NASA Astrophysics Data System (ADS)
Asinari, Pietro
2010-10-01
.gz Programming language: Tested with Matlab version ⩽6.5. However, in principle, any recent version of Matlab or Octave should work Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: 300 MBytes Classification: 23 Nature of problem: The problem consists in integrating the homogeneous Boltzmann equation for a generic collisional kernel in case of isotropic symmetry, by a deterministic direct method. Difficulties arise from the multi-dimensionality of the collisional operator and from satisfying the conservation of particle number and energy (momentum is trivial for this test case) as accurately as possible, in order to preserve the late dynamics. Solution method: The solution is based on the method proposed by Aristov (2001) [1], but with two substantial improvements: (a) the original problem is reformulated in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium). Both these corrections make possible to derive very accurate reference solutions for this test case. Restrictions: The nonlinear Boltzmann equation is extremely challenging from the computational point of view, in particular for deterministic methods, despite the increased computational power of recent hardware. In this work, only the homogeneous isotropic case is considered, for making possible the development of a minimal program (by a simple scripting language) and allowing the user to check the advantages of the proposed improvements beyond Aristov's (2001) method [1]. The initial conditions are supposed parameterized according to a fixed analytical expression, but this can be
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
Ada programming guidelines for deterministic storage management
NASA Technical Reports Server (NTRS)
Auty, David
1988-01-01
Previous reports have established that a program can be written in the Ada language such that the program's storage management requirements are determinable prior to its execution. Specific guidelines for ensuring such deterministic usage of Ada dynamic storage requirements are described. Because requirements may vary from one application to another, guidelines are presented in a most-restrictive to least-restrictive fashion to allow the reader to match appropriate restrictions to the particular application area under investigation.
MatLab Programming for Engineers Having No Formal Programming Knowledge
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.
QUBIT4MATLAB V3.0: A program package for quantum information science and quantum optics for MATLAB
NASA Astrophysics Data System (ADS)
Tóth, Géza
2008-09-01
A program package for MATLAB is introduced that helps calculations in quantum information science and quantum optics. It has commands for the following operations: (i) Reordering the qudits of a quantum register, computing the reduced state of a quantum register. (ii) Defining important quantum states easily. (iii) Formatted input and output for quantum states and operators. (iv) Constructing operators acting on given qudits of a quantum register and constructing spin chain Hamiltonians. (v) Partial transposition, matrix realignment and other operations related to the detection of quantum entanglement. (vi) Generating random state vectors, random density matrices and random unitaries. Program summaryProgram title:QUBIT4MATLAB V3.0 Catalogue identifier:AEAZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAZ_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:5683 No. of bytes in distributed program, including test data, etc.: 37 061 Distribution format:tar.gz Programming language:MATLAB 6.5; runs also on Octave Computer:Any which supports MATLAB 6.5 Operating system:Any which supports MATLAB 6.5; e.g., Microsoft Windows XP, Linux Classification:4.15 Nature of problem: Subroutines helping calculations in quantum information science and quantum optics. Solution method: A program package, that is, a set of commands is provided for MATLAB. One can use these commands interactively or they can also be used within a program. Running time:10 seconds-1 minute
MatLab program for precision calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik
2004-06-01
Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for
A Matlab Program for Textural Classification Using Neural Networks
NASA Astrophysics Data System (ADS)
Leite, E. P.; de Souza, C.
2008-12-01
A new MATLAB code that provides tools to perform classification of textural images for applications in the Geosciences is presented. The program, here coined TEXTNN, comprises the computation of variogram maps in the frequency domain for specific lag distances in the neighborhood of a pixel. The result is then converted back to spatial domain, where directional or ominidirectional semivariograms are extracted. Feature vectors are built with textural information composed of the semivariance values at these lag distances and, moreover, with histogram measures of mean, standard deviation and weighted fill-ratio. This procedure is applied to a selected group of pixels or to all pixels in an image using a moving window. A feed- forward back-propagation Neural Network can then be designed and trained on feature vectors of predefined classes (training set). The training phase minimizes the mean-squared error on the training set. Additionally, at each iteration, the mean-squared error for every validation is assessed and a test set is evaluated. The program also calculates contingency matrices, global accuracy and kappa coefficient for the three data sets, allowing a quantitative appraisal of the predictive power of the Neural Network models. The interpreter is able to select the best model obtained from a k-fold cross-validation or to use a unique split-sample data set for classification of all pixels in a given textural image. The code is opened to the geoscientific community and is very flexible, allowing the experienced user to modify it as necessary. The performance of the algorithms and the end-user program were tested using synthetic images, orbital SAR (RADARSAT) imagery for oil seepage detection, and airborne, multi-polarimetric SAR imagery for geologic mapping. The overall results proved very promising.
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations
NASA Astrophysics Data System (ADS)
Vergara-Perez, Sandra; Marucho, Marcelo
2016-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.
ERIC Educational Resources Information Center
Ocak, Mehmet A.
2006-01-01
This correlation study examined the relationship between gender and the students' attitude and prior knowledge of using one of the mathematical software programs (MATLAB). Participants were selected from one community college, one state university and one private college. Students were volunteers from three Calculus I classrooms (one class from…
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
ERIC Educational Resources Information Center
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
TC-Investigator: A Matlab Program to Explore Pseudosections
NASA Astrophysics Data System (ADS)
Pearce, Mark; Gazley, Michael; White, Alistair
2014-05-01
Forward modelling of bulk rock compositions to constrain pressures and temperatures of metamorphism based on mineral assemblage is a commonly used technique. The pseudosections produced contain a wealth of information about predicted mineral compositions and abundances that goes far beyond variations in mineral assemblage. A grid of these variations can be contoured using Gibbs free energy minimisation software (such as Theriak-Domino) or precise isopleths calculated for specific quantities in THERMOCALC. We have produced a new piece of software called TC-Investigator that amalgamates these approaches to provide a relatively quick and user friendly way to contour all compositional parameters and mineral modes across a THERMOCALC pseudosection. TC-Investigator takes the postscript pseudosection diagram and creates a grid of points at a user-specified resolution. THERMOCALC is then used to calculate the equilibrium mineral assemblage at each point using an initial starting guess provided by the user (this can be calculated during initial pseudosection calculation). Once all points have been tried, any that failed to calculate are re-tried using interpolated starting guess values from the surrounding points. This procedure is iterated until no more solutions are found. Any remaining unsolved points are then interpolated numerically from surrounding solutions to produce a fully quantified set of mineral modes and compositions. Following calculation, the dataset can be contoured and output as figures, output as a Matlab readable binary structure or selected compositions written to an ASCII text file. Compositional maps created by TC-Investigator have the power to inform the user about compositional variables that are not conventionally considered. The automated calculation method makes it easy to investigate all variables in one go. For example, in metapelitic rocks, garnet shows the variations in composition that are usually contoured, however, these couple to
Supporting image algebra in the Matlab programming language for compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Wilson, Joseph N.; Hayden, Eric T.
2009-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision programs. The University of Florida has been associated with implementations supporting the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved the implementation of a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the MatlabTM programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, this new implementation offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that the image algebra Matlab (IAM) library can employ versatile representations for the operands and operations of the algebra. In this paper, we first outline the purpose and structure of image algebra, then present IAM notation in relationship to the preceding (IAC++) implementation. We then provide examples to show how IAM is more convenient and more readily supports efficient algorithm development. Additionally, we show how image algebra and IAM can be employed in compression algorithm development and analysis.
NASA Astrophysics Data System (ADS)
Konnik, Mikhail V.; Welsh, James
2012-09-01
Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.
MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Lee, Seong Kon; Kim, Hee Joon; Song, Yoonho; Lee, Choon-Ki
2009-08-01
MT2DInvMatlab is an open-source MATLAB® software package for two-dimensional (2D) inversion of magnetotelluric (MT) data; it is written in mixed languages of MATLAB and FORTRAN. MT2DInvMatlab uses the finite element method (FEM) to compute 2D MT model responses, and smoothness-constrained least-squares inversion with a spatially variable regularization parameter algorithm to stabilize the inversion process and provide a high-resolution optimal earth model. It is also able to include terrain effects in inversion by incorporating topography into a forward model. This program runs under the MATLAB environment so that users can utilize the existing general interface of MATLAB, while some specific functions are written in FORTRAN 90 to speed up computation and reuse pre-existing FORTRAN code in the MATLAB environment with minimal modification. This program has been tested using synthetic models, including one with variable topography, and on field data. The results were assessed by comparing inverse models obtained with MT2DInvMatlab and with a non-linear conjugate gradient (NLCG) algorithm. In both tests the new inversion software reconstructs the subsurface resistivity structure very closely and provides an improvement in both resolution and stability.
Design of a program in Matlab environment for gamma spectrum analysis of geological samples
NASA Astrophysics Data System (ADS)
Rojas, M.; Correa, R.
2016-05-01
In this work we present the analysis of gamma ray spectra Ammonites found in different places. One of the fossils was found near the city of Cusco (Perú) and the other in “Cajón del Maipo” in Santiago (Chile). Spectra were taken with a hyperpure germanium detector (HPGe) in an environment cooled with liquid nitrogen, with the technique of high-resolution gamma spectroscopy. A program for automatic detection and classifying of the samples was developed in Matlab. It program has the advantage of being able to make direct interventions or generalize it even more, or make it automate for specific spectra and make comparison between them. For example it can calibrate the spectrum automatically, only by giving the calibration spectrum, without the necessity of putting them. Finally, it also erases the external noise.
Aerial image simulation for partial coherent system with programming development in MATLAB
NASA Astrophysics Data System (ADS)
Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna
2014-10-01
Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.
How to get students to love (or not hate) MATLAB and programming
NASA Astrophysics Data System (ADS)
Reckinger, Shanon; Reckinger, Scott
2014-11-01
An effective programming course geared toward engineering students requires the utilization of modern teaching philosophies. A newly designed course that focuses on programming in MATLAB involves flipping the classroom and integrating various active teaching techniques. Vital aspects of the new course design include: lengthening in-class contact hours, Process-Oriented Guided Inquiry Learning (POGIL) method worksheets (self-guided instruction), student created video content posted on YouTube, clicker questions (used in class to practice reading and debugging code), programming exams that don't require computers, integrating oral exams into the classroom, fostering an environment for formal and informal peer learning, and designing in a broader theme to tie together assignments. However, possibly the most important piece to this programming course puzzle: the instructor needs to be able to find programming mistakes very fast and then lead individuals and groups through the steps to find their mistakes themselves. The effectiveness of the new course design is demonstrated through pre- and post- concept exam results and student evaluation feedback. Students reported that the course was challenging and required a lot of effort, but left largely positive feedback.
2-D Modeling of Energy-z Beam Dynamics Using the LiTrack Matlab Program
Cauley, S.K.; Woods, M.; /SLAC
2005-12-15
Short bunches and the bunch length distribution have important consequences for both the LCLS project at SLAC and the proposed ILC project. For both these projects, it is important to simulate what bunch length distributions are expected and then to perform actual measurements. The goal of the research is to determine the sensitivity of the bunch length distribution to accelerator phase and voltage. This then indicates the level of control and stability that is needed. In this project I simulated beamlines to find the rms bunch length in three different beam lines at SLAC, which are the test beam to End Station A (ILC-ESA) for the ILC studies, Linac Coherent Light Source (LCLS) and LCLS-ESA. To simulate the beamlines, I used the LiTrack program, which does a 2-dimensional tracking of an electron bunch's longitudinal (z) and the energy spread beam (E) parameters. In order to reduce the time of processing the information, I developed a small program to loop over adjustable machine parameters. LiTrack is a Matlab script and Matlab is also used for plotting and saving and loading files. The results show that the LCLS in Linac-A is the most sensitive when looking at the ratio of change in phase degree to rate of change. The results also show a noticeable difference between the LCLS and LCLS-ESA, which suggest that further testing should go into looking the Beam Switch Yard and End Station A to determine why the result of the LCLS and LCLS-ESA vary.
NASA Astrophysics Data System (ADS)
Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.
2011-02-01
We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any
NASA Astrophysics Data System (ADS)
Baker, K. M.; Eschenbach, E. A.; Madej, M.
2004-12-01
Extensive timber harvesting and the accompanying road construction in the Pacific Northwest region have decreased the quality of fish-bearing streams. The decommissioning of abandoned forest roads increases stream quality by decreasing erosion and downstream sedimentation. Road removal treatments have been performed in many locations. However, the management of these treatments has been generally site-specific, with little investigation of how the treatments will affect the entire watershed. Land managers have a need to design a watershed wide management policy to reduce sedimentation, while maintaining overall costs within a reasonable limit. Identifying the trade-offs of the costs of different treatment policies associated with net reduction of sediment can be quantified. This work further develops optimization approaches to manage road decommissioning projects. Previous work in deterministic dynamic programming and genetic algorithmes did not incorporate the uncertainty of the effectiveness of the road treatments. Stochastic dynamic programming is used to determine the road treatment policy that maximizes the expected sediment saved. This approach is used to determine a policy for the Lost Man Creek Watershed in Northern California containing 691 road segments and road crossings. The model determines the optimal treatment level for each road segment and road crossing while considering a budgetary constraint.
TEXTNN—A MATLAB program for textural classification using neural networks
NASA Astrophysics Data System (ADS)
Leite, Emilson Pereira; de Souza Filho, Carlos Roberto
2009-10-01
A new MATLAB code that provides tools to perform classification of textural images for applications in the geosciences is presented in this paper. The program, here coined as textural neural network (TEXTNN), comprises the computation of variogram maps in the frequency domain for specific lag distances in the neighborhood of a pixel. The result is then converted back to spatial domain, where directional or omni-directional semivariograms are extracted. Feature vectors are built with textural information composed of semivariance values at these lag distances and, moreover, with histogram measures of mean, standard deviation and weighted-rank fill ratio. This procedure is applied to a selected group of pixels or to all pixels in an image using a moving window. A feed-forward back-propagation neural network can then be designed and trained on feature vectors of predefined classes (training set). The training phase minimizes the mean-squared error on the training set. Additionally, at each iteration, the mean-squared error for every validation is assessed and a test set is evaluated. The program also calculates contingency matrices, global accuracy and kappa coefficient for the training, validation and test sets, allowing a quantitative appraisal of the predictive power of the neural network models. The interpreter is able to select the best model obtained from a k-fold cross-validation or to use a unique split-sample dataset for classification of all pixels in a given textural image. The performance of the algorithms and the end-user program were tested using synthetic images, orbital synthetic aperture radar (SAR) (RADARSAT) imagery for oil-seepage detection, and airborne, multi-polarized SAR imagery for geologic mapping, and the overall results are considered quite positive.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
NASA Astrophysics Data System (ADS)
Han, Jeongwoo
Decision-making under uncertainty is particularly challenging in the case of multi-disciplinary, multilevel system optimization problems. Subsystem interactions cause strong couplings, which may be amplified by uncertainty. Thus, effective coordination strategies can be particularly beneficial. Analytical target cascading (ATC) is a deterministic optimization method for multilevel hierarchical systems, which was recently extended to probabilistic design. Solving the optimization problem requires propagation of uncertainty, namely, evaluating or estimating output distributions given random input variables. This uncertainty propagation can be a challenging and computationally expensive task for nonlinear functions, but is relatively easy for linear ones. In order to overcome the difficulty in uncertainty propagation, this dissertation introduces the use of Sequential Linear Programming (SLP) for solving ATC problems, and specifically extends this use for Probabilistic Analytical Target Cascading (PATC) problems. A new coordination strategy is proposed for ATC and PATC, which coordinates linking variables among subproblems using sequential lineralizations. By linearizing and solving a hierarchy of problems successively, the algorithm takes advantage of the simplicity and ease of uncertainty propagation for a linear system. Linearity of subproblems is maintained using an Linfinity norm to measure deviations between targets and responses. A subproblem suspension strategy is used to temporarily suspend inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. A global convergence proof of the SLP-based coordination strategy is derived. Experiments with test problems show that, relative to standard ATC and PATC coordination, the number of subproblem evaluations is reduced considerably while maintaining accuracy. To demonstrate the applicability of the proposed strategies to problems of practical complexity, a hybrid
Yang, X.
1998-12-31
Modeling ground motions from multi-shot, delay-fired mining blasts is important to the understanding of their source characteristics such as spectrum modulation. MineSeis is a MATLAB{reg_sign} (a computer language) Graphical User Interface (GUI) program developed for the effective modeling of these multi-shot mining explosions. The program provides a convenient and interactive tool for modeling studies. Multi-shot, delay-fired mining blasts are modeled as the time-delayed linear superposition of identical single shot sources in the program. These single shots are in turn modeled as the combination of an isotropic explosion source and a spall source. Mueller and Murphy`s (1971) model for underground nuclear explosions is used as the explosion source model. A modification of Anandakrishnan et al.`s (1997) spall model is developed as the spall source model. Delays both due to the delay-firing and due to the single-shot location differences are taken into account in calculating the time delays of the superposition. Both synthetic and observed single-shot seismograms can be used to construct the superpositions. The program uses MATLAB GUI for input and output to facilitate user interaction with the program. With user provided source and path parameters, the program calculates and displays the source time functions, the single shot synthetic seismograms and the superimposed synthetic seismograms. In addition, the program provides tools so that the user can manipulate the results, such as filtering, zooming and creating hard copies.
MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts
ERIC Educational Resources Information Center
Jovanovic Dolecek, G.
2012-01-01
An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-12-01
This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Calculus Demonstrations Using MATLAB
ERIC Educational Resources Information Center
Dunn, Peter K.; Harman, Chris
2002-01-01
The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…
A high throughput MATLAB program for automated force-curve processing using the AdG polymer model.
O'Connor, Samantha; Gaddis, Rebecca; Anderson, Evan; Camesano, Terri A; Burnham, Nancy A
2015-02-01
Research in understanding biofilm formation is dependent on accurate and representative measurements of the steric forces related to brush on bacterial surfaces. A MATLAB program to analyze force curves from an AFM efficiently, accurately, and with minimal user bias has been developed. The analysis is based on a modified version of the Alexander and de Gennes (AdG) polymer model, which is a function of equilibrium polymer brush length, probe radius, temperature, separation distance, and a density variable. Automating the analysis reduces the amount of time required to process 100 force curves from several days to less than 2min. The use of this program to crop and fit force curves to the AdG model will allow researchers to ensure proper processing of large amounts of experimental data and reduce the time required for analysis and comparison of data, thereby enabling higher quality results in a shorter period of time.
NASA Astrophysics Data System (ADS)
Fernández Martínez, J. L.; Pedruelo González, L. M.; García Gonzalo, E.
2009-10-01
In this paper we present the program AMTCLAB, a MATLAB ®-based computer code that analyzes the traveltime distribution and performs quality analysis at the pre-inversion stage for elliptically anisotropic media explored via 2D transmission experiments. This software generalizes the program MTCLAB presented in the past for the case of layered isotropic media, and makes use of traditional and robust traveltime distribution descriptors (mean, standard deviation, median, lower and upper quartiles, inter-quartile range and minimum absolute deviation), which are valid for all kinds of recording geometries. A guided user interface leads the modeller through the algorithm steps using the same data MTCLAB-structures. This methodology offers better understanding of the data variability prior to inversion, and provides the geophysicist with a macroscopic elliptical anisotropic velocity model, which is valid at the experiment scale, and matches the experimental mean traveltime distribution. To solve the inverse problems involved, program AMTCLAB uses the particle swarm optimisation algorithm, which allows the use of different norms and sampling the region of equivalent anisotropic velocity models in order to perform posterior sample statistics in each individual model parameter. The approximated velocity model issued from this analysis can serve in the traveltime inverse problem as an initial guess, or as a reference model in the subsequent inversion.
ERIC Educational Resources Information Center
Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.
2006-01-01
This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…
Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János
2016-04-01
Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry.
Portmann, Greg; Safranek, James; Huang, Xiaobiao; /SLAC
2011-10-18
The LOCO algorithm has been used by many accelerators around the world. Although the uses for LOCO vary, the most common use has been to find calibration errors and correct the optics functions. The light source community in particular has made extensive use of the LOCO algorithms to tightly control the beta function and coupling. Maintaining high quality beam parameters requires constant attention so a relatively large effort was put into software development for the LOCO application. The LOCO code was originally written in FORTRAN. This code worked fine but it was somewhat awkward to use. For instance, the FORTRAN code itself did not calculate the model response matrix. It required a separate modeling code such as MAD to calculate the model matrix then one manually loads the data into the LOCO code. As the number of people interested in LOCO grew, it required making it easier to use. The decision to port LOCO to Matlab was relatively easy. It's best to use a matrix programming language with good graphics capability; Matlab was also being used for high level machine control; and the accelerator modeling code AT, [5], was already developed for Matlab. Since LOCO requires collecting and processing a relative large amount of data, it is very helpful to have the LOCO code compatible with the high level machine control, [3]. A number of new features were added while porting the code from FORTRAN and new methods continue to evolve, [7][9]. Although Matlab LOCO was written with AT as the underlying tracking code, a mechanism to connect to other modeling codes has been provided.
Chengjiang Mao
1996-12-31
In typical AI systems, we employ so-called non-deterministic reasoning (NDR), which resorts to some systematic search with backtracking in the search spaces defined by knowledge bases (KBs). An eminent property of NDR is that it facilitates programming, especially programming for those difficult AI problems such as natural language processing for which it is difficult to find algorithms to tell computers what to do at every step. However, poor efficiency of NDR is still an open problem. Our work aims at overcoming this efficiency problem.
Test Generator for MATLAB Simulations
NASA Technical Reports Server (NTRS)
Henry, Joel
2011-01-01
MATLAB Automated Test Tool, version 3.0 (MATT 3.0) is a software package that provides automated tools that reduce the time needed for extensive testing of simulation models that have been constructed in the MATLAB programming language by use of the Simulink and Real-Time Workshop programs. MATT 3.0 runs on top of the MATLAB engine application-program interface to communicate with the Simulink engine. MATT 3.0 automatically generates source code from the models, generates custom input data for testing both the models and the source code, and generates graphs and other presentations that facilitate comparison of the outputs of the models and the source code for the same input data. Context-sensitive and fully searchable help is provided in HyperText Markup Language (HTML) format.
Channel Access Client Toolbox for Matlab
Terebilo, Andrei
2002-08-07
This paper reports on MATLAB Channel Access (MCA) Toolbox--MATLAB [1] interface to EPICS Channel Access (CA) client library. We are developing the toolbox for SPEAR3 accelerator controls, but it is of general use for accelerator and experimental physics applications programming. It is packaged as a MATLAB toolbox to allow easy development of complex CA client applications entirely in MATLAB. The benefits include: the ability to calculate and display parameters that use EPICS process variables as inputs, availability of MATLAB graphics tools for user interface design, and integration with the MATLAB-based accelerator modeling software--Accelerator Toolbox [2-4]. Another purpose of this paper is to propose a feasible path to a synergy between accelerator control systems and accelerator simulation codes, the idea known as on-line accelerator model.
NASA Astrophysics Data System (ADS)
Chen, Y.; Fischer, U.
2005-10-01
A program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis has been developed to solve problems with complex geometry and bulk shield by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a coupling interface program. A newly-proposed mapping approach is implemented in the interface program to calculate the angular flux distribution from the scored Monte Carlo particle tracks and generate the boundary source file for the use of TORT. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between the results calculated by these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities.
NASA Astrophysics Data System (ADS)
Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.
2014-03-01
A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform
NASA Astrophysics Data System (ADS)
Bagherbandi, Mohammad
2012-07-01
This paper focuses on the modeling of the boundary between Earth's crust and upper mantle using a gravimetric-isostatic model. Here a MATLAB code is presented based on the gravimetric-isostatic model i.e. the Vening Meinesz-Moritz model. Inverse problems in isostasy consist in making the isostatic anomalies to be zero under a certain isostatic hypothesis. The Vening Meinesz-Moritz problem is to determine the Moho depth such that the compensating attraction totally compensates the Bouguer gravity anomaly on the Earth's surface, implying that the isostatic anomaly vanishes on the Earth's surface. The main idea is easy but the theoretical analysis is somewhat difficult. Here a practical method to recover the Moho depth from the gravity data is used in the MATLAB code (MohoIso.m) based on the Vening Meinesz-Moritz method. The code has been designed based on different sub-codes. The body of the main code works according to the vectorization technique, because this technique causes that the speed of code increases. One of the important possible limitations for the code is over-flow and under-flow for higher degrees in the fully normalized associated Legendre function. This problem occurs in the subroutine applied in this study, it limits the numerical study up to degrees 1800-2000.
Kolda, Tamara G.; Bader, Brett W.
2006-08-03
This software provides a collection of MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. We have also added support for sparse tensor, tensors in Kruskal or Tucker format, and tensors stored as matrices (both dense and sparse).
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program
Deterministic Walks with Choice
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Parallelizing AT with MatlabMPI
Li, Evan Y.; /Brown U. /SLAC
2011-06-22
The Accelerator Toolbox (AT) is a high-level collection of tools and scripts specifically oriented toward solving problems dealing with computational accelerator physics. It is integrated into the MATLAB environment, which provides an accessible, intuitive interface for accelerator physicists, allowing researchers to focus the majority of their efforts on simulations and calculations, rather than programming and debugging difficulties. Efforts toward parallelization of AT have been put in place to upgrade its performance to modern standards of computing. We utilized the packages MatlabMPI and pMatlab, which were developed by MIT Lincoln Laboratory, to set up a message-passing environment that could be called within MATLAB, which set up the necessary pre-requisites for multithread processing capabilities. On local quad-core CPUs, we were able to demonstrate processor efficiencies of roughly 95% and speed increases of nearly 380%. By exploiting the efficacy of modern-day parallel computing, we were able to demonstrate incredibly efficient speed increments per processor in AT's beam-tracking functions. Extrapolating from prediction, we can expect to reduce week-long computation runtimes to less than 15 minutes. This is a huge performance improvement and has enormous implications for the future computing power of the accelerator physics group at SSRL. However, one of the downfalls of parringpass is its current lack of transparency; the pMatlab and MatlabMPI packages must first be well-understood by the user before the system can be configured to run the scripts. In addition, the instantiation of argument parameters requires internal modification of the source code. Thus, parringpass, cannot be directly run from the MATLAB command line, which detracts from its flexibility and user-friendliness. Future work in AT's parallelization will focus on development of external functions and scripts that can be called from within MATLAB and configured on multiple nodes, while
Yang, X.
