsumoto, Chua, and Hotta, Int. J. Bifurc. Chaos 1, 139 (1991)], basing all calculations only on a time series of a single scalar variable.

  10. Colored chaos

    SciTech Connect

    Mueller, B.

    1997-09-22

    The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.

  11. Black Chaos, White Trash: Order and Disorder at the Intersections of Mathematics and Culture. Occasional Paper No. 7

    ERIC Educational Resources Information Center

    Eglash, Ron

    2004-01-01

    Mathematical practices and knowledge are often in dispute for those race and class identities at the margins of social power. This talk will describe both the ways in which mathematics can be complicit with social domination, and the ways in which it can aid in resistance and reconfiguration. It will end with a presentation of Culturally…

  12. Chaos Theory: Implications for Nonlinear Dynamics in Counseling.

    ERIC Educational Resources Information Center

    Stickel, Sue A.

    The purpose of this paper is to explore the implications of chaos theory for counseling. The scientific notion of chaos refers to the tendency of dynamical, nonlinear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Therapists, especially those working from a brief approach, have noted the importance of the client's…

  13. The "Chaos" Pattern in Piaget's Theory of Cognitive Development.

    ERIC Educational Resources Information Center

    Lindsay, Jean S.

    Piaget's theory of the cognitive development of the child is related to the recently developed non-linear "chaos" model. The term "chaos" refers to the tendency of dynamical, non-linear systems toward irregular, sometimes unpredictable, deterministic behavior. Piaget identified this same pattern in his model of cognitive development in children.…

  14. Linear vs nonlinear and infinite vs finite: An interpretation of chaos

    SciTech Connect

    Protopopescu, V.

    1990-10-01

    An example of a linear infinite-dimensional system is presented that exhibits deterministic chaos and thus challenges the presumably unquestionable connection between chaos and nonlinearity. Via this example, the roles of, and relationships between, linearity, nonlinearity, infinity and finiteness in the occurrence of chaos are investigated. The analysis of these complementary but related aspects leads to: a new interpretation of chaos as the manifestation of incompressible and thus incompressible information and a conjecture about the nonexistence of operationally accessible linear systems.

  15. Ecological chaos in the wake of invasion.

    PubMed Central

    Sherratt, J A; Lewis, M A; Fowler, A C

    1995-01-01

    Irregularities in observed population densities have traditionally been attributed to discretization of the underlying dynamics. We propose an alternative explanation by demonstrating the evolution of spatiotemporal chaos in reaction-diffusion models for predator-prey interactions. The chaos is generated naturally in the wake of invasive waves of predators. We discuss in detail the mechanism by which the chaos is generated. By considering a mathematical caricature of the predator-prey models, we go on to explain the dynamical origin of the irregular behavior and to justify our assertion that the behavior we present is a genuine example of spatiotemporal chaos. Images Fig. 7 PMID:7708678

  16. The Deterministic Information Bottleneck

    NASA Astrophysics Data System (ADS)

    Strouse, D. J.; Schwab, David

    2015-03-01

    A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.

  17. Defining chaos

    SciTech Connect

    Hunt, Brian R.; Ott, Edward

    2015-09-15

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call “expansion entropy,” and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  18. Traffic chaotic dynamics modeling and analysis of deterministic network

    NASA Astrophysics Data System (ADS)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  19. Chaos in Environmental Education.

    ERIC Educational Resources Information Center

    Hardy, Joy

    1999-01-01

    Explores chaos theory, the evolutionary capacity of chaotic systems, and the philosophical implications of chaos theory in general and for education. Compares the relationships between curriculum vision based on chaos theory and critical education for the environment. (Author/CCM)

  20. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  1. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  2. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  3. Improvement and empirical research on chaos control by theory of "chaos + chaos = order".

    PubMed

    Fulai, Wang

    2012-12-01

    This paper focuses on advancing the understanding of Parrondian effects and their paradoxical behavior in nonlinear dynamical systems. Some examples are given to show that a dynamics combined by more than two discrete chaotic dynamics in deterministic manners can give rise to order when combined. The chaotic maps in our study are more general than those in the current literatures as far as "chaos + chaos = order" is concerned. Some problems left over in the current literatures are solved. It is proved both theoretically and numerically that, given any m chaotic dynamics generated by the one-dimensional real Mandelbrot maps, it is no possible to get a periodic system when all the m chaotic dynamics are alternated in random manner, but for any integer m(m ≥ 2) a dynamics combined in deterministic manner by m Mandelbrot chaotic dynamics can be found to give rise to a periodic dynamics of m periods. Numerical and mathematical analysis prove that the paradoxical phenomenon of "chaos + chaos = order" also exist in the dynamics generated by non-Mandelbrot maps. PMID:23278080

  4. Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos

    This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed.

    Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Detecting nonlinearity and chaos in epidemic data

    SciTech Connect

    Ellner, S.; Gallant, A.R.; Theiler, J. |

    1993-08-01

    Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.

  6. Deterministic Walks with Choice

    SciTech Connect

    Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.

    2014-01-10

    This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.

  7. Decoherence, determinism and chaos

    SciTech Connect

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is `deterministic`. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of `test-particle` is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as `particles` or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a `scale invariance bounded from below` by measurement accuracy, then Tanimura`s generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of `particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  8. Chaos and microbial systems

    SciTech Connect

    Kot, M.

    1991-01-01

    Much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forded double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation of inflowing substrate, suggested that simple microbial systems might provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. Progress in two areas of research, mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, (and also judge the usefulness of various new techniques of nonlinear dynamics to the study of populations) is reported.

  9. Chaos and language.

    PubMed

    Mitchener, W Garrett; Nowak, Martin A

    2004-04-01

    Human language is a complex communication system with unlimited expressibility. Children spontaneously develop a native language by exposure to linguistic data from their speech community. Over historical time, languages change dramatically and unpredictably by accumulation of small changes and by interaction with other languages. We have previously developed a mathematical model for the acquisition and evolution of language in heterogeneous populations of speakers. This model is based on game dynamical equations with learning. Here, we show that simple examples of such equations can display complex limit cycles and chaos. Hence, language dynamical equations mimic complicated and unpredictable changes of languages over time. In terms of evolutionary game theory, we note that imperfect learning can induce chaotic switching among strict Nash equilibria.

  10. Dynamic noise, chaos and parameter estimation in population biology.

    PubMed

    Stollenwerk, N; Aguiar, M; Ballesteros, S; Boto, J; Kooi, B; Mateus, L

    2012-04-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models such as multi-strain dynamics to describe the virus-host interaction in dengue fever, even the most recently developed parameter estimation techniques, such as maximum likelihood iterated filtering, reach their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and the deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.

  11. SLAC: A Tool for Addressing Chaos in the Ecology Classroom

    ERIC Educational Resources Information Center

    Hamilton, A. J.

    2005-01-01

    Until the early 1970s, ecologists generally assumed that erratic fluctuations observed in natural populations were a product of stochastic noise. It is now known that extremely complex dynamics can arise from basic deterministic processes. This field of study is generally called chaos theory. Here, a computer program, SLAC (Stability, Limits, And…

  12. From deterministic dynamics to probabilistic descriptions

    PubMed Central

    Misra, B.; Prigogine, I.; Courbage, M.

    1979-01-01

    The present work is devoted to the following question: What is the relationship between the deterministic laws of dynamics and probabilistic description of physical processes? It is generally accepted that probabilistic processes can arise from deterministic dynamics only through a process of “coarse graining” or “contraction of description” that inevitably involves a loss of information. In this work we present an alternative point of view toward the relationship between deterministic dynamics and probabilistic descriptions. Speaking in general terms, we demonstrate the possibility of obtaining (stochastic) Markov processes from deterministic dynamics simply through a “change of representation” that involves no loss of information provided the dynamical system under consideration has a suitably high degree of instability of motion. The fundamental implications of this finding for statistical mechanics and other areas of physics are discussed. From a mathematical point of view, the theory we present is a theory of invertible, positivity-preserving, and necessarily nonunitary similarity transformations that convert the unitary groups associated with deterministic dynamics to contraction semigroups associated with stochastic Markov processes. We explicitly construct such similarity transformations for the so-called Bernoulli systems. This construction illustrates also the construction of the so-called Lyapounov variables and the operator of “internal time,” which play an important role in our approach to the problem of irreversibility. The theory we present can also be viewed as a theory of entropy-increasing evolutions and their relationship to deterministic dynamics. PMID:16592691

  13. Chaos and Fractals.

    ERIC Educational Resources Information Center

    Barton, Ray

    1990-01-01

    Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)

  14. Embrace the Chaos

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    "Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with some degree…

  15. How to Generate Chaos at Home.

    ERIC Educational Resources Information Center

    Smith, Douglas

    1992-01-01

    Describes an electronic circuit that can function as a prototype for chaotic systems. Specific applied voltages produce chaotic signals that can be viewed with an oscilloscope or be made audible with a home stereo system. Provides directions for assembly with typical costs, mathematical basis of chaos theory, and experimental extensions. (JJK)

  16. Chaos Theory and Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Bui, James; Clarage, James

    2010-10-01

    Chaos theory, commonly known as the butterfly effect, states that a small change in a complex system may cause large changes in the system as time moves forward. This phenomenon was first discovered by Henri Poincare in the 1880's. The computer programs NAMD, VMD (Visual Molecular Dynamics) and Mathematica were used to calculate the movements and graphically analyze the trajectories of the protein ubiquitin. A small change was applied to a single atom's initial position in the x-coordinate to see how it would affect the future dynamics and trajectory of the protein. Our findings indicate an exponential divergence from the controlled trajectory with a Lyapunov exponent = 10.5 [1/ps]. In other words after less than a picosecond (trillionth of a second) the dynamics of a small biophysical system is no longer predictable, even though the underlying Newtonian physical laws are completely deterministic.

  17. Ergodic theory, randomness, and "chaos".

    PubMed

    Ornstein, D S

    1989-01-13

    Ergodic theory is the theory of the long-term statistical behavior of dynamical systems. The baker's transformation is an object of ergodic theory that provides a paradigm for the possibility of deterministic chaos. It can now be shown that this connection is more than an analogy and that at some level of abstraction a large number of systems governed by Newton's laws are the same as the baker's transformation. Going to this level of abstraction helps to organize the possible kinds of random behavior. The theory also gives new concrete results. For example, one can show that the same process could be produced by a mechanism governed by Newton's laws or by a mechanism governed by coin tossing. It also gives a statistical analog of structural stability.

  18. Uncertainty and inference in deterministic and noisy chaos

    NASA Astrophysics Data System (ADS)

    Strelioff, Christopher Charles

    We study dynamical systems which exhibit chaotic dynamics with a focus on sources of real and apparent randomness including sensitivity to perturbation, dynamical noise, measurement uncertainty and finite data samples for inference. This choice of topics is motivated by a desire to adapt established theoretical tools such as the Perron-Frobenius operator and symbolic dynamics to experimental data. First, we study prediction of chaotic time series when a perfect model is available but the initial condition is measured with uncertainty. A common approach for predicting future data given these circumstances is to apply the model despite the uncertainty. In systems with fold dynamics, we find prediction is improved over this strategy by recognizing this behavior. A systematic study of the logistic map demonstrates prediction can be extended three time steps using an approximation of the relevant Perron-Frobenius operator dynamics. Next, we show how to infer kth order Markov chains from finite data by applying Bayesian methods to both parameter estimation and model-order selection. In this pursuit, we connect inference to statistical mechanics through information-theoretic (type theory) techniques and establish a direct relationship between Bayesian evidence and the partition function. This allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Also, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes. Finally, we study a binary partition of time series data from the logistic map with additive noise, inferring optimal, effectively generating partitions and kth order Markov chain models. Here we adapt Bayesian inference, developed above, for applied symbolic dynamics. We show that reconciling Kolmogorov's maximum-entropy partition with the methods of Bayesian model selection requires the use of two separate optimizations. First, instrument design produces a maximum-entropy symbolic representation of time series data. Second, Bayesian model comparison with a uniform prior selects a minimum-entropy model of the symbolic data. This works takes small steps towards the goal stated in the first paragraph. In the concluding chapter we discuss future directions for the development and application of these ideas.

  19. Deterministic representation of chaos with application to turbulence

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1987-01-01

    Chaotic motions of nonlinear dynamical systems are decomposed into mean components and fluctuations. The approach is based upon the concept that the fluctuations driven by the instability of the original (unperturbed) motion grow until a new stable state is approached. The Reynolds-type equations written for continuous as well as for finite-degrees-of-freedom dynamical systems are closed by using this stabilization principle. The theory is applied to conservative systems, to strange attractors and to turbulent motions.

  20. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  1. CHAOS AND STOCHASTICITY IN DETERMINISTICALLY GENERATED MULTIFRACTAL MEASURES. (R824780)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Decrease of cardiac chaos in congestive heart failure

    NASA Astrophysics Data System (ADS)

    Poon, Chi-Sang; Merrill, Christopher K.

    1997-10-01

    The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

  3. Chaos and microbial systems. Progress report, July 1989--July 1990

    SciTech Connect

    Kot, M.

    1990-07-01

    A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.

  4. The Six Fundamental Characteristics of Chaos and Their Clinical Relevance to Psychiatry: a New Hypothesis for the Origin of Psychosis

    NASA Astrophysics Data System (ADS)

    Schmid, Gary Bruno

    Underlying idea: A new hypothesis about how the mental state of psychosis may arise in the brain as a "linear" information processing pathology is briefly introduced. This hypothesis is proposed in the context of a complementary approach to psychiatry founded in the logical paradigm of chaos theory. To best understand the relation between chaos theory and psychiatry, the semantic structure of chaos theory is analyzed with the help of six general, and six specific, fundamental characteristics which can be directly inferred from empirical observations on chaotic systems. This enables a mathematically and physically stringent perspective on psychological phenomena which until now could only be grasped intuitively: Chaotic systems are in a general sense dynamic, intrinsically coherent, deterministic, recursive, reactive and structured: in a specific sense, self-organizing, unpredictable, nonreproducible, triadic, unstable and self-similar. To a great extent, certain concepts of chaos theory can be associated with corresponding concepts in psychiatry, psychology and psychotherapy, thus enabling an understanding of the human psyche in general as a (fractal) chaotic system and an explanation of certain mental developments, such as the course of schizophrenia, the course of psychosis and psychotherapy as chaotic processes. General overview: A short comparison and contrast of classical and chaotic physical theory leads to four postulates and one hypothesis motivating a new, dynamic, nonlinear approach to classical, causal psychiatry: Process-Oriented PSYchiatry or "POPSY", for short. Four aspects of the relationship between chaos theory and POPSY are discussed: (1) The first of these, namely, Identification of Chaos / Picture of Illness involves a definition of Chaos / Psychosis and a discussion of the 6 logical characteristics of each. This leads to the concept of dynamical disease (definition

  5. Deterministic uncertainty analysis

    SciTech Connect

    Worley, B.A.

    1987-01-01

    Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig.

  6. Classical chaos in nonseparable wave propagation problems

    NASA Astrophysics Data System (ADS)

    Palmer, David R.; Brown, Michael G.; Tappert, Frederick D.; Bezdek, Hugo F.

    1988-06-01

    Numerical calculations show that acoustic ray paths in a weakly range-dependent deterministic ocean model exhibit chaotic behavior, that is, have an exponentially sensitive dependence on initial conditions. Since the ray equations define a nonautonomous Hamiltonian system with one degree of freedom, these results may be understood in terms of recent advances in classical chaos. The Hamiltonian structure of ray equations in general suggests that chaotic ray trajectories will be present in all types of linear wave motion in geophysics when variables do not separate, as in laterally inhomogeneous media.

  7. Unpredictable points and chaos

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2016-11-01

    It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated in sets of motions. This is the first time in the literature that description of chaos is initiated from a single motion. The theoretical results are exemplified by means of the symbolic dynamics.

  8. Experimental Evidence of Chaos from Memristors

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Fortuna, Luigi; Frasca, Mattia; Gale, Ella

    Until now, most memristor-based chaotic circuits proposed in the literature are based on mathematical models which assume ideal characteristics such as piecewise-linear or cubic nonlinearities. The idea, illustrated here and originating from the experimental approach for device characterization, is to realize a chaotic system exploiting the nonlinearity of only one memristor with a very simple experimental set-up using feedback. In this way, a simple circuit is obtained and chaos is experimentally observed and is confirmed by the calculation of the largest Lyapunov exponent. Numerical results using the Strukov model support the existence of robust chaos in our circuit. To our knowledge, this is the first experimental demonstration of chaos in a real memristor circuit and suggests that memristors are well placed for hardware encryption.

  9. Exploring dynamical systems and chaos using the logistic map model of population change

    NASA Astrophysics Data System (ADS)

    Groff, Jeffrey R.

    2013-10-01

    The logistic map difference equation is encountered in the theoretical ecology literature as a mathematical model of population change for organisms with non-overlapping generations and density-dependent dynamics influenced solely by intraspecific interactions. This article presents the logistic map as a simple model suitable for introducing students to the properties of dynamical systems including periodic orbits, bifurcations, and deterministic chaos. After a brief historical and mathematical introduction to models of population change and the logistic map, the article summarizes the logistic map activities I teach in my introductory physics laboratories for non-physics majors. The logistic map laboratory introduces the many bioscience students in my courses to a foundational model in population ecology that has inspired ecologists to recognize the importance of nonlinear dynamics in real populations. Although I use this activity in courses for non-majors, the logistic map model of population change could also be taught to physics majors to introduce properties of dynamical systems while demonstrating an application of mathematical modeling outside of traditional physics.

  10. Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics

    SciTech Connect

    Hou, Thomas Y. . E-mail: hou@ama.caltech.edu; Luo Wuan; Rozovskii, Boris; Zhou Haomin

    2006-08-10

    In this paper, we propose a numerical method based on Wiener Chaos expansion and apply it to solve the stochastic Burgers and Navier-Stokes equations driven by Brownian motion. The main advantage of the Wiener Chaos approach is that it allows for the separation of random and deterministic effects in a rigorous and effective manner. The separation principle effectively reduces a stochastic equation to its associated propagator, a system of deterministic equations for the coefficients of the Wiener Chaos expansion. Simple formulas for statistical moments of the stochastic solution are presented. These formulas only involve the solutions of the propagator. We demonstrate that for short time solutions the numerical methods based on the Wiener Chaos expansion are more efficient and accurate than those based on the Monte Carlo simulations.

  11. Linear Deterministic Accumulator Models of Simple Choice

    PubMed Central

    Heathcote, Andrew; Love, Jonathon

    2012-01-01

    We examine theories of simple choice as a race among evidence accumulation processes. We focus on the class of deterministic race models, which assume that the effects of fluctuations in the parameters of the accumulation processes between-choice trials (between-choice noise) dominate the effects of fluctuations occurring while making a choice (within-choice noise) in behavioral data (i.e., response times and choices). The latter deterministic approximation, when combined with the assumption that accumulation is linear, leads to a class of models that can be readily applied to simple-choice behavior because they are computationally tractable. We develop a new and mathematically simple exemplar within the class of linear deterministic models, the Lognormal race (LNR). We then examine how the LNR, and another widely applied linear deterministic model, Brown and Heathcote’s (2008) LBA, account for a range of benchmark simple-choice effects in lexical-decision task data reported by Wagenmakers et al. (2008). Our results indicate that the LNR provides an accurate description of this data. Although the LBA model provides a slightly better account, both models support similar psychological conclusions. PMID:22936920

  12. Deterministic hierarchical networks

    NASA Astrophysics Data System (ADS)

    Barrière, L.; Comellas, F.; Dalfó, C.; Fiol, M. A.

    2016-06-01

    It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the modeled systems. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems.

  13. Statistical properties of deterministic Bernoulli flows

    SciTech Connect

    Radunskaya, A.E.

    1992-12-31

    This thesis presents several new theorems about the stability and the statistical properties of deterministic chaotic flows. Many concrete systems known to exhibit deterministic chaos have so far been shown to be of a class known as Bernoulli Flows. This class of flows is characterized by the Finitely Determined property, which can be checked in specific cases. The first theorem says that these flows can be modeled arbitrarily well for all time by continuous-time finite state Markov processes. In other words it is theoretically possible to model the flow arbitrarily well by a computer equipped with a roulette wheel. There follows a stability result, which says that one can distort the measurements made on the processes without affecting the approximation. These results are than applied to the problem of distinguishing deterministic chaos from stochastic processes in the analysis of time series. The second part of the thesis deals with a specific set of examples. Although it has been possible to analyze specific systems to determine whether they lie in the class of Bernoulli systems, the standard techniques rely on the construction of expanding and contracting fibers in the phase space of the system. These fibers are then used to coordinatize the phase space and to prove the existence of a hyperbolic structure. Unfortunately such methods may fail in the general case, where smoothness conditions and a small singular set cannot be assumed. For example, suppose the standard billiard flow on a square table with a perfectly round obstacle, which is known to be Bernoulli, is replaced by a similar flow on a table with a bumpy fractal-like obstacle: a model perhaps closer to nature. It is shown that these fibers no longer exist and hence cannot be used in the standard manner to prove Bernoulliness or ergodicity. But, one can use the fact that the class of Bernoulli flows is closed in the d-bar metric to show that this billard flow with a bumpy obstacle is in fact Bernoulli.

  14. Teaching as Chaos

    ERIC Educational Resources Information Center

    Moseley, Bryan; Dustin, Daniel

    2008-01-01

    In this article, the authors advance a metaphor born of chaos theory that views the college classroom as a complex dynamical system. The authors reason further that "teaching as chaos" provides a more accurate representation of the teaching-learning process than the existing linear scientific metaphors on which traditional learning assessments are…

  15. "Chaos Rules" Revisited

    ERIC Educational Resources Information Center

    Murphy, David

    2011-01-01

    About 20 years ago, while lost in the midst of his PhD research, the author mused over proposed titles for his thesis. He was pretty pleased with himself when he came up with "Chaos Rules" (the implied double meaning was deliberate), or more completely, "Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education." He…

  16. Understanding chaos via nuclei

    SciTech Connect

    Cejnar, Pavel; Stránský, Pavel

    2014-01-08

    We use two models of nuclear collective dynamics-the geometric collective model and the interacting boson model-to illustrate principles of classical and quantum chaos. We propose these models as a suitable testing ground for further elaborations of the general theory of chaos in both classical and quantum domains.

  17. Chaos and Compassion.

    ERIC Educational Resources Information Center

    Gelatt, H. B.

    1995-01-01

    Before chaos theory, Western society had no "scientific" tools to deal with disorder and unpredictability because science relied on factual evidence. With chaos theory, knowing and believing are now seen as interconnected and both are considered authentic. Counseling should reflect this authenticity with compassion, not control. (LKS)

  18. Chaos in Josephson circuits

    SciTech Connect

    Kautz, R.

    1983-05-01

    Chaotic behavior in Josephson circuits is reviewed using the rf-driven junction as an example. Topics include the effect of chaos on the I-V characteristic, the period doubling route to chaos, and power spectra for the chaotic state. Liapunov exponents and the fractal geometry of strange attractors are also discussed.

  19. Intermittency and transient chaos from simple frequency-dependent selection.

    PubMed

    Gavrilets, S; Hastings, A

    1995-08-22

    Frequency-dependent selection is an important determinant of the evolution of gametophytic self-incompatibility systems in plants, aposematic (warning) and cryptic coloration, systems of mimicry, competitive interactions among members of a population, mating preferences, predator-prey and host-parasite interactions, aggression and other behavioural traits. Past theoretical studies of frequency-dependent selection have shown it to be a plausible mechanism for the maintenance of genetic variability in natural populations. Here, through an analysis of a simple deterministic model for frequency-dependent selection, we demonstrate that complex dynamic behaviour is possible under a broad range of parameter values. In particular we show that the model exhibits not only cycles and chaos but also, for a more restricted set of parameters, transient chaos and intermittency: alterations between an apparently deterministic behaviour and apparently chaotic fluctuations. This behaviour, which has not been stressed within the population genetics literature, provides an explanation for erratic dynamics of gene frequencies.