1998-04-01
Large scale (up to 5 kt) chemical blasts are routinely conducted by mining and quarry industries around the world to remove overburden or to fragment rocks. Because of their ability to trigger the future International Monitoring System (IMS) of the Comprehensive Test Ban Treaty (CTBT), these blasts are monitored and studied by verification seismologists for the purpose of discriminating them from possible clandestine nuclear tests. One important component of these studies is the modeling of ground motions from these blasts with theoretical and empirical source models. The modeling exercises provide physical bases to regional discriminants and help to explain the observed signal characteristics. The program MineSeis has been developed to implement the synthetic seismogram modeling of multi-shot blast sources with the linear superposition of single shot sources. Single shot sources used in the modeling are the spherical explosion plus spall model mentioned here. Mueller and Murphy`s (1971) model is used as the spherical explosion model. A modification of Anandakrishnan et al.`s (1997) spall model is developed for the spall component. The program is implemented with the MATLAB{reg_sign} Graphical User Interface (GUI), providing the user with easy, interactive control of the calculation.
Deterministic uncertainty analysis
Worley, B.A.
1987-01-01
Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig.
An Accelerator Control Middle Layer Using MATLAB
Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei
2005-05-15
Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon.
Deterministic hierarchical networks
NASA Astrophysics Data System (ADS)
Barrière, L.; Comellas, F.; Dalfó, C.; Fiol, M. A.
2016-06-01
It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the modeled systems. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems.
A deterministic discrete ordinates transport proxy application
2014-06-03
Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.
An Accelerator Control Middle Layer Using MATLAB
Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei
2005-03-15
Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies.
Probability of detection calculations using MATLAB
NASA Astrophysics Data System (ADS)
Wei, Yung-Chung
1993-06-01
A set of highly efficient computer programs based on the Marcum and Swerling's analysis on radar detection has been written in MATLAB to evaluate the probability of detection. The programs are based on accurate methods unlike the detectability method which is based on approximation. This thesis also outlines radar detection theory and target models as a background. The goal of this effort is to provide a set of efficient computer programs for student usage and teacher's aid. Programs are designed to be user friendly and run on personal computers.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Matlab Cluster Ensemble Toolbox
Sapio, Vincent De; Kegelmeyer, Philip
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.
Matpar: Parallel Extensions for MATLAB
NASA Technical Reports Server (NTRS)
Springer, P. L.
1998-01-01
Matpar is a set of client/server software that allows a MATLAB user to take advantage of a parallel computer for very large problems. The user can replace calls to certain built-in MATLAB functions with calls to Matpar functions.
Matlab Cluster Ensemble Toolbox
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less
NASA Astrophysics Data System (ADS)
Ricard, Ludovic P.; Chanu, Jean-Baptiste
2013-08-01
The evaluation of potential and resources during geothermal exploration requires accurate and consistent temperature characterization and modelling of the sub-surface. Existing interpretation and modelling approaches of 1D temperature measurements are mainly focusing on vertical heat conduction with only few approaches that deals with advective heat transport. Thermal regimes are strongly correlated to rock and fluid properties. Currently, no consensus exists for the identification of the thermal regime and the analysis of such dataset. We developed a new framework allowing the identification of thermal regimes by rock formations, the analysis and modelling of wireline logging and discrete temperature measurements by taking into account the geological, geophysical and petrophysics data. This framework has been implemented in the GeoTemp software package that allows the complete thermal characterization and modelling at the formation scale and that provides a set of standard tools for the processing wireline and discrete temperature data. GeoTempTM operates via a user friendly graphical interface written in Matlab that allows semi-automatic calculation, display and export of the results. Output results can be exported as Microsoft Excel spreadsheets or vector graphics of publication quality. GeoTemp™ is illustrated here with an example geothermal application from Western Australia and can be used for academic, teaching and professional purposes.
Self-stabilizing Deterministic Gathering
NASA Astrophysics Data System (ADS)
Dieudonné, Yoann; Petit, Franck
In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, oblivious, deaf, and dumb). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd.
Comparison of cyclic correlation algorithm implemented in matlab and python
NASA Astrophysics Data System (ADS)
Carr, Richard; Whitney, James
Simulation is a necessary step for all engineering projects. Simulation gives the engineers an approximation of how their devices will perform under different circumstances, without hav-ing to build, or before building a physical prototype. This is especially true for space bound devices, i.e., space communication systems, where the impact of system malfunction or failure is several orders of magnitude over that of terrestrial applications. Therefore having a reliable simulation tool is key in developing these devices and systems. Math Works Matrix Laboratory (MATLAB) is a matrix based software used by scientists and engineers to solve problems and perform complex simulations. MATLAB has a number of applications in a wide variety of fields which include communications, signal processing, image processing, mathematics, eco-nomics and physics. Because of its many uses MATLAB has become the preferred software for many engineers; it is also very expensive, especially for students and startups. One alternative to MATLAB is Python. The Python is a powerful, easy to use, open source programming environment that can be used to perform many of the same functions as MATLAB. Python programming environment has been steadily gaining popularity in niche programming circles. While there are not as many function included in the software as MATLAB, there are many open source functions that have been developed that are available to be downloaded for free. This paper illustrates how Python can implement the cyclic correlation algorithm and com-pares the results to the cyclic correlation algorithm implemented in the MATLAB environment. Some of the characteristics to be compared are the accuracy and precision of the results, and the length of the programs. The paper will demonstrate that Python is capable of performing simulations of complex algorithms such cyclic correlation.
OMPC: an Open-Source MATLAB-to-Python Compiler.
Jurica, Peter; van Leeuwen, Cees
2009-01-01
Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.
MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles
NASA Astrophysics Data System (ADS)
Hohenester, Ulrich; Trügler, Andreas
2012-02-01
MNPBEM is a Matlab toolbox for the simulation of metallic nanoparticles (MNP), using a boundary element method (BEM) approach. The main purpose of the toolbox is to solve Maxwell's equations for a dielectric environment where bodies with homogeneous and isotropic dielectric functions are separated by abrupt interfaces. Although the approach is in principle suited for arbitrary body sizes and photon energies, it is tested (and probably works best) for metallic nanoparticles with sizes ranging from a few to a few hundreds of nanometers, and for frequencies in the optical and near-infrared regime. The toolbox has been implemented with Matlab classes. These classes can be easily combined, which has the advantage that one can adapt the simulation programs flexibly for various applications. Program summaryProgram title: MNPBEM Catalogue identifier: AEKJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 15 700 No. of bytes in distributed program, including test data, etc.: 891 417 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b) Computer: Any which supports Matlab 7.11.0 (R2010b) Operating system: Any which supports Matlab 7.11.0 (R2010b) RAM: ⩾1 GByte Classification: 18 Nature of problem: Solve Maxwell's equations for dielectric particles with homogeneous dielectric functions separated by abrupt interfaces. Solution method: Boundary element method using electromagnetic potentials. Running time: Depending on surface discretization between seconds and hours.
Deterministic multidimensional nonuniform gap sampling.
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.
Deterministic multidimensional nonuniform gap sampling
NASA Astrophysics Data System (ADS)
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.
Documentation generator application for MatLab source codes
NASA Astrophysics Data System (ADS)
Niton, B.; Pozniak, K. T.; Romaniuk, R. S.
2011-06-01
The UML, which is a complex system modeling and description technology, has recently been expanding its uses in the field of formalization and algorithmic approach to such systems like multiprocessor photonic, optoelectronic and advanced electronics carriers; distributed, multichannel measurement systems; optical networks, industrial electronics, novel R&D solutions. The paper describes a realization of an application for documenting MatLab source codes. There are presented own novel solution based on Doxygen program which is available on the free license, with accessible source code. The used supporting tools for parser building were Bison and Flex. There are presented the practical results of the documentation generator. The program was applied for exemplary MatLab codes. The documentation generator application is used for design of large optoelectronic and electronic measurement and control systems. The paper consists of three parts which describe the following components of the documentation generator for photonic and electronic systems: concept, MatLab application and VHDL application. This is part two which describes the MatLab application. MatLab is used for description of the measured phenomena.
Deterministic models for traffic jams
NASA Astrophysics Data System (ADS)
Nagel, Kai; Herrmann, Hans J.
1993-10-01
We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
MatSeis: A Seismic toolbox for MATLAB
Harris, J.M.; Young, C.J.
1996-08-01
To support the signal processing and data visualization needs of CTBT related projects at SNL, a MATLAB based GUI was developed. This program is known as MatSeis. MatSeis was developed quickly using the available MATLAB functionality. It provides a time-distance profile plot integrating origin, waveform, travel-time, and arrival data. Graphical plot controls, data manipulation, and signal processing functions provide a user friendly seismic analysis package. In addition, the full power of MATLAB (the premier tool for general numeric processing and visualization) is available for prototyping new functions by end users. This package is being made available to the seismic community in the hope that it will aid CTBT research and will facilitate cooperative signal processing development. 2 refs., 5 figs.
Deterministic relativistic quantum bit commitment
NASA Astrophysics Data System (ADS)
Adlam, Emily; Kent, Adrian
2015-06-01
We describe new unconditionally secure bit commitment schemes whose security is based on Minkowski causality and the monogamy of quantum entanglement. We first describe an ideal scheme that is purely deterministic, in the sense that neither party needs to generate any secret randomness at any stage. We also describe a variant that allows the committer to proceed deterministically, requires only local randomness generation from the receiver, and allows the commitment to be verified in the neighborhood of the unveiling point. We show that these schemes still offer near-perfect security in the presence of losses and errors, which can be made perfect if the committer uses an extra single random secret bit. We discuss scenarios where these advantages are significant.
Analysis of FBC deterministic chaos
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
OXlearn: a new MATLAB-based simulation tool for connectionist models.
Ruh, Nicolas; Westermann, Gert
2009-11-01
OXlearn is a free, platform-independent MATLAB toolbox in which standard connectionist neural network models can be set up, run, and analyzed by means of a user-friendly graphical interface. Due to its seamless integration with the MATLAB programming environment, the inner workings of the simulation tool can be easily inspected and/or extended using native MATLAB commands or components. This combination of usability, transparency, and extendability makes OXlearn an efficient tool for the implementation of basic research projects or the prototyping of more complex research endeavors, as well as for teaching. Both the MATLAB toolbox and a compiled version that does not require access to MATLAB can be downloaded from http://psych.brookes.ac.uk/oxlearn/.
MATLAB-Based VHDL Development Environment
Katko, K. K.; Robinson, S. H.
2002-01-01
The Reconfigurable Computing program at Los Alamos National Laboratory (LANL) required synthesizable VHDL Fast Fourier Transform (FFT) designs that could be quickly implemented into FPGA-based high speed Digital Signal Processing architectures. Several different FFTs were needed for the different systems. As a result, the MATLAB-Based VHDL Development Environment was developed so that with a small amount of work and forethought, arbitrarily sized FFTs with different bit-width parameters could be produced quickly from one VHDL generating algorithm. The result is highly readable VHDL that can be modified quickly via the generating function to adapt to new algorithmic requirements. Several additional capabilities are integrated into the development environment. These capabilities include a bit-true parameterized mathematical model, fixed-point design validation, test vector generation, VHDL design verification, and chip resource use estimation. LANL needed the flexibility to build a wide variety of FFTs with a quick turn around time. It was important to have an effective way of trading off size, speed and precision. The FFTs also needed to be efficiently implemented into our existing FPGA-based architecture. Reconfigurable computing systems at LANL have been designed to accept two or four inputs on each clock. This allows the data processing rate to be reduced to a more manageable speed. This approach, however, limits us from using existing FFT cores. A MATLAB-Based VHDL Development Environment (MBVDE) was created in response to our FFT needs. MBVDE provides more flexibility than is available with VHDL. The technique allows new designs to be implemented and verified quickly. In addition, analysis tools are incorporated to evaluate trade-offs. MBVDE incorporates the performance of VHDL, the fast design time of core generation, and the benefit of not having to know VHDL available with C-tools into one environment. The MBVDE approach is not a comprehensive solution, but
Deterministic implementation of weak quantum cubic nonlinearity
Marek, Petr; Filip, Radim; Furusawa, Akira
2011-11-15
We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a full-scale continuous-variable quantum computation. Our proposal relies on preparation of a specific ancillary state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations and feed forward. We show that, despite the imperfections arising from the deterministic nature of the operation, the weak quantum nonlinearity can be implemented and verified with the current level of technology.
Using Matlab in a Multivariable Calculus Course.
ERIC Educational Resources Information Center
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
Survivability of Deterministic Dynamical Systems
NASA Astrophysics Data System (ADS)
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-07-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.
Survivability of Deterministic Dynamical Systems.
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Deterministic weak localization in periodic structures.
Tian, C; Larkin, A
2005-12-01
In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Nuutinen, Mikko; Virtanen, Toni; Rummukainen, Olli; Häkkinen, Jukka
2016-03-01
This article presents VQone, a graphical experiment builder, written as a MATLAB toolbox, developed for image and video quality ratings. VQone contains the main elements needed for the subjective image and video quality rating process. This includes building and conducting experiments and data analysis. All functions can be controlled through graphical user interfaces. The experiment builder includes many standardized image and video quality rating methods. Moreover, it enables the creation of new methods or modified versions from standard methods. VQone is distributed free of charge under the terms of the GNU general public license and allows code modifications to be made so that the program's functions can be adjusted according to a user's requirements. VQone is available for download from the project page (http://www.helsinki.fi/psychology/groups/visualcognition/).
Deterministic quantum teleportation with atoms.
Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R
2004-06-17
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
MOCCASIN: converting MATLAB ODE models to SBML
Gómez, Harold F.; Hucka, Michael; Keating, Sarah M.; Nudelman, German; Iber, Dagmar; Sealfon, Stuart C.
2016-01-01
Summary: MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging—especially for legacy models not written with translation in mind. We developed MOCCASIN (Model ODE Converter for Creating Automated SBML INteroperability) to help. MOCCASIN can convert ODE-based MATLAB models of biochemical reaction networks into the SBML format. Availability and implementation: MOCCASIN is available under the terms of the LGPL 2.1 license (http://www.gnu.org/licenses/lgpl-2.1.html). Source code, binaries and test cases can be freely obtained from https://github.com/sbmlteam/moccasin. Contact: mhucka@caltech.edu Supplementary information: More information is available at https://github.com/sbmlteam/moccasin. PMID:26861819
Connecting deterministic and stochastic metapopulation models.
Barbour, A D; McVinish, R; Pollett, P K
2015-12-01
In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given. PMID:25735440
On the secure obfuscation of deterministic finite automata.
Anderson, William Erik
2008-06-01
In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.
NASA Technical Reports Server (NTRS)
Barbieri, Enrique
2005-01-01
The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two
A Collection of Nonlinear Aircraft Simulations in MATLAB
NASA Technical Reports Server (NTRS)
Garza, Frederico R.; Morelli, Eugene A.
2003-01-01
Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
SUNDIALSTB, a MATLAB Interface to SUNDIALS
Serban, R
2005-05-09
SUNDIALS [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis capabilities. SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers. The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the various user-callable functions for that solver. However, this MEX file should not be called directly, but rather through the user-callable functions provided for each MATLAB interface. A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible, equally familiar to users of both the SUNDIALS codes and MATLAB. Moreover, we tried to keep the number of user-callable functions to a minimum. For example, the CVODES MATLAB interface contains only 9 such functions, 3 of which interface solely to the adjoint sensitivity module in CVODES. In tune with the MATLAB ODESET function, optional solver inputs in SUNDIALSTB are specified through a single function (CvodeSetOptions for CVODES). However, unlike the ODE solvers in MATLAB, we have kept the more flexible SUNDIALS model in which a separate ''solve'' function (CVodeSolve for CVODES) must be called to return the solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and solution derivatives at additional times) can be obtained at any time with calls to separate functions (CVodeGetStats and CVodeGet for CVODES). This document provides a complete documentation for the SUNDIALSTB functions. For additional details on the methods and underlying SUNDIALS software consult also the corresponding SUNDIALS user guides [3, 1].
From deterministic dynamics to probabilistic descriptions
Misra, B.; Prigogine, I.; Courbage, M.
1979-01-01
The present work is devoted to the following question: What is the relationship between the deterministic laws of dynamics and probabilistic description of physical processes? It is generally accepted that probabilistic processes can arise from deterministic dynamics only through a process of “coarse graining” or “contraction of description” that inevitably involves a loss of information. In this work we present an alternative point of view toward the relationship between deterministic dynamics and probabilistic descriptions. Speaking in general terms, we demonstrate the possibility of obtaining (stochastic) Markov processes from deterministic dynamics simply through a “change of representation” that involves no loss of information provided the dynamical system under consideration has a suitably high degree of instability of motion. The fundamental implications of this finding for statistical mechanics and other areas of physics are discussed. From a mathematical point of view, the theory we present is a theory of invertible, positivity-preserving, and necessarily nonunitary similarity transformations that convert the unitary groups associated with deterministic dynamics to contraction semigroups associated with stochastic Markov processes. We explicitly construct such similarity transformations for the so-called Bernoulli systems. This construction illustrates also the construction of the so-called Lyapounov variables and the operator of “internal time,” which play an important role in our approach to the problem of irreversibility. The theory we present can also be viewed as a theory of entropy-increasing evolutions and their relationship to deterministic dynamics. PMID:16592691
Case studies on optimization problems in MATLAB and COMSOL multiphysics by means of the livelink
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
LiveLink for COMSOL is a tool that integrates COMSOL Multiphysics with MATLAB to extend one's modeling with scripting programming in the MATLAB environment. It allows user to utilize the full power of MATLAB and its toolboxes in preprocessing, model manipulation, and post processing. At first, the head script launches COMSOL with MATLAB and defines initial value of all parameters, refers to the objective function J described in the objective function and creates and runs the defined optimization task. Once the task is launches, the COMSOL model is being called in the iteration loop (from MATLAB environment by use of API interface), changing defined optimization parameters so that the objective function is minimized, using fmincon function to find a local or global minimum of constrained linear or nonlinear multivariable function. Once the minimum is found, it returns exit flag, terminates optimization and returns the optimized values of the parameters. The cooperation with MATLAB via LiveLink enhances a powerful computational environment with complex multiphysics simulations. The paper will introduce using of the LiveLink for COMSOL for chosen case studies in the field of technical cybernetics and bioengineering.
Decline in maternal mortality in Matlab, Bangladesh: a cautionary tale.
Ronsmans, C; Vanneste, A M; Chakraborty, J; van Ginneken, J
This study examines the impact of the Maternal-Child Health and Family Planning (MCH-FP) program in the Matlab, Bangladesh. Data were obtained from the Matlab surveillance system for treatment and comparison areas. This study reports the trends in maternal mortality since 1976. The MCH-FP area received extensive services in health and family planning since 1977. Services included trained traditional birth attendants and essential obstetric care from government district hospitals and a large number of private clinics. Geographic ease of access to essential obstetric care varied across the study area. Access was most difficult in the northern sector of the MCH-FP area. Contraception was made available through family welfare centers. Tetanus immunization was introduced in 1979. Door-to-door contraceptive services were provided by 80 female community health workers on a twice-monthly basis. In 1987, a community-based maternity care program was added to existing MCH-FP services in the northern treatment area. The demographic surveillance system began collecting data in 1966. During 1976-93 there were 624 maternal deaths among women aged 15-44 years in Matlab (510/100,000 live births). 72.8% of deaths were due to direct obstetric causes: postpartum hemorrhage, induced abortion, eclampsia, dystocia, and postpartum sepsis. Maternal mortality declined in a fluctuating fashion in both treatment and comparison areas. Direct obstetric mortality declined at about 3% per year. After 1987, direct obstetric mortality declined in the north by almost 50%. After the 1990 program expansion in the south, maternal mortality declined, though not significantly, in the south. Maternal mortality declined in the south comparison area during 1987-89 and stabilized. The comparison area of the north showed no decline. PMID:9428252
SAR polar format implementation with MATLAB.
Martin, Grant D.; Doerry, Armin Walter
2005-11-01
Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.
Metrovisionlab: A Matlab Tool for Learning Vision Camera Calibration
NASA Astrophysics Data System (ADS)
Pastor, J. J.; Santolaria, J.; Samper, D.; Aguilar, J. J.
2009-11-01
This paper describes the Metrovisionlab computer application implemented as a toolbox for the Matlab program. The application: 1) simulates a virtual camera, providing a simple and visual understanding of how the various characteristics of a camera influence the image that it captures; 2) generates the coordinates of synthetic calibration points, both in the world reference system and the image reference system, commonly used in camera calibration; and 3) can calibrate with the most important and widely-used methods in the area of vision cameras, using coplanar (2D) or non-coplanar (3D) calibration points.
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. PMID:26556680
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image.
NASA Astrophysics Data System (ADS)
Greene, C. A.; Bliss, A. K.; Blankenship, D. D.
2013-12-01
The Bedmap2 data suite [Fretwell et al. The Cryosphere 7,1 (2013)] contains approximately 25 million measurements of Antarctic surface elevation, ice thickness, and bed elevation which have been distilled into gridded elevations provided at 1 km horizontal resolution. We present a toolbox for Matlab to aid in the import, georeferencing, and presentation of the raster dataset provided by the Bedmap Consortium. The intent of these scripts is to give the intermediate-level Matlab user a set of simple and intuitive, yet powerful commands for Bedmap2 data access and map generation. Several examples of the utility of this toolbox are presented.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Stochastic search with Poisson and deterministic resetting
NASA Astrophysics Data System (ADS)
Bhat, Uttam; De Bacco, Caterina; Redner, S.
2016-08-01
We investigate a stochastic search process in one, two, and three dimensions in which N diffusing searchers that all start at x 0 seek a target at the origin. Each of the searchers is also reset to its starting point, either with rate r, or deterministically, with a reset time T. In one dimension and for a small number of searchers, the search time and the search cost are minimized at a non-zero optimal reset rate (or time), while for sufficiently large N, resetting always hinders the search. In general, a single searcher leads to the minimum search cost in one, two, and three dimensions. When the resetting is deterministic, several unexpected feature arise for N searchers, including the search time being independent of T for 1/T\\to 0 and the search cost being independent of N over a suitable range of N. Moreover, deterministic resetting typically leads to a lower search cost than in Poisson resetting.
Deterministic dense coding with partially entangled states
Mozes, Shay; Reznik, Benni; Oppenheim, Jonathan
2005-01-01
The utilization of a d-level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d. In general, we numerically find that the maximal alphabet size is any integer in the range [d,d{sup 2}] with the possible exception of d{sup 2}-1. We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.
Optimal partial deterministic quantum teleportation of qubits
Mista, Ladislav Jr.; Filip, Radim
2005-02-01
We propose a protocol implementing optimal partial deterministic quantum teleportation for qubits. This is a teleportation scheme realizing deterministically an optimal 1{yields}2 asymmetric universal cloning where one imperfect copy of the input state emerges at the sender's station while the other copy emerges at receiver's possibly distant station. The optimality means that the fidelities of the copies saturate the asymmetric cloning inequality. The performance of the protocol relies on the partial deterministic nondemolition Bell measurement that allows us to continuously control the flow of information among the outgoing qubits. We also demonstrate that the measurement is optimal two-qubit operation in the sense of the trade-off between the state disturbance and the information gain.
Nine challenges for deterministic epidemic models.
Roberts, Mick; Andreasen, Viggo; Lloyd, Alun; Pellis, Lorenzo
2015-03-01
Deterministic models have a long history of being applied to the study of infectious disease epidemiology. We highlight and discuss nine challenges in this area. The first two concern the endemic equilibrium and its stability. We indicate the need for models that describe multi-strain infections, infections with time-varying infectivity, and those where superinfection is possible. We then consider the need for advances in spatial epidemic models, and draw attention to the lack of models that explore the relationship between communicable and non-communicable diseases. The final two challenges concern the uses and limitations of deterministic models as approximations to stochastic systems.
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given
Parallel calculations on shared memory, NUMA-based computers using MATLAB
NASA Astrophysics Data System (ADS)
Krotkiewski, Marcin; Dabrowski, Marcin
2014-05-01
Achieving satisfactory computational performance in numerical simulations on modern computer architectures can be a complex task. Multi-core design makes it necessary to parallelize the code. Efficient parallelization on NUMA (Non-Uniform Memory Access) shared memory architectures necessitates explicit placement of the data in the memory close to the CPU that uses it. In addition, using more than 8 CPUs (~100 cores) requires a cluster solution of interconnected nodes, which involves (expensive) communication between the processors. It takes significant effort to overcome these challenges even when programming in low-level languages, which give the programmer full control over data placement and work distribution. Instead, many modelers use high-level tools such as MATLAB, which severely limit the optimization/tuning options available. Nonetheless, the advantage of programming simplicity and a large available code base can tip the scale in favor of MATLAB. We investigate whether MATLAB can be used for efficient, parallel computations on modern shared memory architectures. A common approach to performance optimization of MATLAB programs is to identify a bottleneck and migrate the corresponding code block to a MEX file implemented in, e.g. C. Instead, we aim at achieving a scalable parallel performance of MATLABs core functionality. Some of the MATLABs internal functions (e.g., bsxfun, sort, BLAS3, operations on vectors) are multi-threaded. Achieving high parallel efficiency of those may potentially improve the performance of significant portion of MATLABs code base. Since we do not have MATLABs source code, our performance tuning relies on the tools provided by the operating system alone. Most importantly, we use custom memory allocation routines, thread to CPU binding, and memory page migration. The performance tests are carried out on multi-socket shared memory systems (2- and 4-way Intel-based computers), as well as a Distributed Shared Memory machine with 96 CPU
Deterministic Quantization by Dynamical Boundary Conditions
Dolce, Donatello
2010-06-15
We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.