  20. Is there chaos in the brain? II. Experimental evidence and related models.

    PubMed

    Korn, Henri; Faure, Philippe

    2003-09-01

    The search for chaotic patterns has occupied numerous investigators in neuroscience, as in many other fields of science. Their results and main conclusions are reviewed in the light of the most recent criteria that need to be satisfied since the first descriptions of the surrogate strategy. The methods used in each of these studies have almost invariably combined the analysis of experimental data with simulations using formal models, often based on modified Huxley and Hodgkin equations and/or of the Hindmarsh and Rose models of bursting neurons. Due to technical limitations, the results of these simulations have prevailed over experimental ones in studies on the nonlinear properties of large cortical networks and higher brain functions. Yet, and although a convincing proof of chaos (as defined mathematically) has only been obtained at the level of axons, of single and coupled cells, convergent results can be interpreted as compatible with the notion that signals in the brain are distributed according to chaotic patterns at all levels of its various forms of hierarchy. This chronological account of the main landmarks of nonlinear neurosciences follows an earlier publication [Faure, Korn, C. R. Acad. Sci. Paris, Ser. III 324 (2001) 773-793] that was focused on the basic concepts of nonlinear dynamics and methods of investigations which allow chaotic processes to be distinguished from stochastic ones and on the rationale for envisioning their control using external perturbations. Here we present the data and main arguments that support the existence of chaos at all levels from the simplest to the most complex forms of organization of the nervous system. We first provide a short mathematical description of the models of excitable cells and of the different modes of firing of bursting neurons (Section 1). The deterministic behavior reported in giant axons (principally squid), in pacemaker cells, in isolated or in paired neurons of Invertebrates acting as coupled

  1. Semi-deterministic reasoning

    SciTech Connect

    Chengjiang Mao

    1996-12-31

    In typical AI systems, we employ so-called non-deterministic reasoning (NDR), which resorts to some systematic search with backtracking in the search spaces defined by knowledge bases (KBs). An eminent property of NDR is that it facilitates programming, especially programming for those difficult AI problems such as natural language processing for which it is difficult to find algorithms to tell computers what to do at every step. However, poor efficiency of NDR is still an open problem. Our work aims at overcoming this efficiency problem.

  2. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2

  3. Competitive coexistence in stoichiometric chaos.

    PubMed

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.

  4. Competitive coexistence in stoichiometric chaos.

    PubMed

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point. PMID:17902990

  5. Competitive coexistence in stoichiometric chaos

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.

  6. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  7. Exploiting chaos for applications

    SciTech Connect

    Ditto, William L.; Sinha, Sudeshna

    2015-09-15

    We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.

  8. Effects of maturation and acidosis on the chaos-like complexity of the neural respiratory output in the isolated brainstem of the tadpole, Rana esculenta

    PubMed Central

    Samara, Ziyad; Fiamma, Marie-Noëlle; Bautin, Nathalie; Ranohavimparany, Anja; Le Coz, Patrick; Golmard, Jean-Louis; Darré, Pierre; Zelter, Marc; Poon, Chi-Sang; Similowski, Thomas

    2011-01-01

    Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals. PMID:21325645

  9. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series

    NASA Astrophysics Data System (ADS)

    Sugihara, George; May, Robert M.

    1990-04-01

    An approach is presented for making short-term predictions about the trajectories of chaotic dynamical systems. The method is applied to data on measles, chickenpox, and marine phytoplankton populations, to show how apparent noise associated with deterministic chaos can be distinguished from sampling error and other sources of externally induced environmental noise.

  10. Blue tongue - A modelling examination of fundamentals - Seasonality and chaos.

    PubMed

    Thornley, John H M; France, James

    2016-08-21

    A deterministic mathematical model is developed for the dynamics of bluetongue disease within a single farm. The purpose is to examine widely the possible behaviours which may occur. This is important because of the increasing impact of blue tongue due to global warming. The model incorporates a recently suggested modification of logistic growth for the vectors which can greatly affect early disease dynamics and employs a variable number of up to 10 sequential pools for incubating vectors and for incubating and infectious hosts. Ten sequential pools represent the possible loss of immunity of recovered hosts over a 3-year period. After formally describing the model, the impact of the two logistic growth scenarios considered is examined in Section 3.1. The scenarios are applied with parameters that give identical long-term consequences but the early dynamics can be greatly affected. In the two scenarios, the effect of varying the assumed constant birth rate (scenario 1) or constant mortality rates (scenario 2) is considered. If the recovered (and immune) hosts, are assumed to lose their immunity, then, given particular values of the host-vector coupling constants, the system can exhibit autonomous oscillations (Section 3.2). Seasonality is represented by air temperature, and it is assumed that air temperatures below a threshold can increase vector mortality (Section 3.3). Adding seasonal effects on mortality to the autonomous oscillations resulting from recovered and resistant hosts losing immunity can give rise to chaos (Section 3.4). This could help explain the unusual persistence and re-occurrence of the disease. Finally (Section 3.5), the roles of host birth and mortality rates in examined, particularly in relation to placental transmission of the virus to offspring. It is concluded that the latter does not make an appreciable contribution to disease dynamics. PMID:27155045

  11. Deterministic signal associated with a random field.

    PubMed

    Kim, Taewoo; Zhu, Ruoyu; Nguyen, Tan H; Zhou, Renjie; Edwards, Chris; Goddard, Lynford L; Popescu, Gabriel

    2013-09-01

    Stochastic fields do not generally possess a Fourier transform. This makes the second-order statistics calculation very difficult, as it requires solving a fourth-order stochastic wave equation. This problem was alleviated by Wolf who introduced the coherent mode decomposition and, as a result, space-frequency statistics propagation of wide-sense stationary fields. In this paper we show that if, in addition to wide-sense stationarity, the fields are also wide-sense statistically homogeneous, then monochromatic plane waves can be used as an eigenfunction basis for the cross spectral density. Furthermore, the eigenvalue associated with a plane wave, exp[i(k · r-ωt)], is given by the spatiotemporal power spectrum evaluated at the frequency (k, ω). We show that the second-order statistics of these fields is fully described by the spatiotemporal power spectrum, a real, positive function. Thus, the second-order statistics can be efficiently propagated in the wavevector-frequency representation using a new framework of deterministic signals associated with random fields. Analogous to the complex analytic signal representation of a field, the deterministic signal is a mathematical construct meant to simplify calculations. Specifically, the deterministic signal associated with a random field is defined such that it has the identical autocorrelation as the actual random field. Calculations for propagating spatial and temporal correlations are simplified greatly because one only needs to solve a deterministic wave equation of second order. We illustrate the power of the wavevector-frequency representation with calculations of spatial coherence in the far zone of an incoherent source, as well as coherence effects induced by biological tissues.

  12. Chaos in the Classroom: An Application of Chaos Theory.

    ERIC Educational Resources Information Center

    Trygestad, JoAnn

    A review of studies on chaos theory suggests that some elements of the theory (systems, fractals, initial effects, and bifurcations) may be applied to classroom learning. Chaos theory considers learning holistic, constructive, and dynamic. Some researchers suggest that applying chaos theory to the classroom enhances learning by reinforcing…

  13. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  14. Stochastic Representation of Chaos Using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.

  15. Ecosystem Simulations and Chaos on the Graphing Calculator

    ERIC Educational Resources Information Center

    Sinn, Robb

    2007-01-01

    An eighth grade algebra class used graphing calculators to simulate ecosystems. One simulation introduced mathematical chaos. The activities exposed the students to nonlinear patterns and modeling. The rate-of-change investigations related the ideas of intercept and slope to the changing equilibrium. The chaotic model intrigued them and was useful…

  16. Thinking about Chaos: Non-Quantitative Approaches to Teacher Education.

    ERIC Educational Resources Information Center

    Rockler, Michael J.

    1991-01-01

    Explains the chaos theory and its effect on education, relating it to quantum physics. The article suggests implications for education (predictions about student achievement are limited, the brain learns in nonlinear ways, and the knowledge base in teacher education needs modification to account for recent discoveries in science and mathematics).…

  17. Application of Chaos Theory to Psychological Models

    NASA Astrophysics Data System (ADS)

    Blackerby, Rae Fortunato

    This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in

  18. Organized Chaos at Europa?

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.

    2010-12-01

    Historically one of the most studied and yet least constrained of Europa’s terrains, chaos regions are likely indicators of a geologically active ice shell. Chaos terrain is generally characterized by broken ice “raft” relicts of the former surface embayed by a dark, hummocky matrix rich in non-ice material. Chaos features, though they bear resemblance to broken-up terrestrial sea-ice, are generally topographically higher than the surrounding plains. Interior to these features topographic variation can also be found. From a geophysical perspective, chaos terrain may offer the possibility to test models for Europa’s ice shell thickness, its rheological properties, and its dynamics, since they occur ubiquitously across the surface. The existence of chaos terrain has, in the past, been used to suggest that either the shell is thin, and thus large-scale melt-through events have taken place to create chaos, or that the shell is actively convecting, and thus that the chaos terrain is formed by diapirism associated with rising plumes. Partial melt and the movement of warm ice have also been suggested to contribute to the formation of chaos. While these formation models are strongly tied to an ice thickness assumption, it is agreed that the break-up of ice and the subsequent motion of the blocks is suggestive of a material that has been free to flow at some point; the nature of the “fluidization” has not been discovered. In terrestrial marine ice sheets, brine infiltration is known to occur in porous layers called firn that are formed by annual accretion of snow. At the seaward edge of the sheet, or through tidally-formed basal cracks, sea water can percolate inward through the porous layer and travel kilometers from the source. In the McMurdo Ice shelf, brine extends radially through the ice to 10’s of km from the source at the shelf edge. In the Larsen ice shelf, a brine-laden layer of ice exists that does not reach the seaward edge, arguing that

  19. Self-stabilizing Deterministic Gathering

    NASA Astrophysics Data System (ADS)

    Dieudonné, Yoann; Petit, Franck

    In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, oblivious, deaf, and dumb). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd.

  20. Chaos in hydrodynamic BL Herculis models

    NASA Astrophysics Data System (ADS)

    Smolec, R.; Moskalik, P.

    2014-06-01

    We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Particularly interesting are periodic windows which are intrinsic property of chaotic systems and are not necessarily caused by resonances between pulsation modes, as sometimes claimed in the literature.

  1. In Citing Chaos.

    ERIC Educational Resources Information Center

    Paul, Danette

    2000-01-01

    Examines the role of citations both as reward and as rhetoric. Examines the reward system by tracing over time the citation patterns of 13 research articles by two groups of scientists in chaos theory. Reveals that scientists consistently used five rhetorical practices. Describes these five practices. (SG)

  2. Inverse anticipating chaos synchronization.

    PubMed

    Shahverdiev, E M; Sivaprakasam, S; Shore, K A

    2002-07-01

    We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.

  3. Chaos Modeling: An Introduction and Research Application.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    1993-01-01

    Introduces the basic concepts of chaos theory and chaos modeling. Relates chaos theory to qualitative research and factor analysis. Describes some current research in education and psychology using chaos theory. Claims that the philosophical implications of chaos theory have been misapplied in practical terms. (KS)

  4. Preface to the Focus Issue: Chaos Detection Methods and Predictability

    SciTech Connect

    Gottwald, Georg A.; Skokos, Charalampos

    2014-06-01

    This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17–21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.

  5. Chaos in neurons and its application: Perspective of chaos engineering

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oku, Makito; Aihara, Kazuyuki

    2012-12-01

    We review our recent work on chaos in neurons and its application to neural networks from perspective of chaos engineering. Especially, we analyze a dataset of a squid giant axon by newly combining our previous work of identifying Devaney's chaos with surrogate data analysis, and show that an axon can behave chaotically. Based on this knowledge, we use a chaotic neuron model to investigate possible information processing in the brain.

  6. From deterministic cellular automata to coupled map lattices

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir

    2016-07-01

    A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit κ \\to 0 of a continuous parameter κ. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when κ is finite and nonvanishing. In the limit κ \\to ∞ all RDCAs are shown to exhibit a global homogeneous fixed-point that attracts all initial conditions. A new bifurcation is discovered for RDCAs and its location is exactly determined from the linear stability analysis of the global quiescent state. In this bifurcation, fuzziness gradually begins to intrude in a purely deterministic CA-like dynamics. The mathematical method presented allows to get insight in some highly nontrivial behavior found after the bifurcation.

  7. Chaos: Understanding and Controlling Laser Instability

    NASA Technical Reports Server (NTRS)

    Blass, William E.

    1997-01-01

    In order to characterize the behavior of tunable diode lasers (TDL), the first step in the project involved the redesign of the TDL system here at the University of Tennessee Molecular Systems Laboratory (UTMSL). Having made these changes it was next necessary to optimize the new optical system. This involved the fine adjustments to the optical components, particularly in the monochromator, to minimize the aberrations of coma and astigmatism and to assure that the energy from the beam is focused properly on the detector element. The next step involved the taking of preliminary data. We were then ready for the analysis of the preliminary data. This required the development of computer programs that use mathematical techniques to look for signatures of chaos. Commercial programs were also employed. We discovered some indication of high dimensional chaos, but were hampered by the low sample rate of 200 KSPS (kilosamples/sec) and even more by our sample size of 1024 (1K) data points. These limitations were expected and we added a high speed data acquisition board. We incorporated into the system a computer with a 40 MSPS (million samples/sec) data acquisition board. This board can also capture 64K of data points so that were then able to perform the more accurate tests for chaos. The results were dramatic and compelling, we had demonstrated that the lead salt diode laser had a chaotic frequency output. Having identified the chaotic character in our TDL data, we proceeded to stage two as outlined in our original proposal. This required the use of an Occasional Proportional Feedback (OPF) controller to facilitate the control and stabilization of the TDL system output. The controller was designed and fabricated at GSFC and debugged in our laboratories. After some trial and error efforts, we achieved chaos control of the frequency emissions of the laser. The two publications appended to this introduction detail the entire project and its results.

  8. A Structure behind Primitive Chaos

    NASA Astrophysics Data System (ADS)

    Ogasawara, Yoshihito

    2015-06-01

    Recently, a new concept, primitive chaos, has been proposed as a concept closely related to the fundamental problems of physics itself such as determinism, causality, free will, predictability, and irreversibility [J. Phys. Soc. Jpn. 79, 015002 (2010)]. This paper reveals a structure hidden behind the primitive chaos; under some conditions, a new primitive chaos is constructed from the original primitive chaos, this procedure can be repeated, and the hierarchical structure of the primitive chaos is obtained. This implies such a picture that new events and causality are constructed from the old ones, with the aid of the concept of a coarse graining. As an application of this structure, interesting facts are revealed for the essential condition of the primitive chaos and for chaotic behaviors.

  9. The joy of transient chaos

    SciTech Connect

    Tél, Tamás

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  10. The joy of transient chaos

    NASA Astrophysics Data System (ADS)

    Tél, Tamás

    2015-09-01

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  11. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  12. Deterministic multidimensional nonuniform gap sampling

    NASA Astrophysics Data System (ADS)

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  13. Gullies of Gorgonus Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 11 June 2002) The Science This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water. The Story This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars. The name also has great appeal, because the area contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the

  14. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  15. Controlling chaos faster

    SciTech Connect

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  16. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  17. Dynamical topology and statistical properties of spatiotemporal chaos.

    PubMed

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  18. Detection of "noisy" chaos in a time series

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.

    1997-01-01

    Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both the internal dynamics of the systems, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.

  19. Drift waves and chaos in a LAPTAG plasma physics experiment

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  20. Pioneering through chaos.

    PubMed

    Warshawsky, Nora E; Joseph, M Lindell; Fowler, Debra L; Edmonson, Cole; Nelson-Brantley, Heather V; Kowalski, Karren

    2015-03-01

    The 2014 International Nursing Administration Research Conference, "Pioneering Through Chaos: Leadership for a Changing World," was held at the Texas Woman's University in Dallas, Texas, in the fall of 2014. The program drew more than 100 attendees from 4 countries. The conference informed attendees from both academe and practice about the role of nursing administration in navigating the dynamic healthcare climate. This article will report on the insights from the conference presenters. PMID:25689497

  1. Arsinoes Chaos Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned rock outcrops, possibly sedimentary rocks, in the Arsinoes Chaos region east of the Valles Marineris trough system. These rocky materials were once below the martian surface. These features are located near 7.2oS, 27.9oW. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  2. Noise tolerant spatiotemporal chaos computing

    SciTech Connect

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.; Lindner, John F.; Sinha, Sudeshna

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  3. Relativistic chaos is coordinate invariant.

    PubMed

    Motter, Adilson E

    2003-12-01

    The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents. PMID:14683170

  4. Polynomiography and Chaos

    NASA Astrophysics Data System (ADS)

    Kalantari, Bahman

    Polynomiography is the algorithmic visualization of iterative systems for computing roots of a complex polynomial. It is well known that iterations of a rational function in the complex plane result in chaotic behavior near its Julia set. In one scheme of computing polynomiography for a given polynomial p(z), we select an individual member from the Basic Family, an infinite fundamental family of rational iteration functions that in particular include Newton's. Polynomiography is an excellent means for observing, understanding, and comparing chaotic behavior for variety of iterative systems. Other iterative schemes in polynomiography are possible and result in chaotic behavior of different kinds. In another scheme, the Basic Family is collectively applied to p(z) and the iterates for any seed in the Voronoi cell of a root converge to that root. Polynomiography reveals chaotic behavior of another kind near the boundary of the Voronoi diagram of the roots. We also describe a novel Newton-Ellipsoid iterative system with its own chaos and exhibit images demonstrating polynomiographies of chaotic behavior of different kinds. Finally, we consider chaos for the more general case of polynomiography of complex analytic functions. On the one hand polynomiography is a powerful medium capable of demonstrating chaos in different forms, it is educationally instructive to students and researchers, also it gives rise to numerous research problems. On the other hand, it is a medium resulting in images with enormous aesthetic appeal to general audiences.

  5. Chaos reduces species extinction by amplifying local population noise.

    PubMed

    Allen, J C; Schaffer, W M; Rosko, D

    1993-07-15

    In the mid-1970s, theoretical ecologists were responsible for stimulating interest in nonlinear dynamics and chaos. Ironically, the importance of chaos in ecology itself remains controversial. Proponents of ecological chaos point to its ubiquity in mathematical models and to various empirical findings. Sceptics maintain that the models are unrealistic and that the experimental evidence is equally consistent with stochastic models. More generally, it has been argued that interdemic selection and/or enhanced rates of species extinction will eliminate populations and species that evolve into chaotic regions of parameter space. Fundamental to this opinion is the belief that violent oscillations and low minimum population densities are inevitable correlates of the chaotic state. In fact, rarity is not a necessary consequence of complex dynamical behaviour. But even when chaos is associated with frequent rarity, its consequences to survival are necessarily deleterious only in the case of species composed of a single population. Of course, the majority of real world species (for example, most insects) consist of multiple populations weakly coupled by migration, and in this circumstance chaos can actually reduce the probability of extinction. Here we show that although low densities lead to more frequent extinction at the local level, the decorrelating effect of chaotic oscillations reduces the degree of synchrony among populations and thus the likelihood that all are simultaneously extinguished.

  6. Deterministic models for traffic jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai; Herrmann, Hans J.

    1993-10-01

    We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.

  7. Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures

    PubMed Central

    Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.

    2014-01-01

    Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295

  8. Counseling Chaos: Techniques for Practitioners

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim E. H.

    2006-01-01

    The chaos theory of careers draws together a number of themes in current theory and research. This article applies some of these themes to career counseling. The chaos theory of careers is outlined, and a conceptual framework for understanding assessment and counseling issues that focuses on convergent and emergent qualities is presented. Three…

  9. Chaos Theory and Post Modernism

    ERIC Educational Resources Information Center

    Snell, Joel

    2009-01-01

    Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…

  10. Chaos Criminology: A critical analysis

    NASA Astrophysics Data System (ADS)

    McCarthy, Adrienne L.

    There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.

  11. Deterministic and stochastic simulation and analysis of biochemical reaction networks the lactose operon example.

    PubMed

    Yildirim, Necmettin; Kazanci, Caner

    2011-01-01

    A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. PMID:21187231

  12. Quantum bouncer with chaos

    NASA Astrophysics Data System (ADS)

    Dembiński, S. T.; Makowski, A. J.; Pepłowski, P.

    1993-02-01

    We report for the first time quantum calculations for the so-called bouncer model, the classical analog of which is well known to manifest a chaotic behavior. Three versions of our model are fully tractable quantum mechanically and are potentially a rich source of data for establishing properties of a quantum system of which the classical mechanics can be chaotic. Among the results presented here, consequences of the varying bandwidth of infinite-dimensional transition matrices on the use of the correspondence between classical chaos and non-Poissonian quasienergy statistics are discussed.

  13. Landslide in Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.

  14. Firefly algorithm with chaos

    NASA Astrophysics Data System (ADS)

    Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.

    2013-01-01

    A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.

  15. Aram Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location.

    Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. Chaos Theory, Philosophically Old, Scientifically New.

    ERIC Educational Resources Information Center

    Butz, Michael R.

    1995-01-01

    Chaos theory has recently become a central area of scientific interest in psychology. This article explores the psychological meaning and deeper philosophical issues and cultural roots surrounding various views of chaos and provides a multicultural perspective of origins and development of the idea of chaos and its relationship to chaos theory.…

  17. Generalised polynomial chaos expansion approaches to approximate stochastic model predictive control†

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ki K.; Braatz, Richard D.

    2013-08-01

    This paper considers the model predictive control of dynamic systems subject to stochastic uncertainties due to parametric uncertainties and exogenous disturbance. The effects of uncertainties are quantified using generalised polynomial chaos expansions with an additive Gaussian random process as the exogenous disturbance. With Gaussian approximation of the resulting solution trajectory of a stochastic differential equation using generalised polynomial chaos expansion, convex finite-horizon model predictive control problems are solved that are amenable to online computation of a stochastically robust control policy over the time horizon. Using generalised polynomial chaos expansions combined with convex relaxation methods, the probabilistic constraints are replaced by convex deterministic constraints that approximate the probabilistic violations. This approach to chance-constrained model predictive control provides an explicit way to handle a stochastic system model in the presence of both model uncertainty and exogenous disturbances.

  18. Deterministic relativistic quantum bit commitment

    NASA Astrophysics Data System (ADS)

    Adlam, Emily; Kent, Adrian

    2015-06-01

    We describe new unconditionally secure bit commitment schemes whose security is based on Minkowski causality and the monogamy of quantum entanglement. We first describe an ideal scheme that is purely deterministic, in the sense that neither party needs to generate any secret randomness at any stage. We also describe a variant that allows the committer to proceed deterministically, requires only local randomness generation from the receiver, and allows the commitment to be verified in the neighborhood of the unveiling point. We show that these schemes still offer near-perfect security in the presence of losses and errors, which can be made perfect if the committer uses an extra single random secret bit. We discuss scenarios where these advantages are significant.

  19. Erotism and chaos.

    PubMed

    Giovacchini, P L

    1990-01-01

    There is a continuum from primitive, undifferentiated feelings that are simply the manifestations of homeostatic balance and imbalance to highly differentiated, pleasurable erotic feelings that characterize mature, intimate love relationships. Sensory reactions are elevated from simple reflex levels to highly complex, sophisticated affects that involve wide areas of the psyche. Thus, affects are associated with integration and organized psychic structure. Consequently they may function in various ways. Freud developed a continuum for anxiety as initially functioning as a conversion reaction enabling sexual feelings that cannot reach mentational levels or be consummated in erotic activity to be discharged. It reaches a final level of organization where it serves as a signal calling various defenses into play as emerging instinctual impulses threaten to upset psychodynamic equilibrium. I have focused on how affects, erotic feelings in particular, have an organizing function that binds a primitive inner agitation that occurs during what is called a prementational stage of the neonatal period. This is a stage that precedes psychological processes. Sexual feelings are generated as an attempt to bind inner chaos that stems from an amorphous, inchoate psychic state. Erotic feelings are experienced in order to smoothe inner tension. The patient tries but seldom achieves calm because the affective binding and structuralizing process, in itself, becomes painful and disruptive. I present several clinical incidents and also refer to so-called treatment relationships where the therapist absorbs the patient's chaos and then acts out sexually which leads to a total breakdown of the therapeutic setting. PMID:2354974

  20. Explorations in Chaos Physics

    NASA Astrophysics Data System (ADS)

    Maldonado, Armando; Bixler, David

    2012-03-01

    Chaos Theory is an interesting and important branch of physics. Many physical systems, such as weather or fluid flow, exhibit chaotic behavior. Experiments in simple mechanical or electrical systems, as well as simple simulations can be used as methods of studying chaos. Using a mechanical method, we connected a speaker and to a frequency modulator to bounce a table tennis ball. We recorded the ball's motion at different frequencies using a video camera. Using Tracker software we observed it's position versus it's velocity in order to analyze its chaotic behavior. For a simple simulation, we used the visual-based programming in LabView to examine chaotic behavior produced by some non-linear differential equations. Results from both the mechanical system and the simulations will be discussed. For future work, we plan to continue to explore some chaotic simulations and perform a sequence of experiments with an electrical system. Exploring these nonlinear chaotic systems can help us to better understand and model many phenomena found in nature.

  1. Optoelectronic Chaos in a Simple Light Activated Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Joiner, K. L.; Palmero, F.; Carretero-González, R.