Linear Deterministic Accumulator Models of Simple Choice
Heathcote, Andrew; Love, Jonathon
2012-01-01
We examine theories of simple choice as a race among evidence accumulation processes. We focus on the class of deterministic race models, which assume that the effects of fluctuations in the parameters of the accumulation processes between-choice trials (between-choice noise) dominate the effects of fluctuations occurring while making a choice (within-choice noise) in behavioral data (i.e., response times and choices). The latter deterministic approximation, when combined with the assumption that accumulation is linear, leads to a class of models that can be readily applied to simple-choice behavior because they are computationally tractable. We develop a new and mathematically simple exemplar within the class of linear deterministic models, the Lognormal race (LNR). We then examine how the LNR, and another widely applied linear deterministic model, Brown and Heathcote’s (2008) LBA, account for a range of benchmark simple-choice effects in lexical-decision task data reported by Wagenmakers et al. (2008). Our results indicate that the LNR provides an accurate description of this data. Although the LBA model provides a slightly better account, both models support similar psychological conclusions. PMID:22936920
Efficient MATLAB simulation of the brusselator
NASA Astrophysics Data System (ADS)
Opalska, Katarzyna
2013-10-01
The paper presents the results of the simulation of the brusselator performed in the MATLAB environment. The brusselator is a kind of a chemical oscillating system (with periodically changing concentrations of reactants and the possibility of self-organizing), described by the Partial Differential Equation (PDE) system. The brusselator is analyzed by solving a set Ordinary Differential Equation (ODE) obtained by the space discretization of the original PDE. The resulting ODE system is huge (the better accuracy expected, the more dense discretization and the larger ODE set), so its solving is a highly time-consuming task. This paper illustrates solving brusselator equations by means of the generic mathematical software (MATLAB), using both built-in integrating algorithms, as well as the dedicated iterated integration scheme, with the focus on the efficiency of the simulation.
MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Modelling of Photovoltaic Module Using Matlab Simulink
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Ajisman; Razlan Yusoff, Ahmad
2016-02-01
Photovoltaic (PV) module consists of numbers of photovoltaic cells that are connected in series and parallel used to generate electricity from solar energy. The characteristics of PV module are different based on the model and environment factors. In this paper, simulation of photovoltaic module using Matlab Simulink approach is presented. The method is used to determine the characteristics of PV module in various conditions especially in different level of irradiations and temperature. By having different values of irradiations and temperature, the results showed the output power, voltage and current of PV module can be determined. In addition, all results from Matlab Simulink are verified with theoretical calculation. This proposed model helps in better understanding of PV module characteristics in various environment conditions.
Matlab as a robust control design tool
NASA Technical Reports Server (NTRS)
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Automated Microarray Image Analysis Toolbox for MATLAB
White, Amanda M.; Daly, Don S.; Willse, Alan R.; Protic, Miroslava; Chandler, Darrell P.
2005-09-01
The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.
Realization of Ridge Regression in MATLAB
NASA Astrophysics Data System (ADS)
Dimitrov, S.; Kovacheva, S.; Prodanova, K.
2008-10-01
The least square estimator (LSE) of the coefficients in the classical linear regression models is unbiased. In the case of multicollinearity of the vectors of design matrix, LSE has very big variance, i.e., the estimator is unstable. A more stable estimator (but biased) can be constructed using ridge-estimator (RE). In this paper the basic methods of obtaining of Ridge-estimators and numerical procedures of its realization in MATLAB are considered. An application to Pharmacokinetics problem is considered.
SAR image formation toolbox for MATLAB
NASA Astrophysics Data System (ADS)
Gorham, LeRoy A.; Moore, Linda J.
2010-04-01
While many synthetic aperture radar (SAR) image formation techniques exist, two of the most intuitive methods for implementation by SAR novices are the matched filter and backprojection algorithms. The matched filter and (non-optimized) backprojection algorithms are undeniably computationally complex. However, the backprojection algorithm may be successfully employed for many SAR research endeavors not involving considerably large data sets and not requiring time-critical image formation. Execution of both image reconstruction algorithms in MATLAB is explicitly addressed. In particular, a manipulation of the backprojection imaging equations is supplied to show how common MATLAB functions, ifft and interp1, may be used for straight-forward SAR image formation. In addition, limits for scene size and pixel spacing are derived to aid in the selection of an appropriate imaging grid to avoid aliasing. Example SAR images generated though use of the backprojection algorithm are provided given four publicly available SAR datasets. Finally, MATLAB code for SAR image reconstruction using the matched filter and backprojection algorithms is provided.
MATLAB/Simulink analytic radar modeling environment
NASA Astrophysics Data System (ADS)
Esken, Bruce L.; Clayton, Brian L.
2001-09-01
Analytic radar models are simulations based on abstract representations of the radar, the RF environment that radar signals are propagated, and the reflections produced by targets, clutter and multipath. These models have traditionally been developed in FORTRAN and have evolved over the last 20 years into efficient and well-accepted codes. However, current models are limited in two primary areas. First, by the nature of algorithm based analytical models, they can be difficult to understand by non-programmers and equally difficult to modify or extend. Second, there is strong interest in re-using these models to support higher-level weapon system and mission level simulations. To address these issues, a model development approach has been demonstrated which utilizes the MATLAB/Simulink graphical development environment. Because the MATLAB/Simulink environment graphically represents model algorithms - thus providing visibility into the model - algorithms can be easily analyzed and modified by engineers and analysts with limited software skills. In addition, software tools have been created that provide for the automatic code generation of C++ objects. These objects are created with well-defined interfaces enabling them to be used by modeling architectures external to the MATLAB/Simulink environment. The approach utilized is generic and can be extended to other engineering fields.
Reproductive preferences in Matlab, Bangladesh: levels, motivation and differentials.
Razzaque, A
1996-03-01
This study provides evidence that aspirations for a smaller family and poverty both determined the reduction in family size preferences in the Matlab area of Bangladesh. Data are obtained from a variety of data sets: the 1990 Knowledge, Attitude, and Practice Survey; the 1982 Socioeconomic Survey; and the 1991 Qualitative Survey. Both treatment and nontreatment areas of Matlab experienced a fertility decline during 1976-90, from 6.9 to 3.6 children/woman in the treatment area and from 7.2 to 5.2 in the control area. In this study, multiple classification analysis and logistic regression analysis were conducted. Findings indicate that mean desired family sizes were similar in both areas and slightly higher in the treatment area. Desired family size declined during 1975-90. Most of the decline probably occurred prior to 1985. Findings from qualitative interviews indicate that most women reported that the smaller desired family size was related to the direct economic cost of children. Women also reported that family planning was now available and that in the past there were more resources for caring for large families. Mothers-in-law were open to informing their daughters-in-law about the desire for small families. This motivation for a small family among older and younger women was not present 10 years ago. Findings reveal that desired family size did not vary by age, family size, socioeconomic group, or existence of the Family Planning and Health Services Program. PMID:12291553
Deterministic dynamics in the minority game
NASA Astrophysics Data System (ADS)
Jefferies, P.; Hart, M. L.; Johnson, N. F.
2002-01-01
The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG's deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game's quenched disorder. Approximate analytical expressions are obtained and the effect of ``market impact'' is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.
Bayesian Uncertainty Analyses Via Deterministic Model
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.
2001-05-01
Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.
Deterministic signal associated with a random field.
Kim, Taewoo; Zhu, Ruoyu; Nguyen, Tan H; Zhou, Renjie; Edwards, Chris; Goddard, Lynford L; Popescu, Gabriel
2013-09-01
Stochastic fields do not generally possess a Fourier transform. This makes the second-order statistics calculation very difficult, as it requires solving a fourth-order stochastic wave equation. This problem was alleviated by Wolf who introduced the coherent mode decomposition and, as a result, space-frequency statistics propagation of wide-sense stationary fields. In this paper we show that if, in addition to wide-sense stationarity, the fields are also wide-sense statistically homogeneous, then monochromatic plane waves can be used as an eigenfunction basis for the cross spectral density. Furthermore, the eigenvalue associated with a plane wave, exp[i(k · r-ωt)], is given by the spatiotemporal power spectrum evaluated at the frequency (k, ω). We show that the second-order statistics of these fields is fully described by the spatiotemporal power spectrum, a real, positive function. Thus, the second-order statistics can be efficiently propagated in the wavevector-frequency representation using a new framework of deterministic signals associated with random fields. Analogous to the complex analytic signal representation of a field, the deterministic signal is a mathematical construct meant to simplify calculations. Specifically, the deterministic signal associated with a random field is defined such that it has the identical autocorrelation as the actual random field. Calculations for propagating spatial and temporal correlations are simplified greatly because one only needs to solve a deterministic wave equation of second order. We illustrate the power of the wavevector-frequency representation with calculations of spatial coherence in the far zone of an incoherent source, as well as coherence effects induced by biological tissues.
Shape-Controlled Deterministic Assembly of Nanowires.
Zhao, Yunlong; Yao, Jun; Xu, Lin; Mankin, Max N; Zhu, Yinbo; Wu, Hengan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M
2016-04-13
Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics. PMID:26999059
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Deterministic seismic design and evaluation criteria to meet probabilistic performance goals
Short, S.A. ); Murray, R.C.; Nelson, T.A. ); Hill, J.R. . Office of Safety Appraisals)
1990-12-01
For DOE facilities across the United States, seismic design and evaluation criteria are based on probabilistic performance goals. In addition, other programs such as Advanced Light Water Reactors, New Production Reactors, and IPEEE for commercial nuclear power plants utilize design and evaluation criteria based on probabilistic performance goals. The use of probabilistic performance goals is a departure from design practice for commercial nuclear power plants which have traditionally been designed utilizing a deterministic specification of earthquake loading combined with deterministic response evaluation methods and permissible behavior limits. Approaches which utilize probabilistic seismic hazard curves for specification of earthquake loading and deterministic response evaluation methods and permissible behavior limits are discussed in this paper. Through the use of such design/evaluation approaches, it may be demonstrated that there is high likelihood that probabilistic performance goals can be achieved. 12 refs., 2 figs., 9 tabs.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing.
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment. PMID:25101013
Documentation generator for VHDL and MatLab source codes for photonic and electronic systems
NASA Astrophysics Data System (ADS)
Niton, B.; Pozniak, K. T.; Romaniuk, R. S.
2011-06-01
The UML, which is a complex system modeling and description technology, has recently been expanding its uses in the field of formalization and algorithmic approach to such systems like multiprocessor photonic, optoelectronic and advanced electronics carriers; distributed, multichannel measurement systems; optical networks, industrial electronics, novel R&D solutions. The paper describes a new concept of software dedicated for documenting the source codes written in VHDL and MatLab. The work starts with the analysis of available documentation generators for both programming languages, with an emphasis on the open source solutions. There are presented own solutions which base on the Doxygen program available as a free license with the source code. The supporting tools for parsers building were used like Bison and Flex. The documentation generator application is used for design of large optoelectronic and electronic measurement and control systems. The paper consists of three parts which describe the following components of the documentation generator for photonic and electronic systems: concept, MatLab application and VHDL application. This is part one which describes the system concept. Part two describes the MatLab application. MatLab is used for description of the measured phenomena. Part three describes the VHDL application. VHDL is used for behavioral description of the optoelectronic system. All the proposed approach and application documents big, complex software configurations for large systems.
Development and testing of a user-friendly Matlab interface for the JHU turbulence database system
NASA Astrophysics Data System (ADS)
Graham, Jason; Frederix, Edo; Meneveau, Charles
2011-11-01
One of the challenges that faces researchers today is the ability to store large scale data sets in a way that promotes easy access to the data and sharing among the research community. A public turbulence database cluster has been constructed in which 27 terabytes of a direct numerical simulation of isotropic turbulence is stored (Li et al., 2008, JoT). The public database provides researchers the ability to retrieve subsets of the spatiotemporal data remotely from a client machine anywhere over the internet. In addition to C and Fortran client interfaces, we now present a new Matlab interface based on Matlab's intrinsic SOAP functions. The Matlab interface provides the benefit of a high-level programming language with a plethora of intrinsic functions and toolboxes. In this talk, we will discuss several aspects of the Matlab interface including its development, optimization, usage, and application to the isotropic turbulence data. We will demonstrate several examples (visualizations, statistical analysis, etc) which illustrate the tool. Supported by NSF (CDI-II, CMMI-0941530) and Eindhoven University of Technology's Masters internship program.
Deterministic photon bias in speckle imaging
NASA Technical Reports Server (NTRS)
Beletic, James W.
1989-01-01
A method for determining photo bias terms in speckle imaging is presented, and photon bias is shown to be a deterministic quantity that can be calculated without the use of the expectation operator. The quantities obtained are found to be identical to previous results. The present results have extended photon bias calculations to the important case of the bispectrum where photon events are assigned different weights, in which regime the bias is a frequency dependent complex quantity that must be calculated for each frame.
Deterministic Switching in Bismuth Ferrite Nanoislands.
Morelli, Alessio; Johann, Florian; Burns, Stuart R; Douglas, Alan; Gregg, J Marty
2016-08-10
We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices. PMID:27454612
Minimal Deterministic Physicality Applied to Cosmology
NASA Astrophysics Data System (ADS)
Valentine, John S.
This report summarizes ongoing research and development since our 2012 foundation paper, including the emergent effects of a deterministic mechanism for fermion interactions: (1) the coherence of black holes and particles using a quantum chaotic model; (2) wide-scale (anti)matter prevalence from exclusion and weak interaction during the fermion reconstitution process; and (3) red-shift due to variations of vacuum energy density. We provide a context for Standard Model fields, and show how gravitation can be accountably unified in the same mechanism, but not as a unified field.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
Atmospheric Downscaling using Genetic Programming
NASA Astrophysics Data System (ADS)
Zerenner, Tanja; Venema, Victor; Simmer, Clemens
2013-04-01
Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and
YALINA analytical benchmark analyses using the deterministic ERANOS code system.
Gohar, Y.; Aliberti, G.; Nuclear Engineering Division
2009-08-31
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.
A deterministic global approach for mixed-discrete structural optimization
NASA Astrophysics Data System (ADS)
Lin, Ming-Hua; Tsai, Jung-Fa
2014-07-01
This study proposes a novel approach for finding the exact global optimum of a mixed-discrete structural optimization problem. Although many approaches have been developed to solve the mixed-discrete structural optimization problem, they cannot guarantee finding a global solution or they adopt too many extra binary variables and constraints in reformulating the problem. The proposed deterministic method uses convexification strategies and linearization techniques to convert a structural optimization problem into a convex mixed-integer nonlinear programming problem solvable to obtain a global optimum. To enhance the computational efficiency in treating complicated problems, the range reduction technique is also applied to tighten variable bounds. Several numerical experiments drawn from practical structural design problems are presented to demonstrate the effectiveness of the proposed method.
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Deterministic magnetorheological finishing of optical aspheric mirrors
NASA Astrophysics Data System (ADS)
Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng
2009-05-01
A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.
Deterministic forward scatter from surface gravity waves.
Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale
2012-12-01
Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.
Deterministic prediction of surface wind speed variations
NASA Astrophysics Data System (ADS)
Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.
2014-11-01
Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
NASA Astrophysics Data System (ADS)
Wang, Fengyu
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch
OSCAR a Matlab based optical FFT code
NASA Astrophysics Data System (ADS)
Degallaix, Jérôme
2010-05-01
Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.
Object-oriented Matlab adaptive optics toolbox
NASA Astrophysics Data System (ADS)
Conan, R.; Correia, C.
2014-08-01
Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.
Statistical properties of deterministic Bernoulli flows
Radunskaya, A.E.
1992-12-31
This thesis presents several new theorems about the stability and the statistical properties of deterministic chaotic flows. Many concrete systems known to exhibit deterministic chaos have so far been shown to be of a class known as Bernoulli Flows. This class of flows is characterized by the Finitely Determined property, which can be checked in specific cases. The first theorem says that these flows can be modeled arbitrarily well for all time by continuous-time finite state Markov processes. In other words it is theoretically possible to model the flow arbitrarily well by a computer equipped with a roulette wheel. There follows a stability result, which says that one can distort the measurements made on the processes without affecting the approximation. These results are than applied to the problem of distinguishing deterministic chaos from stochastic processes in the analysis of time series. The second part of the thesis deals with a specific set of examples. Although it has been possible to analyze specific systems to determine whether they lie in the class of Bernoulli systems, the standard techniques rely on the construction of expanding and contracting fibers in the phase space of the system. These fibers are then used to coordinatize the phase space and to prove the existence of a hyperbolic structure. Unfortunately such methods may fail in the general case, where smoothness conditions and a small singular set cannot be assumed. For example, suppose the standard billiard flow on a square table with a perfectly round obstacle, which is known to be Bernoulli, is replaced by a similar flow on a table with a bumpy fractal-like obstacle: a model perhaps closer to nature. It is shown that these fibers no longer exist and hence cannot be used in the standard manner to prove Bernoulliness or ergodicity. But, one can use the fact that the class of Bernoulli flows is closed in the d-bar metric to show that this billard flow with a bumpy obstacle is in fact Bernoulli.
Deterministic, Nanoscale Fabrication of Mesoscale Objects
Jr., R M; Gilmer, J; Rubenchik, A; Shirk, M
2004-12-08
Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-D features and with 100-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels, as well as materials such as diamond and vanadium. The motivation for this project was to investigate the physics and chemistry that control the interactions of solid surfaces with laser beams and ion beams, with a view towards their applicability to the desired deterministic fabrication processes. As part of this LDRD project, one of our goals was to advance the state of the art for experimental work, but, in order to create ultimately a deterministic capability for such precision micromachining, another goal was to form a new modeling/simulation capability that could also extend the state of the art in this field. We have achieved both goals. In this project, we have, for the first time, combined a 1-D hydrocode (''HYADES'') with a 3-D molecular dynamics simulator (''MDCASK'') in our modeling studies. In FY02 and FY03, we investigated the ablation/surface-modification processes that occur on copper, gold, and nickel substrates with the use of sub-ps laser pulses. In FY04, we investigated laser ablation of carbon, including laser-enhanced chemical reaction on the carbon surface for both vitreous carbon and carbon aerogels. Both experimental and modeling results will be presented in the report that follows. The immediate impact of our investigation was a much better understanding of the chemical and physical processes that ensure when solid materials are exposed to femtosecond laser pulses. More broadly, we have better positioned LLNL to design a cluster tool for fabricating mesoscale objects utilizing laser pulses and ion-beams as well as more traditional machining/manufacturing techniques for applications such as components in NIF targets, remote sensors, including
Flexible missile autopilot design studies with PC-MATLAB/386
NASA Technical Reports Server (NTRS)
Ruth, Michael J.
1989-01-01
Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.
Deterministic Earthquake Hazard Assessment by Public Agencies in California
NASA Astrophysics Data System (ADS)
Mualchin, L.
2005-12-01
Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.
Deterministic approaches to coherent diffractive imaging
NASA Astrophysics Data System (ADS)
Allen, L. J.; D'Alfonso, A. J.; Martin, A. V.; Morgan, A. J.; Quiney, H. M.
2016-01-01
In this review we will consider the retrieval of the wave at the exit surface of an object illuminated by a coherent probe from one or more measured diffraction patterns. These patterns may be taken in the near-field (often referred to as images) or in the far field (the Fraunhofer diffraction pattern, where the wave is the Fourier transform of that at the exit surface). The retrieval of the exit surface wave from such data is an inverse scattering problem. This inverse problem has historically been solved using nonlinear iterative methods, which suffer from convergence and uniqueness issues. Here we review deterministic approaches to obtaining the exit surface wave which ameliorate those problems.
Deterministic polishing from theory to practice
NASA Astrophysics Data System (ADS)
Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary
2015-10-01
Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable
A MATLAB GUI based algorithm for modelling Magnetotelluric data
NASA Astrophysics Data System (ADS)
Timur, Emre; Onsen, Funda
2016-04-01
The magnetotelluric method is an electromagnetic survey technique that images the electrical resistivity distribution of layers in subsurface depths. Magnetotelluric method measures simultaneously total electromagnetic field components such as both time-varying magnetic field B(t) and induced electric field E(t). At the same time, forward modeling of magnetotelluric method is so beneficial for survey planning purpose, for comprehending the method, especially for students, and as part of an iteration process in inverting measured data. The MTINV program can be used to model and to interpret geophysical electromagnetic (EM) magnetotelluric (MT) measurements using a horizontally layered earth model. This program uses either the apparent resistivity and phase components of the MT data together or the apparent resistivity data alone. Parameter optimization, which is based on linearized inversion method, can be utilized in 1D interpretations. In this study, a new MATLAB GUI based algorithm has been written for the 1D-forward modeling of magnetotelluric response function for multiple layers to use in educational studies. The code also includes an automatic Gaussian noise option for a demanded ratio value. Numerous applications were carried out and presented for 2,3 and 4 layer models and obtained theoretical data were interpreted using MTINV, in order to evaluate the initial parameters and effect of noise. Keywords: Education, Forward Modelling, Inverse Modelling, Magnetotelluric
GRAFLAB 2.3 for UNIX - A MATLAB database, plotting, and analysis tool: User`s guide
Dunn, W.N.
1998-03-01
This report is a user`s manual for GRAFLAB, which is a new database, analysis, and plotting package that has been written entirely in the MATLAB programming language. GRAFLAB is currently used for data reduction, analysis, and archival. GRAFLAB was written to replace GRAFAID, which is a FORTRAN database, analysis, and plotting package that runs on VAX/VMS.
Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.
Nasiłowski, Krzysztof; Awrejcewicz, Jan; Lewandowski, Donat
2014-01-01
A paralyzed and not fully functional part of human body can be supported by the properly designed exoskeleton system with motoric abilities. It can help in rehabilitation, or movement of a disabled/paralyzed limb. Both suitably selected geometry and specialized software are studied applying the MATLAB environment. A finger exoskeleton was the base for MATLAB/Simulink model. Specialized software, such as MATLAB/Simulink give us an opportunity to optimize calculation reaching precise results, which help in next steps of design process. The calculations carried out yield information regarding movement relation between three functionally connected actuators and showed distance and velocity changes during the whole simulation time.
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.
Human gait recognition via deterministic learning.
Zeng, Wei; Wang, Cong
2012-11-01
Recognition of temporal/dynamical patterns is among the most difficult pattern recognition tasks. Human gait recognition is a typical difficulty in the area of dynamical pattern recognition. It classifies and identifies individuals by their time-varying gait signature data. Recently, a new dynamical pattern recognition method based on deterministic learning theory was presented, in which a time-varying dynamical pattern can be effectively represented in a time-invariant manner and can be rapidly recognized. In this paper, we present a new model-based approach for human gait recognition via the aforementioned method, specifically for recognizing people by gait. The approach consists of two phases: a training (learning) phase and a test (recognition) phase. In the training phase, side silhouette lower limb joint angles and angular velocities are selected as gait features. A five-link biped model for human gait locomotion is employed to demonstrate that functions containing joint angle and angular velocity state vectors characterize the gait system dynamics. Due to the quasi-periodic and symmetrical characteristics of human gait, the gait system dynamics can be simplified to be described by functions of joint angles and angular velocities of one side of the human body, thus the feature dimension is effectively reduced. Locally-accurate identification of the gait system dynamics is achieved by using radial basis function (RBF) neural networks (NNs) through deterministic learning. The obtained knowledge of the approximated gait system dynamics is stored in constant RBF networks. A gait signature is then derived from the extracted gait system dynamics along the phase portrait of joint angles versus angular velocities. A bank of estimators is constructed using constant RBF networks to represent the training gait patterns. In the test phase, by comparing the set of estimators with the test gait pattern, a set of recognition errors are generated, and the average L(1) norms
OPTICON: Pro-Matlab software for large order controlled structure design
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1989-01-01
A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.
A Parallel Controls Software Approach for PEP II: AIDA & Matlab Middle Layer
Wittmer, W.; Colocho, W.; White, G.; /SLAC
2007-11-06
The controls software in use at PEP II (Stanford Control Program - SCP) had originally been developed in the eighties. It is very successful in routine operation but due to its internal structure it is difficult and time consuming to extend its functionality. This is problematic during machine development and when solving operational issues. Routinely, data has to be exported from the system, analyzed offline, and calculated settings have to be reimported. Since this is a manual process, it is time consuming and error-prone. Setting up automated processes, as is done for MIA (Model Independent Analysis), is also time consuming and specific to each application. Recently, there has been a trend at light sources to use MATLAB as the platform to control accelerators using a 'MATLAB Middle Layer' (MML), and so called channel access (CA) programs to communicate with the low level control system (LLCS). This has proven very successful, especially during machine development time and trouble shooting. A special CA code, named AIDA (Accelerator Independent Data Access), was developed to handle the communication between MATLAB, modern software frameworks, and the SCP. The MML had to be adapted for implementation at PEP II. Colliders differ significantly in their designs compared to light sources, which poses a challenge. PEP II is the first collider at which this implementation is being done. We will report on this effort, which is still ongoing.
OCTBEC—A Matlab toolbox for optimal quantum control of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Hohenester, Ulrich
2014-01-01
OCTBEC is a Matlab toolbox designed for optimal quantum control, within the framework of optimal control theory (OCT), of Bose-Einstein condensates (BEC). The systems we have in mind are ultracold atoms in confined geometries, where the dynamics takes place in one or two spatial dimensions, and the confinement potential can be controlled by some external parameters. Typical experimental realizations are atom chips, where the currents running through the wires produce magnetic fields that allow to trap and manipulate nearby atoms. The toolbox provides a variety of Matlab classes for simulations based on the Gross-Pitaevskii equation, the multi-configurational Hartree method for bosons, and on generic few-mode models, as well as optimization problems. These classes can be easily combined, which has the advantage that one can adapt the simulation programs flexibly for various applications.
Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.
York, George W P; Welch, Thad B; Wright, Cameron H G
2005-01-01
Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation. PMID:15850134
Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.
York, George W P; Welch, Thad B; Wright, Cameron H G
2005-01-01
Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation.
Curved paths in raptor flight: Deterministic models.