    The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and deterministic chaos are obtained by the feedback loop created when the thyristor switches on the bulb in the absence of light being detected by the photoresistor and the bulb light is then looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We construct a simple circuit model reproducing experimental results that qualitatively matches the different dynamical regimes of the experimental apparatus. In particular, we observe an order-chaos-order transition as the strength of the feedback is varied corresponding to varying the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter diagram of the model reveals that the order-chaos-order transition is generic for this system.

  2. Quantum chaos in nuclear physics

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.

    2016-07-01

    A definition of classical and quantum chaos on the basis of the Liouville-Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  3. Genetic information and ecosystem health: arguments for the application of chaos theory to identify boundary conditions for ecosystem management.

    PubMed Central

    Stomp, A M

    1994-01-01

    To meet the demands for goods and services of an exponentially growing human population, global ecosystems will come under increasing human management. The hallmark of successful ecosystem management will be long-term ecosystem stability. Ecosystems and the genetic information and processes which underlie interactions of organisms with the environment in populations and communities exhibit behaviors which have nonlinear characteristics. Nonlinear mathematical formulations describing deterministic chaos have been used successfully to model such systems in physics, chemistry, economics, physiology, and epidemiology. This approach can be extended to ecotoxicology and can be used to investigate how changes in genetic information determine the behavior of populations and communities. This article seeks to provide the arguments for such an approach and to give initial direction to the search for the boundary conditions within which lies ecosystem stability. The identification of a theoretical framework for ecotoxicology and the parameters which drive the underlying model is a critical component in the formulation of a prioritized research agenda and appropriate ecosystem management policy and regulation. PMID:7713038

  4. A Chaos Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Schmidt, Britney E.

    2013-10-01

    A critical question for the habitability of Europa remains: how does the ice shell work? The detection of shallow subsurface lenses below Europa’s chaos implies that the ice shell is recycled rapidly and that Europa may be currently active. While this is not the first time liquid water has been implicated for Europa, the location of these features combined with new perspective on their dynamics frames the question in a new way. Melt lenses are intriguing potential habitats. Moreover, their formation requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for hydraulic redistribution of fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, thus preserving habitable conditions within the ice over a longer duration. At a surface age of 40-90 Myr, with 25-50% covered by chaos terrain, Europa's resurfacing rate is very high and water likely plays a significant role. Because of the vigor of overturn implied by this new work, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze are large compared to the timescales for vertical transport, while the timescales for smaller lenses are comparable to or shorter than convective timescales. Moreover, marine ice accretion at the bottom of the ice shell may be contributing to a compositional buoyancy engine that would change the makeup of the ice shell. From this point of view, we evaluate the habitability of Europa’s ice and

  5. Effective suppressibility of chaos.

    PubMed

    López, Álvaro G; Seoane, Jesús M; Sanjuán, Miguel A F

    2013-06-01

    Suppression of chaos is a relevant phenomenon that can take place in nonlinear dynamical systems when a parameter is varied. Here, we investigate the possibilities of effectively suppressing the chaotic motion of a dynamical system by a specific time independent variation of a parameter of our system. In realistic situations, we need to be very careful with the experimental conditions and the accuracy of the parameter measurements. We define the suppressibility, a new measure taking values in the parameter space, that allows us to detect which chaotic motions can be suppressed, what possible new choices of the parameter guarantee their suppression, and how small the parameter variations from the initial chaotic state to the final periodic one are. We apply this measure to a Duffing oscillator and a system consisting on ten globally coupled Hénon maps. We offer as our main result tool sets that can be used as guides to suppress chaotic dynamics. PMID:23822472

  6. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  7. Chaos-Dchroot Version 2

    SciTech Connect

    Grondona, M.

    2007-08-22

    The CHAOS dchroot utilities is a set of software used to prepare and manage "alternate root" filesystems on Linux systems. These alternate roots can be used to provide an alternate set of system software for testing and compatibility purposes.

  8. The Many Facets of Chaos

    NASA Astrophysics Data System (ADS)

    Sander, Evelyn; Yorke, James A.

    There are many ways that a person can encounter chaos, such as through a time series from a lab experiment, a basin of attraction with fractal boundaries, a map with a crossing of stable and unstable manifolds, a fractal attractor, or in a system for which uncertainty doubles after some time period. These encounters appear so diverse, but the chaos is the same in all of the underlying systems; it is just observed in different ways. We describe these different types of chaos. We then give two conjectures about the types of dynamical behavior that is observable if one randomly picks out a dynamical system without searching for a specific property. In particular, we conjecture that from picking a system at random, one observes (1) only three types of basic invariant sets: periodic orbits, quasiperiodic orbits, and chaotic sets; and (2) that all the definitions of chaos are in agreement.

  9. Controlling chaos in the brain

    NASA Astrophysics Data System (ADS)

    Schiff, Steven J.; Jerger, Kristin; Duong, Duc H.; Chang, Taeun; Spano, Mark L.; Ditto, William L.

    1994-08-01

    In a spontaneously bursting neuronal network in vitro, chaos can be demonstrated by the presence of unstable fixed-point behaviour. Chaos control techniques can increase the periodicity of such neuronal population bursting behaviour. Periodic pacing is also effective in entraining such systems, although in a qualitatively different fashion. Using a strategy of anticontrol such systems can be made less periodic. These techniques may be applicable to in vivo epileptic foci.

  10. Bifurcation and chaos in power systems: A survey

    SciTech Connect

    Varaiya, P.; Wu, F. . Dept. of Electrical Engineering and Computer Sciences); Chiang, H.D. . School of Electrical Engineering)

    1992-08-01

    The literature dealing with bifurcation and chaos in electric power systems is surveyed. A brief discussion of relevant mathematical concepts and results is included in order to make the presentation self-contained and readily accessible. The objective is to determine the extent and significance of power system behavior that can be understood by dynamic models exhibiting bifurcation and chaotic motion. Bifurcation denotes a qualitative change in system behavior. The study is divided into three parts dealing with static bifurcations, Hopf bifurcations, and chaos. Static bifurcation occurs when two or more equilibrium points coincide. Hopf bifurcation occurs when a periodic oscillation emerges from a stable equilibrium. These are both examples of local bifurcation - they are determined by the system behavior in a neighborhood of the equilibrium. Chaos emerges from a global bifurcation - a non-local change in the phase portrait of tile system. The following conclusions are reached. Even the simplest models of power systems exhibit both local and global bifurcations. Local bifurcations occur because power flow equations have multiple solutions. In models that only incorporate real power flow, the capacity of transmission systems is so large that local bifurcations although present are unlikely to be practically significant. However, in models where voltage is determined by reactive power flows, local bifurcations can dramatically shrink the stability region. These bifurcations may explain voltage collapse''. The simplest models also exhibit chaotic behavior. However, for analytical convenience, chaos has mostly been investigated in systems with unrealistic parameter values.

  11. Bifurcation and chaos in power systems: A survey. Final report

    SciTech Connect

    Varaiya, P.; Wu, F.; Chiang, H.D.

    1992-08-01

    The literature dealing with bifurcation and chaos in electric power systems is surveyed. A brief discussion of relevant mathematical concepts and results is included in order to make the presentation self-contained and readily accessible. The objective is to determine the extent and significance of power system behavior that can be understood by dynamic models exhibiting bifurcation and chaotic motion. Bifurcation denotes a qualitative change in system behavior. The study is divided into three parts dealing with static bifurcations, Hopf bifurcations, and chaos. Static bifurcation occurs when two or more equilibrium points coincide. Hopf bifurcation occurs when a periodic oscillation emerges from a stable equilibrium. These are both examples of local bifurcation - they are determined by the system behavior in a neighborhood of the equilibrium. Chaos emerges from a global bifurcation - a non-local change in the phase portrait of tile system. The following conclusions are reached. Even the simplest models of power systems exhibit both local and global bifurcations. Local bifurcations occur because power flow equations have multiple solutions. In models that only incorporate real power flow, the capacity of transmission systems is so large that local bifurcations although present are unlikely to be practically significant. However, in models where voltage is determined by reactive power flows, local bifurcations can dramatically shrink the stability region. These bifurcations may explain ``voltage collapse``. The simplest models also exhibit chaotic behavior. However, for analytical convenience, chaos has mostly been investigated in systems with unrealistic parameter values.

  12. Noodle-map chaos - A simple example

    NASA Astrophysics Data System (ADS)

    Roessler, O. E.; Hudson, J. L.; Farmer, J. D.

    Chaos-generating folded two-dimensional maps can be generalized to higher dimensions in two ways: as folded-towel (or pancake) maps and as bent-walking-stick (or noddle) maps. The noodle case is of mathematical interest because the topologically one-dimensional attractors involved may, despite their thinness, be of the 'non-sink' type (that is, stand in a bijective relation to their domain of attraction). Moreover, Shtern recently showed that the well-known Kaplan-Yorke conjecture on the fractal dimensionality of chaotic attractors may fail in the case of noodle maps. We present here an explicit 3-variable noodle map with constant divergence (constant Jacobian determinant). The example is a higher analogue to the Henon diffeomorphism. A map of similar shape was recently found experimentally by Rob Shaw in a study of the irregularly dripping faucet.

  13. A simple guide to chaos and complexity

    PubMed Central

    Rickles, Dean; Hawe, Penelope; Shiell, Alan

    2007-01-01

    The concepts of complexity and chaos are being invoked with increasing frequency in the health sciences literature. However, the concepts underpinning these concepts are foreign to many health scientists and there is some looseness in how they have been translated from their origins in mathematics and physics, which is leading to confusion and error in their application. Nonetheless, used carefully, “complexity science” has the potential to invigorate many areas of health science and may lead to important practical outcomes; but if it is to do so, we need the discipline that comes from a proper and responsible usage of its concepts. Hopefully, this glossary will go some way towards achieving that objective. PMID:17933949

  14. Implications of chaos, scale-invariance, and fractal statistics in geology

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1990-01-01

    A set of three nonlinear total differential equations (Lorenz equations) exhibiting deterministic chaos is considered, and it is shown that these equations demonstrate that deterministic equations with deterministic initial conditions can yield stocastic solutions with fractal statistics. The logistic map, fractal distributions, and fragmentation are discussed. It is pointed out that well-defined fractal distributions of earthquakes are found both regionally and globally, and that the general applicability of the fractal relation for seismicity can provide the basis for a quantitative seismic hazard assessment. It is suggested that the governing physics of erosional topography is nonlinear and may be related to a fractal distribution of storms and floods that generate and renew erosional feature such as gullies and drainage systems.

  15. Curved paths in raptor flight: Deterministic models.

    PubMed

    Lorimer, John W

    2006-10-21

    Two deterministic models for flight of Peregrine Falcons and possibly other raptors as they approach their prey are examined mathematically. Both models make two assumptions. The first, applicable to both models, is that the angle of sight between falcon and prey is constant, consistent with observations that the falcon keeps its head straight during flight and keeps on course by use of the deep foveal region in its eye which allows maximum acuity at an angle of sight of about 45 degrees . The second assumption for the first model (conical spiral), is that the initial direction of flight determines the overall path. For the second model (flight constrained to a tilted plane), a parameter that fixes the orientation of the plane is required. A variational calculation also shows that the tilted plane flight path is the shortest total path, and, consequently, the conical spiral is another shortest total path. Numerical calculations indicate that the flight paths for the two models are very similar for the experimental conditions under which observations have been made. However, the angles of flight and bank differ significantly. More observations are needed to investigate the applicability of the two models.

  16. Losers in the 'Rock-Paper-Scissors' game: The role of non-hierarchical competition and chaos as biodiversity sustaining agents in aquatic systems

    EPA Science Inventory

    Processes occurring within small areas (patch-scale) that influence species richness and spatial heterogeneity of larger areas (landscape-scale) have long been an interest of ecologists. This research focused on the role of patch-scale deterministic chaos arising in phytoplankton...

  17. Robustness analysis of an air heating plant and control law by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Ferreira, Murillo A. S.; Balthazar, José M.; Bueno, Átila M.; de S. R. F. Rosa, Suélia

    2014-12-01

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  18. Robustness analysis of an air heating plant and control law by using polynomial chaos

    SciTech Connect

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.; Balthazar, José M.; Rosa, Suélia S. R. F. de

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  19. Deterministic implementation of weak quantum cubic nonlinearity

    SciTech Connect

    Marek, Petr; Filip, Radim; Furusawa, Akira

    2011-11-15

    We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a full-scale continuous-variable quantum computation. Our proposal relies on preparation of a specific ancillary state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations and feed forward. We show that, despite the imperfections arising from the deterministic nature of the operation, the weak quantum nonlinearity can be implemented and verified with the current level of technology.

  20. A case for chaos theory in nursing.

    PubMed

    Lett, M

    2001-01-01

    This paper addresses the question of why nurses should understand chaos theory. A critique of the literature is used to demonstrate how chaos theory has been utilised in a number of disciplines, including nursing. Possible applications of chaos theory in nursing are proposed in order to demonstrate where it might assist nurses, in particular researchers, educators and policy makers. The appropriateness of the application of chaos theory as a framework for knowledge generation is also discussed. PMID:11878502

  1. Survivability of Deterministic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-07-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.

  2. Survivability of Deterministic Dynamical Systems.

    PubMed

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  3. Survivability of Deterministic Dynamical Systems

    PubMed Central

    Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen

    2016-01-01

    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955

  4. Demographic noise can reverse the direction of deterministic selection.

    PubMed

    Constable, George W A; Rogers, Tim; McKane, Alan J; Tarnita, Corina E

    2016-08-01

    Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to [Formula: see text] theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085

  5. Chaos theory for the biomedical engineer.

    PubMed

    Eberhart, R C

    1989-01-01

    A brief introduction to chaos theory is provided. Definitions of chaos and attributes of chaos and fractals are discussed. Several general examples are examined, and fractals are introduced with a brief look at the Mandelbrot and Julia sets. Biomedical examples of chaotic behaviour and fractals are presented.

  6. Deterministic weak localization in periodic structures.

    PubMed

    Tian, C; Larkin, A

    2005-12-01

    In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.

  7. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  8. Modeling and Controlling Chaos in Breast Cancer: Toward Finding a Practical Cure—A first step

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Somayeh; Sanayei, Ali

    2010-09-01

    The main aim of this work is finding a practical method which is based on a mathematical model to cure the breast cancer. This model with certain values of parameters could exhibit a chaotic behavior. Consequently, we achieve this goal by controlling chaos and find the best adjustable control parameter in order to control the malignancy.

  9. Chaos: A historical perspective

    NASA Astrophysics Data System (ADS)

    Lighthill, James

    In this introductory lecture I'd like to offer a broad historical perspective regarding the relatively recent general recognition: (a) that mechanical systems satisfying Newton's laws may be subject to the essentially unpredictable type of behavior which the word CHAOS describes—in other words, the recognition (b) that quantum effects are not required; (c) so that, notwithstanding Heisenberg, uncertainty is there on the basis of the good old classical mechanics based on Newton's Laws. But first of all I'll remind you that there are two kinds of laws in science, which we may exemplify by Kepler's Laws and Newton's Laws. Kepler in 1609 completed some very detailed observations of the motions of Mars; together with a full geometrical description of them, in the Copernican sun-centered flame of reference, as motions in a constant orbit in the shape of an ellipse with the Sun as focus. A decade later Kepler had published the Epitome Astronomiae Copernicanae (a rather more substantial work than the Dialogo which later got Galileo into some difficulties), and had there described in detail his most famous discovery: Kepler's three empirical laws concerning planetary orbits. These laws, of the elliptical shapes of orbits, of the radius covering equal areas in equal times, and of the proportionality of the square of the orbital period to the cube of the major axis, were shown from the observations to be closely satisfied by the Earth and by the five then known planets; and furthermore, by the four satellites of Jupiter which Galileo had recently discovered.

  10. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards. PMID:26428567

  11. Some new surprises in chaos

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid A.; Vela-Arevalo, Luz V.

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought. It always defeats order, because it is better organized" (Terry Pratchett). A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  12. Controlling chaos with simple limiters

    PubMed

    Corron; Pethel; Hopper

    2000-04-24

    New experimental results demonstrate that chaos control can be accomplished using controllers that are very simple relative to the system being controlled. Chaotic dynamics in a driven pendulum and a double scroll circuit are controlled using an adjustable, passive limiter-a weight for the pendulum and a diode for the circuit. For both experiments, multiple unstable periodic orbits are selectively controlled using minimal perturbations. These physical examples suggest that chaos control can be practically applied to a much wider array of important problems than initially thought possible. PMID:11019218

  13. Synchronicity from synchronized chaos

    DOE PAGES

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind andmore » matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.« less

  14. Synchronicity from synchronized chaos

    SciTech Connect

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

  15. Subspace inverse power method and polynomial chaos representation for the modal frequency responses of random mechanical systems

    NASA Astrophysics Data System (ADS)

    Pagnacco, E.; de Cursi, E. Souza; Sampaio, R.

    2016-07-01

    This study concerns the computation of frequency responses of linear stochastic mechanical systems through a modal analysis. A new strategy, based on transposing standards deterministic deflated and subspace inverse power methods into stochastic framework, is introduced via polynomial chaos representation. Applicability and effectiveness of the proposed schemes is demonstrated through three simple application examples and one realistic application example. It is shown that null and repeated-eigenvalue situations are addressed successfully.

  16. Chaos and transformation: implications of nonequilibrium theory for social science and society.

    PubMed

    Loye, D; Eisler, R

    1987-01-01

    This article deals with all levels of both living (biological, psychological, sociological, and cultural) and nonliving (physical, chemical, and mathematical) systems. The idea of applying the natural scientific self-organizing, evolutionary, and non-equilibrium or "chaos" theory associated with the names of Prigogine and others to world problems of impending social, political, economic, and ecological "chaos" is gaining ground. The leap from natural science to social action, however, is impossible without considerable attention to the main intervening step: the development of "chaos"-equivalent, evolution-, systems-, and action-oriented social theory. Construction of such theory requires understanding by social scientists of natural scientific "chaos" theory as well as their own "chaos" theoretical heritage, of natural scientists of the now seemingly far distant social problem-solving potential of their nonequilibrium and self-organizing theories, and of both natural and social scientists of how advancement at both levels could help gain a peaceful as well as humanistic "order out of chaos" in this troubled world of ours. This paper surveys relevant concepts, problems, theorists, research, and works in progress within a perspective of the challenge of survival at a critical juncture in the evolution of our species. PMID:3689300

  17. Dynamic chaos in the solution of the Gross-Pitaevskii equation for a periodic potential

    SciTech Connect

    Ishkhanyan, H. A.; Krainov, V. P.

    2011-09-15

    We analytically and numerically investigate the solution to the stationary Gross-Pitaevskii equation for a one-dimensional potential of the optical lattice in the case of repulsive nonlinearity. From the mathematical viewpoint, this problem is similar to the well-known problem of the classical mathematical Kapitza pendulum perturbed by a weak high-frequency force. At certain values of the parameters, dynamic chaos is produced in the considered problem. It is modeled analytically by a nonlinear diffusion equation.

  18. Chaos in laser-matter interactions

    SciTech Connect

    Ackerhalt, J.; Milonni, P.; Shih, M.L.

    1987-01-01

    This is a set of lecture notes given by the authors at the Universities of Rochester, Arkansas and Puerto Rico. This volume introduces the main ideas of chaos and its applications to a broad range of problems in quantum optics, electronics and laser physics. Contents: Introduction; Nonlinearity; The Period Doubling Route to Chaos; The Duffing Oscillator; Strange Attractors; Two-Frequency Route to Chaos; Intermittency; Dimensions of Attractors; Noise, The Lorenz Model and the Single-Mode Laser; Chaotic Lasers: Theory and Experiment; Hamiltonian Systems; The Henon-Heiles System; The Standard Mapping; Fat Fractals; Ergodicity and Mixing; Chaos and the Microwave Ionization of Hydrogen; The Kicked Pendulum: Classical Theory and Quantum Theory; Chaos and Multiple-Photon Excitation of Molecular Vibrations; Chaos and Molecular Rotations; Ideas in Quantum Chaos; Outlook.

  19. Deterministic quantum teleportation with atoms.

    PubMed

    Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R

    2004-06-17

    Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.

  20. Accessing Creativity: Jungian Night Sea Journeys, Wandering Minds, and Chaos.

    PubMed

    Rosen, Diane

    2016-01-01

    NDS theory has been meaningfully applied to the dynamics of creativity and psychology. These complex systems have much in common, including a broad definition of "product" as new order emerging from disorder, a new whole (etymologically, 'health') out of disintegration or destabilization. From a nonlinear dynamical systems perspective, this paper explores the far-from-equilibrium zone of creative incubation: first in the Jungian night sea journey, a primordial myth of psychological and creative transformation; then in the neuroscience of mind wandering, the well-spring of creative ideation within the larger neural matrix. Finally, chaos theory grounds the elusive subject of creativity, modeling chaotic generation of idea elements that tend toward strange attractors, combine unpredictably, and produce change by means of tension between opposites, particularly notes consciousness (light) and the poetic unconscious (darkness). Examples from my own artwork illustrate this dialectical process. Considered together, the unconscious mythic sea journey, the unknowing wandering mind, and the generative paradigm of deterministic chaos suggest conditions that facilitate creativity across disciplines, providing fresh indications that the darkness of the unknown or irrational is, paradoxically, the illuminative source and strength of creativity. PMID:26639923

  1. Global Optimal Trajectory in Chaos and NP-Hardness

    NASA Astrophysics Data System (ADS)

    Latorre, Vittorio; Gao, David Yang

    This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.

  2. Accessing Creativity: Jungian Night Sea Journeys, Wandering Minds, and Chaos.

    PubMed

    Rosen, Diane

    2016-01-01

    NDS theory has been meaningfully applied to the dynamics of creativity and psychology. These complex systems have much in common, including a broad definition of "product" as new order emerging from disorder, a new whole (etymologically, 'health') out of disintegration or destabilization. From a nonlinear dynamical systems perspective, this paper explores the far-from-equilibrium zone of creative incubation: first in the Jungian night sea journey, a primordial myth of psychological and creative transformation; then in the neuroscience of mind wandering, the well-spring of creative ideation within the larger neural matrix. Finally, chaos theory grounds the elusive subject of creativity, modeling chaotic generation of idea elements that tend toward strange attractors, combine unpredictably, and produce change by means of tension between opposites, particularly notes consciousness (light) and the poetic unconscious (darkness). Examples from my own artwork illustrate this dialectical process. Considered together, the unconscious mythic sea journey, the unknowing wandering mind, and the generative paradigm of deterministic chaos suggest conditions that facilitate creativity across disciplines, providing fresh indications that the darkness of the unknown or irrational is, paradoxically, the illuminative source and strength of creativity.

  3. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  4. Chaos in the classroom: Exposing gifted elementary school children to chaos and fractals

    NASA Astrophysics Data System (ADS)

    Adams, Helen M.; Russ, John C.

    1992-09-01

    A unit of study for gifted 4th and 5th graders is described on the subject of mathematical periodicity and chaos and the underlying physical processes which produce these phenomena. A variety of hands-on experiments and the use of various data analysis tools and computer aids provide students with powerful raw material for their analysis, interpretation, and understanding. The concepts of simple periodic motion (e.g., a pendulum), complex superposition of motions (e.g., the vibrations in musical instruments), and chaotic sequences (e.g., stock prices) are covered, with numerous practical examples. Opportunities to involve related activities emphasizing language arts, history, and graphic art are included. The student response to the material is documented.

  5. Aureum Chaos: Another View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image is located in a different part of Aureum Chaos. Compare the surface textures with yesterday's image. This image was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -4.1, Longitude 333.9 East (26.1 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars

  6. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  7. The Chaos Theory of Careers

    ERIC Educational Resources Information Center

    Bright, Jim E. H.; Pryor, Robert G. L.

    2011-01-01

    The Chaos Theory of Careers (CTC; Pryor & Bright, 2011) construes both individuals and the contexts in which they develop their careers in terms of complex dynamical systems. Such systems perpetually operate under influences of stability and change both internally and in relation to each other. The CTC introduces new concepts to account for…

  8. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  9. Learning the Uses of Chaos.

    ERIC Educational Resources Information Center

    Berthoff, Ann E.

    This paper addresses the issue of learning to write and the need for defining a means of teaching the process of composing. Following a description of what kind of process writing is not, the composing process is presented as a continuum of making meaning out of a chaos of images, half-truths, remembrances, and syntactic fragments. The discovery…

  10. Optomechanics: Vibrations copying optical chaos

    NASA Astrophysics Data System (ADS)

    Sciamanna, Marc

    2016-06-01

    Mechanical oscillation in a microtoroidal optical cavity transfers chaos from a pump to a probe laser beam with a different wavelength. Through stochastic resonance, the combination of noise and internal chaotic dynamics leads to amplification of optomechanically induced light self-oscillations.