Lorimer, John W
2006-10-21
Two deterministic models for flight of Peregrine Falcons and possibly other raptors as they approach their prey are examined mathematically. Both models make two assumptions. The first, applicable to both models, is that the angle of sight between falcon and prey is constant, consistent with observations that the falcon keeps its head straight during flight and keeps on course by use of the deep foveal region in its eye which allows maximum acuity at an angle of sight of about 45 degrees . The second assumption for the first model (conical spiral), is that the initial direction of flight determines the overall path. For the second model (flight constrained to a tilted plane), a parameter that fixes the orientation of the plane is required. A variational calculation also shows that the tilted plane flight path is the shortest total path, and, consequently, the conical spiral is another shortest total path. Numerical calculations indicate that the flight paths for the two models are very similar for the experimental conditions under which observations have been made. However, the angles of flight and bank differ significantly. More observations are needed to investigate the applicability of the two models.
Quality control in a deterministic manufacturing environment
Barkman, W.E.; Babelay, E.F.; De Mint, P.D.; Lewis, J.C.; Woodard, L.M.
1985-01-24
An approach for establishing quality control in processes which exhibit undesired continual or intermittent excursions in key process parameters is discussed. The method is called deterministic manufacturing, and it is designed to employ automatic monitoring of the key process variables for process certification, but utilizes only sample certification of the process output to verify the validity of the measurement process. The system utilizes a local minicomputer to sample the appropriate process parameters that describe the condition of the machine tool, the cutting process, and the computer numerical control system. Sampled data are pre-processed by the minicomputer and then sent to a host computer that maintains a permanent data base describing the manufacturing conditions for each work piece. Parts are accepted if the various parameters remain within the required limits during the machining cycle. The need for additional actions is flagged if limits are exceeded. With this system it is possible to retrospectively examine the process status just prior to the occurrence of a problem. (LEW)
Deterministic particle transport in a ratchet flow
NASA Astrophysics Data System (ADS)
Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina
2016-01-01
This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.
Nichols, David F
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.
Nichols, David F
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB
Nichols, David F.
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities
Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.
2012-03-29
A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
SAR digital spotlight implementation in MATLAB
NASA Astrophysics Data System (ADS)
Dungan, Kerry E.; Gorham, LeRoy A.; Moore, Linda J.
2013-05-01
Legacy synthetic aperture radar (SAR) exploitation algorithms were image-based algorithms, designed to exploit complex and/or detected SAR imagery. In order to improve the efficiency of the algorithms, image chips, or region of interest (ROI) chips, containing candidate targets were extracted. These image chips were then used directly by exploitation algorithms for the purposes of target discrimination or identification. Recent exploitation research has suggested that performance can be improved by processing the underlying phase history data instead of standard SAR imagery. Digital Spotlighting takes the phase history data of a large image and extracts the phase history data corresponding to a smaller spatial subset of the image. In a typical scenario, this spotlighted phase history data will contain much fewer samples than the original data but will still result in an alias-free image of the ROI. The Digital Spotlight algorithm can be considered the first stage in a "two-stage backprojection" image formation process. As the first stage in two-stage backprojection, Digital Spotlighting filters the original phase history data into a number of "pseudo"-phase histories that segment the scene into patches, each of which contain a reduced number of samples compared to the original data. The second stage of the imaging process consists of standard backprojection. The data rate reduction offered by Digital Spotlighting improves the computational efficiency of the overall imaging process by significantly reducing the total number of backprojection operations. This paper describes the Digital Spotlight algorithm in detail and provides an implementation in MATLAB.
Subband/Transform MATLAB Functions For Processing Images
NASA Technical Reports Server (NTRS)
Glover, D.
1995-01-01
SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.
Surface plasmon field enhancements in deterministic aperiodic structures.
Shugayev, Roman
2010-11-22
In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2011-05-17
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Deterministic, Nanoscale Fabrication of Mesoscale Objects
Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A
2004-09-24
Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on
Reproducible and deterministic production of aspheres
NASA Astrophysics Data System (ADS)
Leitz, Ernst Michael; Stroh, Carsten; Schwalb, Fabian
2015-10-01
Aspheric lenses are ground in a single point cutting mode. Subsequently different iterative polishing methods are applied followed by aberration measurements on external metrology instruments. For an economical production, metrology and correction steps need to be reduced. More deterministic grinding and polishing is mandatory. Single point grinding is a path-controlled process. The quality of a ground asphere is mainly influenced by the accuracy of the machine. Machine improvements must focus on path accuracy and thermal expansion. Optimized design, materials and thermal management reduce thermal expansion. The path accuracy can be improved using ISO 230-2 standardized measurements. Repeated interferometric measurements over the total travel of all CNC axes in both directions are recorded. Position deviations evaluated in correction tables improve the path accuracy and that of the ground surface. Aspheric polishing using a sub-aperture flexible polishing tool is a dwell time controlled process. For plano and spherical polishing the amount of material removal during polishing is proportional to pressure, relative velocity and time (Preston). For the use of flexible tools on aspheres or freeform surfaces additional non-linear components are necessary. Satisloh ADAPT calculates a predicted removal function from lens geometry, tool geometry and process parameters with FEM. Additionally the tooĺs local removal characteristics is determined in a simple test. By oscillating the tool on a plano or spherical sample of the same lens material, a trench is created. Its 3-D profile is measured to calibrate the removal simulation. Remaining aberrations of the desired lens shape can be predicted, reducing iteration and metrology steps.
Understanding Vertical Jump Potentiation: A Deterministic Model.
Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L
2016-06-01
This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength. PMID:26712510
Deterministic phase retrieval employing spherical illumination
NASA Astrophysics Data System (ADS)
Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.
2015-05-01
Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.
GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations
NASA Astrophysics Data System (ADS)
Caliari, Marco; Rainer, Stefan
2013-03-01
GSGPEs is a Matlab/GNU Octave suite of programs for the computation of the ground state of systems of Gross-Pitaevskii equations. It can compute the ground state in the defocusing case, for any number of equations with harmonic or quasi-harmonic trapping potentials, in spatial dimension one, two or three. The computation is based on a spectral decomposition of the solution into Hermite functions and direct minimization of the energy functional through a Newton-like method with an approximate line-search strategy. Catalogue identifier: AENT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1417 No. of bytes in distributed program, including test data, etc.: 13673 Distribution format: tar.gz Programming language: Matlab/GNU Octave. Computer: Any supporting Matlab/GNU Octave. Operating system: Any supporting Matlab/GNU Octave. RAM: About 100 MB for a single three-dimensional equation (test run output). Classification: 2.7, 4.9. Nature of problem: A system of Gross-Pitaevskii Equations (GPEs) is used to mathematically model a Bose-Einstein Condensate (BEC) for a mixture of different interacting atomic species. The equations can be used both to compute the ground state solution (i.e., the stationary order parameter that minimizes the energy functional) and to simulate the dynamics. For particular shapes of the traps, three-dimensional BECs can be also simulated by lower dimensional GPEs. Solution method: The ground state of a system of Gross-Pitaevskii equations is computed through a spectral decomposition into Hermite functions and the direct minimization of the energy functional. Running time: About 30 seconds for a single three-dimensional equation with d.o.f. 40 for each spatial direction (test run output).
Automated optimum design of wing structures. Deterministic and probabilistic approaches
NASA Technical Reports Server (NTRS)
Rao, S. S.
1982-01-01
The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402
On a class of quantum Turing machine halting deterministically
NASA Astrophysics Data System (ADS)
Liang, Min; Yang, Li
2013-05-01
We consider a subclass of quantum Turing machines (QTM), named stationary rotational quantum Turing machine (SR-QTM), which halts deterministically and has deterministic tape head position. A quantum state transition diagram (QSTD) is proposed to describe SR-QTM. With QSTD, we construct a SR-QTM which is universal for all near-trivial transformations. This indicates there exists a QTM which is universal for the above subclass. Finally we show that SR-QTM is computational equivalent with ordinary QTM in the bounded error setting. It can be seen that SR-QTMs have deterministic tape head position and halt deterministically, and thus the halting scheme problem will not exist for this class of QTMs.
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2011-08-23
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Lee, Leng-Feng
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This
Structural deterministic safety factors selection criteria and verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
The Waveform Suite: A robust platform for accessing and manipulating seismic waveforms in MATLAB
NASA Astrophysics Data System (ADS)
Reyes, C. G.; West, M. E.; McNutt, S. R.
2009-12-01
The Waveform Suite, developed at the University of Alaska Geophysical Institute, is an open-source collection of MATLAB classes that provide a means to import, manipulate, display, and share waveform data while ensuring integrity of the data and stability for programs that incorporate them. Data may be imported from a variety of sources, such as Antelope, Winston databases, SAC files, SEISAN, .mat files, or other user-defined file formats. The waveforms being manipulated in MATLAB are isolated from their stored representations, relieving the overlying programs from the responsibility of understanding the specific format in which data is stored or retrieved. The waveform class provides an object oriented framework that simplifies manipulations to waveform data. Playing with data becomes easier because the tedious aspects of data manipulation have been automated. The user is able to change multiple waveforms simultaneously using standard mathematical operators and other syntactically familiar functions. Unlike MATLAB structs or workspace variables, the data stored within waveform class objects are protected from modification, and instead are accessed through standardized functions, such as get and set; these are already familiar to users of MATLAB’s graphical features. This prevents accidental or nonsensical modifications to the data, which in turn simplifies troubleshooting of complex programs. Upgrades to the internal structure of the waveform class are invisible to applications which use it, making maintenance easier. We demonstrate the Waveform Suite’s capabilities on seismic data from Okmok and Redoubt volcanoes. Years of data from Okmok were retrieved from Antelope and Winston databases. Using the Waveform Suite, we built a tremor-location program. Because the program was built on the Waveform Suite, modifying it to operate on real-time data from Redoubt involved only minimal code changes. The utility of the Waveform Suite as a foundation for large
Single Ion Implantation and Deterministic Doping
Schenkel, Thomas
2010-06-11
The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion
Chirp Z-transform spectral zoom optimization with MATLAB.
Martin, Grant D.
2005-11-01
The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.
Are deterministic expert systems for computer-assisted structure elucidation obsolete?
Elyashberg, Mikhail E; Blinov, Kirill A; Williams, Antony J; Molodtsov, Sergey G; Martin, Gary E
2006-01-01
Expert systems for spectroscopic molecular structure elucidation have been developed since the mid-1960s. Algorithms associated with the structure generation process within these systems are deterministic; that is, they are based on graph theory and combinatorial analysis. A series of expert systems utilizing 2D NMR spectra have been described in the literature and are capable of determining the molecular structures of large organic molecules including complex natural products. Recently, an opinion was expressed in the literature that these systems would fail when elucidating structures containing more than 30 heavy atoms. A suggestion was put forward that stochastic algorithms for structure generation would be necessary to overcome this shortcoming. In this article, we describe a comprehensive investigation of the capabilities of the deterministic expert system Structure Elucidator. The results of performing the structure elucidation of 250 complex natural products with this program were studied and generalized. The conclusion is that 2D NMR deterministic expert systems are certainly capable of elucidating large structures (up to about 100 heavy atoms) and can deal with the complexities associated with both poor and contradictory spectral data.
Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2003-01-01
This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.
Introduction to multifractal detrended fluctuation analysis in matlab.
Ihlen, Espen A F
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra.
MatArray: a Matlab toolbox for microarray data.
Venet, David
2003-03-22
The microarray technology allows the high-throughput quantification of the mRNA level of thousands of genes under dozens of conditions, generating a wealth of data which must be analyzed using some form of computational means. A popular framework for such analysis is Matlab, a powerful computing language for which many functions have been written. However, although complex topics like neural networks or principal component analysis are freely available in Matlab, functions to perform more basic tasks like data normalization or hierarchical clustering in an efficient manner are not. The MatArray toolbox aims at filling this gap by offering efficient implementations of the most needed functions for microarray analysis. The functions in the toolbox are command-line only, since it is geared toward seasoned Matlab users.
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
Ihlen, Espen A. F.
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra. PMID:22675302
FIT3D toolbox: multiple view geometry and 3D reconstruction for Matlab
NASA Astrophysics Data System (ADS)
Esteban, Isaac; Dijk, Judith; Groen, Frans
2010-10-01
FIT3D is a Toolbox built for Matlab that aims at unifying and distributing a set of tools that will allow the researcher to obtain a complete 3D model from a set of calibrated images. In this paper we motivate and present the structure of the toolbox in a tutorial and example based approach. Given its flexibility and scope we believe that FIT3D represents an exciting opportunity for researchers that want to apply one particular method with real data without the need for extensive additional programming.
DNSLab: A gateway to turbulent flow simulation in Matlab
NASA Astrophysics Data System (ADS)
Vuorinen, V.; Keskinen, K.
2016-06-01
Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to
Modelling Subsea Coaxial Cable as FIR Filter on MATLAB
NASA Astrophysics Data System (ADS)
Kanisin, D.; Nordin, M. S.; Hazrul, M. H.; Kumar, E. A.
2011-05-01
The paper presents the modelling of subsea coaxial cable as a FIR filter on MATLAB. The subsea coaxial cables are commonly used in telecommunication industry and, oil and gas industry. Furthermore, this cable is unlike a filter circuit, which is a "lumped network" as individual components appear as discrete items. Therefore, a subsea coaxial network can be represented as a digital filter. In overall, the study has been conducted using MATLAB to model the subsea coaxial channel model base on primary and secondary parameters of subsea coaxial cable.
MatTAP: A MATLAB toolbox for the control and analysis of movement synchronisation experiments.
Elliott, Mark T; Welchman, Andrew E; Wing, Alan M
2009-02-15
Investigating movement timing and synchronisation at the sub-second range relies on an experimental setup that has high temporal fidelity, is able to deliver output cues and can capture corresponding responses. Modern, multi-tasking operating systems make this increasingly challenging when using standard PC hardware and programming languages. This paper describes a new free suite of tools (available from http://www.snipurl.com/mattap) for use within the MATLAB programming environment, compatible with Microsoft Windows and a range of data acquisition hardware. The toolbox allows flexible generation of timing cues with high temporal accuracy, the capture and automatic storage of corresponding participant responses and an integrated analysis module for the rapid processing of results. A simple graphical user interface is used to navigate the toolbox and so can be operated easily by users not familiar with programming languages. However, it is also fully extensible and customisable, allowing adaptation for individual experiments and facilitating the addition of new modules in future releases. Here we discuss the relevance of the MatTAP (MATLAB Timing Analysis Package) toolbox to current timing experiments and compare its use to alternative methods. We validate the accuracy of the analysis module through comparison to manual observation methods and replicate a previous sensorimotor synchronisation experiment to demonstrate the versatility of the toolbox features demanded by such movement synchronisation paradigms.
MatTAP: A MATLAB toolbox for the control and analysis of movement synchronisation experiments.
Elliott, Mark T; Welchman, Andrew E; Wing, Alan M
2009-02-15
Investigating movement timing and synchronisation at the sub-second range relies on an experimental setup that has high temporal fidelity, is able to deliver output cues and can capture corresponding responses. Modern, multi-tasking operating systems make this increasingly challenging when using standard PC hardware and programming languages. This paper describes a new free suite of tools (available from http://www.snipurl.com/mattap) for use within the MATLAB programming environment, compatible with Microsoft Windows and a range of data acquisition hardware. The toolbox allows flexible generation of timing cues with high temporal accuracy, the capture and automatic storage of corresponding participant responses and an integrated analysis module for the rapid processing of results. A simple graphical user interface is used to navigate the toolbox and so can be operated easily by users not familiar with programming languages. However, it is also fully extensible and customisable, allowing adaptation for individual experiments and facilitating the addition of new modules in future releases. Here we discuss the relevance of the MatTAP (MATLAB Timing Analysis Package) toolbox to current timing experiments and compare its use to alternative methods. We validate the accuracy of the analysis module through comparison to manual observation methods and replicate a previous sensorimotor synchronisation experiment to demonstrate the versatility of the toolbox features demanded by such movement synchronisation paradigms. PMID:18977388
Development of a Deterministic Ethernet Building blocks for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Jakovljevic, Mirko
2015-09-01
The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.
Estimating the epidemic threshold on networks by deterministic connections
Li, Kezan Zhu, Guanghu; Fu, Xinchu; Small, Michael
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.
Deterministic teleportation of electrons in a quantum dot nanostructure.
de Visser, R L; Blaauboer, M
2006-06-23
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this Letter is how to design and implement the most efficient--in terms of the required number of single and two-qubit operations--deterministic teleportation protocol for this system. Using a group-theoretical analysis, we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (square root SWAP) operations. These can be implemented for spin qubits in quantum dots using electron-spin resonance (for single-spin rotations) and exchange interaction (for square root SWAP operations).
DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS
J. E. MOREL
1999-06-01
The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.
Deterministic sensing matrices in compressive sensing: a survey.
Nguyen, Thu L N; Shin, Yoan
2013-01-01
Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.
An Improved QRS Wave Group Detection Algorithm and Matlab Implementation
NASA Astrophysics Data System (ADS)
Zhang, Hongjun
This paper presents an algorithm using Matlab software to detect QRS wave group of MIT-BIH ECG database. First of all the noise in ECG be Butterworth filtered, and then analysis the ECG signal based on wavelet transform to detect the parameters of the principle of singularity, more accurate detection of the QRS wave group was achieved.
MATLAB: Another Way To Teach the Computer in the Classroom.
ERIC Educational Resources Information Center
Marriott, Shaun
2002-01-01
Describes a pilot project for MATLAB work in both information communication technology (ICT) and mathematics. The ICT work is on flowcharts and algorithms and discusses ways of communicating with computers. Mathematics lessons involve early algebraic ideas of variables representing numbers. Presents an activity involving number sequences. (KHR)
Enhancing Teaching using MATLAB Add-Ins for Excel
ERIC Educational Resources Information Center
Hamilton, Paul V.
2004-01-01
In this paper I will illustrate how to extend the capabilities of Microsoft Excel spreadsheets with add-ins created by MATLAB. Excel provides a broad array of fundamental tools but often comes up short when more sophisticated scenarios are involved. To overcome this short-coming of Excel while retaining its ease of use, I will describe how…
Equilibrium-Staged Separations Using Matlab and Mathematica
ERIC Educational Resources Information Center
Binous, Housam
2008-01-01
We show a new approach, based on the utilization of Matlab and Mathematica, for solving liquid-liquid extraction and binary distillation problems. In addition, the author shares his experience using these two softwares to teach equilibrium staged separations at the National Institute of Applied Sciences and Technology. (Contains 7 figures.)
MATLAB tensor classes for fast algorithm prototyping : source code.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Deterministic and efficient quantum cryptography based on Bell's theorem
Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg
2006-05-15
We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.
Elliptical quantum dots as on-demand single photons sources with deterministic polarization states
Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng; Zhang, Lei; Hill, Tyler A.; Deng, Hui
2015-11-09
In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.
A fast algorithm for voxel-based deterministic simulation of X-ray imaging
NASA Astrophysics Data System (ADS)
Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee
2008-04-01
Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video
From deterministic cellular automata to coupled map lattices
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir
2016-07-01
A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit κ \\to 0 of a continuous parameter κ. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when κ is finite and nonvanishing. In the limit κ \\to ∞ all RDCAs are shown to exhibit a global homogeneous fixed-point that attracts all initial conditions. A new bifurcation is discovered for RDCAs and its location is exactly determined from the linear stability analysis of the global quiescent state. In this bifurcation, fuzziness gradually begins to intrude in a purely deterministic CA-like dynamics. The mathematical method presented allows to get insight in some highly nontrivial behavior found after the bifurcation.
Deterministic retrieval of complex Green's functions using hard X rays.
Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E
2009-01-30
A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory. PMID:19257417
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Risk-based versus deterministic explosives safety criteria
Wright, R.E.
1996-12-01
The Department of Defense Explosives Safety Board (DDESB) is actively considering ways to apply risk-based approaches in its decision- making processes. As such, an understanding of the impact of converting to risk-based criteria is required. The objectives of this project are to examine the benefits and drawbacks of risk-based criteria and to define the impact of converting from deterministic to risk-based criteria. Conclusions will be couched in terms that allow meaningful comparisons of deterministic and risk-based approaches. To this end, direct comparisons of the consequences and impacts of both deterministic and risk-based criteria at selected military installations are made. Deterministic criteria used in this report are those in DoD 6055.9-STD, `DoD Ammunition and Explosives Safety Standard.` Risk-based criteria selected for comparison are those used by the government of Switzerland, `Technical Requirements for the Storage of Ammunition (TLM 75).` The risk-based criteria used in Switzerland were selected because they have been successfully applied for over twenty-five years.
Deterministic dense coding and faithful teleportation with multipartite graph states
Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.
2009-05-15
We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.
EEGVIS: A MATLAB Toolbox for Browsing, Exploring, and Viewing Large Datasets.
Robbins, Kay A
2012-01-01
Recent advances in data monitoring and sensor technology have accelerated the acquisition of very large data sets. Streaming data sets from instrumentation such as multi-channel EEG recording usually must undergo substantial pre-processing and artifact removal. Even when using automated procedures, most scientists engage in laborious manual examination and processing to assure high quality data and to indentify interesting or problematic data segments. Researchers also do not have a convenient method of method of visually assessing the effects of applying any stage in a processing pipeline. EEGVIS is a MATLAB toolbox that allows users to quickly explore multi-channel EEG and other large array-based data sets using multi-scale drill-down techniques. Customizable summary views reveal potentially interesting sections of data, which users can explore further by clicking to examine using detailed viewing components. The viewer and a companion browser are built on our MoBBED framework, which has a library of modular viewing components that can be mixed and matched to best reveal structure. Users can easily create new viewers for their specific data without any programming during the exploration process. These viewers automatically support pan, zoom, resizing of individual components, and cursor exploration. The toolbox can be used directly in MATLAB at any stage in a processing pipeline, as a plug-in for EEGLAB, or as a standalone precompiled application without MATLAB running. EEGVIS and its supporting packages are freely available under the GNU general public license at http://visual.cs.utsa.edu/eegvis.
Interfacing MATLAB and Python Optimizers to Black-Box Environmental Simulation Models
NASA Astrophysics Data System (ADS)
Matott, L. S.; Leung, K.; Tolson, B.
2009-12-01
A common approach for utilizing environmental models in a management or policy-analysis context is to incorporate them into a simulation-optimization framework - where an underlying process-based environmental model is linked with an optimization search algorithm. The optimization search algorithm iteratively adjusts various model inputs (i.e. parameters or design variables) in order to minimize an application-specific objective function computed on the basis of model outputs (i.e. response variables). Numerous optimization algorithms have been applied to the simulation-optimization of environmental systems and this research investigated the use of optimization libraries and toolboxes that are readily available in MATLAB and Python - two popular high-level programming languages. Inspired by model-independent calibration codes (e.g. PEST and UCODE), a small piece of interface software (known as PIGEON) was developed. PIGEON allows users to interface Python and MATLAB optimizers with arbitrary black-box environmental models without writing any additional interface code. An initial set of benchmark tests (involving more than 20 MATLAB and Python optimization algorithms) were performed to validate the interface software - results highlight the need to carefully consider such issues as numerical precision in output files and enforcement (or not) of parameter limits. Additional benchmark testing considered the problem of fitting isotherm expressions to laboratory data - with an emphasis on dual-mode expressions combining non-linear isotherms with a linear partitioning component. With respect to the selected isotherm fitting problems, derivative-free search algorithms significantly outperformed gradient-based algorithms. Attempts to improve gradient-based performance, via parameter tuning and also via several alternative multi-start approaches, were largely unsuccessful.
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.
New Geodesy MATLAB Tools To Compute Earth Tides And Analyze Strain Data
NASA Astrophysics Data System (ADS)
Sievers, C.; Hodgkinson, K. M.; Mencin, D.
2012-12-01
UNAVCO is developing two new geodesy MATLAB tools for the community: one is a translation of SPOTL [Agnew, 2012] for tidal predictions, the other processes and analyzes borehole strainmeter data. Processing borehole strainmeter data from raw data to a useful time series involves numerous steps and meticulous record keeping: counts need to be converted to strain, trends such as load tides, atmospheric response, and long time-scale instrument response have to be accounted, and spurious data points and offsets need to be removed. We have created a MATLAB GUI (graphical user interface) tool that seamlessly accomplishes all these tasks. We employ CleanStrain+ [Langbein, 2010], a FORTRAN program, to estimate the offsets in the data. Although solved via a least-squares technique, CleanStrain+ factors in the temporally correlated nature of strain data. When the amplitude and phase of the main tidal constituents are known, the tidal signal can be removed using the MATLAB version of SPOTL. The user has the option of applying offsets, choosing tidal models and borehole trends provided as Level 2 Earthscope Data Products. All this, including loading and saving the edits, is done through a single GUI interface. SPOTL is a FORTRAN code suite is used to predict ocean load and solid Earth body tides at a location and compute tidal time series over a user-specified time span and sample interval. We converted both the code and the tidal models to MATLAB to make it more portable and easy to use. While the code is primarily designed to be run from the command line, we have built is a front-end GUI that can compute most tides and time series and helps visual the results. The user can specify a region of interest, load station coordinates, specify global and regional ocean load models and select specific tides using pull down menus and input boxes. The interactive nature and the visualization aspect of this GUI could make it useful as a teaching tool for understanding tides.
Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab
da Silva, R.M.; Fernandes, J.L.M.
2010-12-15
and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)
A Covariance NMR Toolbox for MATLAB and OCTAVE
NASA Astrophysics Data System (ADS)
Short, Timothy; Alzapiedi, Leigh; Brüschweiler, Rafael; Snyder, David
2011-03-01
The Covariance NMR Toolbox is a new software suite that provides a streamlined implementation of covariance-based analysis of multi-dimensional NMR data. The Covariance NMR Toolbox uses the MATLAB or, alternatively, the freely available GNU OCTAVE computer language, providing a user-friendly environment in which to apply and explore covariance techniques. Covariance methods implemented in the toolbox described here include direct and indirect covariance processing, 4D covariance, generalized indirect covariance (GIC), and Z-matrix transform. In order to provide compatibility with a wide variety of spectrometer and spectral analysis platforms, the Covariance NMR Toolbox uses the NMRPipe format for both input and output files. Additionally, datasets small enough to fit in memory are stored as arrays that can be displayed and further manipulated in a versatile manner within MATLAB or OCTAVE.
A covariance NMR toolbox for MATLAB and OCTAVE.
Short, Timothy; Alzapiedi, Leigh; Brüschweiler, Rafael; Snyder, David
2011-03-01
The Covariance NMR Toolbox is a new software suite that provides a streamlined implementation of covariance-based analysis of multi-dimensional NMR data. The Covariance NMR Toolbox uses the MATLAB or, alternatively, the freely available GNU OCTAVE computer language, providing a user-friendly environment in which to apply and explore covariance techniques. Covariance methods implemented in the toolbox described here include direct and indirect covariance processing, 4D covariance, generalized indirect covariance (GIC), and Z-matrix transform. In order to provide compatibility with a wide variety of spectrometer and spectral analysis platforms, the Covariance NMR Toolbox uses the NMRPipe format for both input and output files. Additionally, datasets small enough to fit in memory are stored as arrays that can be displayed and further manipulated in a versatile manner within MATLAB or OCTAVE. PMID:21215669
Kotze, Ben; Jordaan, Gerrit
2014-08-25
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.
Kotze, Ben; Jordaan, Gerrit
2014-01-01
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548
MATLAB implementation of W-matrix multiresolution analyses
Kwong, Man Kam
1997-01-01
We present a MATLAB toolbox on multiresolution analysis based on the W-transform introduced by Kwong and Tang. The toolbox contains basic commands to perform forward and inverse transforms on finite 1D and 2D signals of arbitrary length, to perform multiresolution analysis of given signals to a specified number of levels, to visualize the wavelet decomposition, and to do compression. Examples of numerical experiments are also discussed.
CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei
2014-12-01
We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/. PMID:26076010
Deterministic remote two-qubit state preparation in dissipative environments
NASA Astrophysics Data System (ADS)
Li, Jin-Fang; Liu, Jin-Ming; Feng, Xun-Li; Oh, C. H.
2016-05-01
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein-Podolsky-Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity's approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.
Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics
NASA Astrophysics Data System (ADS)
Macrí, V.; Garziano, L.; Ridolfo, A.; Di Stefano, O.; Savasta, S.
2016-07-01
We propose a protocol for the deterministic preparation of entangled NOON mechanical states. The system is constituted by two identical, optically coupled optomechanical systems. The protocol consists of two steps. In the first, one of the two optical resonators is excited by a resonant external π -like Gaussian optical pulse. When the optical excitation coherently partly transfers to the second cavity, the second step starts. It consists of sending simultaneously two additional π -like Gaussian optical pulses, one at each optical resonator, with specific frequencies. In the optomechanical ultrastrong coupling regime, when the coupling strength becomes a significant fraction of the mechanical frequency, we show that NOON mechanical states with quite high Fock states can be deterministically obtained. The operating range of this protocol is carefully analyzed. Calculations have been carried out taking into account the presence of decoherence, thermal noise, and imperfect cooling.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic algorithm with agglomerative heuristic for location problems
NASA Astrophysics Data System (ADS)
Kazakovtsev, L.; Stupina, A.
2015-10-01
Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.
Approaches to implementing deterministic models in a probabilistic framework
Talbott, D.V.
1995-04-01
The increasing use of results from probabilistic risk assessments in the decision-making process makes it ever more important to eliminate simplifications in probabilistic models that might lead to conservative results. One area in which conservative simplifications are often made is modeling the physical interactions that occur during the progression of an accident sequence. This paper demonstrates and compares different approaches for incorporating deterministic models of physical parameters into probabilistic models; parameter range binning, response curves, and integral deterministic models. An example that combines all three approaches in a probabilistic model for the handling of an energetic material (i.e. high explosive, rocket propellant,...) is then presented using a directed graph model.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions
Deterministic entanglement of two neutral atoms via Rydberg blockade
Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.
2010-09-15
We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
Comment on: Supervisory Asymmetric Deterministic Secure Quantum Communication
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Tsai, Chia-Wei; Hwang, Tzonelih
2012-12-01
In 2010, Xiu et al. (Optics Communications 284:2065-2069, 2011) proposed several applications based on a new secure four-site distribution scheme using χ-type entangled states. This paper points out that one of these applications, namely, supervisory asymmetric deterministic secure quantum communication, is subject to an information leakage problem, in which the receiver can extract two bits of a three-bit secret message without the supervisor's permission. An enhanced protocol is proposed to resolve this problem.
The deterministic SIS epidemic model in a Markovian random environment.
Economou, Antonis; Lopez-Herrero, Maria Jesus
2016-07-01
We consider the classical deterministic susceptible-infective-susceptible epidemic model, where the infection and recovery rates depend on a background environmental process that is modeled by a continuous time Markov chain. This framework is able to capture several important characteristics that appear in the evolution of real epidemics in large populations, such as seasonality effects and environmental influences. We propose computational approaches for the determination of various distributions that quantify the evolution of the number of infectives in the population. PMID:26515172
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E.; Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
A deterministic algorithm for constrained enumeration of transmembrane protein folds.
Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.
2004-07-01
A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.
Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution.
Gentekos, Dillon T; Dupuis, Lauren N; Fors, Brett P
2016-02-17
The breadth of the molecular weight distributions (MWD) of polymers influences their physical properties; however, no synthetic methods allow precise control of the exact shape and composition of a distribution. We report a modular strategy that enables deterministic control over polymer MWD through temporal regulation of initiation in nitroxide-mediated polymerization reactions. This approach is applicable to any controlled polymerization that uses a discrete initiator, and it allows the use of MWD composition as a parameter to tune material properties.
Deterministic polarization-entanglement purification using spatial entanglement
Li Xihan
2010-10-15
We present an efficient entanglement purification protocol with hyperentanglement in which additional spatial entanglement is utilized to purify the two-particle polarization-entangled state. The bit-flip error and phase-flip error can be corrected and eliminated in one step. Two remote parties can obtain maximally entangled polarization states deterministically and only passive linear optics are employed. We also discuss the protocol with practical quantum source and noisy channel.
Using STOQS and stoqstoolbox for in situ Measurement Data Access in Matlab
NASA Astrophysics Data System (ADS)
López-Castejón, F.; Schlining, B.; McCann, M. P.
2012-12-01
This poster presents the stoqstoolbox, an extension to Matlab that simplifies the loading of in situ measurement data directly from STOQS databases. STOQS (Spatial Temporal Oceanographic Query System) is a geospatial database tool designed to provide efficient access to data following the CF-NetCDF Discrete Samples Geometries convention. Data are loaded from CF-NetCDF files into a STOQS database where indexes are created on depth, spatial coordinates and other parameters, e.g. platform type. STOQS provides consistent, simple and efficient methods to query for data. For example, we can request all measurements with a standard_name of sea_water_temperature between two times and from between two depths. Data access is simpler because the data are retrieved by parameter irrespective of platform or mission file names. Access is more efficient because data are retrieved via the index on depth and only the requested data are retrieved from the database and transferred into the Matlab workspace. Applications in the stoqstoolbox query the STOQS database via an HTTP REST application programming interface; they follow the Data Access Object pattern, enabling highly customizable query construction. Data are loaded into Matlab structures that clearly indicate latitude, longitude, depth, measurement data value, and platform name. The stoqstoolbox is designed to be used in concert with other tools, such as nctoolbox, which can load data from any OPeNDAP data source. With these two toolboxes a user can easily work with in situ and other gridded data, such as from numerical models and remote sensing platforms. In order to show the capability of stoqstoolbox we will show an example of model validation using data collected during the May-June 2012 field experiment conducted by the Monterey Bay Aquarium Research Institute (MBARI) in Monterey Bay, California. The data are available from the STOQS server at http://odss.mbari.org/canon/stoqs_may2012/query/. Over 14 million data points of
Demographic noise can reverse the direction of deterministic selection.
Constable, George W A; Rogers, Tim; McKane, Alan J; Tarnita, Corina E
2016-08-01
Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to [Formula: see text] theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic form correction of extreme freeform optical surfaces
NASA Astrophysics Data System (ADS)
Lynch, Timothy P.; Myer, Brian W.; Medicus, Kate; DeGroote Nelson, Jessica
2015-10-01
The blistering pace of recent technological advances has led lens designers to rely increasingly on freeform optical components as crucial pieces of their designs. As these freeform components increase in geometrical complexity and continue to deviate further from traditional optical designs, the optical manufacturing community must rethink their fabrication processes in order to keep pace. To meet these new demands, Optimax has developed a variety of new deterministic freeform manufacturing processes. Combining traditional optical fabrication techniques with cutting edge technological innovations has yielded a multifaceted manufacturing approach that can successfully handle even the most extreme freeform optical surfaces. In particular, Optimax has placed emphasis on refining the deterministic form correction process. By developing many of these procedures in house, changes can be implemented quickly and efficiently in order to rapidly converge on an optimal manufacturing method. Advances in metrology techniques allow for rapid identification and quantification of irregularities in freeform surfaces, while deterministic correction algorithms precisely target features on the part and drastically reduce overall correction time. Together, these improvements have yielded significant advances in the realm of freeform manufacturing. With further refinements to these and other aspects of the freeform manufacturing process, the production of increasingly radical freeform optical components is quickly becoming a reality.
Probabilistic vs deterministic views in facing natural hazards
NASA Astrophysics Data System (ADS)
Arattano, Massimo; Coviello, Velio
2015-04-01
Natural hazards can be mitigated through active or passive measures. Among these latter countermeasures, Early Warning Systems (EWSs) are playing an increasing and significant role. In particular, a growing number of studies investigate the reliability of landslide EWSs, their comparability to alternative protection measures and their cost-effectiveness. EWSs, however, inevitably and intrinsically imply the concept of probability of occurrence and/or probability of error. Since a long time science has accepted and integrated the probabilistic nature of reality and its phenomena. The same cannot be told for other fields of knowledge, such as law or politics, with which scientists sometimes have to interact. These disciplines are in fact still linked to more deterministic views of life. The same is true for what is perceived by the public opinion, which often requires or even pretends a deterministic type of answer to its needs. So, as an example, it might be easy for people to feel completely safe because an EWS has been installed. It is also easy for an administrator or a politician to contribute to spread this wrong feeling, together with the idea of having dealt with the problem and done something definitive to face it. May geoethics play a role to create a link between the probabilistic world of nature and science and the tendency of the society to a more deterministic view of things? Answering this question could help scientists to feel more confident in planning and performing their research activities.
Convergence studies of deterministic methods for LWR explicit reflector methodology
Canepa, S.; Hursin, M.; Ferroukhi, H.; Pautz, A.
2013-07-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on very different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Bianchini, G.; Burgio, N.; Carta, M.; Peluso, V.; Fabrizio, V.; Ricci, L.
2012-07-01
The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Several off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)
Sub-surface single ion detection in diamond: A path for deterministic color center creation
NASA Astrophysics Data System (ADS)
Abraham, John; Aguirre, Brandon; Pacheco, Jose; Camacho, Ryan; Bielejec, Edward; Sandia National Laboratories Team
Deterministic single color center creation remains a critical milestone for the integrated use of diamond color centers. It depends on three components: focused ion beam implantation to control the location, yield improvement to control the activation, and single ion implantation to control the number of implanted ions. A surface electrode detector has been fabricated on diamond where the electron hole pairs generated during ion implantation are used as the detection signal. Results will be presented demonstrating single ion detection. The detection efficiency of the device will be described as a function of implant energy and device geometry. It is anticipated that the controlled introduction of single dopant atoms in diamond will provide a basis for deterministic single localized color centers. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
GRace: a MATLAB-based application for fitting the discrimination-association model.
Stefanutti, Luca; Vianello, Michelangelo; Anselmi, Pasquale; Robusto, Egidio
2014-10-28
The Implicit Association Test (IAT) is a computerized two-choice discrimination task in which stimuli have to be categorized as belonging to target categories or attribute categories by pressing, as quickly and accurately as possible, one of two response keys. The discrimination association model has been recently proposed for the analysis of reaction time and accuracy of an individual respondent to the IAT. The model disentangles the influences of three qualitatively different components on the responses to the IAT: stimuli discrimination, automatic association, and termination criterion. The article presents General Race (GRace), a MATLAB-based application for fitting the discrimination association model to IAT data. GRace has been developed for Windows as a standalone application. It is user-friendly and does not require any programming experience. The use of GRace is illustrated on the data of a Coca Cola-Pepsi Cola IAT, and the results of the analysis are interpreted and discussed.
GRace: a MATLAB-based application for fitting the discrimination-association model.
Stefanutti, Luca; Vianello, Michelangelo; Anselmi, Pasquale; Robusto, Egidio
2014-01-01
The Implicit Association Test (IAT) is a computerized two-choice discrimination task in which stimuli have to be categorized as belonging to target categories or attribute categories by pressing, as quickly and accurately as possible, one of two response keys. The discrimination association model has been recently proposed for the analysis of reaction time and accuracy of an individual respondent to the IAT. The model disentangles the influences of three qualitatively different components on the responses to the IAT: stimuli discrimination, automatic association, and termination criterion. The article presents General Race (GRace), a MATLAB-based application for fitting the discrimination association model to IAT data. GRace has been developed for Windows as a standalone application. It is user-friendly and does not require any programming experience. The use of GRace is illustrated on the data of a Coca Cola-Pepsi Cola IAT, and the results of the analysis are interpreted and discussed. PMID:26054728
Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules
Singh, M.; Muljadi, E.; Jonkman, J.; Gevorgian, V.; Girsang, I.; Dhupia, J.
2014-04-01
This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. As described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.
GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Duboscq, Romain
2014-11-01
This paper presents GPELab (Gross-Pitaevskii Equation Laboratory), an advanced easy-to-use and flexible Matlab toolbox for numerically simulating many complex physics situations related to Bose-Einstein condensation. The model equation that GPELab solves is the Gross-Pitaevskii equation. The aim of this first part is to present the physical problems and the robust and accurate numerical schemes that are implemented for computing stationary solutions, to show a few computational examples and to explain how the basic GPELab functions work. Problems that can be solved include: 1d, 2d and 3d situations, general potentials, large classes of local and nonlocal nonlinearities, multi-components problems, and fast rotating gases. The toolbox is developed in such a way that other physics applications that require the numerical solution of general Schrödinger-type equations can be considered. Catalogue identifier: AETU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETU_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 552 No. of bytes in distributed program, including test data, etc.: 611 289 Distribution format: tar.gz Programming language: Matlab. Computer: PC, Mac. Operating system: Windows, Mac OS, Linux. Has the code been vectorized or parallelized?: Yes RAM: 4000 Megabytes Classification: 2.7, 4.6, 7.7. Nature of problem: Computing stationary solutions for a class of systems (multi-components) of Gross-Pitaevskii equations in 1d, 2d and 3d. This program is particularly well designed for the computation of ground states of Bose-Einstein condensates as well as dynamics. Solution method: We use the imaginary-time method with a Semi-Implicit Backward Euler scheme, a pseudo-spectral approximation and a Krylov subspace method. Running time: From a few minutes
Parallel distance matrix computation for Matlab data mining
NASA Astrophysics Data System (ADS)
Skurowski, Przemysław; Staniszewski, Michał
2016-06-01
The paper presents utility functions for computing of a distance matrix, which plays a crucial role in data mining. The goal in the design was to enable operating on relatively large datasets by overcoming basic shortcoming - computing time - with an interface easy to use. The presented solution is a set of functions, which were created with emphasis on practical applicability in real life. The proposed solution is presented along the theoretical background for the performance scaling. Furthermore, different approaches of the parallel computing are analyzed, including shared memory, which is uncommon in Matlab environment.
SBEToolbox: A Matlab Toolbox for Biological Network Analysis.
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
Causes of maternal mortality decline in Matlab, Bangladesh.
Chowdhury, Mahbub Elahi; Ahmed, Anisuddin; Kalim, Nahid; Koblinsky, Marge
2009-04-01
Bangladesh is distinct among developing countries in achieving a low maternal mortality ratio (MMR) of 322 per 100,000 livebirths despite the very low use of skilled care at delivery (13% nationally). This variation has also been observed in Matlab, a rural area in Bangladesh, where longitudinal data on maternal mortality are available since the mid-1970s. The current study investigated the possible causes of the maternal mortality decline in Matlab. The study analyzed 769 maternal deaths and 215,779 pregnancy records from the Health and Demographic Surveillance System (HDSS) and other sources of safe motherhood data in the ICDDR,B and government service areas in Matlab during 1976-2005. The major interventions that took place in both the areas since the early 1980s were the family-planning programme plus safe menstrual regulation services and safe motherhood interventions (midwives for normal delivery in the ICDDR,B service area from the late 1980s and equal access to comprehensive emergency obstetric care [EmOC] in public facilities for women from both the areas). National programmes for social development and empowerment of women through education and microcredit programmes were implemented in both the areas. The quantitative findings were supplemented by a qualitative study by interviewing local community care providers for their change in practices for maternal healthcare over time. After the introduction of the safe motherhood programme, reduction in maternal mortality was higher in the ICDDR,B service area (68.6%) than in the government service area (50.4%) during 1986-1989 and 2001-2005. Reduction in the number of maternal deaths due to the fertility decline was higher in the government service area (30%) than in the ICDDR,B service area (23%) during 1979-2005. In each area, there has been substantial reduction in abortion-related mortality--86.7% and 78.3%--in the ICDDR,B and government service areas respectively. Education of women was a strong predictor
ALTSim: a MATLAB simulator for current associative learning theories.
Thorwart, Anna; Schultheis, Holger; König, Stephan; Lachnit, Harald
2009-02-01
ALTSim is a MATLAB-based simulator of several associative learning models, including Pearce's configural model, the extended configural model, the Rescorla-Wagner model, the unique cue hypothesis, the modified unique cue hypothesis, the replaced elements model, and Harris's elemental model. It allows for specifying all relevant parameters, as well as exact stimulus sequences by graphical user interfaces. It is an easy-to-use tool that facilitates evaluating and comparing the featured associative learning models. ALTSim is available free of charge from www.staff.uni-marburg.de/~lachnit/ALTSim/.
Causes of maternal mortality decline in Matlab, Bangladesh.
Chowdhury, Mahbub Elahi; Ahmed, Anisuddin; Kalim, Nahid; Koblinsky, Marge
2009-04-01
Bangladesh is distinct among developing countries in achieving a low maternal mortality ratio (MMR) of 322 per 100,000 livebirths despite the very low use of skilled care at delivery (13% nationally). This variation has also been observed in Matlab, a rural area in Bangladesh, where longitudinal data on maternal mortality are available since the mid-1970s. The current study investigated the possible causes of the maternal mortality decline in Matlab. The study analyzed 769 maternal deaths and 215,779 pregnancy records from the Health and Demographic Surveillance System (HDSS) and other sources of safe motherhood data in the ICDDR,B and government service areas in Matlab during 1976-2005. The major interventions that took place in both the areas since the early 1980s were the family-planning programme plus safe menstrual regulation services and safe motherhood interventions (midwives for normal delivery in the ICDDR,B service area from the late 1980s and equal access to comprehensive emergency obstetric care [EmOC] in public facilities for women from both the areas). National programmes for social development and empowerment of women through education and microcredit programmes were implemented in both the areas. The quantitative findings were supplemented by a qualitative study by interviewing local community care providers for their change in practices for maternal healthcare over time. After the introduction of the safe motherhood programme, reduction in maternal mortality was higher in the ICDDR,B service area (68.6%) than in the government service area (50.4%) during 1986-1989 and 2001-2005. Reduction in the number of maternal deaths due to the fertility decline was higher in the government service area (30%) than in the ICDDR,B service area (23%) during 1979-2005. In each area, there has been substantial reduction in abortion-related mortality--86.7% and 78.3%--in the ICDDR,B and government service areas respectively. Education of women was a strong predictor
St Aubin, J. Keyvanloo, A.; Fallone, B. G.; Vassiliev, O.
2015-02-15
Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today’s treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm{sup 2} field as well as a smaller 2 × 2 cm{sup 2} field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm’s high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization
Deterministic and Nondeterministic Behavior of Earthquakes and Hazard Mitigation Strategy
NASA Astrophysics Data System (ADS)
Kanamori, H.
2014-12-01
Earthquakes exhibit both deterministic and nondeterministic behavior. Deterministic behavior is controlled by length and time scales such as the dimension of seismogenic zones and plate-motion speed. Nondeterministic behavior is controlled by the interaction of many elements, such as asperities, in the system. Some subduction zones have strong deterministic elements which allow forecasts of future seismicity. For example, the forecasts of the 2010 Mw=8.8 Maule, Chile, earthquake and the 2012 Mw=7.6, Costa Rica, earthquake are good examples in which useful forecasts were made within a solid scientific framework using GPS. However, even in these cases, because of the nondeterministic elements uncertainties are difficult to quantify. In some subduction zones, nondeterministic behavior dominates because of complex plate boundary structures and defies useful forecasts. The 2011 Mw=9.0 Tohoku-Oki earthquake may be an example in which the physical framework was reasonably well understood, but complex interactions of asperities and insufficient knowledge about the subduction-zone structures led to the unexpected tragic consequence. Despite these difficulties, broadband seismology, GPS, and rapid data processing-telemetry technology can contribute to effective hazard mitigation through scenario earthquake approach and real-time warning. A scale-independent relation between M0 (seismic moment) and the source duration, t, can be used for the design of average scenario earthquakes. However, outliers caused by the variation of stress drop, radiation efficiency, and aspect ratio of the rupture plane are often the most hazardous and need to be included in scenario earthquakes. The recent development in real-time technology would help seismologists to cope with, and prepare for, devastating tsunamis and earthquakes. Combining a better understanding of earthquake diversity and modern technology is the key to effective and comprehensive hazard mitigation practices.
Spatial continuity measures for probabilistic and deterministic geostatistics
Isaaks, E.H.; Srivastava, R.M.
1988-05-01
Geostatistics has traditionally used a probabilistic framework, one in which expected values or ensemble averages are of primary importance. The less familiar deterministic framework views geostatistical problems in terms of spatial integrals. This paper outlines the two frameworks and examines the issue of which spatial continuity measure, the covariance C(h) or the variogram ..sigma..(h), is appropriate for each framework. Although C(h) and ..sigma..(h) were defined originally in terms of spatial integrals, the convenience of probabilistic notation made the expected value definitions more common. These now classical expected value definitions entail a linear relationship between C(h) and ..sigma..(h); the spatial integral definitions do not. In a probabilistic framework, where available sample information is extrapolated to domains other than the one which was sampled, the expected value definitions are appropriate; furthermore, within a probabilistic framework, reasons exist for preferring the variogram to the covariance function. In a deterministic framework, where available sample information is interpolated within the same domain, the spatial integral definitions are appropriate and no reasons are known for preferring the variogram. A case study on a Wiener-Levy process demonstrates differences between the two frameworks and shows that, for most estimation problems, the deterministic viewpoint is more appropriate. Several case studies on real data sets reveal that the sample covariance function reflects the character of spatial continuity better than the sample variogram. From both theoretical and practical considerations, clearly for most geostatistical problems, direct estimation of the covariance is better than the traditional variogram approach.
Deterministic side-branching during thermal dendritic growth
NASA Astrophysics Data System (ADS)
Mullis, Andrew M.
2015-06-01
The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43 (2012) 391]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here we present simulations at high undercooling that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Not only are multigrid solvers one of the most efficient means of inverting the large, but sparse, system of equations that results from implicit time-stepping, they are also very effective at smoothing noise at all wavelengths. This is in contrast to most Jacobi or Gauss-Seidel iterative schemes which are effective at removing noise with wavelengths comparable to the mesh size but tend to leave noise at longer wavelengths largely undamped. From an analysis of the tangential thermal gradients on the solid-liquid interface the mechanism for side-branching appears to be consistent with the deterministic model proposed by Glicksman.
Improved Modeling in a Matlab-Based Navigation System
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.
1999-01-01
An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.
Influences on pregnancy-termination decisions in Matlab, Bangladesh.
DaVanzo, Julie; Rahman, Mizanur; Ahmed, Shahabuddin; Razzaque, Abdur
2013-10-01
We investigate factors affecting women's decisions to terminate pregnancies in Matlab, Bangladesh, using logistic regression on high-quality data from the Demographic Surveillance System on more than 215,000 pregnancies that occurred between 1978 and 2008. Variables associated with the desire not to have another birth soon (very young and older maternal age, a greater number of living children, the recent birth of twins or of a son, a short interval since a recent live birth) are associated with a greater likelihood of pregnancy termination, and the effects of many of these explanatory variables are stronger in more recent years. Women are less likely to terminate a pregnancy if they don't have any living sons or recently experienced a miscarriage, a stillbirth, or the death of a child. The higher the woman's level of education, the more likely she is to terminate a pregnancy. Between 1982 and the mid-2000s, pregnancy termination was significantly less likely in the area of Matlab with better family planning services.
Deterministic Single-Phonon Source Triggered by a Single Photon.
Söllner, Immo; Midolo, Leonardo; Lodahl, Peter
2016-06-10
We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.
Ideal state reconstructor for deterministic digital control systems
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1989-01-01
A state reconstructor for deterministic digital systems is presented which is ideal in the following sense: if the plant parameters are known exactly, the output of the state reconstructor will exactly equal the true state of the plant, not just approximate it. Furthermore, this ideal state reconstructor adds no additional states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects only the measurement equation. While there are countless ways of choosing the ideal state reconstructor parameters, two distinct methods are described here. An example is presented which illustrates the procedures to completely design the ideal state reconstructor using both methods.
A deterministic global optimization using smooth diagonal auxiliary functions
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.
2015-04-01
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.
Deterministic Superreplication of One-Parameter Unitary Transformations
NASA Astrophysics Data System (ADS)
Dür, W.; Sekatski, P.; Skotiniotis, M.
2015-03-01
We show that one can deterministically generate, out of N copies of an unknown unitary operation, up to N2 almost perfect copies. The result holds for all operations generated by a Hamiltonian with an unknown interaction strength. This generalizes a similar result in the context of phase-covariant cloning where, however, superreplication comes at the price of an exponentially reduced probability of success. We also show that multiple copies of unitary operations can be emulated by operations acting on a much smaller space, e.g., a magnetic field acting on a single n -level system allows one to emulate the action of the field on n2 qubits.