  11. Connecting deterministic and stochastic metapopulation models.

    PubMed

    Barbour, A D; McVinish, R; Pollett, P K

    2015-12-01

    In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given. PMID:25735440

  12. Chaos on the pseudosphere

    NASA Astrophysics Data System (ADS)

    Balazs, N. L.; Voros, A.

    1986-11-01

    The classical free motion of a mass point on a compact surface of constant negative curvature is the most chaotic possible. The quantal description of this motion is under development. In this review we (a) bring together the mathematical tools needed for the problem; (b) survey the classical results; (c) develop the quantal description; (d) discuss the relations between the classical and quantal results; (e) offer some conjectures towards the diagnosis of chaoticity in quantum systems. The text is divided into chapters and sections; each section ends with a brief summary which also serves as a local abstract. Chapter I gives the motivations. Chapter II describes various models of the pseudosphere, or Bolyai-Lobachevsky plane. Chapters III and IV analyse the classical motions constrained to surfaces of constant negative curvature, and the salient results on ergodicity, mixing, etc.… Chapters V and VI specify the quantum problem and exhibit the relevant mathematical tools. Chapter VII exhibits the remarkable exact connections between the classical and quantal results which are embodied in Selberg's trace formula or are consequences of it. Chapter VIII deals with the semiclassical connections between the two descriptions, including the quantal equivalents of such classical notions as the Liapunov exponent and the Poincaré section map. Chapter IX contains some numerical results obtained by C. Schmit on the spectrum of a simple case, in particular on its fluctuations and their interpretation. Chapter X summaries our conclusions. The Appendices from A to N are integral parts of the review and are only separated from the text in order not to interrupt the flow. They contain details which clarify mathematical or conceptual points. Similarly, the figures should also be used to complement and clarify the text.

  13. Chaos theory before Lorenz.

    PubMed

    Rosser, J Barkley

    2009-07-01

    We consider the precursors to the discovery of sensitive dependence on initial conditions by Edward Lorenz (1963) in his model of climatic fluid dynamics. This will focus on work in various disciplines that imply either such sensitivity, irregular endogenous dynamic patterns, or fractal nature of an attractor, as is also found in the attractor underlying the model Lorenz studied. Going from ancient hints in Anaxagoras through nineteenth century mathematics and physics, the main areas of such development will be argued to have been in celestial mechanics, oscillators, and economics. PMID:19527617

  14. Chaos theory before Lorenz.

    PubMed

    Rosser, J Barkley

    2009-07-01

    We consider the precursors to the discovery of sensitive dependence on initial conditions by Edward Lorenz (1963) in his model of climatic fluid dynamics. This will focus on work in various disciplines that imply either such sensitivity, irregular endogenous dynamic patterns, or fractal nature of an attractor, as is also found in the attractor underlying the model Lorenz studied. Going from ancient hints in Anaxagoras through nineteenth century mathematics and physics, the main areas of such development will be argued to have been in celestial mechanics, oscillators, and economics.

  15. Order-to-chaos transition in the hardness of random Boolean satisfiability problems

    NASA Astrophysics Data System (ADS)

    Varga, Melinda; Sumi, Robert; Ercsey-Ravasz, Maria; Toroczkai, Zoltan

    Transient chaos is a phenomenon characterizing the dynamics of phase space trajectories evolving towards an attractor in physical systems. We show that transient chaos also appears in the dynamics of certain algorithms searching for solutions of constraint satisfaction problems (e.g., Sudoku). We present a study of the emergence of hardness in Boolean satisfiability (k-SAT) using an analog deterministic algorithm. Problem hardness is defined through the escape rate κ, an invariant measure of transient chaos, and it expresses the rate at which the trajectory approaches a solution. We show that the hardness in random k-SAT ensembles has a wide variation approximable by a lognormal distribution. We also show that when increasing the density of constraints α, hardness appears through a second-order phase transition at αc in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic, however, such transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter. We demonstrate that the transition is generated by the appearance of non-solution basins in the solution space as the density of constraints is increased.

  16. The evolution from weak to strong geomagnetic activity - An interpretation in terms of deterministic chaos

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Klimas, A. J.; Mcpherron, R. L.; Buechner, J.

    1990-01-01

    An analogue of the magnetosphere developed on the basis of Shaw's (1984) dripping faucet model was used to model the mechanisms of the magnetospheric response to energy transfer from the solar wind. It is demonstrated that geomagnetic activity results from nonlinearly coupled physical processes and that the strength and the nature of the coupling changes dramatically as the magnetosphere is driven harder and harder by increasing energy input. Based on initial results obtained from the model, is is suggested that a chaotic transition takes place in the analogue system as the loading rate is increased beyond a critical value. This model is able to explain many of the features in the results of linear prediction filtering techniques.

  17. Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria

    NASA Astrophysics Data System (ADS)

    Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.

    2016-07-01

    Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.

  18. Persistence, chaos and synchrony in ecology and epidemiology.

    PubMed

    Earn, D J; Rohani, P; Grenfell, B T

    1998-01-01

    The decline of species in natural habitats concerns ecologists, who view extinction as a danger and conservation of biological diversity as a goal. In contrast, the proliferation of 'undesirable' species is the principal concern of epidemiologists, who view persistence as a problem and eradication as an achievement. While ecologists and epidemiologists have essentially opposite goals, the mathematical structure of the population dynamics that they study is very similar. We briefly review the similarities and differences between these two fields, emphasizing recent work in both areas on the effects of spatial synchrony and dynamical chaos. We hope to stimulate further cross-fertilization of ideas between the disciplines.

  19. Persistence, chaos and synchrony in ecology and epidemiology.

    PubMed Central

    Earn, D J; Rohani, P; Grenfell, B T

    1998-01-01

    The decline of species in natural habitats concerns ecologists, who view extinction as a danger and conservation of biological diversity as a goal. In contrast, the proliferation of 'undesirable' species is the principal concern of epidemiologists, who view persistence as a problem and eradication as an achievement. While ecologists and epidemiologists have essentially opposite goals, the mathematical structure of the population dynamics that they study is very similar. We briefly review the similarities and differences between these two fields, emphasizing recent work in both areas on the effects of spatial synchrony and dynamical chaos. We hope to stimulate further cross-fertilization of ideas between the disciplines. PMID:9470213

  20. Urban chaos and replacement dynamics in nature and society

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2014-11-01

    Replacements resulting from competition are ubiquitous phenomena in both nature and society. The evolution of a self-organized system is always a physical process substituting one type of components for another type of components. A logistic model of replacement dynamics has been proposed in terms of technical innovation and urbanization, but it fails to arouse widespread attention in the academia. This paper is devoted to laying the foundations of general replacement principle by using analogy and induction. The empirical base of this study is urban replacement, including urbanization and urban growth. The sigmoid functions can be employed to model various processes of replacement. Many mathematical methods such as allometric scaling and head/tail breaks can be applied to analyzing the processes and patterns of replacement. Among varied sigmoid functions, the logistic function is the basic and the simplest model of replacement dynamics. A new finding is that replacement can be associated with chaos in a nonlinear system, e.g., urban chaos is just a part of replacement dynamics. The aim of developing replacement theory is at understanding complex interaction and conversion. This theory provides a new way of looking at urbanization, technological innovation and diffusion, Volterra-Lotka’s predator-prey interaction, man-land relation, and dynastic changes resulting from peasant uprising, and all that. Especially, the periodic oscillations and chaos of replacement dynamics can be used to explain and predict the catastrophic occurrences in the physical and human systems.

  1. Increasing average period lengths by switching of robust chaos maps in finite precision

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Shastry, M. C.; Vaidya, P. G.

    2008-12-01

    Grebogi, Ott and Yorke (Phys. Rev. A 38, 1988) have investigated the effect of finite precision on average period length of chaotic maps. They showed that the average length of periodic orbits (T) of a dynamical system scales as a function of computer precision (ɛ) and the correlation dimension (d) of the chaotic attractor: T ˜ɛ-d/2. In this work, we are concerned with increasing the average period length which is desirable for chaotic cryptography applications. Our experiments reveal that random and chaotic switching of deterministic chaotic dynamical systems yield higher average length of periodic orbits as compared to simple sequential switching or absence of switching. To illustrate the application of switching, a novel generalization of the Logistic map that exhibits Robust Chaos (absence of attracting periodic orbits) is first introduced. We then propose a pseudo-random number generator based on chaotic switching between Robust Chaos maps which is found to successfully pass stringent statistical tests of randomness.

  2. Contractility of glycerinated Amoeba proteus and Chaos-chaos.

    PubMed

    Rinaldi, R; Opas, M; Hrebenda, B

    1975-05-01

    Immediate contact with large volumes of cold 50% (v/v) buffered glycerol preserved typical ameboid shape of Chaos chaos and Amoeba proteus with no visible distortions. These technics allowed determination of the contraction sites in these glycerinated models upon applications of ATP-Ca-Mg-solutions. The ectoplasmic tube was the main site of contraction. Preliminary EM investigations revealed thick and thin filaments, associated with the ectoplasmic tube near the plasma-lemma, which appeared to be the basis for the contractility of the ectoplasmic tube. There was no predominant contraction of the pseudopodial tips or the endoplasm in these models. The changes of volume were as much as 50%, and in some cases were not accompanied by any change in the length of the ameba; however, lengthwise contractions of the ectoplasmic tube in some amebae occurred to as much as 25%. The data substantiate a basic requirement of the ectoplasmic tube contraction theory of ameboid locomotion.

  3. Meaning Finds a Way: Chaos (Theory) and Composition

    ERIC Educational Resources Information Center

    Kyburz, Bonnie Lenore

    2004-01-01

    The explanatory power provided by the chaos theory is explored. A dynamic and reciprocal relationship between culture and chaos theory indicates that the progressive cultural work may be formed by the cross-disciplinary resonance of chaos theory.

  4. A Simple Circuit for Demonstrating Regular and Synchronized Chaos.

    ERIC Educational Resources Information Center

    Carroll, Thomas L.

    1995-01-01

    Discusses the physics behind the synchronization of chaos. Describes an easy to build an electronic circuit which can be used to demonstrate chaos and the synchronization of chaos. Contains 19 references. (JRH)

  5. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    NASA Astrophysics Data System (ADS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  6. Does chaos assist localization or delocalization?

    SciTech Connect

    Tan, Jintao; Luo, Yunrong; Hai, Wenhua; Lu, Gengbiao

    2014-12-01

    We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.

  7. Finding Order and Direction from Chaos: A Comparison of Chaos Career Counseling and Trait Matching Counseling

    ERIC Educational Resources Information Center

    McKay, Hannah; Bright, Jim E. H.; Pryor, Robert G. L.

    2005-01-01

    Chaos career counseling, based on the Chaos Theory of Careers (R. G. L. Pryor & J. E. H. Bright, 2003a, 2003b), was compared with trait matching career counseling and a wait list control. Sixty university students who attended the Careers Research and Assessment Service seeking career advice were randomly assigned to the chaos intervention, the…

  8. A quantum correction to chaos

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2016-05-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT2 at large central charge c. The Lyapunov exponent λ L , which is a diagnostic for the early onset of chaos, receives 1 /c corrections that may be interpreted as {λ}_L=2π /β(1+12/c) . However, out of time order correlators receive other equally important 1 /c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ L that emerges at large c, focusing on CFT2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  9. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  10. Monitoring chaos of cardiac rhythms

    SciTech Connect

    Mayer-Kress, G.

    1989-01-01

    Chaos theory provides a new paradigm in monitoring complexity changes in heart rate variability. Even in cases where the spectral analysis only shows broad band characteristics estimations of dimensional complexity parameters can show quantitative changes in the degree of chaos present in the interbeat interval dynamics. We introduce the concept of dimensional complexity as dynamical monitoring parameter and discuss its properties in connection with control data and data taken during cardiac arrest. Whereas dimensional complexity provides a quantitative indicator of overall chaotic behavior, recurrence plots allow direct visualization of recurrences in arbitrary high dimensional pattern-space. In combination these two methods from non-linear dynamics exemplify a new approach in the problem of heart rate monitoring and identification of precursors of cardiac arrest. Finally we mention a new method of chaotic control, by which selective and highly effective perturbations of nonlinear dynamical systems could be used for improved pacing patterns. 11 refs., 6 figs.

  11. Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit

    NASA Astrophysics Data System (ADS)

    Ngamga, E. J.; Buscarino, A.; Frasca, M.; Sciuto, G.; Kurths, J.; Fortuna, L.

    2010-12-01

    Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transitions in coupled nonlinear systems [E. G. Souza et al., "Using recurrences to characterize the hyperchaos-chaos transition," Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are combined with a significance test based on twin surrogates to identify such a transition in a fourth-order Lorenz-like system, which is able to pass from a hyperchaotic to a chaotic behavior for increasing values of a single parameter. A circuit analog of the mathematical model has been designed and implemented and the robustness of the recurrence-based method on experimental data has been tested. In both the numerical and experimental cases, the combination of the recurrence measures and the significance test allows to clearly identify the hyperchaos-chaos transition.

  12. Topological chaos of the spatial prisoner's dilemma game on regular networks.

    PubMed

    Jin, Weifeng; Chen, Fangyue

    2016-02-21

    The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein. PMID:26646768

  13. Temperature chaos and quenched heterogeneities

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso

    2014-03-01

    We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.

  14. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  15. Model for shock wave chaos.

    PubMed

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-01

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x = 0 for any t ≥ 0. Here, u(s)(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations. PMID:23521260

  16. Model for shock wave chaos.

    PubMed

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-01

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x = 0 for any t ≥ 0. Here, u(s)(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  17. Dissipative chaos in semiconductor superlattices

    SciTech Connect

    Alekseev, K.N.; Berman, G.P. ||; Campbell, D.K.; Cannon, E.H.; Cargo, M.C.

    1996-10-01

    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free-electron lasers, chaos may be observable in SSL{close_quote}s. We clarify the nature of this interesting nonlinear dynamics in the superlattice{endash}external-field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions. {copyright} {ital 1996 The American Physical Society.}

  18. Interactive Workshop Discusses Nonlinear Waves and Chaos

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Morales, George; Passot, Thierry

    2010-07-01

    Eighth International Nonlinear Wave Workshop; La Jolla, California, 1-5 March 2010; Nonlinear waves and chaos were the focus of a weeklong series of informal and interactive discussions at the Eighth International Nonlinear Wave Workshop (NWW8), held in California. The workshop gathered nonlinear plasma and water wave experts from the United States, France, Czech Republic, Germany, Greece, Holland, India, and Japan. Attendees were from the fields of space, laboratory, and fusion plasma physics, astrophysics, and applied mathematics. Special focus was placed on nonlinear waves and turbulence in the terrestrial environment as well as in the interstellar medium from observational, laboratory, and theoretical perspectives. Discussions covered temperature anisotropies and related instabilities, the properties and origin of the so-called dissipation range, and various coherent structures of electromagnetic as well as electrostatic nature. Reconnection and shocks were also topics of discussion, as were properties of magnetospheric whistler and chorus waves. Examples and analysis techniques for superdiffusion and subdiffusion were identified. On this last topic, a good exchange of ideas and results occurred between a water wave expert and a plasma expert, with the rest of the audience listening intently.

  19. Kinematic dynamo, supersymmetry breaking, and chaos

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Enßlin, Torsten A.

    2016-04-01

    The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.

  20. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution

    USGS Publications Warehouse

    Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.

    2003-01-01

    Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent

  1. The World According to Malthus and Volterra: The Mathematical Theory of the Struggle for Existence.

    ERIC Educational Resources Information Center

    Bogdanov, Constantine

    1992-01-01

    Discusses the mathematical model presented by Vito Volterra to describe the dynamics of population density. Discusses the predator prey relationship, presents an computer simulated model from marine life involving sharks and mackerels, and discusses ecological chaos. (MDH)

  2. Classification and unification of the microscopic deterministic traffic models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Monterola, Christopher

    2015-10-01

    We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.

  3. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  4. Effect of Uncertainty on Deterministic Runway Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2012-01-01

    Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.

  5. Stochastic search with Poisson and deterministic resetting

    NASA Astrophysics Data System (ADS)

    Bhat, Uttam; De Bacco, Caterina; Redner, S.

    2016-08-01

    We investigate a stochastic search process in one, two, and three dimensions in which N diffusing searchers that all start at x 0 seek a target at the origin. Each of the searchers is also reset to its starting point, either with rate r, or deterministically, with a reset time T. In one dimension and for a small number of searchers, the search time and the search cost are minimized at a non-zero optimal reset rate (or time), while for sufficiently large N, resetting always hinders the search. In general, a single searcher leads to the minimum search cost in one, two, and three dimensions. When the resetting is deterministic, several unexpected feature arise for N searchers, including the search time being independent of T for 1/T\\to 0 and the search cost being independent of N over a suitable range of N. Moreover, deterministic resetting typically leads to a lower search cost than in Poisson resetting.

  6. Deterministic dense coding with partially entangled states

    SciTech Connect

    Mozes, Shay; Reznik, Benni; Oppenheim, Jonathan

    2005-01-01

    The utilization of a d-level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d. In general, we numerically find that the maximal alphabet size is any integer in the range [d,d{sup 2}] with the possible exception of d{sup 2}-1. We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  7. Optimal partial deterministic quantum teleportation of qubits

    SciTech Connect

    Mista, Ladislav Jr.; Filip, Radim

    2005-02-01

    We propose a protocol implementing optimal partial deterministic quantum teleportation for qubits. This is a teleportation scheme realizing deterministically an optimal 1{yields}2 asymmetric universal cloning where one imperfect copy of the input state emerges at the sender's station while the other copy emerges at receiver's possibly distant station. The optimality means that the fidelities of the copies saturate the asymmetric cloning inequality. The performance of the protocol relies on the partial deterministic nondemolition Bell measurement that allows us to continuously control the flow of information among the outgoing qubits. We also demonstrate that the measurement is optimal two-qubit operation in the sense of the trade-off between the state disturbance and the information gain.

  8. Discretization chaos - Feedback control and transition to chaos

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Athalye, Amit M.

    1990-01-01

    Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.

  9. Advising Undecided Students: Lessons from Chaos Theory.

    ERIC Educational Resources Information Center

    Beck, Amy

    1999-01-01

    Uses chaos theory as a metaphor for advising undecided college students. Applies chaos theory concepts of dependence on initial conditions, strange attractors, emergent behavior in complex systems, and fractals to the advising relationship. Suggests the paradigm reinforces the basics of advising, such as the importance of accepting the student's…

  10. Nine challenges for deterministic epidemic models.

    PubMed

    Roberts, Mick; Andreasen, Viggo; Lloyd, Alun; Pellis, Lorenzo

    2015-03-01

    Deterministic models have a long history of being applied to the study of infectious disease epidemiology. We highlight and discuss nine challenges in this area. The first two concern the endemic equilibrium and its stability. We indicate the need for models that describe multi-strain infections, infections with time-varying infectivity, and those where superinfection is possible. We then consider the need for advances in spatial epidemic models, and draw attention to the lack of models that explore the relationship between communicable and non-communicable diseases. The final two challenges concern the uses and limitations of deterministic models as approximations to stochastic systems.

  11. Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch

    NASA Astrophysics Data System (ADS)

    García-Vellisca, M. A.; Pisarchik, A. N.; Jaimes-Reátegui, R.

    2016-07-01

    We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.

  12. Scaling of chaos in strongly nonlinear lattices

    SciTech Connect

    Mulansky, Mario

    2014-06-15

    Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

  13. Quantum chaos and effective thermalization.

    PubMed

    Altland, Alexander; Haake, Fritz

    2012-02-17

    We demonstrate effective equilibration for unitary quantum dynamics under conditions of classical chaos. Focusing on the paradigmatic example of the Dicke model, we show how a constructive description of the thermalization process is facilitated by the Glauber Q or Husimi function, for which the evolution equation turns out to be of Fokker-Planck type. The equation describes a competition of classical drift and quantum diffusion in contractive and expansive directions. By this mechanism the system follows a "quantum smoothened" approach to equilibrium, which avoids the notorious singularities inherent to classical chaotic flows.

  14. Some new surprises in chaos

    SciTech Connect

    Bunimovich, Leonid A.; Vela-Arevalo, Luz V.

    2015-09-15

    A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  15. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  16. BOOK REVIEW: Chaos: A Very Short Introduction

    NASA Astrophysics Data System (ADS)

    Klages, R.

    2007-07-01

    This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is `no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and `phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes `real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this field. I feel that occasionally the book

  17. Deterministic Quantization by Dynamical Boundary Conditions

    SciTech Connect

    Dolce, Donatello

    2010-06-15

    We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.

  18. A deterministic discrete ordinates transport proxy application

    SciTech Connect

    2014-06-03

    Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.

  19. Adaptive sparse polynomial chaos expansion based on least angle regression

    NASA Astrophysics Data System (ADS)

    Blatman, Géraud; Sudret, Bruno

    2011-03-01

    Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin type) or non intrusive) unaffordable when the deterministic finite element model is expensive to evaluate. To address such problems, the paper describes a non intrusive method that builds a sparse PC expansion. First, an original strategy for truncating the PC expansions, based on hyperbolic index sets, is proposed. Then an adaptive algorithm based on least angle regression (LAR) is devised for automatically detecting the significant coefficients of the PC expansion. Beside the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to avoid the overfitting phenomenon. The accuracy of the PC metamodel is checked using an estimate inspired by statistical learning theory, namely the corrected leave-one-out error. As a consequence, a rather small number of PC terms are eventually retained ( sparse representation), which may be obtained at a reduced computational cost compared to the classical "full" PC approximation. The convergence of the algorithm is shown on an analytical function. Then the method is illustrated on three stochastic finite element problems. The first model features 10 input random variables, whereas the two others involve an input random field, which is discretized into 38 and 30 - 500 random variables, respectively.

  20. Quantifying chaos for ecological stoichiometry.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  1. Chaos suppression through asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Vidal, G.; Mancini, H.; Mendoza, C.; Boccaletti, S.

    2007-12-01

    We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.

  2. Characterization of chaos in air pollutants: A Volterra-Wiener-Korenberg series and numerical titration approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ujjwal; Prakash, Amit; Jain, V. K.

    The present study attempts to provide an insight into the chaotic nature of air pollutants by applying the recent developments in the field of nonlinear dynamics. The Volterra-Wiener-Korenberg (VWK) series approach by Barahona and Poon [1996. Detection of nonlinear dynamics in short, noisy time series. Nature 381, 215-217] has been used to investigate the nonlinearity of O 3, NO, NO 2 and CO time series at two urban stations, namely—Hohenpeissenberg and Jungfraujoch. Nonlinearity has been detected in NO 2 and CO time series at both the stations. The numerical titration technique [Poon, C., Barahona, M., 2001. Titration of chaos with added noise. Proceedings of the National Academy of Sciences 98, 7107-7112] reveals that the dynamics of NO 2 and CO are indeed governed by deterministic chaos. Cao's method [Cao, L., 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43-50] to determine the minimum embedding dimension further reveals that probably the dynamics of both NO 2 and CO time series are manifestations of high-dimensional chaos. It is interesting to note that similar chaotic characteristic of NO 2 and CO time series have been observed at both the sites indicating a possible universality in their chaotic nature in the ambient urban environment.

  3. Chaos theory--a useful addition to the critical care curriculum?

    PubMed

    Murray, P J

    1992-12-01

    Chaos theory (non-linear dynamics) is a relatively new mathematical concept. It shows that many apparently random processes and structures have in fact a simple underlying order. The theory is being applied increasingly to explain physiological processes and epidemiological findings, as well as in non-health areas, such as modelling weather systems. The author argues for its future inclusion as a modular option in post-registration critical care/high technology nursing courses. PMID:1483025

  4. Lorenz-like chaos in a partial differential equation for a heated fluid loop

    NASA Astrophysics Data System (ADS)

    Yorke, James A.; Yorke, Ellen D.; Mallet-Paret, John

    1987-01-01

    A set of partial differential equations are developed describing fluid flow and temperature variation in a thermosyphon with particularly simple external heating. Several exact mathematical results indicate that a Bessel-Fourier expansion should converge rapidly to a solution. Numerical solutions for the time-dependent coefficients of that expansion exhibit a transition to chaos like that shown by the Lorenz equations over a wide range of fluid material parameters.

  5. Markov transitions and the propagation of chaos

    SciTech Connect

    Gottlieb, A.

    1998-12-01

    The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.

  6. Improving Deterministic Reserve Requirements for Security Constrained Unit Commitment and Scheduling Problems in Power Systems

    NASA Astrophysics Data System (ADS)

    Wang, Fengyu

    Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch

  7. Chaos-order transition in foraging behavior of ants.

    PubMed

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159

  8. Chaos-order transition in foraging behavior of ants.

    PubMed

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

  9. Physics and applications of laser diode chaos

    NASA Astrophysics Data System (ADS)

    Sciamanna, M.; Shore, K. A.

    2015-03-01

    This Review Article provides an overview of chaos in laser diodes by surveying experimental achievements in the area and explaining the theory behind the phenomenon. The fundamental physics underpinning laser diode chaos and also the opportunities for harnessing it for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient testbed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

  10. Edge of chaos and genesis of turbulence.

    PubMed

    Chian, Abraham C-L; Muñoz, Pablo R; Rempel, Erico L

    2013-11-01

    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable traveling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space. PMID:24329334

  11. Multi-scale dynamical behavior of spatially distributed systems: a deterministic point of view

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Le Jean, F.; Drapeau, L.; Huc, M.

    2015-12-01

    Physical and biophysical systems are spatially distributed systems. Their behavior can be observed or modelled spatially at various resolutions. In this work, a deterministic point of view is adopted to analyze multi-scale behavior taking a set of ordinary differential equation (ODE) as elementary part of the system.To perform analyses, scenes of study are thus generated based on ensembles of identical elementary ODE systems. Without any loss of generality, their dynamics is chosen chaotic in order to ensure sensitivity to initial conditions, that is, one fundamental property of atmosphere under instable conditions [1]. The Rössler system [2] is used for this purpose for both its topological and algebraic simplicity [3,4].Two cases are thus considered: the chaotic oscillators composing the scene of study are taken either independent, or in phase synchronization. Scale behaviors are analyzed considering the scene of study as aggregations (basically obtained by spatially averaging the signal) or as associations (obtained by concatenating the time series). The global modeling technique is used to perform the numerical analyses [5].One important result of this work is that, under phase synchronization, a scene of aggregated dynamics can be approximated by the elementary system composing the scene, but modifying its parameterization [6]. This is shown based on numerical analyses. It is then demonstrated analytically and generalized to a larger class of ODE systems. Preliminary applications to cereal crops observed from satellite are also presented.[1] Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141 (1963).[2] Rössler, An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976).[3] Gouesbet & Letellier, Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets, Phys. Rev. E 49, 4955-4972 (1994).[4] Letellier, Roulin & Rössler, Inequivalent topologies of chaos in simple equations, Chaos, Solitons

  12. From Order to Chaos in Earth Satellite Orbits

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  13. Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model

    NASA Astrophysics Data System (ADS)

    Novkaniza, F.; Ivana, Aldila, D.

    2016-04-01

    Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.

  14. Deterministic dynamics in the minority game

    NASA Astrophysics Data System (ADS)

    Jefferies, P.; Hart, M. L.; Johnson, N. F.

    2002-01-01

    The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG's deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game's quenched disorder. Approximate analytical expressions are obtained and the effect of ``market impact'' is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.

  15. Bayesian Uncertainty Analyses Via Deterministic Model

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, R.

    2001-05-01

    Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.

  16. Shape-Controlled Deterministic Assembly of Nanowires.

    PubMed

    Zhao, Yunlong; Yao, Jun; Xu, Lin; Mankin, Max N; Zhu, Yinbo; Wu, Hengan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2016-04-13

    Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics. PMID:26999059

  17. Ada programming guidelines for deterministic storage management

    NASA Technical Reports Server (NTRS)

    Auty, David

    1988-01-01

    Previous reports have established that a program can be written in the Ada language such that the program's storage management requirements are determinable prior to its execution. Specific guidelines for ensuring such deterministic usage of Ada dynamic storage requirements are described. Because requirements may vary from one application to another, guidelines are presented in a most-restrictive to least-restrictive fashion to allow the reader to match appropriate restrictions to the particular application area under investigation.

  18. Chaos on the conveyor belt.

    PubMed

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five). PMID:23679502

  19. Control of collective network chaos

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  20. Control of collective network chaos

    SciTech Connect

    Wagemakers, Alexandre Sanjuán, Miguel A. F.

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced” ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  1. The Minerals of Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation of 3-dimensional model with 5x vertical exaggeration

    This image of chaotic terrain in the Aureum Chaos region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0858UTC (3:58 a.m. EST) on January 24, 2008, near 3.66 degrees south latitude, 26.5 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 10 kilometers (6.2 miles) wide at its narrowest point.

    Aureum Chaos is a 368 kilometer (229 mile) wide area of chaotic terrain in the eastern part of Valles Marineris. The chaotic terrain is thought to have formed by collapse of the surrounding Margaritifer Terra highland region. Aureum Chaos contains heavily eroded, randomly oriented mesas, plateaus, and knobs many revealing distinct layered deposits along their slopes. These deposits may be formed from remnants of the collapsed highlands, sand carried by Martian winds, dust or volcanic ash that settled out of the atmosphere, or sediments laid down on the floor of an ancient lake.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover a narrow plateau near the edge of the chaotic terrain, that stretches across from the southwest to the northeast.

    The lower left image, an infrared false color image, reveals the plateau and several eroded knobs of varying sizes. The plateau's layer-cake structure is similar to that of other layered outcrops in Valles Marineris.

    The lower right image reveals the strengths of mineral spectral features overlain on a black-and-white version of the infrared image. Areas shaded in red hold more of the mineral pyroxene, a primary component of basaltic rocks that are prevalent in the highlands. Spots of green

  2. Adapted polynomial chaos expansion for failure detection

    SciTech Connect

    Paffrath, M. Wever, U.

    2007-09-10

    In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.

  3. Deterministic Mean-Field Ensemble Kalman Filtering

    DOE PAGES

    Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d deterministic and standard EnKF. Numerical results support and extend the theory.« less

  4. Order-to-chaos transition in the hardness of random Boolean satisfiability problems

    NASA Astrophysics Data System (ADS)

    Varga, Melinda; Sumi, Róbert; Toroczkai, Zoltán; Ercsey-Ravasz, Mária

    2016-05-01

    Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k -SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ , an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N , the hardness of formulas in random k -SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α , hardness appears through a second-order phase transition at αχ in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ ˜NB |α - αχ|1-γ with 0 <γ <1 . We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased.

  5. Order-to-chaos transition in the hardness of random Boolean satisfiability problems.

    PubMed

    Varga, Melinda; Sumi, Róbert; Toroczkai, Zoltán; Ercsey-Ravasz, Mária

    2016-05-01

    Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k-SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ, an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N, the hardness of formulas in random k-SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α, hardness appears through a second-order phase transition at α_{χ} in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ∼N^{B|α-α_{χ}|^{1-γ}} with 0<γ<1. We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased. PMID:27300884

  6. Order-to-chaos transition in the hardness of random Boolean satisfiability problems.

    PubMed

    Varga, Melinda; Sumi, Róbert; Toroczkai, Zoltán; Ercsey-Ravasz, Mária

    2016-05-01

    Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k-SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ, an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N, the hardness of formulas in random k-SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α, hardness appears through a second-order phase transition at α_{χ} in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ∼N^{B|α-α_{χ}|^{1-γ}} with 0<γ<1. We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased.

  7. Chaos in a spatially-developing plane mixing layer

    NASA Technical Reports Server (NTRS)

    Broze, J. G.; Hussain, Fazle; Buell, J. C.

    1988-01-01

    A spatially-developing plane mixing layer was analyzed for chaotic behavior. A direct numerical simulation of the Navier-Stokes equations in a 2-D domain infinite in y and having inflow-outflow boundary conditions in x was used for data. Spectra, correlation dimension and the largest Lyapunov exponent were computed as functions of downstream distance x. When forced at a single (fundamental) frequency with maximum amplitude, the flow is periodic at the inflow but becomes aperiodic with increasing x. The aperiodic behavior is caused by the presence of a noisy subharmonic caused by the feedback between the necessarily nonphysical inflow and outflow boundary conditions. In order to overshadow this noise the flow was also studied with the same fundamental forcing and added random forcing of amplitude upsilon prime sub R/delta U = 0.01 at the inlet. Results were qualitatively the same in both cases: for small x, spectral peaks were sharp and dimension was nearly 1, but as x increased a narrowband spectral peak grew, spectra decayed exponentially at high frequencies and dimension increased to greater than 3. Based on these results, the flow appears to exhibit deterministic chaos. However, at no location was the largest Lyapunov exponent found to be significantly greater than zero.

  8. Chaos control applied to cardiac rhythms represented by ECG signals

    NASA Astrophysics Data System (ADS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-10-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors.

  9. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  10. Harvesting entropy and quantifying the transition from noise to chaos in a photon-counting feedback loop.

    PubMed

    Hagerstrom, Aaron Morgan; Murphy, Thomas Edward; Roy, Rajarshi

    2015-07-28

    Many physical processes, including the intensity fluctuations of a chaotic laser, the detection of single photons, and the Brownian motion of a microscopic particle in a fluid are unpredictable, at least on long timescales. This unpredictability can be due to a variety of physical mechanisms, but it is quantified by an entropy rate. This rate, which describes how quickly a system produces new and random information, is fundamentally important in statistical mechanics and practically important for random number generation. We experimentally study entropy generation and the emergence of deterministic chaotic dynamics from discrete noise in a system that applies feedback to a weak optical signal at the single-photon level. We show that the dynamics transition from shot noise to chaos as the photon rate increases and that the entropy rate can reflect either the deterministic or noisy aspects of the system depending on the sampling rate and resolution.

  11. Scaling of weighted spectral distribution in deterministic scale-free networks

    NASA Astrophysics Data System (ADS)

    Jiao, Bo; Nie, Yuan-ping; Shi, Jian-mai; Huang, Cheng-dong; Zhou, Ying; Du, Jing; Guo, Rong-hua; Tao, Ye-rong

    2016-06-01

    Scale-free networks are abundant in the real world. In this paper, we investigate the scaling properties of the weighted spectral distribution in several deterministic and stochastic models of evolving scale-free networks. First, we construct a new deterministic scale-free model whose node degrees have a unified format. Using graph structure features, we derive a precise formula for the spectral metric in this model. This formula verifies that the spectral metric grows sublinearly as network size (i.e., the number of nodes) grows. Additionally, the mathematical reasoning of the precise formula theoretically provides detailed explanations for this scaling property. Finally, we validate the scaling properties of the spectral metric using some stochastic models. The experimental results show that this scaling property can be retained regardless of local world, node deleting and assortativity adjustment.

  12. Genome chaos: survival strategy during crisis.

    PubMed

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  13. Deterministic photon bias in speckle imaging

    NASA Technical Reports Server (NTRS)

    Beletic, James W.

    1989-01-01

    A method for determining photo bias terms in speckle imaging is presented, and photon bias is shown to be a deterministic quantity that can be calculated without the use of the expectation operator. The quantities obtained are found to be identical to previous results. The present results have extended photon bias calculations to the important case of the bispectrum where photon events are assigned different weights, in which regime the bias is a frequency dependent complex quantity that must be calculated for each frame.

  14. Deterministic Switching in Bismuth Ferrite Nanoislands.

    PubMed

    Morelli, Alessio; Johann, Florian; Burns, Stuart R; Douglas, Alan; Gregg, J Marty

    2016-08-10

    We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices. PMID:27454612

  15. Minimal Deterministic Physicality Applied to Cosmology

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    This report summarizes ongoing research and development since our 2012 foundation paper, including the emergent effects of a deterministic mechanism for fermion interactions: (1) the coherence of black holes and particles using a quantum chaotic model; (2) wide-scale (anti)matter prevalence from exclusion and weak interaction during the fermion reconstitution process; and (3) red-shift due to variations of vacuum energy density. We provide a context for Standard Model fields, and show how gravitation can be accountably unified in the same mechanism, but not as a unified field.

  16. Deterministic quantum computation with one photonic qubit

    NASA Astrophysics Data System (ADS)

    Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.

    2015-07-01

    We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.

  17. Mathematics Underground

    ERIC Educational Resources Information Center

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  18. Quantum chaos in nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Gusso, André; da Luz, M. G. E.; Rego, Luis G. C.

    2006-01-01

    We present a theoretical study of the electron-phonon coupling in suspended nanoelectromechanical systems and investigate the resulting quantum chaotic behavior. The phonons are associated with the vibrational modes of a suspended rectangular dielectric plate, with free or clamped boundary conditions, whereas the electrons are confined to a large quantum dot (QD) on the plate’s surface. The deformation potential and piezoelectric interactions are considered. By performing standard energy-level statistics we demonstrate that the spectral fluctuations exhibit the same distributions as those of the Gaussian orthogonal ensemble or the Gaussian unitary ensemble (GUE), therefore evidencing the emergence of quantum chaos. That is verified for a large range of material and geometry parameters. In particular, the GUE statistics occurs only in the case of a circular QD. It represents an anomalous phenomenon, previously reported for just a small number of systems, since the problem is time-reversal invariant. The obtained results are explained through a detailed analysis of the Hamiltonian matrix structure.

  19. Regularly timed events amid chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.

    2015-11-01

    We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.

  20. Chaos in brake squeal noise

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2011-02-01

    Brake squeal has become an increasing concern to the automotive industry because of warranty costs and the requirement for continued interior vehicle noise reduction. Most research has been directed to either analytical and experimental studies of brake squeal mechanisms or the prediction of brake squeal propensity using finite element methods. By comparison, there is a lack of systematic analysis of brake squeal data obtained from a noise dynamometer. It is well known that brake squeal is a nonlinear transient phenomenon and a number of studies using analytical and experimental models of brake systems (e.g., pin-on-disc) indicate that it could be treated as a chaotic phenomenon. Data obtained from a full brake system on a noise dynamometer were examined with nonlinear analysis techniques. The application of recurrence plots reveals chaotic structures even in noisy data from the squealing events. By separating the time series into different regimes, lower dimensional attractors are isolated and quantified by dynamic invariants such as correlation dimension estimates or Lyapunov exponents. Further analysis of the recurrence plot of squealing events by means of recurrence quantification analysis measures reveals different regimes of laminar and random behaviour, periodicity and chaos-forming recurrent transitions. These results help to classify brake squeal mechanisms and to enhance understanding of friction-related noise phenomena.

  1. Generic superweak chaos induced by Hall effect.

    PubMed

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems. PMID:27300880

  2. Generic superweak chaos induced by Hall effect

    NASA Astrophysics Data System (ADS)

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  3. The Capabilities of Chaos and Complexity

    PubMed Central

    Abel, David L.

    2009-01-01

    To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic) components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone)? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. “System” will be rigorously defined. Can a low-informational rapid succession of Prigogine’s dissipative structures self-order into bona fide organization? PMID:19333445

  4. [Chaos research, fractals, fuzzy logic. From stereotypes to reality--consequences for medicine].

    PubMed

    Demling, L

    1992-02-28

    Both language and conventional mathematics aim to describe reality. Although language is more flexible, it is usually also inaccurate, while mathematics permits accurate presentations and clear prognoses. However, it is burdened by the fact that it is not everywhere applicable. Such chaotic structures as clouds, or lang-term weather forecasting, for example, cannot be expressed in terms of mathematics. Chaos researchers are attempting, in a non-linear world, to understand mathematically dynamic, apparently unordered systems. In this connection, the fractal dimension also appears--which can be employed in the area of diagnosis to define tumor contours. Fuzzy logic comes closer to reality by replacing the inflexible yes/no by a more or less option and by introducing linguistic nuances into machine-controlled processes. Chaos research and fuzzy logic teach us that there is no such thing as certainty of action or prognosis. In the world as it is, whoever claims to possess it is either naive or guilty of self-deception.

  5. Discrete Deterministic and Stochastic Petri Nets

    NASA Technical Reports Server (NTRS)

    Zijal, Robert; Ciardo, Gianfranco

    1996-01-01

    Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.

  6. Deterministic magnetorheological finishing of optical aspheric mirrors

    NASA Astrophysics Data System (ADS)

    Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng

    2009-05-01

    A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.

  7. Deterministic forward scatter from surface gravity waves.

    PubMed

    Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale

    2012-12-01

    Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.

  8. Deterministic prediction of surface wind speed variations

    NASA Astrophysics Data System (ADS)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  9. Deterministic Creation of Macroscopic Cat States

    PubMed Central

    Lombardo, Daniel; Twamley, Jason

    2015-01-01

    Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157

  10. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    SciTech Connect

    Colón, Diego; Balthazar, José M.; Reis, Célia A. dos; Bueno, Átila M.; Diniz, Ivando S.; Rosa, Suelia de S. R. F.

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  11. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    PubMed

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source. PMID:27410852

  12. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia

    2014-12-01

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  13. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    PubMed

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  14. God's Stuff: The Constructive Powers of Chaos for Teaching Religion

    ERIC Educational Resources Information Center

    Willhauck, Susan

    2010-01-01

    Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…

  15. Chaos Theory as a Model for Managing Issues and Crises.

    ERIC Educational Resources Information Center

    Murphy, Priscilla

    1996-01-01

    Uses chaos theory to model public relations situations in which the salient feature is volatility of public perceptions. Discusses the premises of chaos theory and applies them to issues management, the evolution of interest groups, crises, and rumors. Concludes that chaos theory is useful as an analogy to structure image problems and to raise…

  16. The Nature (and Nurture) of Children's Perceptions of Family Chaos

    ERIC Educational Resources Information Center

    Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert

    2010-01-01

    Chaos in the home is a key environment in cognitive and behavioural development. However, we show that children's experience of home chaos is partly genetically mediated. We assessed children's perceptions of household chaos at ages 9 and 12 in 2337 pairs of twins. Using child-specific reports allowed us to use structural equation modelling to…

  17. Intermittent chaos in the forced Brusselator

    NASA Astrophysics Data System (ADS)

    Chen, S.-G.; Hao, B.-L.; Wang, G.-R.

    1984-06-01

    It is shown numerically that in the model of trimolecular reaction under external periodic force (the forced Brusselator) there exists the intermittent route to chaos. The time development of intermittent chaos and the method to distinguish intermittency from transients are studied. The large region of period 3 in the parameter space, discovered previously in the forced Brusselator, as well as smaller regions of periods 4, 5, 6, . . . etc., correspond to tangent bifurcations in one-dimensional mappings. Intermittency appears just before the start of every tangent bifurcation. Therefore, the period-doubling and the intermittent routes to chaos are 'twin' phenomena and they should be observable in many other systems described by nonlinear differential equations.

  18. Associative memory with spatiotemporal chaos control

    NASA Astrophysics Data System (ADS)

    Kushibe, Masanori; Liu, Yun; Ohtsubo, Junji

    1996-05-01

    Control of spatiotemporal chaos in a neural network with discrete time and continuous state variables is investigated. The chaos control is performed with the knowledge of only a part of the target information in the memory patterns. The success rate for the pattern associations and the dependence of the search time on the sampling number in the proposed chaos neural network are studied. By the introduction of the reinforcement factor in the learning process, the recognition rate of the network can be much enhanced. Random and regular samplings of the pattern for the control are tested and the successful results of the associations are demonstrated. The chaotic behavior and recalling ability of the system are evaluated based on the analysis of the Lyapunov spectrum of the network.

  19. A novel chaos danger model immune algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Qingyang; Wang, Song; Zhang, Li; Liang, Ying

    2013-11-01

    Making use of ergodicity and randomness of chaos, a novel chaos danger model immune algorithm (CDMIA) is presented by combining the benefits of chaos and danger model immune algorithm (DMIA). To maintain the diversity of antibodies and ensure the performances of the algorithm, two chaotic operators are proposed. Chaotic disturbance is used for updating the danger antibody to exploit local solution space, and the chaotic regeneration is referred to the safe antibody for exploring the entire solution space. In addition, the performances of the algorithm are examined based upon several benchmark problems. The experimental results indicate that the diversity of the population is improved noticeably, and the CDMIA exhibits a higher efficiency than the danger model immune algorithm and other optimization algorithms.

  20. Controlling chaos in wave-particle interactions.

    PubMed

    de Sousa, M C; Caldas, I L; Rizzato, F B; Pakter, R; Steffens, F M

    2012-07-01

    We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration. PMID:23005517

  1. Harnessing quantum transport by transient chaos.

    PubMed

    Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M

    2013-03-01

    Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.

  2. AIDS in India: constructive chaos?

    PubMed

    Chatterjee, A

    1991-08-01

    Until recently, the only sustained AIDS activity in India has been alarmist media attention complemented by occasional messages calling for comfort and dignity. Public perception of the AIDS epidemic in India has been effectively shaped by mass media. Press reports have, however, bolstered awareness of the problem among literate elements of urban populations. In the absence of sustained guidance in the campaign against AIDS, responsibility has fallen to voluntary health activists who have become catalysts for community awareness and participation. This voluntary initiative, in effect, seems to be the only immediate avenue for constructive public action, and signals the gradual development of an AIDS network in India. Proceedings from a seminar in Ahmedabad are discussed, and include plans for an information and education program targeting sex workers, health and communication programs for 150 commercial blood donors and their agents, surveillance and awareness programs for safer blood and blood products, and dialogue with the business community and trade unions. Despite the lack of coordination among volunteers and activists, every major city in India now has an AIDS group. A controversial bill on AIDS has ben circulating through government ministries and committees since mid-1989, a national AIDS committee exists with the Secretary of Health as its director, and a 3-year medium-term national plan exists for the reduction of AIDS and HIV infection and morbidity. UNICEF programs target mothers and children for AIDS awareness, and blood testing facilities are expected to be expanded. The article considers the present chaos effectively productive in forcing the Indian population to face up to previously taboo issued of sexuality, sex education, and sexually transmitted disease.

  3. Ikeda-like chaos on a dynamically filtered supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent

    2016-08-01

    We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.

  4. An introduction to chaos theory in CFD

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    1990-01-01

    The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.

  5. Low-dimensional chaos in turbulence

    NASA Technical Reports Server (NTRS)

    Vastano, John A.

    1989-01-01

    Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.

  6. A geometric criterion for adiabatic chaos

    SciTech Connect

    Kaper, T.J. ); Kovacic, G. )

    1994-03-01

    Chaos in adiabatic Hamiltonian systems is a recent discovery and a pervasive phenomenon in physics. In this work, a geometric criterion is discussed based on the theory of action from classical mechanics to detect the existence of Smale horseshoe chaos in adiabatic systems. It is used to show that generic adiabatic planar Hamiltonian systems exhibit stochastic dynamics in large regions of phase space. To illustrate the method, results are obtained for three problems concerning relativistic particle dynamics, fluid mechanics, and passage through resonance, results which either could not be obtained with existing methods, or which were difficult and analytically impractical to obtain with them.

  7. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  8. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect

    Jr., R M; Gilmer, J; Rubenchik, A; Shirk, M

    2004-12-08

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-D features and with 100-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels, as well as materials such as diamond and vanadium. The motivation for this project was to investigate the physics and chemistry that control the interactions of solid surfaces with laser beams and ion beams, with a view towards their applicability to the desired deterministic fabrication processes. As part of this LDRD project, one of our goals was to advance the state of the art for experimental work, but, in order to create ultimately a deterministic capability for such precision micromachining, another goal was to form a new modeling/simulation capability that could also extend the state of the art in this field. We have achieved both goals. In this project, we have, for the first time, combined a 1-D hydrocode (''HYADES'') with a 3-D molecular dynamics simulator (''MDCASK'') in our modeling studies. In FY02 and FY03, we investigated the ablation/surface-modification processes that occur on copper, gold, and nickel substrates with the use of sub-ps laser pulses. In FY04, we investigated laser ablation of carbon, including laser-enhanced chemical reaction on the carbon surface for both vitreous carbon and carbon aerogels. Both experimental and modeling results will be presented in the report that follows. The immediate impact of our investigation was a much better understanding of the chemical and physical processes that ensure when solid materials are exposed to femtosecond laser pulses. More broadly, we have better positioned LLNL to design a cluster tool for fabricating mesoscale objects utilizing laser pulses and ion-beams as well as more traditional machining/manufacturing techniques for applications such as components in NIF targets, remote sensors, including

  9. Electromagnetic field enhancement and light localization in deterministic aperiodic nanostructures

    NASA Astrophysics Data System (ADS)

    Gopinath, Ashwin

    The control of light matter interaction in periodic and random media has been investigated in depth during the last few decades, yet structures with controlled degree of disorder such as Deterministic Aperiodic Nano Structures (DANS) have been relatively unexplored. DANS are characterized by non-periodic yet long-range correlated (deterministic) morphologies and can be generated by the mathematical rules of symbolic dynamics and number theory. In this thesis, I have experimentally investigated the unique light transport and localization properties in planar dielectric and metal (plasmonics) DANS. In particular, I have focused on the design, nanofabrication and optical characterization of DANS, formed by arranging metal/dielectric nanoparticles in an aperiodic lattice. This effort is directed towards development of on-chip nanophotonic applications with emphasis on label-free bio-sensing and enhanced light emission. The DANS designed as Surface Enhanced Raman Scattering (SERS) substrate is composed of multi-scale aperiodic nanoparticle arrays fabricated by e-beam lithography and are capable of reproducibly demonstrating enhancement factors as high as ˜107. Further improvement of SERS efficiency is achieved by combining DANS formed by top-down approach with bottom-up reduction of gold nanoparticles, to fabricate novel nanostructures called plasmonic "nano-galaxies" which increases the SERS enhancement factors by 2--3 orders of magnitude while preserving the reproducibility. In this thesis, along with presenting details of fabrication and SERS characterization of these "rationally designed" SERS substrates, I will also present results on using these substrates for detection of DNA nucleobases, as well as reproducible label-free detection of pathogenic bacteria with species specificity. In addition to biochemical detection, the combination of broadband light scattering behavior and the ability for the generation of reproducible high fields in DANS make these

  10. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns.