Deterministic Single-Phonon Source Triggered by a Single Photon
NASA Astrophysics Data System (ADS)
Söllner, Immo; Midolo, Leonardo; Lodahl, Peter
2016-06-01
We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.
Deterministic versus stochastic aspects of superexponential population growth models
NASA Astrophysics Data System (ADS)
Grosjean, Nicolas; Huillet, Thierry
2016-08-01
Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
The deterministic optical alignment of the HERMES spectrograph
NASA Astrophysics Data System (ADS)
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
Deterministic Smoluchowski-Feynman ratchets driven by chaotic noise.
Chew, Lock Yue
2012-01-01
We have elucidated the effect of statistical asymmetry on the directed current in Smoluchowski-Feynman ratchets driven by chaotic noise. Based on the inhomogeneous Smoluchowski equation and its generalized version, we arrive at analytical expressions of the directed current that includes a source term. The source term indicates that statistical asymmetry can drive the system further away from thermodynamic equilibrium, as exemplified by the constant flashing, the state-dependent, and the tilted deterministic Smoluchowski-Feynman ratchets, with the consequence of an enhancement in the directed current.
Deterministic Single-Phonon Source Triggered by a Single Photon.
Söllner, Immo; Midolo, Leonardo; Lodahl, Peter
2016-06-10
We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus. PMID:27341236
Non-deterministic analysis of ocean environment loads
Fang Huacan; Xu Fayan; Gao Guohua; Xu Xingping
1995-12-31
Ocean environment loads consist of the wind force, sea wave force etc. Sea wave force not only has randomness, but also has fuzziness. Hence the non-deterministic description of wave environment must be carried out, in designing of an offshore structure or evaluation of the safety of offshore structure members in service. In order to consider the randomness of sea wave, the wind speed single parameter sea wave spectrum is proposed in the paper. And a new fuzzy grading statistic method for considering fuzziness of sea wave height H and period T is given in this paper. The principle and process of calculating fuzzy random sea wave spectrum will be published lastly.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
Goreac, Dan; Serea, Oana-Silvia
2012-10-15
We aim at characterizing domains of attraction for controlled piecewise deterministic processes using an occupational measure formulation and Zubov's approach. Firstly, we provide linear programming (primal and dual) formulations of discounted, infinite horizon control problems for PDMPs. These formulations involve an infinite-dimensional set of probability measures and are obtained using viscosity solutions theory. Secondly, these tools allow to construct stabilizing measures and to avoid the assumption of stability under concatenation for controls. The domain of controllability is then characterized as some level set of a convenient solution of the associated Hamilton-Jacobi integral-differential equation. The theoretical results are applied to PDMPs associated to stochastic gene networks. Explicit computations are given for Cook's model for gene expression.
The integrated model for solving the single-period deterministic inventory routing problem
NASA Astrophysics Data System (ADS)
Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik
2016-08-01
This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministic viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
NASA Astrophysics Data System (ADS)
Akca, Irfan
2016-04-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren
2010-01-01
. These scripts would require minor to moderate modifications for use elsewhere, primarily to customize directory navigation. If the user has some familiarity with MATLAB, or programming in general, these modifications should be easy. Although we originally anticipated needing the Image Processing Toolbox, the scripts in the appendixes do not require it. Thus, only the base installation of MATLAB is needed. Because fairly basic MATLAB functions are used, we expect that the script can be run successfully by versions earlier than 2009b.
Stochastic and deterministic causes of streamer branching in liquid dielectrics
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-08-14
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.
Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations
NASA Astrophysics Data System (ADS)
Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael
2012-02-01
We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations
On the deterministic and stochastic use of hydrologic models
NASA Astrophysics Data System (ADS)
Farmer, William H.; Vogel, Richard M.
2016-07-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.
1998-01-14
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.
A deterministic method for transient, three-dimensional neutron transport
Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.
1998-05-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.
Integrability of a deterministic cellular automaton driven by stochastic boundaries
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Mejía-Monasterio, Carlos
2016-05-01
We propose an interacting many-body space–time-discrete Markov chain model, which is composed of an integrable deterministic and reversible cellular automaton (rule 54 of Bobenko et al 1993 Commun. Math. Phys. 158 127) on a finite one-dimensional lattice {({{{Z}}}2)}× n, and local stochastic Markov chains at the two lattice boundaries which provide chemical baths for absorbing or emitting the solitons. Ergodicity and mixing of this many-body Markov chain is proven for generic values of bath parameters, implying the existence of a unique nonequilibrium steady state. The latter is constructed exactly and explicitly in terms of a particularly simple form of matrix product ansatz which is termed a patch ansatz. This gives rise to an explicit computation of observables and k-point correlations in the steady state as well as the construction of a nontrivial set of local conservation laws. The feasibility of an exact solution for the full spectrum and eigenvectors (decay modes) of the Markov matrix is suggested as well. We conjecture that our ideas can pave the road towards a theory of integrability of boundary driven classical deterministic lattice systems.
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-01
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
A survey of deterministic solvers for rarefied flows (Invited)
NASA Astrophysics Data System (ADS)
Mieussens, Luc
2014-12-01
Numerical simulations of rarefied gas flows are generally made with DSMC methods. Up to a recent period, deterministic numerical methods based on a discretization of the Boltzmann equation were restricted to simple problems (1D, linearized flows, or simple geometries, for instance). In the last decade, several deterministic solvers have been developed in different teams to tackle more complex problems like 2D and 3D flows. Some of them are based on the full Boltzmann equation. Solving this equation numerically is still very challenging, and 3D solvers are still restricted to monoatomic gases, even if recent works have proved it was possible to simulate simple flows for polyatomic gases. Other solvers are based on simpler BGK like models: they allow for much more intensive simulations on 3D flows for realistic geometries, but treating complex gases requires extended BGK models that are still under development. In this paper, we discuss the main features of these existing solvers, and we focus on their strengths and inefficiencies. We will also review some recent results that show how these solvers can be improved: - higher accuracy (higher order finite volume methods, discontinuous Galerkin approaches) - lower memory and CPU costs with special velocity discretization (adaptive grids, spectral methods) - multi-scale simulations by using hybrid and asymptotic preserving schemes - efficient implementation on high performance computers (parallel computing, hybrid parallelization) Finally, we propose some perspectives to make these solvers more efficient and more popular.
An advanced deterministic method for spent fuel criticality safety analysis
DeHart, M.D.
1998-01-01
Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.
Strongly Deterministic Population Dynamics in Closed Microbial Communities
NASA Astrophysics Data System (ADS)
Frentz, Zak; Kuehn, Seppe; Leibler, Stanislas
2015-10-01
Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES) as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
Shock-induced explosive chemistry in a deterministic sample configuration.
Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III; Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith
2005-10-01
Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Integrability of a deterministic cellular automaton driven by stochastic boundaries
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Mejía-Monasterio, Carlos
2016-05-01
We propose an interacting many-body space-time-discrete Markov chain model, which is composed of an integrable deterministic and reversible cellular automaton (rule 54 of Bobenko et al 1993 Commun. Math. Phys. 158 127) on a finite one-dimensional lattice {({{{Z}}}2)}× n, and local stochastic Markov chains at the two lattice boundaries which provide chemical baths for absorbing or emitting the solitons. Ergodicity and mixing of this many-body Markov chain is proven for generic values of bath parameters, implying the existence of a unique nonequilibrium steady state. The latter is constructed exactly and explicitly in terms of a particularly simple form of matrix product ansatz which is termed a patch ansatz. This gives rise to an explicit computation of observables and k-point correlations in the steady state as well as the construction of a nontrivial set of local conservation laws. The feasibility of an exact solution for the full spectrum and eigenvectors (decay modes) of the Markov matrix is suggested as well. We conjecture that our ideas can pave the road towards a theory of integrability of boundary driven classical deterministic lattice systems.
Predictability of normal heart rhythms and deterministic chaos
NASA Astrophysics Data System (ADS)
Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.
1993-04-01
The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.
Deterministic doping and the exploration of spin qubits
Schenkel, T.; Weis, C. D.; Persaud, A.; Lo, C. C.; Chakarov, I.; Schneider, D. H.; Bokor, J.
2015-01-09
Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.
Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid
2013-08-09
: The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.
Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid
2013-01-01
: The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087
Matlab Cluster Ensemble Toolbox v. 1.0
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
A MATLAB GUI to study Ising model phase transition
NASA Astrophysics Data System (ADS)
Thornton, Curtislee; Datta, Trinanjan
We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.
A smart grid simulation testbed using Matlab/Simulink
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2014-06-01
The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.
MATLAB tools for lidar data conversion, visualization, and processing
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhou, Kaijing; Yang, Jie; Lu, Yilong
2011-10-01
LIDAR (LIght Detection and Ranging) [1] is an optical remote sensing technology that has gained increasing acceptance for topographic mapping. LIDAR technology has higher accuracy than RADAR and has wide applications. The relevant commercial market for LIDAR has developed greatly in the last few years. LAS format is approved to be the standard data format for interchanging LIDAR data among different software developers, manufacturers and end users. LAS data format reduces the data size compared to ASCII data format. However, LAS data file can only be visualized by some expensive commercial software. There are some free tools available, but they are not user-friendly and have less or poor visualization functionality. This makes it difficult for researchers to investigate and use LIDAR data. Therefore, there is a need to develop an efficient and low cost LIDAR data toolbox. For this purpose we have developed a free and efficient Matlab tool for LIDAR data conversion, visualization and processing.
Polar format algorithm for SAR imaging with Matlab
NASA Astrophysics Data System (ADS)
Deming, Ross; Best, Matthew; Farrell, Sean
2014-06-01
Due to its computational efficiency, the polar format algorithm (PFA) is considered by many to be the workhorse for airborne synthetic aperture radar (SAR) imaging. PFA is implemented in spatial Fourier space, also known as "K-space", which is a convenient domain for understanding SAR performance metrics, sampling requirements, etc. In this paper the mathematics behind PFA are explained and computed examples are presented, both using simulated data, and experimental airborne radar data from the Air Force Research Laboratory (AFRL) Gotcha Challenge collect. In addition, a simple graphical method is described that can be used to model and predict wavefront curvature artifacts in PFA imagery, which are due to the limited validity of the underlying far-field approximation. The appendix includes Matlab code for computing SAR images using PFA.
Perinatal mortality attributable to complications of childbirth in Matlab, Bangladesh.
Kusiako, T.; Ronsmans, C.; Van der Paal, L.
2000-01-01
Very few population-based studies of perinatal mortality in developing countries have examined the role of intrapartum risk factors. In the present study, the proportion of perinatal deaths that are attributable to complications during childbirth in Matlab, Bangladesh, was assessed using community-based data from a home-based programme led by professional midwives between 1987 and 1993. Complications during labour and delivery--such as prolonged or obstructed labour, abnormal fetal position, and hypertensive diseases of pregnancy--increased the risk of perinatal mortality fivefold and accounted for 30% of perinatal deaths. Premature labour, which occurred in 20% of pregnancies, accounted for 27% of perinatal mortality. Better care by qualified staff during delivery and improved care of newborns should substantially reduce perinatal mortality in this study population. PMID:10859856
A Matlab/Simulink-Based Interactive Module for Servo Systems Learning
ERIC Educational Resources Information Center
Aliane, N.
2010-01-01
This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
NASA Astrophysics Data System (ADS)
Mirzadeh, Zeynab; Mehri, Razieh; Rabbani, Hossein
2010-01-01
In this paper the degraded video with blur and noise is enhanced by using an algorithm based on an iterative procedure. In this algorithm at first we estimate the clean data and blur function using Newton optimization method and then the estimation procedure is improved using appropriate denoising methods. These noise reduction techniques are based on local statistics of clean data and blur function. For estimated blur function we use LPA-ICI (local polynomial approximation - intersection of confidence intervals) method that use an anisotropic window around each point and obtain the enhanced data employing Wiener filter in this local window. Similarly, to improvement the quality of estimated clean video, at first we transform the data to wavelet transform domain and then improve our estimation using maximum a posterior (MAP) estimator and local Laplace prior. This procedure (initial estimation and improvement of estimation by denoising) is iterated and finally the clean video is obtained. The implementation of this algorithm is slow in MATLAB1 environment and so it is not suitable for online applications. However, MATLAB has the capability of running functions written in C. The files which hold the source for these functions are called MEX-Files. The MEX functions allow system-specific APIs to be called to extend MATLAB's abilities. So, in this paper to speed up our algorithm, the written code in MATLAB is sectioned and the elapsed time for each section is measured and slow sections (that use 60% of complete running time) are selected. Then these slow sections are translated to C++ and linked to MATLAB. In fact, the high loads of information in images and processed data in the "for" loops of relevant code, makes MATLAB an unsuitable candidate for writing such programs. The written code for our video deblurring algorithm in MATLAB contains eight "for" loops. These eighth "for" utilize 60% of the total execution time of the entire program and so the runtime should be
Capillary-mediated interface perturbations: Deterministic pattern formation
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions
NASA Astrophysics Data System (ADS)
Valentine, John S.
2013-09-01
By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.
Derivation Of Probabilistic Damage Definitions From High Fidelity Deterministic Computations
Leininger, L D
2004-10-26
This paper summarizes a methodology used by the Underground Analysis and Planning System (UGAPS) at Lawrence Livermore National Laboratory (LLNL) for the derivation of probabilistic damage curves for US Strategic Command (USSTRATCOM). UGAPS uses high fidelity finite element and discrete element codes on the massively parallel supercomputers to predict damage to underground structures from military interdiction scenarios. These deterministic calculations can be riddled with uncertainty, especially when intelligence, the basis for this modeling, is uncertain. The technique presented here attempts to account for this uncertainty by bounding the problem with reasonable cases and using those bounding cases as a statistical sample. Probability of damage curves are computed and represented that account for uncertainty within the sample and enable the war planner to make informed decisions. This work is flexible enough to incorporate any desired damage mechanism and can utilize the variety of finite element and discrete element codes within the national laboratory and government contractor community.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
More on exact state reconstruction in deterministic digital control systems
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
Presented is a special form of the Ideal State Reconstructor for deterministic digital control systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so named because, if the plant parameters are known exactly, its output will exactly equal, not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects the measurement equation only. It is characterized by the fact that discrete measurements are generated every T/N seconds and input into a multi-input/multi-output moving-average (MA) process. The output of this process is sampled every T seconds and utilized in reconstructing the state of the system.
Additivity principle in high-dimensional deterministic systems.
Saito, Keiji; Dhar, Abhishek
2011-12-16
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed. PMID:22243060
Connection between stochastic and deterministic modelling of microbial growth.
Kutalik, Zoltán; Razaz, Moe; Baranyi, József
2005-01-21
We present in this paper various links between individual and population cell growth. Deterministic models of the lag and subsequent growth of a bacterial population and their connection with stochastic models for the lag and subsequent generation times of individual cells are analysed. We derived the individual lag time distribution inherent in population growth models, which shows that the Baranyi model allows a wide range of shapes for individual lag time distribution. We demonstrate that individual cell lag time distributions cannot be retrieved from population growth data. We also present the results of our investigation on the effect of the mean and variance of the individual lag time and the initial cell number on the mean and variance of the population lag time. These relationships are analysed theoretically, and their consequence for predictive microbiology research is discussed.
Location deterministic biosensing from quantum-dot-nanowire assemblies.
Liu, Chao; Kim, Kwanoh; Fan, D L
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices. PMID:25316926
Deterministic secure communications using two-mode squeezed states
Marino, Alberto M.; Stroud, C. R. Jr.
2006-08-15
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.
Location deterministic biosensing from quantum-dot-nanowire assemblies
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.
Fast deterministic ptychographic imaging using X-rays.
Yan, Ada W C; D'Alfonso, Adrian J; Morgan, Andrew J; Putkunz, Corey T; Allen, Leslie J
2014-08-01
We present a deterministic approach to the ptychographic retrieval of the wave at the exit surface of a specimen of condensed matter illuminated by X-rays. The method is based on the solution of an overdetermined set of linear equations, and is robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least-squares method implemented using fast Fourier transforms. The method is demonstrated using a data set obtained from a gold-chromium nanostructured test object. It is shown that the transmission function retrieved by this linear method is quantitatively comparable with established methods of ptychography, with a large decrease in computational time, and is thus a good candidate for real-time reconstruction.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control. PMID:24807456
Sensitivity analysis in a Lassa fever deterministic mathematical model
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman
2015-05-01
Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
Deterministic spin-wave interferometer based on the Rydberg blockade
Wei Ran; Deng Youjin; Pan Jianwei; Zhao Bo; Chen Yuao
2011-06-15
The spin-wave (SW) N-particle path-entangled |N,0>+|0,N> (NOON) state is an N-particle Fock state with two atomic spin-wave modes maximally entangled. Attributed to the property that the phase is sensitive to collective atomic motion, the SW NOON state can be utilized as an atomic interferometer and has promising application in quantum enhanced measurement. In this paper we propose an efficient protocol to deterministically produce the atomic SW NOON state by employing the Rydberg blockade. Possible errors in practical manipulations are analyzed. A feasible experimental scheme is suggested. Our scheme is far more efficient than the recent experimentally demonstrated one, which only creates a heralded second-order SW NOON state.
Scattering of electromagnetic light waves from a deterministic anisotropic medium
NASA Astrophysics Data System (ADS)
Li, Jia; Chang, Liping; Wu, Pinghui
2015-11-01
Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.
Classification and unification of the microscopic deterministic traffic models
NASA Astrophysics Data System (ADS)
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.
Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
NASA Astrophysics Data System (ADS)
Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim
2016-07-01
Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
Deterministic processes vary during community assembly for ecologically dissimilar taxa
Powell, Jeff R.; Karunaratne, Senani; Campbell, Colin D.; Yao, Huaiying; Robinson, Lucinda; Singh, Brajesh K.
2015-01-01
The continuum hypothesis states that both deterministic and stochastic processes contribute to the assembly of ecological communities. However, the contextual dependency of these processes remains an open question that imposes strong limitations on predictions of community responses to environmental change. Here we measure community and habitat turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and fungi, both dominant and functionally vital components of all soils but which differ substantially in their growth habit and dispersal capability. We find that habitat turnover is the primary driver of bacterial community turnover in general, although its importance decreases with increasing isolation and disturbance. Fungal communities, however, exhibit a highly stochastic assembly process, both neutral and non-neutral in nature, largely independent of disturbance. These findings suggest that increased focus on dispersal limitation and biotic interactions are necessary to manage and conserve the key ecosystem services provided by these assemblages. PMID:26436640
Deterministic simulation of thermal neutron radiography and tomography
NASA Astrophysics Data System (ADS)
Pal Chowdhury, Rajarshi; Liu, Xin
2016-05-01
In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.
ELDIN NAFEE, SHERIF SALAH
2013-07-24
Version 00 Calculations of the decay heat is of great importance for the design of the shielding of discharged fuel, the design and transport of fuel-storage flasks and the management of the resulting radioactive waste. These are relevant to safety and have large economic and legislative consequences. In the HEATKAU code, a new approach has been proposed to evaluate the decay heat power after a fission burst of a fissile nuclide for short cooling time. This method is based on the numerical solution of coupled linear differential equations that describe decays and buildups of the minor fission products (MFPs) nuclides. HEATKAU is written entirely in the MATLAB programming environment. The MATLAB data can be stored in a standard, fast and easy-access, platform- independent binary format which is easy to visualize.
2013-07-24
Version 00 Calculations of the decay heat is of great importance for the design of the shielding of discharged fuel, the design and transport of fuel-storage flasks and the management of the resulting radioactive waste. These are relevant to safety and have large economic and legislative consequences. In the HEATKAU code, a new approach has been proposed to evaluate the decay heat power after a fission burst of a fissile nuclide for short cooling time.more » This method is based on the numerical solution of coupled linear differential equations that describe decays and buildups of the minor fission products (MFPs) nuclides. HEATKAU is written entirely in the MATLAB programming environment. The MATLAB data can be stored in a standard, fast and easy-access, platform- independent binary format which is easy to visualize.« less
Boyd, O.S.
2006-01-01
We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nicolay, S.; Brodie of Brodie, E. B.; Touchon, M.; d'Aubenton-Carafa, Y.; Thermes, C.; Arneodo, A.
2004-10-01
We use the continuous wavelet transform to perform a space-scale analysis of the AT and GC skews (strand asymmetries) in human genomic sequences, which have been shown to correlate with gene transcription. This study reveals the existence of a characteristic scale ℓ c≃25±10 kb that separates a monofractal long-range correlated noisy regime at small scales (ℓ<ℓ c) from relaxational oscillatory behavior at large-scale (ℓ>ℓ c). We show that these large scale nonlinear oscillations enlighten an organization of the human genome into adjacent domains ( ≈400 kb) with preferential gene orientation. When using classical techniques from dynamical systems theory, we demonstrate that these relaxational oscillations display all the characteristic properties of the chaotic strange attractor behavior observed nearby homoclinic orbits of Shil'nikov type. We discuss the possibility that replication and gene regulation processes are governed by a low-dimensional dynamical system that displays deterministic chaos.
Deterministic or Probabilistic - Robustness or Resilience: How to Respond to Climate Change?
NASA Astrophysics Data System (ADS)
Plag, H.; Earnest, D.; Jules-Plag, S.
2013-12-01
suggests an intriguing hypothesis: disaster risk reduction programs need to account for whether they also facilitate the public trust, cooperation, and communication needed to recover from a disaster. Our work in the Hampton Roads area, where the probability of hazardous flooding and inundation events exceeding the thresholds of the infrastructure is high, suggests that to facilitate the paradigm shift from the deterministic to a probabilistic approach, natural sciences have to focus on hazard probabilities, while engineering and social sciences have to work together to understand how interactions of the built and social environments impact robustness and resilience. The current science-policy relationship needs to be augmented by social structures that can learn from previous unexpected events. In this response to climate change, science does not have the primary goal to reduce uncertainties and prediction errors, but rather to develop processes that can utilize uncertainties and surprises to increase robustness, strengthen resilience, and reduce fragility of the social systems during times when infrastructure fails.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
Intelligent land evaluation research based on Matlab and GIS
NASA Astrophysics Data System (ADS)
Li, Hua; Chen, Youchao; Huang, Haifeng; Wu, Hao
2011-02-01
Applying the neural network to the land evaluation, we can break through the limitations that the traditional approaches are impacted by the human factors. Back propagation neural network (BP neural network) was used to evaluate the land suitability of the Changling town of the Guangshui city, Hubei province, China. We first establish evaluation index system, these indexes include the soil contamination degree, the irrigation guaranteed rate, the drainage condition, the pH value, the organic matter content. Then we establish the BP neural network and use MatLab to write the code forming the network. The evaluation criteria were input the network to train it. Then the network performance was test until the network meets the requirements. The evaluation data of the Changling town was input as the vectors to the appropriate network which calculates to get output vectors. And the output vectors were transformed the evaluation levels that can be imported the ArcGIS software to create the land suitability assessment figure. We can draw the conclusion that the suitability for the paddy field of the unused land and the arable land is very high and the ChangLin town is suitable for the development of paddy field agriculture.
Fission gas bubble identification using MATLAB's image processing toolbox
Collette, R.; King, J.; Keiser, Jr., D.; Miller, B.; Madden, J.; Schulthess, J.
2016-06-08
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Efficient MATLAB computations with sparse and factored tensors.
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)
2006-12-01
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
Matlab Cluster Ensemble Toolbox v. 1.0
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less
Evamapper: A Novel Matlab Toolbox For Evapotranspiration Mapping
NASA Astrophysics Data System (ADS)
Atasever, Ü. H.; Kesikoğlu, M. H.; Özkan, C.
2013-10-01
Water consumption has been exceeding as the world population increases. Therefore, it is very important to manage water resources with care as it is not an endless resource. The Water loss in regional scale is the key phenomena to accomplish this goal. One of the main components of this phenomenon is evapotraspiration (ET) due to being one of the most important parameter for the management of water resources. Until recent years, evapotranspiration calculations were performed locally, using data obtained from weather stations. But for a successful water management, regional evapotranspiration maps are required. Different approaches are used to compute regional ETs. Among them, the direct measurement methods are not cost-effective and regionalized. For costeffective and regional ET mapping, Surface Energy Balance Algorithm (SEBAL) is the most known and effective technique. In this study, EvaMapper Toolbox which is based on SEBAL approach are developed for regional evapotranspiration mapping in MATLAB. By this toolbox, researchers can apply SEBAL technique which has a very complex structure to their study area easily through entering regional parameter values.
MATLAB toolbox for EnviSAT InSAR data processing, visualization, and analysis
NASA Astrophysics Data System (ADS)
Zhang, Zhidong; Ma, Zunjing; Chen, Ganlu; Chen, Yan; Lu, Yilong
2012-10-01
Interferometric Synthetic Aperture Radar (InSAR) is an emerging technology with increasing applications in for high precision interferometry and 3-D digital elevation model (DEM) ground mapping. This paper presents a user-friendly MATLAB Toolbox for enhanced InSAR applications based on European Space Agency (ESA) SAR missions. The developed MATLAB tools can provide high quality and flexible data processing, visualization and analyzing functions by tapping on MATLAB's rich and powerful mathematics and graphics tools. Case studies are presented to with enhanced InSAR and DEM processing, visualization, and analysis examples.
NASA Astrophysics Data System (ADS)
Wang, Chao; Liu, Jian-Wei; Chen, Xiu-Bo; Bi, Ya-Gang; Shang, Tao
2015-04-01
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272501, 61272514, 61170272, 61472048, 61402058, 61121061, and 61411146001), the Program for New Century Excellent Talents in University of China (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012), the Fok Ying Tong Education Foundation (Grant No. 131067), the Natural Science Foundation of Beijing (Grant Nos. 4132056 and 4152038), the Postdoctoral Science Foundation of China (Grant No. 2014M561826), and the National Key Basic Research Program, China (Grant No. 2012CB315905)
Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico
2009-09-01
Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.