    PubMed

    Dalziel, Benjamin D; Bjørnstad, Ottar N; van Panhuis, Willem G; Burke, Donald S; Metcalf, C Jessica E; Grenfell, Bryan T

    2016-02-01

    Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests these cycles can be disrupted by high amplitude seasonal fluctuations in transmission rates, resulting in deterministic chaos. However, persistent deterministic chaos has never been observed, in part because sufficiently large oscillations in transmission rates are uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of transmission, rather than through high-amplitude fluctuations in transmission rates. We base our analysis on a comparison of measles incidence in 80 major cities in the prevaccination era United States and United Kingdom. Unlike the regular limit cycles seen in the UK, measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity resulting in chaotic patterns. We show that these patterns were driven by small systematic differences between countries in the duration of the summer period of low transmission. This example demonstrates empirically that small perturbations in disease transmission patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics. PMID:26845437

  11. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns

    PubMed Central

    Dalziel, Benjamin D.; Bjørnstad, Ottar N.; van Panhuis, Willem G.; Burke, Donald S.; Metcalf, C. Jessica E.; Grenfell, Bryan T.

    2016-01-01

    Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests these cycles can be disrupted by high amplitude seasonal fluctuations in transmission rates, resulting in deterministic chaos. However, persistent deterministic chaos has never been observed, in part because sufficiently large oscillations in transmission rates are uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of transmission, rather than through high-amplitude fluctuations in transmission rates. We base our analysis on a comparison of measles incidence in 80 major cities in the prevaccination era United States and United Kingdom. Unlike the regular limit cycles seen in the UK, measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity resulting in chaotic patterns. We show that these patterns were driven by small systematic differences between countries in the duration of the summer period of low transmission. This example demonstrates empirically that small perturbations in disease transmission patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics. PMID:26845437

  12. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns.

    PubMed

    Dalziel, Benjamin D; Bjørnstad, Ottar N; van Panhuis, Willem G; Burke, Donald S; Metcalf, C Jessica E; Grenfell, Bryan T

    2016-02-01

    Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests these cycles can be disrupted by high amplitude seasonal fluctuations in transmission rates, resulting in deterministic chaos. However, persistent deterministic chaos has never been observed, in part because sufficiently large oscillations in transmission rates are uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of transmission, rather than through high-amplitude fluctuations in transmission rates. We base our analysis on a comparison of measles incidence in 80 major cities in the prevaccination era United States and United Kingdom. Unlike the regular limit cycles seen in the UK, measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity resulting in chaotic patterns. We show that these patterns were driven by small systematic differences between countries in the duration of the summer period of low transmission. This example demonstrates empirically that small perturbations in disease transmission patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics.

  13. Deterministic approaches to coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Allen, L. J.; D'Alfonso, A. J.; Martin, A. V.; Morgan, A. J.; Quiney, H. M.

    2016-01-01

    In this review we will consider the retrieval of the wave at the exit surface of an object illuminated by a coherent probe from one or more measured diffraction patterns. These patterns may be taken in the near-field (often referred to as images) or in the far field (the Fraunhofer diffraction pattern, where the wave is the Fourier transform of that at the exit surface). The retrieval of the exit surface wave from such data is an inverse scattering problem. This inverse problem has historically been solved using nonlinear iterative methods, which suffer from convergence and uniqueness issues. Here we review deterministic approaches to obtaining the exit surface wave which ameliorate those problems.

  14. Deterministic polishing from theory to practice

    NASA Astrophysics Data System (ADS)

    Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary

    2015-10-01

    Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.

  15. Deterministic-random separation in nonstationary regime

    NASA Astrophysics Data System (ADS)

    Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.

    2016-02-01

    In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable

  16. Stochastic versus deterministic variability in simple neuronal circuits: I. Monosynaptic spinal cord reflexes.

    PubMed Central

    Chang, T; Schiff, S J; Sauer, T; Gossard, J P; Burke, R E

    1994-01-01

    Long time series of monosynaptic Ia-afferent to alpha-motoneuron reflexes were recorded in the L7 or S1 ventral roots in the cat. Time series were collected before and after spinalization at T13 during constant amplitude stimulations of group Ia muscle afferents in the triceps surae muscle nerves. Using autocorrelation to analyze the linear correlation in the time series demonstrated oscillations in the decerebrate state (4/4) that were eliminated after spinalization (5/5). Three tests for determinism were applied to these series: 1) local flow, 2) local dispersion, and 3) nonlinear prediction. These algorithms were validated with time series generated from known deterministic equations. For each experimental and theoretical time series used, matched time-series of stochastic surrogate data were generated to serve as mathematical and statistical controls. Two of the time series collected in the decerebrate state (2/4) demonstrated evidence for deterministic structure. This structure could not be accounted for by the autocorrelation in the data, and was abolished following spinalization. None of the time series collected in the spinalized state (0/5) demonstrated evidence of determinism. Although monosynaptic reflex variability is generally stochastic in the spinalized state, this simple driven system may display deterministic behavior in the decerebrate state. Images FIGURE 1 PMID:7948680

  17. Mathematics, Anyone?

    ERIC Educational Resources Information Center

    Reys, Robert; Reys, Rustin

    2011-01-01

    In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…

  18. Qualitative chaos in geomorphic systems, with an example from wetland response to sea level rise

    SciTech Connect

    Phillips, J.D. )

    1992-05-01

    The spatial and temporal complexity of earth surface processes and landforms and the presence of deterministic chaos in many fundamental physical processes provide reasons to suspect chaos in geomorphic systems. A method is presented to assess the likelihood of chaotic behavior in a geomorphic system. The method requires identification of the fundamental system components, their positive, negative, or negligible influences on each other, and the relative strength or magnitudes of these links. Based on this information, the method can classify geomorphic systems as stable and nonchaotic, unstable and potentially chaotic, or unstable and generally chaotic. Positive, self-enhancing feedback is a key diagnostic of the likelihood of chaotic behavior. A sample application of the method to the problem of coastal marsh response to sea level rise is provided, which shows the marsh to be unstable. If changes in vegetation cover are partly dependent on vegetation density, the system is generally chaotic if marsh vegetation exhibits self-enhancing feedback (for example, seed source effects) and potentially chaotic if vegetation exhibits self-limiting feedback (competitive effects). The attractors controlling the chaotic dynamics represent states of pronounced erosion/drowning or accretion/expansion.

  19. Spatial structure and chaos in insect population dynamics

    NASA Astrophysics Data System (ADS)

    Hassell, Michael P.; Comins, Hugh N.; Mayt, Robert M.

    1991-09-01

    MOST environments are spatially subdivided, or patchy, and there has been much interest in the relationship between the dynamics of populations at the local and regional (metapopulation) scales1. Here we study mathematical models for host-parasitoid interactions, where in each generation specified fractions (µN and µp, respectively) of the host and parasitoid subpopulations in each patch move to adjacent patches; in most previous work, the movement is not localized but is to any other patch2. These simple and biologically sensible models with limited diffusive dispersal exhibit a remarkable range of dynamic behaviour: the density of the host and parasitoid subpopulations in a two-dimensional array of patches may exhibit complex patterns of spiral waves or spatially chaotic variation, they may show static 'crystal lattice' patterns, or they may become extinct. This range of behaviour is obtained with the local dynamics being deterministically unstable, with a constant host reproductive rate and no density dependence in the movement patterns. The dynamics depend on the host reproductive rate, and on the values of the parameters µN and µp. The results are relatively insensitive to the details of the interactions; we get essentially the same results from the mathematically-explicit Nicholon-Bailey model of host-parasitoid interactions, and from a very general 'cellular automaton' model in which only qualitative rules are specified. We conclude that local movement in a patchy environment can help otherwise unstable host and parasitoid populations to persist together, but that the deterministically generated spatial patterns in population density can be exceedingly complex (and sometimes indistinguishable from random environmental fluctuations).

  20. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  1. Controlling Chaos, Targeting, and Transport.

    NASA Astrophysics Data System (ADS)

    Bollt, Erik Matthew Arnold

    1995-01-01

    The sensitivity that defines chaotic dynamics makes accessible a wide range of behaviors using arbitrarily small control signals. "Controlling chaos" attempts to cause large changes in the dynamics using only small perturbations. In targeting, one attempts to find a fast path from an initial condition {bf a} to a target point {bf b} by exploiting the fact that transport times for a chaotic system are highly sensitive to initial conditions and parameter values. The main difficulty is finding the switching points, the times and places to apply judiciously chosen perturbations. I present a new technique to find rough orbits (epsilon chains) that rapidly achieve a desired transport. The strategy is to build the epsilon chain from segments of a long orbit. In two-dimensional maps, long orbits have recurrences in neighborhoods where faster orbits must also pass. Long orbits of higher dimensional maps are likely to have recurrences, albeit less frequently. The recurrences are used as switching points between segments. If a local hyperbolicity condition is satisfied, then a nearby shadow orbit might be constructed. In one example, I show that transport times for the standard map can typically be reduced by a factor of 10^4. In another example, I apply the technique to the restricted three-body problem from which I find a low energy Earth-Moon transfer orbit which requires 38% less characteristic velocity than a comparable Hohmann transfer orbit. In yet another example, a symbol dynamics model has a closed-form expression for the optimal transporting orbit from near {bf a} to near {bf b}. I compare the optimal orbit to the targeted orbit resulting from removing recurrences, which also takes a particularly simple form in symbol dynamics. The techniques developed here do not require a closed-form representation of the map. Using the standard map as an example, I demonstrate that predictions from a time series may be sufficient for targeting. Finally, as a contribution to the

  2. Chaos in Practice: Techniques for Career Counsellors

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2005-01-01

    The chaos theory of careers emphasises continual change, the centrality and importance of chance events, the potential of minor events to have disproportionately large impacts on subsequent events, and the capacity for dramatic phase shifts in career behaviour. This approach challenges traditional approaches to career counselling, assumptions…

  3. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  4. Criticality and Chaos in Systems of Communities

    NASA Astrophysics Data System (ADS)

    Ostilli, Massimo; Figueiredo, Wagner

    2016-01-01

    We consider a simple model of communities interacting via bilinear terms. After analyzing the thermal equilibrium case, which can be described by an Hamiltonian, we introduce the dynamics that, for Ising-like variables, reduces to a Glauber-like dynamics. We analyze and compare four different versions of the dynamics: flow (differential equations), map (discretetime dynamics), local-time update flow, and local-time update map. The presence of only bilinear interactions prevent the flow cases to develop any dynamical instability, the system converging always to the thermal equilibrium. The situation is different for the map when unfriendly couplings are involved, where period-two oscillations arise. In the case of the map with local-time updates, oscillations of any period and chaos can arise as a consequence of the reciprocal “tension” accumulated among the communities during their sleeping time interval. The resulting chaos can be of two kinds: true chaos characterized by positive Lyapunov exponent and bifurcation cascades, or marginal chaos characterized by zero Lyapunov exponent and critical continuous regions.

  5. Classical chaos in atom-field systems

    NASA Astrophysics Data System (ADS)

    Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; Lerma-Hernández, S.; Hirsch, J. G.

    2016-08-01

    The relation between the onset of chaos and critical phenomena, like quantum phase transitions (QPTs) and excited-state quantum phase transitions (ESQPTs), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPTs based in the resonant case, the off-resonant cases, and a close look at the vicinity of the QPTs in resonance, show clearly that both phenomena, ESQPTs and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing us to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases.

  6. Neural control: Chaos control sets the pace

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2010-03-01

    Even simple creatures, such as cockroaches, are capable of complex responses to changes in their environment. But robots usually require complicated dedicated control circuits to perform just a single action. Chaos control theory could allow simpler control strategies to realize more complex behaviour.

  7. Order, chaos and nuclear dynamics: An introduction

    SciTech Connect

    Swiatecki, W.J.

    1990-08-01

    This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs.

  8. A Framework for Chaos Theory Career Counselling

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.

    2010-01-01

    Theory in career development counselling provides a map that counsellors can use to understand and structure the career counselling process. It also provides a means to communicate this understanding and structuring to their clients as part of the counselling intervention. The chaos theory of careers draws attention to the complexity,…

  9. Many-body chaos at weak coupling

    NASA Astrophysics Data System (ADS)

    Stanford, Douglas

    2016-10-01

    The strength of chaos in large N quantum systems can be quantified using λ L , the rate of growth of certain out-of-time-order four point functions. We calculate λ L to leading order in a weakly coupled matrix Φ4 theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.

  10. Chaos and Change in a Suicidal Family.

    ERIC Educational Resources Information Center

    Chamberlain, Linda

    1995-01-01

    The concepts evolving from chaos theory can help clinicians identify patterns in family interactions that are critical for transformations to occur. This article explores a specific case example from such a perspective. Observation of how suicidal behavior becomes part of a pattern of family interaction offers a framework for clinicians to observe…

  11. Chaos, Collaboration, and Curriculum: A Deliberative Process.

    ERIC Educational Resources Information Center

    Goff, Katherine E.

    1998-01-01

    Presents curriculum as a complex social process. Explores chaos theory as a metaphor for understanding curriculum and a framework for viewing the curriculum-development process. Provides examples of collaborative leadership (described by David Chrislip and Carl Larson) and shows how they might answer Joseph Schwab's call for a deliberative…

  12. Classical chaos in atom-field systems.

    PubMed

    Chávez-Carlos, J; Bastarrachea-Magnani, M A; Lerma-Hernández, S; Hirsch, J G

    2016-08-01

    The relation between the onset of chaos and critical phenomena, like quantum phase transitions (QPTs) and excited-state quantum phase transitions (ESQPTs), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPTs based in the resonant case, the off-resonant cases, and a close look at the vicinity of the QPTs in resonance, show clearly that both phenomena, ESQPTs and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing us to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases. PMID:27627300

  13. Estimating ensemble average power delivered by a piezoelectric patch actuator to a non-deterministic subsystem

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Wahid, Azni N.; Nor, Khairul A. M.

    2014-02-01

    Engineering systems such as aircraft, ships and automotive are considered built-up structures. Dynamically they are taught of as being fabricated from many components that are classified as 'deterministic subsystems' (DS) and 'non-deterministic subsystems' (Non-DS). Structures' response of the DS is deterministic in nature and analysed using deterministic modelling methods such as finite element (FE) method. The response of Non-DS is statistical in nature and estimated using statistical modelling technique such as statistical energy analysis (SEA). SEA method uses power balance equation, in which any external input to the subsystem must be represented in terms of power. Often, input force is taken as point force and ensemble average power delivered by point force is already well-established. However, the external input can also be applied in the form of moments exerted by a piezoelectric (PZT) patch actuator. In order to be able to apply SEA method for input moments, a mathematical representation for moment generated by PZT patch in the form of average power is needed, which is attempted in this paper. A simply-supported plate with attached PZT patch is taken as a benchmark model. Analytical solution to estimate average power is derived using mobility approach. Ensemble average of power given by the PZT patch actuator to the benchmark model when subjected to structural uncertainties is also simulated using Lagrangian method and FEA software. The analytical estimation is compared with the Lagrangian model and FE method for validation. The effects of size and location of the PZT actuators on the power delivered to the plate are later investigated.

  14. THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT

    SciTech Connect

    Lithwick, Yoram; Wu Yanqin

    2011-09-20

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within {approx}25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  15. Human gait recognition via deterministic learning.

    PubMed

    Zeng, Wei; Wang, Cong

    2012-11-01

    Recognition of temporal/dynamical patterns is among the most difficult pattern recognition tasks. Human gait recognition is a typical difficulty in the area of dynamical pattern recognition. It classifies and identifies individuals by their time-varying gait signature data. Recently, a new dynamical pattern recognition method based on deterministic learning theory was presented, in which a time-varying dynamical pattern can be effectively represented in a time-invariant manner and can be rapidly recognized. In this paper, we present a new model-based approach for human gait recognition via the aforementioned method, specifically for recognizing people by gait. The approach consists of two phases: a training (learning) phase and a test (recognition) phase. In the training phase, side silhouette lower limb joint angles and angular velocities are selected as gait features. A five-link biped model for human gait locomotion is employed to demonstrate that functions containing joint angle and angular velocity state vectors characterize the gait system dynamics. Due to the quasi-periodic and symmetrical characteristics of human gait, the gait system dynamics can be simplified to be described by functions of joint angles and angular velocities of one side of the human body, thus the feature dimension is effectively reduced. Locally-accurate identification of the gait system dynamics is achieved by using radial basis function (RBF) neural networks (NNs) through deterministic learning. The obtained knowledge of the approximated gait system dynamics is stored in constant RBF networks. A gait signature is then derived from the extracted gait system dynamics along the phase portrait of joint angles versus angular velocities. A bank of estimators is constructed using constant RBF networks to represent the training gait patterns. In the test phase, by comparing the set of estimators with the test gait pattern, a set of recognition errors are generated, and the average L(1) norms

  16. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs

    SciTech Connect

    Chen, Yi; Jakeman, John; Gittelson, Claude; Xiu, Dongbin

    2015-01-08

    In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained from the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.

  17. Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Blackmore, Denis

    2016-10-01

    Bouncing droplets on a vibrating fluid bath can exhibit wave-particle behavior, such as being propelled by interacting with its own wave field. These droplets seem to walk across the bath, and thus are dubbed walkers. Experiments have shown that walkers can exhibit exotic dynamical behavior indicative of chaos. While the integro-differential models developed for these systems agree well with the experiments, they are difficult to analyze mathematically. In recent years, simpler discrete dynamical models have been derived and studied numerically. The numerical simulations of these models show evidence of exotic dynamics such as period doubling bifurcations, Neimark--Sacker (N--S) bifurcations, and even chaos. For example, in [Gilet, PRE 2014], based on simulations Gilet conjectured the existence of a supercritical N-S bifurcation as the damping factor in his one-dimensional path model. We prove Gilet's conjecture and more; in fact, both supercritical and subcritical (N-S) bifurcations are produced by separately varying the damping factor and wave-particle coupling for all eigenmode shapes. Then we compare our theoretical results with some previous and new numerical simulations, and find complete qualitative agreement. Furthermore, evidence of chaos is shown by numerically studying a global bifurcation.

  18. Species fluctuations sustained by a cyclic succession at the edge of chaos.

    PubMed

    Benincà, Elisa; Ballantine, Bill; Ellner, Stephen P; Huisman, Jef

    2015-05-19

    Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world's oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos.

  19. Species fluctuations sustained by a cyclic succession at the edge of chaos.

    PubMed

    Benincà, Elisa; Ballantine, Bill; Ellner, Stephen P; Huisman, Jef

    2015-05-19

    Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world's oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos. PMID:25902520

  20. Chaos control in passive walking dynamics of a compass-gait model

    NASA Astrophysics Data System (ADS)

    Gritli, Hassène; Khraief, Nahla; Belghith, Safya

    2013-08-01

    The compass-gait walker is a two-degree-of-freedom biped that can walk passively and steadily down an incline without any actuation. The mathematical model of the walking dynamics is represented by an impulsive hybrid nonlinear model. It is capable of displaying cyclic motions and chaos. In this paper, we propose a new approach to controlling chaos cropped up from the passive dynamic walking of the compass-gait model. The proposed technique is to linearize the nonlinear model around a desired passive hybrid limit cycle. Then, we show that the nonlinear model is transformed to an impulsive hybrid linear model with a controlled jump. Basing on the linearized model, we derive an analytical expression of a constrained controlled Poincaré map. We present a method for the numerical simulation of this constrained map where bifurcation diagrams are plotted. Relying on these diagrams, we show that the linear model is fairly close to the nonlinear one. Using the linearized controlled Poincaré map, we design a state feedback controller in order to stabilize the fixed point of the Poincaré map. We show that this controller is very efficient for the control of chaos for the original nonlinear model.

  1. Species fluctuations sustained by a cyclic succession at the edge of chaos

    PubMed Central

    Benincà, Elisa; Ballantine, Bill; Ellner, Stephen P.; Huisman, Jef

    2015-01-01

    Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world’s oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos. PMID:25902520

  2. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.

    PubMed

    Dtchetgnia Djeundam, S R; Yamapi, R; Kofane, T C; Aziz-Alaoui, M A

    2013-09-01

    We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.

  3. Quality control in a deterministic manufacturing environment

    SciTech Connect

    Barkman, W.E.; Babelay, E.F.; De Mint, P.D.; Lewis, J.C.; Woodard, L.M.

    1985-01-24

    An approach for establishing quality control in processes which exhibit undesired continual or intermittent excursions in key process parameters is discussed. The method is called deterministic manufacturing, and it is designed to employ automatic monitoring of the key process variables for process certification, but utilizes only sample certification of the process output to verify the validity of the measurement process. The system utilizes a local minicomputer to sample the appropriate process parameters that describe the condition of the machine tool, the cutting process, and the computer numerical control system. Sampled data are pre-processed by the minicomputer and then sent to a host computer that maintains a permanent data base describing the manufacturing conditions for each work piece. Parts are accepted if the various parameters remain within the required limits during the machining cycle. The need for additional actions is flagged if limits are exceeded. With this system it is possible to retrospectively examine the process status just prior to the occurrence of a problem. (LEW)

  4. Deterministic particle transport in a ratchet flow

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  5. Continuum models for gas in disturbed galaxies. III. Bifurcations and chaos in a deterministic model for bursts of star formation

    SciTech Connect

    Struck-Marcell, C.; Scalo, J.M.

    1987-05-01

    A study of the nonlinear behavior of model equations describing the Oort model for interstellar cloud evolution and star formation is presented. One-zone cloud fluid equations for the Oort model are given, and it is shown how, as the time-delay parameter T(d) is increased, the system bifurcates to limit-cycle behavior accompanied by star formation bursts and, with further increase in T(d), suffers further bifurcations leading to chaotic behavior. A linear stability analysis, including time delay, is used to demonstrate that the behavior of the Oort model does not depend sensitively on the other parameters involved. It is also shown that the onset of bifurcation to a limit cycle can be predicted analytically. The major predictions of the calculations are compared with available relevant observations of star formation activity in galaxies, especially tidally interacting galaxies. 112 references.

  6. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities

    SciTech Connect

    Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.

    2012-03-29

    A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.

  7. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  8. Mathematics anxiety and mathematics achievement

    NASA Astrophysics Data System (ADS)

    Sherman, Brian F.; Wither (Post.), David P.

    2003-09-01

    This paper is a distillation of the major result from the 1998 Ph.D. thesis of the late David Wither. It details a longitudinal study over five years of the relationship between mathematics anxiety and mathematics achievement. It starts from the already well documented negative correlation between the two, and seeks to establish one of the three hypotheses—that mathematics anxiety causes an impairment of mathematics achievement; that lack of mathematics achievement causes mathematics anxiety; or that there is a third underlying cause of the two.

  9. Optomechanically induced stochastic resonance and chaos transfer between optical fields

    NASA Astrophysics Data System (ADS)

    Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan

    2016-06-01

    Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

  10. [Chaos and fractals and their applications in electrocardial signal research].

    PubMed

    Jiao, Qing; Guo, Yongxin; Zhang, Zhengguo

    2009-06-01

    Chaos and fractals are ubiquitous phenomena of nature. A system with fractal structure usually behaves chaos. As a complicated nonlinear dynamics system, heart has fractals structure and behaves as chaos. The deeper inherent mechanism of heart can be opened out when the chaos and fractals theory is utilized in the research of the electrical activity of heart. Generally a time series of a system was used for describing the status of the strange attractor of the system. The indices include Poincare plot, fractals dimension, Lyapunov exponent, entropy, scaling exponent, Hurst index and so on. In this article, the basic concepts and the methods of chaos and fractals were introduced firstly. Then the applications of chaos and fractals theories in the study of electrocardial signal were expounded with example of how they are used for ventricular fibrillation.

  11. Rainforest Mathematics

    ERIC Educational Resources Information Center

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  12. Surface plasmon field enhancements in deterministic aperiodic structures.

    PubMed

    Shugayev, Roman

    2010-11-22

    In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.

  13. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOEpatents

    Melechko, Anatoli V.; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2011-05-17

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.

  14. Experimental chaos detection in the Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Eyebe Fouda, J. S. Armand; Bodo, Bertrand; Djeufa, Guy M. D.; Sabat, Samrat L.