Electromagnetic field enhancement and light localization in deterministic aperiodic nanostructures
NASA Astrophysics Data System (ADS)
Gopinath, Ashwin
The control of light matter interaction in periodic and random media has been investigated in depth during the last few decades, yet structures with controlled degree of disorder such as Deterministic Aperiodic Nano Structures (DANS) have been relatively unexplored. DANS are characterized by non-periodic yet long-range correlated (deterministic) morphologies and can be generated by the mathematical rules of symbolic dynamics and number theory. In this thesis, I have experimentally investigated the unique light transport and localization properties in planar dielectric and metal (plasmonics) DANS. In particular, I have focused on the design, nanofabrication and optical characterization of DANS, formed by arranging metal/dielectric nanoparticles in an aperiodic lattice. This effort is directed towards development of on-chip nanophotonic applications with emphasis on label-free bio-sensing and enhanced light emission. The DANS designed as Surface Enhanced Raman Scattering (SERS) substrate is composed of multi-scale aperiodic nanoparticle arrays fabricated by e-beam lithography and are capable of reproducibly demonstrating enhancement factors as high as ˜107. Further improvement of SERS efficiency is achieved by combining DANS formed by top-down approach with bottom-up reduction of gold nanoparticles, to fabricate novel nanostructures called plasmonic "nano-galaxies" which increases the SERS enhancement factors by 2--3 orders of magnitude while preserving the reproducibility. In this thesis, along with presenting details of fabrication and SERS characterization of these "rationally designed" SERS substrates, I will also present results on using these substrates for detection of DNA nucleobases, as well as reproducible label-free detection of pathogenic bacteria with species specificity. In addition to biochemical detection, the combination of broadband light scattering behavior and the ability for the generation of reproducible high fields in DANS make these
NASA Astrophysics Data System (ADS)
Chęciński, Jakub; Frankowski, Marek
2016-10-01
We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.
ERIC Educational Resources Information Center
Community College Journal, 1996
1996-01-01
Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…
MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C
Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.
2012-01-01
We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681
Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui
2013-01-01
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future. PMID:24173503
Non-deterministic modelling of food-web dynamics.
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as 'null models of food-webs' as originally advocated. PMID:25299245
A deterministic method for transient, three-dimensional neutron transport
NASA Astrophysics Data System (ADS)
Goluoglu, Sedat
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable is the improved quasi-static (IQS) method. The position, energy, and angle variables of the neutron flux are computed using the three-dimensional (3-D) discrete ordinates code TORT. The resulting time-dependent, 3-D code is called TDTORT. The flux shape calculated by TORT is used to compute the point kinetics parameters (e.g., reactivity, generation time, etc.). The amplitude function is calculated by solving the point kinetics equations using LSODE (Livermore Solver of Ordinary differential Equations). Several transient 1-D, 2-D, and 3-D benchmark problems are used to verify TDTORT. The results show that methodology and code developed in this work have sufficient accuracy and speed to serve as a benchmarking tool for other less accurate models and codes. More importantly, a new computational tool based on transport theory now exists for analyzing the dynamic behavior of complex neutronic systems.
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers
Stangl, Thomas; Wilhelm, Philipp; Remmerssen, Klaas; Höger, Sigurd; Vogelsang, Jan; Lupton, John M.
2015-01-01
An appealing definition of the term “molecule” arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder. PMID:26417079
Is there a sharp phase transition for deterministic cellular automata?
NASA Astrophysics Data System (ADS)
Wootters, William K.; Langton, Chris G.
1990-09-01
Previous work has suggested that there is a kind of phase transition between deterministic automata exhibiting periodic behavior and those exhibiting chaotic behavior. However, unlike the usual phase transitions of physics, this transition takes place over a range of values of the parameter rather than at a specific value. The present paper asks whether the transition can be made sharp, either by taking the limit of an infinitely large rule table, or by changing the parameter in terms of which the space of automata is explored. We find strong evidence that, for the class of automata we consider, the transition does become sharp in the limit of an infinite number of symbols, the size of the neighborhood being held fixed. Our work also suggests an alternative parameter in terms of which it is likely that the transition will become fairly sharp even if one does not increase the number of symbols. In the course of our analysis, we find that mean field theory, which is our main tool, gives surprisingly good predictions of the statistical properties of the class of automata we consider.
Deterministic phase encoding encryption in single shot digital holography
NASA Astrophysics Data System (ADS)
Chen, G.-L.; Yang, W.-K.; Wang, J. C.; Chang, C.-C.
2008-11-01
We demonstrate a deterministic phase-encoded encryption system based on the digital holography and adopted a lenticular lens array (LLA) sheet as a phase modulator. In the proposed scheme the holographic patterns of encrypted images are captured digitally by a digital CCD. This work also adopt a novel, simple and effective technique that is used to suppress numerically the major blurring caused by the zero-order image in the numerical reconstruction. The decryption key is acquired as a digital hologram, called the key hologram. Therefore, the retrieval of the original information can be achieved by multiplying the encrypted hologram with a numerical generated phase-encoded wave. The storage and transmission of all holograms can be carried out by all-digital means. Simulation and experimental results demonstrate that the proposed approach can be operated in single procedure only and represent the satisfactory decrypted image. Finally, rotating and shifting the LLA is applied to investigate the tolerance of decryption to demonstrate the feasibility in the holographic encryption, as well as can also be used to provide the higher security.
Entrepreneurs, chance, and the deterministic concentration of wealth.
Fargione, Joseph E; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels.
Entrepreneurs, chance, and the deterministic concentration of wealth.
Fargione, Joseph E; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels. PMID:21814540
Particle separation using virtual deterministic lateral displacement (vDLD).
Collins, David J; Alan, Tuncay; Neild, Adrian
2014-05-01
We present a method for sensitive and tunable particle sorting that we term virtual deterministic lateral displacement (vDLD). The vDLD system is composed of a set of interdigital transducers (IDTs) within a microfluidic chamber that produce a force field at an angle to the flow direction. Particles above a critical diameter, a function of the force induced by viscous drag and the force field, are displaced laterally along the minimum force potential lines, while smaller particles continue in the direction of the fluid flow without substantial perturbations. We demonstrate the effective separation of particles in a continuous-flow system with size sensitivity comparable or better than other previously reported microfluidic separation techniques. Separation of 5.0 μm from 6.6 μm, 6.6 μm from 7.0 μm and 300 nm from 500 nm particles are all achieved using the same device architecture. With the high sensitivity and flexibility vDLD affords we expect to find application in a wide variety of microfluidic platforms. PMID:24638896
Deterministic ripple-spreading model for complex networks
NASA Astrophysics Data System (ADS)
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S.; Hines, Evor L.; di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation
NASA Astrophysics Data System (ADS)
Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar
2016-02-01
Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.
SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.
Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar
2016-02-01
Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
GazeAlyze: a MATLAB toolbox for the analysis of eye movement data.
Berger, Christoph; Winkels, Martin; Lischke, Alexander; Höppner, Jacqueline
2012-06-01
This article presents GazeAlyze, a software package, written as a MATLAB (MathWorks Inc., Natick, MA) toolbox developed for the analysis of eye movement data. GazeAlyze was developed for the batch processing of multiple data files and was designed as a framework with extendable modules. GazeAlyze encompasses the main functions of the entire processing queue of eye movement data to static visual stimuli. This includes detecting and filtering artifacts, detecting events, generating regions of interest, generating spread sheets for further statistical analysis, and providing methods for the visualization of results, such as path plots and fixation heat maps. All functions can be controlled through graphical user interfaces. GazeAlyze includes functions for correcting eye movement data for the displacement of the head relative to the camera after calibration in fixed head mounts. The preprocessing and event detection methods in GazeAlyze are based on the software ILAB 3.6.8 Gitelman (Behav Res Methods Instrum Comput 34(4), 605-612, 2002). GazeAlyze is distributed free of charge under the terms of the GNU public license and allows code modifications to be made so that the program's performance can be adjusted according to a user's scientific requirements. PMID:21898158
Kim, Y.; Shim, H. J.; Noh, T.
2006-07-01
To resolve the double-heterogeneity (DH) problem resulting from the TRISO fuel of high-temperature gas-cooled reactors (HTGRs), a synergistic combination of a deterministic method and the Monte Carlo method has been proposed. As the deterministic approach, the RPT (Reactivity-equivalent Physical Transformation) method is adopted. In the combined methodology, a reference k-infinite value is obtained by the Monte Carlo method for an initial state of a problem and it is used by the RPT method to transform the original DH problem into a conventional single-heterogeneous one, and the transformed problem is analyzed by the conventional deterministic methods. The combined methodology has been applied to the depletion analysis of typical HTGR fuels including both prismatic block and pebble. The reference solution is obtained using a Monte Carlo code MCCARD and the accuracy of the deterministic-only and the combined methods is evaluated. For the deterministic solution, the DRAGON and HELIOS codes were used. It has been shown that the combined method provides an accurate solution although the deterministic-only solution shows noticeable errors. For the pebble, the two deterministic codes cannot handle the DH problem. Nevertheless, we have shown that the solution of the DRAGON-MCCARD combined approach agrees well with the reference. (authors)
High-level GPU computing with jacket for MATLAB and C/C++
NASA Astrophysics Data System (ADS)
Pryor, Gallagher; Lucey, Brett; Maddipatla, Sandeep; McClanahan, Chris; Melonakos, John; Venugopalakrishnan, Vishwanath; Patel, Krunal; Yalamanchili, Pavan; Malcolm, James
2011-06-01
We describe a software platform for the rapid development of general purpose GPU (GPGPU) computing applications within the MATLAB computing environment, C, and C++: Jacket. Jacket provides thousands of GPU-tuned function syntaxes within MATLAB, C, and C++, including linear algebra, convolutions, reductions, and FFTs as well as signal, image, statistics, and graphics libraries. Additionally, Jacket includes a compiler that translates MATLAB and C++ code to CUDA PTX assembly and OpenGL shaders on demand at runtime. A facility is also included to compile a domain specific version of the MATLAB language to CUDA assembly at build time. Jacket includes the first parallel GPU FOR-loop construction and the first profiler for comparative analysis of CPU and GPU execution times. Jacket provides full GPU compute capability on CUDA hardware and limited, image processing focused compute on OpenGL/ES (2.0 and up) devices for mobile and embedded applications.
Improve Data Mining and Knowledge Discovery Through the Use of MatLab
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its
MILAMIN: MATLAB-based finite element method solver for large problems
NASA Astrophysics Data System (ADS)
Dabrowski, M.; Krotkiewski, M.; Schmid, D. W.
2008-04-01
The finite element method (FEM) combined with unstructured meshes forms an elegant and versatile approach capable of dealing with the complexities of problems in Earth science. Practical applications often require high-resolution models that necessitate advanced computational strategies. We therefore developed "Million a Minute" (MILAMIN), an efficient MATLAB implementation of FEM that is capable of setting up, solving, and postprocessing two-dimensional problems with one million unknowns in one minute on a modern desktop computer. MILAMIN allows the user to achieve numerical resolutions that are necessary to resolve the heterogeneous nature of geological materials. In this paper we provide the technical knowledge required to develop such models without the need to buy a commercial FEM package, programming compiler-language code, or hiring a computer specialist. It has been our special aim that all the components of MILAMIN perform efficiently, individually and as a package. While some of the components rely on readily available routines, we develop others from scratch and make sure that all of them work together efficiently. One of the main technical focuses of this paper is the optimization of the global matrix computations. The performance bottlenecks of the standard FEM algorithm are analyzed. An alternative approach is developed that sustains high performance for any system size. Applied optimizations eliminate Basic Linear Algebra Subprograms (BLAS) drawbacks when multiplying small matrices, reduce operation count and memory requirements when dealing with symmetric matrices, and increase data transfer efficiency by maximizing cache reuse. Applying loop interchange allows us to use BLAS on large matrices. In order to avoid unnecessary data transfers between RAM and CPU cache we introduce loop blocking. The optimization techniques are useful in many areas as demonstrated with our MILAMIN applications for thermal and incompressible flow (Stokes) problems. We use
Improve Data Mining and Knowledge Discovery through the use of MatLab
NASA Technical Reports Server (NTRS)
Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and
a Matlab Geodetic Software for Processing Airborne LIDAR Bathymetry Data
NASA Astrophysics Data System (ADS)
Pepe, M.; Prezioso, G.
2015-04-01
The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use of the ellipsoidal height; to transform this height in orthometric is necessary to know a geoid undulation model. The latest and most accurate global geoid undulation model, available worldwide, is EGM2008 which has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM Development Team. Therefore, given the availability and accuracy of this geoid model, we can use it in geomatics applications that require the conversion of heights. Using this model, to correct the elevation of a point does not coincide with any node must interpolate elevation information of adjacent nodes. The purpose of this paper is produce a Matlab® geodetic software for processing airborne LIDAR bathymetry data. In particular we want to focus on the point clouds in ASPRS LAS format and convert the ellipsoidal height in orthometric. The algorithm, valid on the whole globe and operative for all UTM zones, allows the conversion of ellipsoidal heights using the EGM2008 model. Of this model we analyse the slopes which occur, in some critical areas, between the nodes of the undulations grid; we will focus our attention on the marine areas verifying the impact that the slopes have in the calculation of the orthometric height and, consequently, in the accuracy of the in the 3-D point clouds. This experiment will be carried out by analysing a LAS APRS file containing topographic and bathymetric data collected with LIDAR systems along the coasts of Oregon and Washington (USA).
NASA Technical Reports Server (NTRS)
Howard, Joseph
2007-01-01
The viewgraph presentation provides an introduction to the James Webb Space Telescope (JWST). The first part provides a brief overview of Matlab toolkits including CodeV, OSLO, and Zemax Toolkits. The toolkit overview examines purpose, layout, how Matlab gets data from CodeV, function layout, and using cvHELP. The second part provides examples of use with JWST, including wavefront sensitivities and alignment simulations.
Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.
Koprowski, Robert
2015-11-01
The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis.
Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.
Koprowski, Robert
2015-11-01
The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. PMID:25676816
Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations
NASA Astrophysics Data System (ADS)
Terragni, F.; Carretero, M.; Capasso, V.; Bonilla, L. L.
2016-02-01
A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing one to extract a deterministic integro-partial-differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014), 10.1103/PhysRevE.90.062716]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble-averaged stochastic descriptions.
Bulgakov, N G; Maksimov, V N
2005-01-01
Specific application of deterministic analysis to investigate the contingencies of various components of natural biocenosis was illustrated by the example of fish production and biomass of phyto- and zooplankton. Deterministic analysis confirms the theoretic assumptions on food preferences of herbivorous fish: both silver and bighead carps avoided feeding on cyanobacteria. Being a facultative phytoplankton feeder, silver carp preferred microalgae to zooplankton. Deterministic analysis allowed us to demonstrate the contingency of the mean biomass of phyto- and zooplankton during both the whole fish production cycle and the individual periods. PMID:16004266
Condition for generating the same scattered spectral density by random and deterministic media.
Wang, Tao; Ding, Yi; Ji, Xiaoling; Zhao, Daomu
2015-02-01
We present a condition for generating the same scattered spectral density by random and deterministic media. Examples of light waves on scattering from a Gaussian-centered deterministic medium and a Gaussian-correlated quasi-homogeneous random medium are discussed. It is shown that the normalized far-zone scattered spectral density produced by a Gaussian-centered deterministic medium and by a Gaussian-correlated quasi-homogeneous random medium will be identical provided that the square of the effective width of normalized correlation coefficient of the quasi-homogeneous random medium is twice the square of the effective width of scattering potential of the determinate medium.
Deterministic and stochastic modifications of the Stokes formula
NASA Astrophysics Data System (ADS)
Ellmann, A.
2009-04-01
features for regional geoid model. Over recent decades two distinct groups of modification approaches - deterministic and stochastic, have been proposed in geodetic literature. The deterministic approaches principally aim at reducing the truncation bias (caused by neglecting of the remote zone) only, whereas the stochastic methods attempt also to incorporate the accuracy estimates of EGM's geopotential coefficients and terrestrial data. Both groups employ a modified Stokes function as the integral kernel for the near-zone integration. The selection of the upper modification limit is directly related to the quality of the EGM to be used. In practice, due to restricted access to terrestrial data the integration radius is often limited to a few hundred kilometres. This implies that a relatively high modification degree should counterbalance this limitation. On the other hand, the EGM error grows with increasing degree, which provides a rationale for choosing a compromise modification limit. Due to poor accuracy of the earlier EGM-s a rather small modification degree was favoured in the computations of many geoid models in the past. Importantly, the space technology advancements have significantly improved the accuracy of recent EGM-s, which allows the user to safely increase the modification degree (up to 100 or even beyond). However, certain difficulties may be encountered when determining (usually, from a system of linear equations) the modification parameters. The solution may become numerically unstable when a small integration cap and/or high modification degree is adopted for computations. Accordingly, this contribution revisits the principles of choosing the appropriate modification method in the context of contemporary EGM-s. Also the strategies for selecting appropriate modification limits are revisited. Typical and optimum outcomes of the modifications are discussed.
"Eztrack": A single-vehicle deterministic tracking algorithm
Carrano, C J
2007-12-20
A variety of surveillance operations require the ability to track vehicles over a long period of time using sequences of images taken from a camera mounted on an airborne or similar platform. In order to be able to see and track a vehicle for any length of time, either a persistent surveillance imager is needed that can image wide fields of view over a long time-span or a highly maneuverable smaller field-of-view imager is needed that can follow the vehicle of interest. The algorithm described here was designed for the persistence surveillance case. In turns out that most vehicle tracking algorithms described in the literature[1,2,3,4] are designed for higher frame rates (> 5 FPS) and relatively short ground sampling distances (GSD) and resolutions ({approx} few cm to a couple tens of cm). But for our datasets, we are restricted to lower resolutions and GSD's ({ge}0.5 m) and limited frame-rates ({le}2.0 Hz). As a consequence, we designed our own simple approach in IDL which is a deterministic, motion-guided object tracker. The object tracking relies both on object features and path dynamics. The algorithm certainly has room for future improvements, but we have found it to be a useful tool in evaluating effects of frame-rate, resolution/GSD, and spectral content (eg. grayscale vs. color imaging ). A block diagram of the tracking approach is given in Figure 1. We describe each of the blocks of the diagram in the upcoming sections.
Accurate deterministic solutions for the classic Boltzmann shock profile
NASA Astrophysics Data System (ADS)
Yue, Yubei
The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.
Reduced-Complexity Deterministic Annealing for Vector Quantizer Design
NASA Astrophysics Data System (ADS)
Demirciler, Kemal; Ortega, Antonio
2005-12-01
This paper presents a reduced-complexity deterministic annealing (DA) approach for vector quantizer (VQ) design by using soft information processing with simplified assignment measures. Low-complexity distributions are designed to mimic the Gibbs distribution, where the latter is the optimal distribution used in the standard DA method. These low-complexity distributions are simple enough to facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to result in near-optimal performance. We have also derived the theoretical performance loss at a given system entropy due to using the simple soft measures instead of the optimal Gibbs measure. We use thederived result to obtain optimal annealing schedules for the simple soft measures that approximate the annealing schedule for the optimal Gibbs distribution. The proposed reduced-complexity DA algorithms have significantly improved the quality of the final codebooks compared to the generalized Lloyd algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest neighbor (PNN) codebook initialization. The proposed algorithms are able to evade the local minima and the results show that they are not sensitive to the choice of the initial codebook. Compared to the standard DA approach, the reduced-complexity DA algorithms can operate over 100 times faster with negligible performance difference. For example, for the design of a 16-dimensional vector quantizer having a rate of 0.4375 bit/sample for Gaussian source, the standard DA algorithm achieved 3.60 dB performance in 16 483 CPU seconds, whereas the reduced-complexity DA algorithm achieved the same performance in 136 CPU seconds. Other than VQ design, the DA techniques are applicable to problems such as classification, clustering, and resource allocation.
Merging deterministic and probabilistic approaches to forecast volcanic scenarios
NASA Astrophysics Data System (ADS)
Peruzzo, E.; Bisconti, L.; Barsanti, M.; Flandoli, F.; Papale, P.
2009-04-01
Volcanoes are extremely complex systems largely inaccessible to direct observation. As a consequence, many quantities which are relevant in determining the physical and chemical processes occurring at volcanoes are largely uncertain. On the other hand, the demand for eruption scenario forecast at many hazardous volcanoes in the world is pressing, reflecting into the development and use of increasingly complex physical models and numerical codes. Such codes are capable of accounting for the extremely complex, non-linear behaviour of the volcanic processes, and for the roles of several quantities in determining volcanic scenarios and hazards. However, they often require enormous computer resources and imply long (order of days to weeks) CPU times even on the most advanced parallel computation systems available to-date. As a consequence, they can hardly be used to reasonably cover the spectrum of possible conditions expected at a given volcano. At this purpose, we have started the development of a mixed deterministic-probabilistic approach with the aim of substantially reducing (form order 10000 to 10) the number of simulations needed to adequately represent possible scenarios and their probability of occurrence, corresponding to a given set of probability distributions for the initial/boundary conditions characterizing the system. The core of the problem is to find a "best" discretization of the continuous density function describing the random variables input to the model. This is done through the stochastic quantization theory (Graf and Luschgy, 2000). The application of this theory to volcanic scenario forecast has been tested through both an oversimplified analytical model and a more complex numerical model for magma flow in volcanic conduits, the latter still running in relatively short times to allow comparison with Monte Carlo simulations. The final aim is to define proper strategies and paradigms for application to more complex, time-demanding codes
ShareSync: A Solution for Deterministic Data Sharing over Ethernet
NASA Technical Reports Server (NTRS)
Dunn, Daniel J., II; Koons, William A.; Kennedy, Richard D.; Davis, Philip A.
2007-01-01
As part of upgrading the Contact Dynamics Simulation Laboratory (CDSL) at the NASA Marshall Space Flight Center (MSFC), a simple, cost effective method was needed to communicate data among the networked simulation machines and I/O controllers used to run the facility. To fill this need and similar applicable situations, a generic protocol was developed, called ShareSync. ShareSync is a lightweight, real-time, publish-subscribe Ethernet protocol for simple and deterministic data sharing across diverse machines and operating systems. ShareSync provides a simple Application Programming Interface (API) for simulation programmers to incorporate into their code. The protocol is compatible with virtually all Ethernet-capable machines, is flexible enough to support a variety of applications, is fast enough to provide soft real-time determinism, and is a low-cost resource for distributed simulation development, deployment, and maintenance. The first design cycle iteration of ShareSync has been completed, and the protocol has undergone several testing procedures including endurance and benchmarking tests and approaches the 2001ts data synchronization design goal for the CDSL.
Hoisie, A.; Lubeck, O.; Wasserman, H.
1998-12-31
The authors develop a model for the parallel performance of algorithms that consist of concurrent, two-dimensional wavefronts implemented in a message passing environment. The model, based on a LogGP machine parameterization, combines the separate contributions of computation and communication wavefronts. They validate the model on three important supercomputer systems, on up to 500 processors. They use data from a deterministic particle transport application taken from the ASCI workload, although the model is general to any wavefront algorithm implemented on a 2-D processor domain. They also use the validated model to make estimates of performance and scalability of wavefront algorithms on 100-TFLOPS computer systems expected to be in existence within the next decade as part of the ASCI program and elsewhere. In this context, the authors analyze two problem sizes. Their model shows that on the largest such problem (1 billion cells), inter-processor communication performance is not the bottleneck. Single-node efficiency is the dominant factor.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink
Meng Lin; Dong Hou; Zhihong Xu; Yanhua Yang; Ronghua Zhang
2006-07-01
Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, just can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is
Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C
2013-05-01
During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.
Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed
Recent Achievements of the Neo-Deterministic Seismic Hazard Assessment in the CEI Region
Panza, G. F.; Kouteva, M.; Vaccari, F.; Peresan, A.; Romanelli, F.; Cioflan, C. O.; Radulian, M.; Marmureanu, G.; Paskaleva, I.; Gribovszki, K.; Varga, P.; Herak, M.; Zaichenco, A.; Zivcic, M.
2008-07-08
A review of the recent achievements of the innovative neo-deterministic approach for seismic hazard assessment through realistic earthquake scenarios has been performed. The procedure provides strong ground motion parameters for the purpose of earthquake engineering, based on the deterministic seismic wave propagation modelling at different scales--regional, national and metropolitan. The main advantage of this neo-deterministic procedure is the simultaneous treatment of the contribution of the earthquake source and seismic wave propagation media to the strong motion at the target site/region, as required by basic physical principles. The neo-deterministic seismic microzonation procedure has been successfully applied to numerous metropolitan areas all over the world in the framework of several international projects. In this study some examples focused on CEI region concerning both regional seismic hazard assessment and seismic microzonation of the selected metropolitan areas are shown.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; Falcao Salles, Joana
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic matter (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.
2016-04-01
Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition
Introducing Earth Sciences Students to Modeling Using MATLAB Exercises
NASA Astrophysics Data System (ADS)
Anderson, R. S.
2003-12-01
While we subject our students to math and physics and chemistry courses to complement their geological studies, we rarely allow them to experience the joys of modeling earth systems. Given the degree to which modern earth sciences relies upon models of complex systems, it seems appropriate to allow our students to develop some experience with this activity. In addition, as modeling is an unforgivingly logical exercise, it demands the student absorb the fundamental concepts, the assumptions behind them, and the means of constraining the relevant parameters in a problem. These concepts commonly include conservation of some quantity, the fluxes of that quantity, and careful prescription of the boundary and initial conditions. I have used MATLAB as an entrance to this world, and will illustrate the products of the exercises we have worked. This software is platform-independent, and has a wonderful graphics package (including movies) that is embedded intimately as one-to-several line calls. The exercises should follow a progression from simple to complex, and serve to introduce the many discrete tasks within modeling. I advocate full immersion in the first exercise. Example exercises include: growth of spatter cones (summation of parabolic trajectories of lava bombs); response of thermal profiles in the earth to varying surface temperature (thermal conduction); hillslope or fault scarp evolution (topographic diffusion); growth and subsidence of volcanoes (flexure); and coral growth on a subsiding platform in the face of sealevel fluctuations (coral biology and light extinction). These exercises can be motivated by reading a piece in the classical or modern literature that either describes a model, or better yet serves to describe the system well, but does not present a model. I have found that the generation of movies from even the early simulation exercises serves as an additional motivator for students. We discuss the models in each class meeting, and learn that there
Yildirim, Necmettin; Kazanci, Caner
2011-01-01
A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. PMID:21187231
Deterministic methods in radiation transport. A compilation of papers presented February 4-5, 1992
Rice, A. F.; Roussin, R. W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Deterministic methods in radiation transport. A compilation of papers presented February 4--5, 1992
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Implementation of Gy-Eq for deterministic effects limitation in shield design.