    2016-04-01

    This paper presents a comparative study of four algorithms namely the maximal Lyapunov exponent (MLE), 0-1 test, conditional entropy of ordinal patterns (CPE) and recently developed permutation largest slope entropy (PLSE) algorithm for experimental chaos detection in the Duffing oscillator. We consider an electrical model of the Duffing oscillator and its equivalent electronic circuit for generating the data to validate the effectiveness of the algorithms. The performance of the PLSE is compared with the 0-1 test and the CPE algorithms on the data set obtained from the simulated circuit; and with the MLE for the data collected from the experimental circuit. The experimental data are acquired using a digital oscilloscope with 1 MHz sampling frequency. From the comparison of the experimental spectra of the four methods with the analog phase portraits of the real system, it appears that the PLSE is the more reliable algorithm for chaos detection from experimental data.

  15. Chaos theory perspective for industry clusters development

    NASA Astrophysics Data System (ADS)

    Yu, Haiying; Jiang, Minghui; Li, Chengzhang

    2016-03-01

    Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.

  16. Noise suppressions in synchronized chaos lidars.

    PubMed

    Wu, Wen-Ting; Liao, Yi-Huan; Lin, Fan-Yi

    2010-12-01

    The noise suppressions in the chaos lidar (CLIDAR) and the synchronized chaos lidar (S-CLIDAR) systems with the optoelectronic feedback (OEF) and optical feedback (OF) schemes are studied numerically. Compared with the CLIDAR system, the S-CLIDAR system with the OEF scheme has better correlation coefficients in the large noise regime for SNR < 15 dB. For the S-CLIDAR system with the OF scheme, better detections are also achieved in wide ranges depending on the levels of the phase noise presented in the channel. To have the best synchronization and detection quality, the optimized conditions for the coupling and feedback strengths in the S-CLIDAR system are also discussed.

  17. Quantum chaos in QCD and hadrons

    NASA Astrophysics Data System (ADS)

    Markum, Harald; Plessas, Willibald; Pullirsch, Rainer; Sengl, Bianka; Wagenbrunn, Robert F.

    This article starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within the random-matrix theory. The objective of the presentation is twofold and begins with recent results on quantum chromodynamics and the quarkgluon plasma. We conclude with recent research work on the spectroscopy of baryons. Within the framework of a relativistic constituent quark model we investigate the excitation spectra of the nucleon and the delta with regard to a possible chaotic behavior for the cases when a hyperfine interaction of either Goldstone-boson-exchange or one-gluon-exchange type is added to the confinement interaction. Agreement with the experimental hadron spectrum is established.

  18. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on

  19. Reproducible and deterministic production of aspheres

    NASA Astrophysics Data System (ADS)

    Leitz, Ernst Michael; Stroh, Carsten; Schwalb, Fabian

    2015-10-01

    Aspheric lenses are ground in a single point cutting mode. Subsequently different iterative polishing methods are applied followed by aberration measurements on external metrology instruments. For an economical production, metrology and correction steps need to be reduced. More deterministic grinding and polishing is mandatory. Single point grinding is a path-controlled process. The quality of a ground asphere is mainly influenced by the accuracy of the machine. Machine improvements must focus on path accuracy and thermal expansion. Optimized design, materials and thermal management reduce thermal expansion. The path accuracy can be improved using ISO 230-2 standardized measurements. Repeated interferometric measurements over the total travel of all CNC axes in both directions are recorded. Position deviations evaluated in correction tables improve the path accuracy and that of the ground surface. Aspheric polishing using a sub-aperture flexible polishing tool is a dwell time controlled process. For plano and spherical polishing the amount of material removal during polishing is proportional to pressure, relative velocity and time (Preston). For the use of flexible tools on aspheres or freeform surfaces additional non-linear components are necessary. Satisloh ADAPT calculates a predicted removal function from lens geometry, tool geometry and process parameters with FEM. Additionally the tooĺs local removal characteristics is determined in a simple test. By oscillating the tool on a plano or spherical sample of the same lens material, a trench is created. Its 3-D profile is measured to calibrate the removal simulation. Remaining aberrations of the desired lens shape can be predicted, reducing iteration and metrology steps.

  20. Understanding Vertical Jump Potentiation: A Deterministic Model.

    PubMed

    Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L

    2016-06-01

    This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength. PMID:26712510

  1. Deterministic phase retrieval employing spherical illumination

    NASA Astrophysics Data System (ADS)

    Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.

    2015-05-01

    Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.

  2. Chaos control of parametric driven Duffing oscillators

    SciTech Connect

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  3. Solitons in the midst of chaos

    SciTech Connect

    Seghete, Vlad; Menyuk, Curtis R.; Marks, Brian S.

    2007-10-15

    A system of coupled nonlinear Schroedinger equations describes pulse propagation in weakly birefringent optical fibers. Soliton solutions of this system are found numerically through the shooting method. We employ Poincare surface of section plots - a standard dynamical systems approach - to analyze the phase space behavior of these solutions and neighboring trajectories. Chaotic behavior around the solitons is apparent and suggests dynamical instability. A Lyapunov stability analysis confirms this result. Thus, solitons exist in the midst of chaos.

  4. Reducing or enhancing chaos using periodic orbits.

    PubMed

    Bachelard, R; Chandre, C; Leoncini, X

    2006-06-01

    A method to reduce or enhance chaos in Hamiltonian flows with two degrees of freedom is discussed. This method is based on finding a suitable perturbation of the system such that the stability of a set of periodic orbits changes (local bifurcations). Depending on the values of the residues, reflecting their linear stability properties, a set of invariant tori is destroyed or created in the neighborhood of the chosen periodic orbits. An application on a paradigmatic system, a forced pendulum, illustrates the method.

  5. Detecting chaos in irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Kulp, C. W.

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  6. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars. PMID:24089946

  7. Nonadiabatic quantum chaos in atom optics

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2012-07-01

    Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau-Zener parameter κ. If κ ≫ 1, the motion is essentially adiabatic. If κ ≪ 1, it is (almost) resonant and periodic. If κ ≃ 1, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at κ ≃ 1 is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. The quantum-classical correspondence established is justified by the fact that the Landau-Zener parameter κ specifies the regime of the semiclassical dynamical chaos in the map simulating chaotic center-of-mass motion. Manifestations of nonadiabatic quantum chaos are found in the behavior of the momentum and position probabilities.

  8. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  9. Flavors of Chaos in the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Tsiganis, Kleomenis

    2016-10-01

    The asteroid belt is a natural laboratory for studying chaos, as a large fraction of asteroids actually reside on chaotic orbits. Numerous studies over the past 25 years have unveiled a multitude of dynamical chaos-generating mechanisms, operating on different time-scales and dominating over different regions of the belt. In fact, the distribution of chaotic asteroids in orbital space can be largely understood as the outcome of the combined action of resonant gravitational perturbations and the Yarkovsky effect – two topics on which Paolo Farinella has made an outstanding contribution! – notwithstanding the fact that the different "flavors" of chaos can give rise to a wide range of outcomes, from fast escape (e.g. to NEA space) to slow (~100s My) macroscopic diffusion (e.g. spreading of families) and strange, stable-looking, chaotic orbits (ultra-slow diffusion). In this talk I am going to present an overview of these mechanisms, presenting both analytical and numerical results, and their role in understanding the long-term evolution and stability of individual bodies, asteroid groups and families.

  10. Mathematical Modeling and Pure Mathematics

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  11. On a class of quantum Turing machine halting deterministically

    NASA Astrophysics Data System (ADS)

    Liang, Min; Yang, Li

    2013-05-01

    We consider a subclass of quantum Turing machines (QTM), named stationary rotational quantum Turing machine (SR-QTM), which halts deterministically and has deterministic tape head position. A quantum state transition diagram (QSTD) is proposed to describe SR-QTM. With QSTD, we construct a SR-QTM which is universal for all near-trivial transformations. This indicates there exists a QTM which is universal for the above subclass. Finally we show that SR-QTM is computational equivalent with ordinary QTM in the bounded error setting. It can be seen that SR-QTMs have deterministic tape head position and halt deterministically, and thus the halting scheme problem will not exist for this class of QTMs.

  12. Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates

    DOEpatents

    Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2011-08-23

    Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.

  13. Designing a stochastic genetic switch by coupling chaos and bistability

    SciTech Connect

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-15

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  14. Designing a stochastic genetic switch by coupling chaos and bistability

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  15. Chaos in integrate-and-fire dynamical systems

    NASA Astrophysics Data System (ADS)

    Coombes, S.

    2000-02-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles.

  16. Structural deterministic safety factors selection criteria and verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  17. Single Ion Implantation and Deterministic Doping

    SciTech Connect

    Schenkel, Thomas

    2010-06-11

    The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion

  18. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes

    PubMed Central

    Hahl, Sayuri K.; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

  19. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes

    PubMed Central

    Hahl, Sayuri K.; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

  20. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes.

    PubMed

    Hahl, Sayuri K; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

  1. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes.

    PubMed

    Hahl, Sayuri K; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

  2. Ergodicity of Truncated Stochastic Navier Stokes with Deterministic Forcing and Dispersion

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.; Tong, Xin T.

    2016-10-01

    Turbulence in idealized geophysical flows is a very rich and important topic. The anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due to the β -plane and F-plane, and topography together with random forcing all combine to produce a remarkable number of realistic phenomena. These effects have been studied through careful numerical experiments in the truncated geophysical models. These important results include transitions between coherent jets and vortices, and direct and inverse turbulence cascades as parameters are varied, and it is a contemporary challenge to explain these diverse statistical predictions. Here we contribute to these issues by proving with full mathematical rigor that for any values of the deterministic forcing, the β - and F-plane effects and topography, with minimal stochastic forcing, there is geometric ergodicity for any finite Galerkin truncation. This means that there is a unique smooth invariant measure which attracts all statistical initial data at an exponential rate. In particular, this rigorous statistical theory guarantees that there are no bifurcations to multiple stable and unstable statistical steady states as geophysical parameters are varied in contrast to claims in the applied literature. The proof utilizes a new statistical Lyapunov function to account for enstrophy exchanges between the statistical mean and the variance fluctuations due to the deterministic forcing. It also requires careful proofs of hypoellipticity with geophysical effects and uses geometric control theory to establish reachability. To illustrate the necessity of these conditions, a two-dimensional example is developed which has the square of the Euclidean norm as the Lyapunov function and is hypoelliptic with nonzero noise forcing, yet fails to be reachable or ergodic.

  3. Analysis of Discovery of Chaos: Social and Cognitive Aspects.

    ERIC Educational Resources Information Center

    Kim, J. B.

    The purpose of this study was to examine Edward Lorenz's psychological processes and other environmental aspects in the discovery of chaos at that time. The general concept of chaos is discussed based on relations with previous scientific theories such as Newtonian physics and quantum mechanics. The constraints of discovery in terms of available…

  4. Applying Chaos Theory to Lesson Planning and Delivery

    ERIC Educational Resources Information Center

    Cvetek, Slavko

    2008-01-01

    In this article, some of the ways in which thinking about chaos theory can help teachers and student-teachers to accept uncertainty and randomness as natural conditions in the classroom are considered. Building on some key features of complex systems commonly attributed to chaos theory (e.g. complexity, nonlinearity, sensitivity to initial…

  5. The Chaos Theory of Careers: A User's Guide

    ERIC Educational Resources Information Center

    Bright, Jim E. H.; Pryor, Robert G. L.

    2005-01-01

    The purpose of this article is to set out the key elements of the Chaos Theory of Careers. The complexity of influences on career development presents a significant challenge to traditional predictive models of career counseling. Chaos theory can provide a more appropriate description of career behavior, and the theory can be applied with clients…

  6. Master Teachers: Making a Difference on the Edge of Chaos

    ERIC Educational Resources Information Center

    Chapin, Dexter

    2008-01-01

    The No Child Left Behind legislation, by legitimizing a stark, one-size-fits-all, industrial model of education, has denied the inherent complexity and richness of what teachers do. Discussing teaching in terms of Chaos Theory, Chapin explains that while excellent teaching may occur at the edge of chaos, it is not chaotic. There are patterns…

  7. Chaos Theory: No Strange Attractor in Teacher Education.

    ERIC Educational Resources Information Center

    Benson, Garth D.; Hunter, William J.

    1993-01-01

    It is inappropriate to apply chaos theory to teaching and teacher education, primarily because of the inherent difficulties of applying methods and criteria developed for the physical sciences to nonphysical phenomena such as human behaviors. Nor is it clear that chaos theorists intended that theory to encompass teaching, learning, and the process…

  8. Chaos Theory as a Lens for Advancing Quality Schooling.

    ERIC Educational Resources Information Center

    Snyder, Karolyn J.; Acker-Hocevar, Michele; Wolf, Kristen M.

    Chaos theory provides a useful mental model for guiding change as leaders garner the energy from unpredictable events for realizing transformation goals. The paper considers chaos theory as a framework for managing school change toward Total Quality Management work cultures. Change is possible to manage when plans are made and then followed by a…

  9. Specifying the Links between Household Chaos and Preschool Children's Development

    ERIC Educational Resources Information Center

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    Household chaos has been linked to poorer cognitive, behavioural, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family…

  10. Chaos: A Topic for Interdisciplinary Education in Physics

    ERIC Educational Resources Information Center

    Bae, Saebyok

    2009-01-01

    Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…

  11. BOOK REVIEW: Nonlinear Dynamics: Integrability, Chaos and Patterns

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.

    2004-02-01

    When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like `verify the relation 14.81'. Others are less so, such as `prepare a write-up on a) frequency-locking and b) devil

  12. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos

  13. Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations.

    PubMed

    Perthame, Benoît; Gauduchon, Mathias

    2010-09-01

    Deterministic population models for adaptive dynamics are derived mathematically from individual-centred stochastic models in the limit of large populations. However, it is common that numerical simulations of both models fit poorly and give rather different behaviours in terms of evolution speeds and branching patterns. Stochastic simulations involve extinction phenomenon operating through demographic stochasticity, when the number of individual 'units' is small. Focusing on the class of integro-differential adaptive models, we include a similar notion in the deterministic formulations, a survival threshold, which allows phenotypical traits in the population to vanish when represented by few 'individuals'. Based on numerical simulations, we show that the survival threshold changes drastically the solution; (i) the evolution speed is much slower, (ii) the branching patterns are reduced continuously and (iii) these patterns are comparable to those obtained with stochastic simulations. The rescaled models can also be analysed theoretically. One can recover the concentration phenomena on well-separated Dirac masses through the constrained Hamilton-Jacobi equation in the limit of small mutations and large observation times. PMID:19734200

  14. Mathematics Education.

    ERIC Educational Resources Information Center

    Langbort, Carol, Ed.; Curtis, Deborah, Ed.

    2000-01-01

    The focus of this special issue is mathematics education. All articles were written by graduates of the new masters Degree program in which students earn a Master of Arts degree in Education with a concentration in Mathematics Education at San Francisco State University. Articles include: (1) "Developing Teacher-Leaders in a Masters Degree Program…

  15. Making Mathematics.

    ERIC Educational Resources Information Center

    Huckstep, Peter

    2002-01-01

    Contends teachers must resist the temptation to suggest that, while children can create stories and melodies, they cannot create mathematics. Quotes mathematician G. H. Hardy: "A mathematician, like a painter or poet, is a 'maker' of patterns." Considers mathematics should be able to stand up for itself. (BT)

  16. Technical Mathematics.

    ERIC Educational Resources Information Center

    Flannery, Carol A.

    This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…

  17. Mathematics Scrapbook

    ERIC Educational Resources Information Center

    Prochazka, Helen

    2004-01-01

    One section of this "scrapbook" section describes Pythagoras' belief in the connections between music and mathematics -- that everything in the universe was a series of harmonies and regulated by music. Another section explains why Phythagoras felt it important for women to be encouraged to learn mathematics. At least 28 women were involved in his…

  18. Decoherence, chaos, and the second law

    SciTech Connect

    Zurek, W.H.; Paz, J.P. )

    1994-04-18

    Quantum wave function of a chaotic system spreads rapidly over distances on which the potential is significantly nonlinear. As a result, the effective force is no longer just a gradient of the potential, and predictions of classical and quantum dynamics begin to differ. We show how the interaction with the environment limits distances over which quantum coherence can persist, and therefore reconciles quantum dynamics with classical Hamiltonian chaos. The entropy production rate for such open chaotic systems exhibits a sharp transition between reversible and dissipative regimes, where it is set by the chaotic dynamics.

  19. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  20. Quasiperiodic graphs at the onset of chaos.

    PubMed

    Luque, B; Cordero-Gracia, M; Gómez, M; Robledo, A

    2013-12-01

    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.

  1. Bose-Hubbard Hamiltonian: Quantum chaos approach

    NASA Astrophysics Data System (ADS)

    Kolovsky, Andrey R.

    2016-03-01

    We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.

  2. The CHAOS-4 Geomagnetic Field Model

    NASA Astrophysics Data System (ADS)

    Olsen, N.; Finlay, C. C.; Luhr, H.; Sabaka, T. J.; Michaelis, I.; Rauberg, J.; Tøffner-clausen, L.

    2013-12-01

    We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal resolution (allowing for investigations of sub-annual core field changes). More than 14 years of data from the satellites Ørsted (March 1999 to June 2013), CHAMP (July 2000 to September 2010) and SAC-C (2000 to 2004), augmented with ground observatory revised monthly mean values (1997 to 2013) have been used for this model. Maximum spherical harmonic degree of the static (crustal) field is n=100. The core field time changes are expressed by spherical harmonic expansion coefficients up to n=20, described by order 6 splines (with 6-month knot spacing) spanning the time interval 1997.0 to 2013.5. The third time derivative of the squared magnetic field intensity is regularized at the core-mantle boundary. No spatial regularization is applied for the core field, but the high-degree crustal field is regularized for n>85. As part of the modeling effort we co-estimate a model of the large-scale magnetospheric field (with expansions in the GSM and SM coordinate system up to degree n = 2 and parameterization of the time dependence using the decomposition of Dst into external (Est) and induced (Ist) parts) and perform an in-flight alignment of the vector data (co-estimation of the Euler describing the rotation between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but of course including newer satellite observations), while its high-degree crustal field part is solely determined from low-altitude CHAMP satellite observations between January 2009 and

  3. Beyond Benford's Law: Distinguishing Noise from Chaos

    PubMed Central

    Li, Qinglei; Fu, Zuntao; Yuan, Naiming

    2015-01-01

    Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information from the first digit of considered series. By applying this method to discrete data, we confirm that chaotic data indeed can be distinguished from noise data, quantitatively and clearly. PMID:26030809

  4. Comparison of deterministic and stochastic methods for time-dependent Wigner simulations

    NASA Astrophysics Data System (ADS)

    Shao, Sihong; Sellier, Jean Michel

    2015-11-01

    Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution of a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.

  5. 'Chaos is come again': Nothingness in Shakespeare's metadramatic time and space

    NASA Astrophysics Data System (ADS)

    Oswald, John David

    The extraordinary advances of twentieth-century science, which overlay, and in some cases overturn, the Newtonian precepts upon which physics was founded, have captured a share of the popular imagination. Quantum mechanics, relativity theory, and chaos theory are the stuff of science fact and science fiction, of technological innovation and artistic invention. Intricate ``fractal'' images adorn poster art, and science fiction fantasy (long a niche market for popular fiction) is the genre of the blockbuster film and the television franchise. Astronomers and physicists are writing pop-science bestsellers for the layman, making theory accessible to those who cannot do the math. This work focuses on Shakespearean notions of time and space in selected metadramatic passages from three plays that feature embattled monarchs: Richard II, King Lear, and The Winter's Tale. Shakespeare's employment of metaphors that are also ``cardinal metaphors'' of science is examined to determine how his dramatic works fare under a post-deterministic paradigm. A chaos-theory model is advanced for theatrical performance, and analogies are drawn from scientific theory to discuss dramatic language and action (e.g., ``nothingness'' in different contexts is compared variously with black holes, dark matter, vacuum genesis in a spatial void roiling with virtual particles, the empty space within matter, etc.). Of primary importance are the notions of quantum observership (the impossibility of separating observation from participation in scientific experimentation) and complementarity (Bohr's theory to account for the dual behavior of radiation as both waves and particles). Shakespeare's persistent metadramatic emphasis is seen as an effort to draw his audience (observers) into conscious participation in the imaginative act of bringing his plays into being. Complementarity relates to the promotion of multiple perspectives in all three plays and to the dramaturgical structure of The Winter's Tale.

  6. Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

    SciTech Connect

    Karagiannis, Georgios Lin, Guang

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.

  7. Estimating the epidemic threshold on networks by deterministic connections

    SciTech Connect

    Li, Kezan Zhu, Guanghu; Fu, Xinchu; Small, Michael

    2014-12-15

    For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.

  8. Deterministic teleportation of electrons in a quantum dot nanostructure.

    PubMed

    de Visser, R L; Blaauboer, M

    2006-06-23

    We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this Letter is how to design and implement the most efficient--in terms of the required number of single and two-qubit operations--deterministic teleportation protocol for this system. Using a group-theoretical analysis, we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (square root SWAP) operations. These can be implemented for spin qubits in quantum dots using electron-spin resonance (for single-spin rotations) and exchange interaction (for square root SWAP operations).

  9. DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS

    SciTech Connect

    J. E. MOREL

    1999-06-01

    The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.

  10. Deterministic sensing matrices in compressive sensing: a survey.

    PubMed

    Nguyen, Thu L N; Shin, Yoan

    2013-01-01

    Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.

  11. Equilibrium behavior of coarse-grained chaos

    NASA Astrophysics Data System (ADS)

    Egolf, David A.; Ballard, Christopher C.; Esty, C. Clark

    2015-03-01

    A wide variety of systems exhibiting spatiotemporal chaos have been shown to be extensive, in that their fractal dimensions grow linearly with volume. Ruelle argued that this extensivity is evidence that these systems can be viewed as a gas of weakly-interacting regions. We have tested this idea by performing large-scale computational studies of spatiotemporal chaos in the 1D complex Ginzburg-Landau equation, and we have found that aspects of the coarse-grained system are well-described not only as a gas, but as an equilibrium gas -- in particular, a Tonks gas (and variants) in the grand canonical ensemble. Furthermore, for small system sizes, the average number of particles in the corresponding Tonks gas exhibits oscillatory, decaying deviations from extensivity in agreement with deviations in the fractal dimension found by Fishman and Egolf. This result not only supports Ruelle's picture but also suggests that the coarse-grained behavior of this far-from-equilibrium system might be understood using equilibrium statistical mechanics.

  12. RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM

    SciTech Connect

    Deck, Katherine M.; Winn, Joshua N.; Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin; Agol, Eric; Lissauer, Jack J.

    2012-08-10

    We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.

  13. A chaos model of meandering rivers

    SciTech Connect

    Stoelum, H.H.

    1991-03-01

    A meandering river is a nonlinear dynamic system, and fractal geometry describes well the meander bends of such rivers. Based on a qualitative, sedimentological model of the process of meandering, a chaos model is proposed, describing meandering as the outcome of two processes: the feedback interaction between river curvature and a high-velocity thalweg channel within the river; and the interaction between meander bends causing abandonment and straightening of the river course. The system, when initiated from a nearly straight river course, moves toward a dynamic equilibrium in which the meander bends are fractal. This development is a case of self-organized criticality. The equilibrium represents a state of optimal energy dissipation in a situation where two counteracting processes are balancing each other. Sedimentology may be seen as the science that describes how nonlinear dynamic processes interact to create a depositional system. As indicated by the example of meandering rivers, the use of chaos and fractal models may give sedimentology a new turn toward understanding sedimentary processes and the 3-D architecture of sediment bodies.

  14. Chaos and structure of level densities

    SciTech Connect

    Moller, Peter; Aberg, Sven; Uhrenholt, Henrik; Ickhikawa, Takatoshi

    2008-01-01

    The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if instead a global property, like the local level-density function is studied, strong structure effects emerge. In this contribution we discuss these two different facets of warm nuclei. In section 2 the onset of chaos with increasing excitation energy is discussed, with both experimental observations and proposed theoretical mechanisms as starting points. The structure of level densities in the same excitation energy region based on the two different starting points, is treated in section 3, where we give a short presentation of a newly developed combinatorial level-density modell. Some results from the model are presented and discussed. Two coexisting facets of warm nuclei, quantum chaos and structure of the level density, are considered. A newly developed combinatorial level-density model is presented, and the role of collective enhancements discussed. An example of extreme parity enhancement is shown.

  15. Chaos induced by coupling between Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.

    2015-02-01

    It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.

  16. New mechanism of chaos in triangular billiards

    NASA Astrophysics Data System (ADS)

    Naydenov, S. V.; Naplekov, D. M.; Yanovsky, V. V.

    2013-12-01

    A new mechanism of weak chaos in triangular billiards has been proposed owing to the effect of cutting of beams of rays. A similar mechanism is also implemented in other polygonal billiards. Cutting of beams results in the separation of initially close rays at a finite angle by jumps in the process of reflections of beams at the vertices of a billiard. The opposite effect of joining of beams of rays occurs in any triangular billiard along with cutting. It has been shown that the cutting of beams has an absolute character and is independent of the form of a triangular billiard or the parameters of a beam. On the contrary, joining has a relative character and depends on the commensurability of the angles of the triangle with π. Joining always suppresses cutting in triangular billiards whose angles are commensurable with π. For this reason, their dynamics cannot be chaotic. In triangular billiards whose angles are rationally incommensurable with π, cutting always dominates, leading to weak chaos. The revealed properties are confirmed by numerical experiments on the phase portraits of typical triangular billiards.

  17. Topological supersymmetry breaking: The definition and stochastic generalization of chaos and the limit of applicability of statistics

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Schwartz, Robert N.; Wang, Kang L.

    2016-03-01

    The concept of deterministic dynamical chaos has a long history and is well established by now. Nevertheless, its field theoretic essence and its stochastic generalization have been revealed only very recently. Within the newly found supersymmetric theory of stochastics (STS), all stochastic differential equations (SDEs) possess topological or de Rahm supersymmetry and stochastic chaos is the phenomenon of its spontaneous breakdown. Even though the STS is free of approximations and thus is technically solid, it is still missing a firm interpretational basis in order to be physically sound. Here, we make a few important steps toward the construction of the interpretational foundation for the STS. In particular, we discuss that one way to understand why the ground states of chaotic SDEs are conditional (not total) probability distributions, is that some of the variables have infinite memory of initial conditions and thus are not “thermalized”, i.e., cannot be described by the initial-conditions-independent probability distributions. As a result, the definitive assumption of physical statistics that the ground state is a steady-state total probability distribution is not valid for chaotic SDEs.

  18. Inherent Conservatism in Deterministic Quasi-Static Structural Analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1997-01-01

    The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

  19. Deterministic and efficient quantum cryptography based on Bell's theorem

    SciTech Connect

    Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  20. A new surrogate modeling technique combining Kriging and polynomial chaos expansions – Application to uncertainty analysis in computational dosimetry

    SciTech Connect

    Kersaudy, Pierric; Sudret, Bruno; Varsier, Nadège; Picon, Odile; Wiart, Joe

    2015-04-01

    In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem.

  1. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  2. Reconstruction of in vivo time-evolving neuroendocrine dose–response properties unveils admixed deterministic and stochastic elements

    PubMed Central

    Keenan, Daniel M.; Alexander, Susan; Irvine, Clifford H. G.; Clarke, Iain; Scott, Chris; Turner, Anne; Tilbrook, A. J.; Canny, B. J.; Veldhuis, Johannes D.

    2004-01-01

    Homeostasis in the intact organism is achieved implicitly by repeated incremental feedback (inhibitory) and feedforward (stimulatory) adjustments enforced via intermittent signal exchange. In separated systems, neurohormone signals act deterministically on target cells via quantifiable effector-response functions. On the other hand, in vivo interglandular signaling dynamics have not been estimable to date. Indeed, experimentally isolating components of an interactive network definitionally disrupts time-sensitive linkages. We implement and validate analytical reconstruction of endogenous effector-response properties via a composite model comprising (i) a deterministic basic feedback and feedforward ensemble structure; (ii) judicious statistical allowance for possible stochastic variability in individual biologically interpretable dose–response properties; and (iii) the sole data requirement of serially observed concentrations of a paired signal (input) and response (output). Application of this analytical strategy to a prototypical neuroendocrine axis in the conscious uninjected horse, sheep, and human (i) illustrates probabilistic estimation of endogenous effector dose–response properties; and (ii) unmasks statistically vivid (2- to 5-fold) random fluctuations in inferred target-gland responsivity within any given pulse train. In conclusion, balanced mathematical formalism allows one to (i) reconstruct deterministic properties of interglandular signaling in the intact mammal and (ii) quantify apparent signal-response variability over short time scales in vivo. The present proof-of-principle experiments introduce a previously undescribed means to estimate time-evolving signal-response relationships without isotope infusion or pathway disruption. PMID:15090645

  3. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems

    SciTech Connect

    Latanision, R.M.

    1990-12-01

    Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministic viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.

  4. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  5. Mathematical Games

    ERIC Educational Resources Information Center

    Gardner, Martin

    1978-01-01

    Describes the life and work of Charles Peirce, U.S. mathematician and philosopher. His accomplishments include contributions to logic, the foundations of mathematics and scientific method, and decision theory and probability theory. (MA)

  6. Theory of the nucleus as applied to quantum chaos

    SciTech Connect

    Bunakov, V. E.

    2014-12-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a quantum signature of chaos in classical mechanics is given. It is proposed to specify a regular versus a chaotic behavior on the basis of symmetries of the system being considered and global integrals of motion that are associated with these symmetries in accordance with the Liouville-Arnold theorem rather than on the basis of the concept of Lyapunov’s instability of trajectories. Numerical criteria of quantum chaos that follow from the proposed concept are analyzed.

  7. The role of chaos in poverty and children's socioemotional adjustment.

    PubMed

    Evans, Gary W; Gonnella, Carrie; Marcynyszyn, Lyscha A; Gentile, Lauren; Salpekar, Nicholas

    2005-07-01

    There are growing levels of chaos in the lives of American children, youth, and families. Increasingly, children grow up in households lacking in structure and routine, inundated by background stimulation from noise and crowding, and forced to contend with the frenetic pace of modern life. Although widespread, chaos does not occur randomly in the population. We document that low-income adolescents face higher levels of chaos than their more affluent counterparts and provide longitudinal evidence that some of the adverse effects of poverty on socioemotional adjustment are mediated by exposure to chaotic living conditions. PMID:16008790

  8. Contributions of plasma physics to chaos and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  9. Error function attack of chaos synchronization based encryption schemes.

    PubMed

    Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu

    2004-03-01

    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor.

  10. Manifestation of resonance-related chaos in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.

    2012-11-01

    Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.

  11. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields

    SciTech Connect

    St Aubin, J. Keyvanloo, A.; Fallone, B. G.; Vassiliev, O.

    2015-02-15

    Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today’s treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm{sup 2} field as well as a smaller 2 × 2 cm{sup 2} field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm’s high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization

  12. Deterministic retrieval of complex Green's functions using hard X rays.

    PubMed

    Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E

    2009-01-30

    A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory. PMID:19257417

  13. Risk-based versus deterministic explosives safety criteria

    SciTech Connect

    Wright, R.E.

    1996-12-01

    The Department of Defense Explosives Safety Board (DDESB) is actively considering ways to apply risk-based approaches in its decision- making processes. As such, an understanding of the impact of converting to risk-based criteria is required. The objectives of this project are to examine the benefits and drawbacks of risk-based criteria and to define the impact of converting from deterministic to risk-based criteria. Conclusions will be couched in terms that allow meaningful comparisons of deterministic and risk-based approaches. To this end, direct comparisons of the consequences and impacts of both deterministic and risk-based criteria at selected military installations are made. Deterministic criteria used in this report are those in DoD 6055.9-STD, `DoD Ammunition and Explosives Safety Standard.` Risk-based criteria selected for comparison are those used by the government of Switzerland, `Technical Requirements for the Storage of Ammunition (TLM 75).` The risk-based criteria used in Switzerland were selected because they have been successfully applied for over twenty-five years.

  14. Deterministic dense coding and faithful teleportation with multipartite graph states

    SciTech Connect

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-05-15

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  15. Dynamic Boolean Mathematics

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen

    2016-01-01

    Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…

  16. Mathematical wit and mathematical cognition.

    PubMed

    Aberdein, Andrew

    2013-04-01

    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential to creative mathematics. The components of the joke are explicated by argumentation schemes devised for application to topic-neutral reasoning. These in turn are classified under seven headings: retroduction, citation, intuition, meta-argument, closure, generalization, and definition. Finally, the wider significance of this account for the cognitive science of mathematics is discussed. PMID:23512504

  17. Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator.

    PubMed

    Coombes, S; Osbaldestin, A H

    2000-09-01

    The response of an excitable neuron to trains of electrical spikes is relevant to the understanding of the neural code. In this paper, we study a neurobiologically motivated relaxation oscillator, with appropriately identified fast and slow coordinates, that admits an explicit mathematical analysis. An application of geometric singular perturbation theory shows the existence of an attracting invariant manifold, which is used to construct the Fenichel normal form for the system. This facilitates the calculation of the response of the system to pulsatile stimulation and allows the construction of a so-called extended isochronal map. The isochronal map is shown to have a single discontinuity and be of a type that can admit three types of response: mode-locked, quasiperiodic, and chaotic. The bifurcation structure of the system is seen to be extremely rich and supports period-adding bifurcations separated by windows of both chaos and periodicity. A bifurcation analysis of the isochronal map is presented in conjunction with a description of the various routes to chaos in this system.

  18. Chaos and microbial systems. Final project report, July 1989--July 1992

    SciTech Connect

    Kot, M.

    1992-10-01

    The field of nonlinear dynamics has generated a variety of new techniques for identifying order in seemingly chaotic systems. These techniques have led to new insights for several ecological and epidemiological systems, most notably childhood disease epidemics. To better test the efficacy and relevance of these new techniques to population biology research with two components namely a mathematical analysis of some simple microbial models with chaotic dynamics; and experimental (chemostat) population studies to evaluate the accuracy of these models. I have completed a thorough analysis of the forced double-Monod model and of the phase-locking route to chaos that it exhibits. I have also analyzed a simpler pulsed system with mass action kinetics and a period-doubling route to chaos. This research also motivated detailed analyses of discrete-time predator-prey and dispersal models, and a fast new method for computing fractal dimension. My colleagues and I have assembled a complete laboratory system to determine the appropriateness of the forced double-Monod model. We have tested assays for concentration and density and have performed a variety of diagnostic tests on this system. We have measured growth parameters for bacteria and for protozoa in chemostat.

  19. Mathematical Perspectives

    SciTech Connect

    Glimm, J.

    2009-10-14

    Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

  20. Chaos computing in terms of periodic orbits.

    PubMed

    Kia, Behnam; Spano, Mark L; Ditto, William L

    2011-09-01

    The complex dynamics of chaotic systems can perform computations. The parameters and/or the initial conditions of a dynamical system are the data inputs and the resulting system state is the output of the computation. By controlling how inputs are mapped to outputs, a specific function can be performed. Previously no clear connection has been drawn between the structure of the dynamics and the computation. In this paper we demonstrate how chaos computation can be explained, modeled, and even predicted in terms of the dynamics of the underlying chaotic system, specifically the periodic orbit structure of the system. Knowing the dynamical equations of the system, we compute the system's periodic orbits as well as its stability in terms of its eigenvalues, thereby demonstrating how, how well, and what the chaotic system can compute.

  1. Chaos, fractals, and our concept of disease.

    PubMed

    Varela, Manuel; Ruiz-Esteban, Raul; Mestre de Juan, Maria Jose

    2010-01-01

    The classic anatomo-clinic paradigm based on clinical syndromes is fraught with problems. Nevertheless, for multiple reasons, clinicians are reluctant to embrace a more pathophysiological approach, even though this is the prevalent paradigm under "which basic sciences work. In recent decades, nonlinear dynamics ("chaos theory") and fractal geometry have provided powerful new tools to analyze physiological systems. However, these tools are embedded in the pathophysiological perspective and are not easily translated to our classic syndromes. This article comments on the problems raised by the conventional anatomo-clinic paradigm and reviews three areas in which the influence of nonlinear dynamics and fractal geometry can be especially prominent: disease as a loss of complexity, the idea of homeostasis, and fractals in pathology.

  2. Adaptive functional systems: Learning with chaos

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  3. Wavenumber and Defect Distributions in Undulation Chaos

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Bodenschatz, Eberhard

    2000-11-01

    We report experimental results on thermally driven convection in a large aspect ratio inclined layer with a fluid of Prandtl number σ ≈ 1. Very close to the onset of convection for inclination angles between 20 and 70 degrees, we find the defect turbulent state of undulation chaos (Daniels, Plapp, and Bodenschatz. Phys. Rev. Lett. 84:5320). We characterize this state by determining the defect locations and the wavenumber distribution. A snapshot of the pattern, as well as its wavenumber distribution, can be well-reconstructed from a perfect underlying undulation pattern and the phase field given by the point defects. The defect density distribution shows a crossover from a Poisson to a squared Poisson distribution. By measuring the creation, annihilation, inflow, and outflow rates of defects we can quantitatively explain this behavior. This work is supported by the National Science Foundation DMR-0072077.

  4. Control of neural chaos by synaptic noise.

    PubMed

    Cortes, J M; Torres, J J; Marro, J

    2007-02-01

    We study neural automata - or neurobiologically inspired cellular automata - which exhibits chaotic itinerancy among the different stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details, namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might be on the basis of self-controlling chaos in natural systems.

  5. Detecting recursive and nonrecursive filters using chaos.

    PubMed

    Carroll, T L

    2010-03-01

    Filtering a chaotic signal through a recursive [or infinite impulse response (IIR)] filter has been shown to increase the dimension of chaos under certain conditions. Filtering with a nonrecursive [or finite impulse response (FIR)] filter should not increase dimension, but it has been shown that if the FIR filter has a long tail, measurements of actual signals may appear to show a dimension increase. I simulate IIR and FIR filters that correspond to naturally occurring resonant objects, and I show that using dimension measurements, I can distinguish the filter type. These measurements could be used to detect resonances using radar, sonar, or laser signals, or to determine if a resonance is due to an IIR or an FIR filter.

  6. Semiclassical Foundation of Universality in Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Müller, Sebastian; Heusler, Stefan; Braun, Petr; Haake, Fritz; Altland, Alexander

    2004-07-01

    We sketch the semiclassical core of a proof of the so-called Bohigas-Giannoni-Schmit conjecture: A dynamical system with full classical chaos has a quantum energy spectrum with universal fluctuations on the scale of the mean level spacing. We show how in the semiclassical limit all system specific properties fade away, leaving only ergodicity, hyperbolicity, and combinatorics as agents determining the contributions of pairs of classical periodic orbits to the quantum spectral form factor. The small-time form factor is thus reproduced semiclassically. Bridges between classical orbits and (the nonlinear sigma model of) quantum field theory are built by revealing the contributing orbit pairs as topologically equivalent to Feynman diagrams.

  7. Rocks Exposed on Slope in Aram Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-550, 20 November 2003

    This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.

  8. Low-temperature physics: Chaos in the cold

    NASA Astrophysics Data System (ADS)

    Julienne, Paul S.

    2014-03-01

    A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475

  9. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  10. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    SciTech Connect

    Sun Wei; Zeng Yong; Zhang Shu

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical scheme based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.

  11. Chaos and the Marketing of Computing Services on Campus.

    ERIC Educational Resources Information Center

    May, James H.

    1989-01-01

    In an age of chaos and uncertainty in computing services delivery, the best marketing strategy that can be adopted is concern for user constituencies and the long range solutions to their problems. (MLW)

  12. Extension of spatiotemporal chaos in glow discharge-semiconductor systems.

    PubMed

    Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur

    2014-12-01

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  13. A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system.

    PubMed

    Başar, Erol; Güntekin, Bahar

    2007-04-01

    The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the

  14. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.

  15. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  16. Different routes from a matter wavepacket to spatiotemporal chaos

    SciTech Connect

    Rong Shiguang; Hai Wenhua; Xie Qiongtao; Zhong Honghua

    2012-09-15

    We investigate the dynamics of a quasi-one-dimensional Bose-Einstein condensate confined in a double-well potential with spatiotemporally modulated interaction. A variety of phenomena is identified in different frequency regimes, including the self-compression, splitting, breathing-like, and near-fidelity of the matter wavepacket, which are associated with different routes for the onset of spatiotemporal chaos. The results also reveal that chaos can retain space-inversion symmetry of the system.

  17. Chaos suppression in a spin-torque nano-oscillator

    NASA Astrophysics Data System (ADS)

    Xu, H. Z.; Chen, X.; Liu, J.-M.

    2008-11-01

    We propose a novel practicable self-control scheme to suppress chaos in a spin-torque nano-oscillator in the presence of spin-polarized dc and ac. The magnetization dynamics is investigated by performing micromagnetic simulation. A complete chaos control diagram is obtained, indicating that employment of this proper self-control scheme over a broad frequency range of the ac can greatly reduce the degree of chaoticity in the oscillator.

  18. Philosophical perspectives on quantum chaos: Models and interpretations

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa Nicole

    2001-09-01

    The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and

  19. Mathematical Methods for Geophysics and Space Physics

    NASA Astrophysics Data System (ADS)

    Newman, William I.

    2016-05-01

    Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors

  20. Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms

    NASA Astrophysics Data System (ADS)

    Cottrill, Gerald C.

    A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties is presented. TheGPM and gPC have been shown to be spectrally accurate numerical methods for solving deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses collocation nodes to sample the random space, which are then inserted into the differential equations and solved by applying standard differential equation methods. The resulting set of deterministic solutions is used to characterize the distribution of the solution by constructing a polynomial representation of the output as a function of uncertain parameters. Optimal control problems are especially challenging to solve since they often include path constraints, bounded controls, boundary conditions, and require solutions that minimize a cost functional. Adding random parameters can make these problems even more challenging. The hybrid algorithm presented in this dissertation is the first time the GPM and gPC algorithms have been combined to solve optimal control problems with random parameters. Using the GPM in the gPC construct provides minimum cost deterministic solutions used in stochastic computations that meet path, control, and boundary constraints, thus extending current gPC methods to be applicable to stochastic optimal control problems. The hybrid GPM-gPC algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a trajectory optimization problem simulating an aircraft flying through a threat field where exact locations of the threats are unknown. The results show that the expected value, variance, and covariance statistics of the polynomial output function approximations of the state, control, cost, and terminal time variables agree with Monte-Carlo simulation

  1. Chaos and order in models of black hole pairs

    SciTech Connect

    Levin, Janna

    2006-12-15

    Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that, in three different approximations to a black hole pair built of a spinning black hole and a nonspinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test mass around a Schwarzschild black hole shows chaos, as does the post-Newtonian Lagrangian approximation. However, the approximately equivalent post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However, the physical question remains: Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime.

  2. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  3. A simple method to improve a torsion pendulum for studying chaos

    NASA Astrophysics Data System (ADS)

    Miao, Congcong; Luo, Wu; Ma, Yaqi; Liu, Weiqing; Xiao, Jinghua

    2014-09-01

    In this paper, the dynamic process from period-doubling bifurcations to chaos is observed by changing the driving period of a modified Pohl’s torsion pendulum that formally exhibits periodical dynamics. A data acquisition system with a CCD camera connected to a computer and corresponding image processing software is designed to exhibit the dynamics of the modified pendulum automatically by recording the oscillating angle of the copper rotating wheel. As a result, abundant chaotic sequence diagrams and phase diagrams can be clearly seen in real time. In our experiment, we come up with a simple method simply by adding a fine iron bar with a matching nut on a Pohl’s torsion pendulum to improve the existing apparatus. As a result, the experiment itself is feasible—it is easy, cheap, and convenient to carry out—which allows undergraduate students to observe and to understand the unpredictability of deterministic mechanical systems and at the same time stimulates their interest in nonlinear dynamics and related experiments.

  4. Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Ghorbani, Mohammad Ali; Aalami, Mohammad Taghi; Kocak, Kasim; Makarynskyy, Oleg; Makarynska, Dina; Aalinezhad, Mahdi

    2011-11-01

    Water level forecasting using recorded time series can provide a local modelling capability to facilitate local proactive management practices. To this end, hourly sea water level time series are investigated. The records collected at the Hillarys Boat Harbour, Western Australia, are investigated over the period of 2000 and 2002. Two modelling techniques are employed: low-dimensional dynamic model, known as the deterministic chaos theory, and genetic programming, GP. The phase space, which describes the evolution of the behaviour of a nonlinear system in time, was reconstructed using the delay-embedding theorem suggested by Takens. The presence of chaotic signals in the data was identified by the phase space reconstruction and correlation dimension methods, and also the predictability into the future was calculated by the largest Lyapunov exponent to be 437 h or 18 days into the future. The intercomparison of results of the local prediction and GP models shows that for this site-specific dataset, the local prediction model has a slight edge over GP. However, rather than recommending one technique over another, the paper promotes a pluralistic modelling culture, whereby different techniques should be tested to gain a specific insight from each of the models. This would enable a consensus to be drawn from a set of results rather than ignoring the individual insights provided by each model.

  5. Mixed-mode oscillations and chaos in return maps of an oscillatory chemical reaction

    NASA Astrophysics Data System (ADS)

    Blagojević, S. N.; Čupić, Ž.; Ivanović-Šašić, A.; Kolar-Anić, Lj.

    2015-12-01

    The return maps, as an element of mathematical phenomenology appropriate for general examinations of complex dynamic states of the oscillatory systems were used to detect and explain the evolution of mixed-mode oscillations and chaos in a six-dimensional nonlinear reaction system of the Bray-Liebhafsky (BL) reaction, a well-studied nonlinear chemical reaction system that exhibits complex dynamic behavior. For this purpose principally different Poincaré sections were applied and different transition scenarios between periodic and aperiodic states were examined by numerical simulations. It is shown that emergence of new periodic patterns can be detected by return maps already within chaotic windows. Besides, we also show that the higher dimensionality of manifold gives the impression of having several layers of manifolds.

  6. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  7. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  8. Relevant Mathematics.

    ERIC Educational Resources Information Center

    Catterton, Gene; And Others

    This material was developed to be used with the non college-bound student in the senior high school. It provides the student with everyday problems and experiences in which practical mathematical applications are made. The package includes worksheets pertaining to letterhead invoices, sales slips, payroll sheets, inventory sheets, carpentry and…

  9. Deterministic remote two-qubit state preparation in dissipative environments

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fang; Liu, Jin-Ming; Feng, Xun-Li; Oh, C. H.

    2016-05-01

    We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein-Podolsky-Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity's approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.

  10. Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics

    NASA Astrophysics Data System (ADS)

    Macrí, V.; Garziano, L.; Ridolfo, A.; Di Stefano, O.; Savasta, S.

    2016-07-01

    We propose a protocol for the deterministic preparation of entangled NOON mechanical states. The system is constituted by two identical, optically coupled optomechanical systems. The protocol consists of two steps. In the first, one of the two optical resonators is excited by a resonant external π -like Gaussian optical pulse. When the optical excitation coherently partly transfers to the second cavity, the second step starts. It consists of sending simultaneously two additional π -like Gaussian optical pulses, one at each optical resonator, with specific frequencies. In the optomechanical ultrastrong coupling regime, when the coupling strength becomes a significant fraction of the mechanical frequency, we show that NOON mechanical states with quite high Fock states can be deterministically obtained. The operating range of this protocol is carefully analyzed. Calculations have been carried out taking into account the presence of decoherence, thermal noise, and imperfect cooling.

  11. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications.

  12. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  13. On the secure obfuscation of deterministic finite automata.

    SciTech Connect

    Anderson, William Erik

    2008-06-01

    In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.

  14. Deterministic algorithm with agglomerative heuristic for location problems

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, L.; Stupina, A.

    2015-10-01

    Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.

  15. Approaches to implementing deterministic models in a probabilistic framework

    SciTech Connect

    Talbott, D.V.

    1995-04-01

    The increasing use of results from probabilistic risk assessments in the decision-making process makes it ever more important to eliminate simplifications in probabilistic models that might lead to conservative results. One area in which conservative simplifications are often made is modeling the physical interactions that occur during the progression of an accident sequence. This paper demonstrates and compares different approaches for incorporating deterministic models of physical parameters into probabilistic models; parameter range binning, response curves, and integral deterministic models. An example that combines all three approaches in a probabilistic model for the handling of an energetic material (i.e. high explosive, rocket propellant,...) is then presented using a directed graph model.

  16. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  17. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  18. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions

  19. Deterministic entanglement of two neutral atoms via Rydberg blockade

    SciTech Connect

    Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.

    2010-09-15

    We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.

  20. Comment on: Supervisory Asymmetric Deterministic Secure Quantum Communication

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Tsai, Chia-Wei; Hwang, Tzonelih

    2012-12-01

    In 2010, Xiu et al. (Optics Communications 284:2065-2069, 2011) proposed several applications based on a new secure four-site distribution scheme using χ-type entangled states. This paper points out that one of these applications, namely, supervisory asymmetric deterministic secure quantum communication, is subject to an information leakage problem, in which the receiver can extract two bits of a three-bit secret message without the supervisor's permission. An enhanced protocol is proposed to resolve this problem.