Wilson, John W; Kim, Myung-Hee Y; De Angelis, Giovanni; Cucinotta, Francis A; Yoshizawa, Nobuaki; Badavi, Francis F
2002-12-01
The NCRP has recently defined RBE values and a new quantity (Gy-Eq) for use in estimation of deterministic effects in space shielding and operations. The NCRP's RBE for neutrons is left ambiguous and not fully defined. In the present report we will suggest a complete definition of neutron RBE consistent with the NCRP recommendations and evaluate attenuation properties of deterministic effects (Gy-Eq) in comparison with other dosimetric quantities. PMID:12793740
Implementation of Gy-Eq for deterministic effects limitation in shield design
NASA Technical Reports Server (NTRS)
Wilson, John W.; Kim, Myung-Hee Y.; De Angelis, Giovanni; Cucinotta, Francis A.; Yoshizawa, Nobuaki; Badavi, Francis F.
2002-01-01
The NCRP has recently defined RBE values and a new quantity (Gy-Eq) for use in estimation of deterministic effects in space shielding and operations. The NCRP's RBE for neutrons is left ambiguous and not fully defined. In the present report we will suggest a complete definition of neutron RBE consistent with the NCRP recommendations and evaluate attenuation properties of deterministic effects (Gy-Eq) in comparison with other dosimetric quantities.
Deterministic photon-photon {radical}(SWAP)gate using a {Lambda} system
Koshino, Kazuki; Ishizaka, Satoshi; Nakamura, Yasunobu
2010-07-15
We theoretically present a method to realize a deterministic photon-photon {radical}(SWAP) gate using a three-level {Lambda} system interacting with single photons in reflection geometry. The {Lambda} system is used completely passively as a temporary memory for a photonic qubit; the initial state of the {Lambda} system may be arbitrary, and active control by auxiliary fields is unnecessary throughout the gate operations. These distinct merits make this entangling gate suitable for deterministic and scalable quantum computation.
Martin, Guillaume; Lambert, Amaury
2015-05-01
In large populations, the distribution of the trajectory of allele frequencies under selection and genetic drift approaches a semi-deterministic behavior: a deterministic trajectory started and ended at stochastic boundary values. This provides simple yet accurate approximations for the distribution of allelic frequencies over time (conditional on fixation), and of extinction and fixation times, for both hard and soft sweeps, and under arbitrary inbreeding and dominance.
Baca, Renee Nicole; Congdon, Michael L.; Brake, Matthew Robert
2014-07-01
In 2012, a Matlab GUI for the prediction of the coefficient of restitution was developed in order to enable the formulation of more accurate Finite Element Analysis (FEA) models of components. This report details the development of a new Rebound Dynamics GUI, and how it differs from the previously developed program. The new GUI includes several new features, such as source and citation documentation for the material database, as well as a multiple materials impact modeler for use with LMS Virtual.Lab Motion (LMS VLM), and a rigid body dynamics modeling software. The Rebound Dynamics GUI has been designed to work with LMS VLM to enable straightforward incorporation of velocity-dependent coefficients of restitution in rigid body dynamics simulations.
NASA Astrophysics Data System (ADS)
Chen, Yangkang; Huang, Weilin; Zhang, Dong; Chen, Wei
2016-10-01
Simultaneous seismic data denoising and reconstruction is a currently popular research subject in modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and reconstruction algorithm will cause strong residual noise in the reconstructed data and thus affect the following processing and interpretation tasks. In this paper, we propose an improved rank-reduction method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional method. The proposed approach can help us obtain nearly perfect reconstruction performance even in the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field data examples. Considering that seismic data interpolation and denoising source packages are seldom in the public domain, we also provide a program template for the rank-reduction based simultaneous denoising and reconstruction algorithm by providing an open-source Matlab package.
Smith, Leon E.; Gesh, Christopher J.; Pagh, Richard T.; Miller, Erin A.; Shaver, Mark W.; Ashbaker, Eric D.; Batdorf, Michael T.; Ellis, J. E.; Kaye, William R.; McConn, Ronald J.; Meriwether, George H.; Ressler, Jennifer J.; Valsan, Andrei B.; Wareing, Todd A.
2008-10-31
Radiation transport modeling methods used in the radiation detection community fall into one of two broad categories: stochastic (Monte Carlo) and deterministic. Monte Carlo methods are typically the tool of choice for simulating gamma-ray spectrometers operating in homeland and national security settings (e.g. portal monitoring of vehicles or isotope identification using handheld devices), but deterministic codes that discretize the linear Boltzmann transport equation in space, angle, and energy offer potential advantages in computational efficiency for many complex radiation detection problems. This paper describes the development of a scenario simulation framework based on deterministic algorithms. Key challenges include: formulating methods to automatically define an energy group structure that can support modeling of gamma-ray spectrometers ranging from low to high resolution; combining deterministic transport algorithms (e.g. ray-tracing and discrete ordinates) to mitigate ray effects for a wide range of problem types; and developing efficient and accurate methods to calculate gamma-ray spectrometer response functions from the deterministic angular flux solutions. The software framework aimed at addressing these challenges is described and results from test problems that compare coupled deterministic-Monte Carlo methods and purely Monte Carlo approaches are provided.
Deterministic Modeling of the High Temperature Test Reactor
Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the
Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects
NASA Astrophysics Data System (ADS)
Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume
The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in
A Deterministic Approach to Active Debris Removal Target Selection
NASA Astrophysics Data System (ADS)
Lidtke, A.; Lewis, H.; Armellin, R.
2014-09-01
purpose of ADR are also drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is proposed.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2015-11-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly
GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data.
Kleckner, Ian R; Foster, Mark P
2012-01-01
Molecular dynamics are essential for life, and nuclear magnetic resonance (NMR) spectroscopy has been used extensively to characterize these phenomena since the 1950s. For the past 15 years, the Carr-Purcell Meiboom-Gill relaxation dispersion (CPMG RD) NMR experiment has afforded advanced NMR labs access to kinetic, thermodynamic, and structural details of protein and RNA dynamics in the crucial μs-ms time window. However, analysis of RD data is challenging because datasets are often large and require many non-linear fitting parameters, thereby confounding assessment of accuracy. Moreover, novice CPMG experimentalists face an additional barrier because current software options lack an intuitive user interface and extensive documentation. Hence, we present the open-source software package GUARDD (Graphical User-friendly Analysis of Relaxation Dispersion Data), which is designed to organize, automate, and enhance the analytical procedures which operate on CPMG RD data ( http://code.google.com/p/guardd/). This MATLAB-based program includes a graphical user interface, permits global fitting to multi-field, multi-temperature, multi-coherence data, and implements χ (2)-mapping procedures, via grid-search and Monte Carlo methods, to enhance and assess fitting accuracy. The presentation features allow users to seamlessly traverse the large amount of results, and the RD Simulator feature can help design future experiments as well as serve as a teaching tool for those unfamiliar with RD phenomena. Based on these innovative features, we expect that GUARDD will fill a well-defined gap in service of the RD NMR community.
nSTAT: Open-Source Neural Spike Train Analysis Toolbox for Matlab
Cajigas, I.; Malik, W.Q.; Brown, E.N.
2012-01-01
Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - Generalized Linear Model (PPGLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT – an open source neural spike train analysis toolbox for Matlab®. By adopting an Object-Oriented Programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of peri-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. PMID:22981419
MATLAB-based automated patch-clamp system for awake behaving mice
Siegel, Jennifer J.; Taylor, William; Chitwood, Raymond A.; Johnston, Daniel
2015-01-01
Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585–587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process that revolves around analysis of a single signal (electrode impedance) and movement along a single axis. Here, we introduce an automated system for blind patch-clamp recordings from awake, head-fixed mice running on a wheel. In its design, we were guided by 3 requirements: easy-to-use and easy-to-modify software; seamless integration of behavioral equipment; and efficient use of time. The resulting system employs equipment that is standard for patch recording rigs, moderately priced, or simple to make. It is written entirely in MATLAB, a programming environment that has an enormous user base in the neuroscience community and many available resources for analysis and instrument control. Using this system, we obtained 19 whole cell patch recordings from neurons in the prefrontal cortex of awake mice, aged 8–9 wk. Successful recordings had series resistances that averaged 52 ± 4 MΩ and required 5.7 ± 0.6 attempts to obtain. These numbers are comparable with those of experienced electrophysiologists working manually, and this system, written in a simple and familiar language, will be useful to many cellular electrophysiologists who wish to study awake behaving mice. PMID:26084901
MATLAB-based automated patch-clamp system for awake behaving mice.
Desai, Niraj S; Siegel, Jennifer J; Taylor, William; Chitwood, Raymond A; Johnston, Daniel
2015-08-01
Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585-587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process that revolves around analysis of a single signal (electrode impedance) and movement along a single axis. Here, we introduce an automated system for blind patch-clamp recordings from awake, head-fixed mice running on a wheel. In its design, we were guided by 3 requirements: easy-to-use and easy-to-modify software; seamless integration of behavioral equipment; and efficient use of time. The resulting system employs equipment that is standard for patch recording rigs, moderately priced, or simple to make. It is written entirely in MATLAB, a programming environment that has an enormous user base in the neuroscience community and many available resources for analysis and instrument control. Using this system, we obtained 19 whole cell patch recordings from neurons in the prefrontal cortex of awake mice, aged 8-9 wk. Successful recordings had series resistances that averaged 52 ± 4 MΩ and required 5.7 ± 0.6 attempts to obtain. These numbers are comparable with those of experienced electrophysiologists working manually, and this system, written in a simple and familiar language, will be useful to many cellular electrophysiologists who wish to study awake behaving mice.
nSTAT: open-source neural spike train analysis toolbox for Matlab.
Cajigas, I; Malik, W Q; Brown, E N
2012-11-15
Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - generalized linear model (PP-GLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT--an open source neural spike train analysis toolbox for Matlab®. By adopting an object-oriented programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of peri-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. PMID:22981419
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent
Eye growth and myopia development: Unifying theory and Matlab model.
Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal
2016-03-01
The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs
Wildfire susceptibility mapping: comparing deterministic and stochastic approaches
NASA Astrophysics Data System (ADS)
Pereira, Mário; Leuenberger, Michael; Parente, Joana; Tonini, Marj
2016-04-01
Conservation of Nature and Forests (ICNF) (http://www.icnf.pt/portal) which provides a detailed description of the shape and the size of area burnt by each fire in each year of occurrence. Two methodologies for susceptibility mapping were compared. First, the deterministic approach, based on the study of Verde and Zêzere (2010), which includes the computation of the favorability scores for each variable and the fire occurrence probability, as well as the validation of each model, resulting from the integration of different variables. Second, as non-linear method we selected the Random Forest algorithm (Breiman, 2001): this led us to identifying the most relevant variables conditioning the presence of wildfire and allowed us generating a map of fire susceptibility based on the resulting variable importance measures. By means of GIS techniques, we mapped the obtained predictions which represent the susceptibility of the study area to fires. Results obtained applying both the methodologies for wildfire susceptibility mapping, as well as of wildfire hazard maps for different total annual burnt area scenarios, were compared with the reference maps and allow us to assess the best approach for susceptibility mapping in Portugal. References: - Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. - Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Science, 10(3), 485-497.
Stenroos, M; Mäntynen, V; Nenonen, J
2007-12-01
The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely available Matlab BEM source code for solving bioelectromagnetic volume conduction problems and any (quasi-)static potential problems that obey the Laplace equation. The basic principle of the BEM is presented and discretization of the surface integral equation for electric potential is worked through in detail. Contents and design of the library are described, and results of example computations in spherical volume conductors are validated against analytical solutions. Three application examples are also presented. Further information, source code for application examples, and information on obtaining the library are available in the WWW-page of the library: (http://biomed.tkk.fi/BEM).
Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data
Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes
2011-03-30
Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.
The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers.
Wilson, Andrew D; Tresilian, James; Schlaghecken, Friederike
2011-03-01
The Masked Priming Toolbox is an open-source collection of MATLAB functions that utilizes the free third-party PsychToolbox-3 (PTB3: Brainard, Spatial Vision, 10, 433-436, 1997; Kleiner, Brainard & Pelli, Perception, 36, 2007; Pelli, Spatial Vision, 10, 437-442, 1997). It is designed to allow a researcher to run masked (and unmasked) priming experiments using a variety of response devices (including keyboards, graphics tablets and force transducers). Very little knowledge of MATLAB is required; experiments are generated by creating a text file with the required parameters, and raw and analyzed data are output to Excel (as well as MATLAB) files for further analysis. The toolbox implements a variety of stimuli for use as primes and targets, as well as a variety of masks. Timing, size, location, and orientation of stimuli are all parameterizable. The code is open-source and made available on the Web under a Creative Commons License.
Changing patient population in Dhaka Hospital and Matlab Hospital of icddr,b.
Das, S K; Rahman, A; Chisti, M J; Ahmed, S; Malek, M A; Salam, M A; Bardhan, P K; Faruque, A S G
2014-02-01
The Diarrhoeal Disease Surveillance System of icddr,b noted increasing number of patients ≥60 years at urban Dhaka and rural Matlab from 2001 to 2012. Shigella and Vibrio cholerae were more frequently isolated from elderly people than children under 5 years and adults aged 5-59 in both areas. The resistance observed to various drugs of Shigella in Dhaka and Matlab was trimethoprim-sulphamethoxazole (72-63%), ampicillin (43-55%), nalidixic acid (58-61%), mecillinam (12-9%), azithromycin (13-0%), ciprofloxacin (11-13%) and ceftriaxone (11-0%). Vibrio cholerae isolated in Dhaka and Matlab was resistant to trimethoprim-sulphamethoxazole (98-94%), furazolidone (100%), erythromycin (71-53%), tetracycline (46-44%), ciprofloxacin (3-10%) and azithromycin (3-0%).
Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Lewis, Emily K.; Vuong, Nghia D.
2012-01-01
This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions.
An evaluation of the 1993-94 Bangladesh Demographic and Health Survey within the Matlab area.
Bairagi, R; Becker, S; Kantner, A; Allen, K B; Datta, A; Purvis, K
1997-05-01
The 1993-94 Bangladesh Demographic and Health Survey (DHS) reported substantial declines in vital rates, especially the fertility rate, which needed confirmation. The demographic database of the International Center for Diarrheal Disease Research, Bangladesh (ICDDR,B) contains the birth and death records for 200,000 people whose households have been visited every 2 weeks since 1966. In addition, the system kept records on the pregnancy and contraceptive use status of women of reproductive age since 1977. A validation study was conducted, which entailed the comparison of fertility and infant mortality rates from a special DHS survey conducted in the Matlab treatment area in 1994, with rates obtained by the Demographic Surveillance System (DSS) over the 5 years prior to the survey and also the comparison of the current contraceptive use rate. The records of 2628 women were examined. The Matlab DHS was found to be accurate in estimating fertility both in the treatment and comparison areas. The Matlab DHS infant mortality rates for the 5 years prior to the survey were also consistent with the estimates derived from the DSS. However, the Matlab DHS seemed to have underestimated contraceptive prevalence, which underestimate was substantial for modern temporary methods, especially pills and injectables. Since contraceptive prevalence may also be higher at the national level as a result of this, the total fertility rate for Bangladesh of 3.4 children/woman may be plausible. Although the Matlab DHS figures on vital rates seem to be reliable, the national level DHS estimates may not be as reliable, because women elsewhere in the country may not have reported their children's births and deaths as accurately as did women in the Matlab area.
Ibrahim, Ahmad M; Wilson, P.; Sawan, M.; Mosher, Scott W; Peplow, Douglas E.; Grove, Robert E
2013-01-01
Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley
2005-05-01
The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.
A Simulation Program for Dynamic Infrared (IR) Spectra
ERIC Educational Resources Information Center
Zoerb, Matthew C.; Harris, Charles B.
2013-01-01
A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…
Boudet, Samuel; Peyrodie, Laurent; Gallois, Philippe; de l'Aulnoit, Denis Houzé; Cao, Hua; Forzy, Gérard
2013-01-01
This paper presents a Matlab-based software (MathWorks inc.) called BioSigPlot for the visualization of multi-channel biomedical signals, particularly for the EEG. This tool is designed for researchers on both engineering and medicine who have to collaborate to visualize and analyze signals. It aims to provide a highly customizable interface for signal processing experimentation in order to plot several kinds of signals while integrating the common tools for physician. The main advantages compared to other existing programs are the multi-dataset displaying, the synchronization with video and the online processing. On top of that, this program uses object oriented programming, so that the interface can be controlled by both graphic controls and command lines. It can be used as EEGlab plug-in but, since it is not limited to EEG, it would be distributed separately. BioSigPlot is distributed free of charge (http://biosigplot.sourceforge.net), under the terms of GNU Public License for non-commercial use and open source development. PMID:24110098
NASA Astrophysics Data System (ADS)
Chen, LiBing; Lu, Hong
2015-03-01
We show how a remote positive operator valued measurement (POVM) can be implemented deterministically by using partially entangled state(s). Firstly, we present a theoretical scheme for implementing deterministically a remote and controlled POVM onto any one of N qubits via a partially entangled ( N + 1)-qubit Greenberger-Horne-Zeilinger (GHZ) state, in which ( N - 1) administrators are included. Then, we design another scheme for implementing deterministically a POVM onto N remote qubits via N partially entangled qubit pairs. Our schemes have been designed for obtaining the optimal success probabilities: i.e. they are identical to those in the ordinary, local, POVMs. In these schemes, the POVM dictates the amount of entanglement needed. The fact that such overall treatment can save quantum resources is notable.
A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration
NASA Technical Reports Server (NTRS)
Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce
2008-01-01
Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.
A theorem allowing to derive deterministic evolution equations from stochastic evolution equations
NASA Astrophysics Data System (ADS)
Costanza, G.
2011-05-01
The deterministic evolution equations of classical as well as quantum mechanical models are derived from a set of stochastic evolution equations after taking an average over realizations using a theorem. Examples are given that show that deterministic quantum mechanical evolution equations, obtained initially by R.P. Feynman and subsequently studied by Boghosian and Taylor IV [B.M. Boghosian, W. Taylor IV, Phys. Rev. E 57 (1998) 54. See also arXiv:quant-ph/9904035] and Meyer [D.A. Meyer, Phys. Rev. E 55 (1997) 5261], among others, are derived from a set of stochastic evolution equations. In addition, a deterministic classical evolution equation for the diffusion of monomers, similar to the second Fick law, is also obtained.
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu
2016-01-01
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582
Kutkov, V; Buglova, E; McKenna, T
2011-06-01
Lessons learned from responses to past events have shown that more guidance is needed for the response to radiation emergencies (in this context, a 'radiation emergency' means the same as a 'nuclear or radiological emergency') which could lead to severe deterministic effects. The International Atomic Energy Agency (IAEA) requirements for preparedness and response for a radiation emergency, inter alia, require that arrangements shall be made to prevent, to a practicable extent, severe deterministic effects and to provide the appropriate specialised treatment for these effects. These requirements apply to all exposure pathways, both internal and external, and all reasonable scenarios, to include those resulting from malicious acts (e.g. dirty bombs). This paper briefly describes the approach used to develop the basis for emergency response criteria for protective actions to prevent severe deterministic effects in the case of external exposure and intake of radioactive material. PMID:21617296
Deterministic LOCC transformation of three-qubit pure states and entanglement transfer
Tajima, Hiroyasu
2013-02-15
A necessary and sufficient condition of the possibility of a deterministic local operations and classical communication (LOCC) transformation of three-qubit pure states is given. The condition shows that the three-qubit pure states are a partially ordered set parametrized by five well-known entanglement parameters and a novel parameter; the five are the concurrences C{sub AB}, C{sub AC}, C{sub BC}, the tangle {tau}{sub ABC} and the fifth parameter J{sub 5} of Acin et al. (2000) Ref. [19], while the other new one is the entanglement charge Q{sub e}. The order of the partially ordered set is defined by the possibility of a deterministic LOCC transformation from a state to another state. In this sense, the present condition is an extension of Nielsen's work (Nielsen (1999) [14]) to three-qubit pure states. We also clarify the rules of transfer and dissipation of the entanglement which is caused by deterministic LOCC transformations. Moreover, the minimum number of times of measurements to reproduce an arbitrary deterministic LOCC transformation between three-qubit pure states is given. - Highlights: Black-Right-Pointing-Pointer We obtained a necessary and sufficient condition for deterministic LOCC of 3 qubits. Black-Right-Pointing-Pointer We clarified rules of entanglement flow caused by measurements. Black-Right-Pointing-Pointer We found a new parameter which is interpreted as 'Charge of Entanglement'. Black-Right-Pointing-Pointer We gave a set of entanglements which determines whether two states are LU-eq. or not. Black-Right-Pointing-Pointer Our approach to deterministic LOCC of 3 qubits may be applicable to N qubits.
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.
WTO — a deterministic approach to 4-fermion physics
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
1996-09-01
The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.
NASA Astrophysics Data System (ADS)
Sheldon, W.; Chamblee, J.; Cary, R. H.
2013-12-01
Environmental scientists are under increasing pressure from funding agencies and journal publishers to release quality-controlled data in a timely manner, as well as to produce comprehensive metadata for submitting data to long-term archives (e.g. DataONE, Dryad and BCO-DMO). At the same time, the volume of digital data that researchers collect and manage is increasing rapidly due to advances in high frequency electronic data collection from flux towers, instrumented moorings and sensor networks. However, few pre-built software tools are available to meet these data management needs, and those tools that do exist typically focus on part of the data management lifecycle or one class of data. The GCE Data Toolbox has proven to be both a generalized and effective software solution for environmental data management in the Long Term Ecological Research Network (LTER). This open source MATLAB software library, developed by the Georgia Coastal Ecosystems LTER program, integrates metadata capture, creation and management with data processing, quality control and analysis to support the entire data lifecycle. Raw data can be imported directly from common data logger formats (e.g. SeaBird, Campbell Scientific, YSI, Hobo), as well as delimited text files, MATLAB files and relational database queries. Basic metadata are derived from the data source itself (e.g. parsed from file headers) and by value inspection, and then augmented using editable metadata templates containing boilerplate documentation, attribute descriptors, code definitions and quality control rules. Data and metadata content, quality control rules and qualifier flags are then managed together in a robust data structure that supports database functionality and ensures data validity throughout processing. A growing suite of metadata-aware editing, quality control, analysis and synthesis tools are provided with the software to support managing data using graphical forms and command-line functions, as well as
NASA Astrophysics Data System (ADS)
Park, Junbo; Ralph, D. C.; Buhrman, R. A.
2013-12-01
We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, CP = PIPP/POPP, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum CP required to attain deterministic switching, while retaining low critical switching current, Ip ˜ 500 μA.
NASA Astrophysics Data System (ADS)
Schwartz, I.; Cogan, D.; Schmidgall, E. R.; Gantz, L.; Don, Y.; Zieliński, M.; Gershoni, D.
2015-11-01
We use one single, few-picosecond-long, variably polarized laser pulse to deterministically write any selected spin state of a quantum dot confined dark exciton whose life and coherence time are six and five orders of magnitude longer than the laser pulse duration, respectively. The pulse is tuned to an absorption resonance of an excited dark exciton state, which acquires nonnegligible oscillator strength due to residual mixing with bright exciton states. We obtain a high-fidelity one-to-one mapping from any point on the Poincaré sphere of the pulse polarization to a corresponding point on the Bloch sphere of the spin of the deterministically photogenerated dark exciton.
Palmer, Tim N; O'Shea, Michael
2015-01-01
How is the brain configured for creativity? What is the computational substrate for 'eureka' moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173
Palmer, Tim N.; O’Shea, Michael
2015-01-01
How is the brain configured for creativity? What is the computational substrate for ‘eureka’ moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173
Hybrid method of deterministic and probabilistic approaches for multigroup neutron transport problem
Lee, D.
2012-07-01
A hybrid method of deterministic and probabilistic methods is proposed to solve Boltzmann transport equation. The new method uses a deterministic method, Method of Characteristics (MOC), for the fast and thermal neutron energy ranges and a probabilistic method, Monte Carlo (MC), for the intermediate resonance energy range. The hybrid method, in case of continuous energy problem, will be able to take advantage of fast MOC calculation and accurate resonance self shielding treatment of MC method. As a proof of principle, this paper presents the hybrid methodology applied to a multigroup form of Boltzmann transport equation and confirms that the hybrid method can produce consistent results with MC and MOC methods. (authors)
Deterministic amplification for cat-state engineering in circuit-QED
NASA Astrophysics Data System (ADS)
Joo, Jaewoo; Oi, Daniel; Elliott, Matthew; Ginossar, Eran; Spiller, Timothy
2015-03-01
We propose a novel implementation scheme of amplifying the size of Schroedinger cat states in superconducting circuits. While the amplification method in quantum optics is normally probabilistic, our scheme can be performed deterministically in circuit-QED. Using adiabatic methods and optimal control, we demonstrate that the amplification operation can be built deterministically in a system of a transmon qubit strongly coupled with a cavity. This amplification tool will in particular open the potential of continuous-variable nonclassical states toward practical quantum technologies, for example, stabilization of cat-type states and continuous-variable teleportation.
VizieR Online Data Catalog: Transiting planets search Matlab/Octave source code (Ofir+, 2014)
NASA Astrophysics Data System (ADS)
Ofir, A.
2014-01-01
The Matlab/Octave source code for Optimal BLS is made available here. Detailed descriptions of all inputs and outputs are given by comment lines in the file. Note: Octave does not currently support parallel for loops ("parfor"). Octave users therefore need to change the "parfor" command (line 217 of OptimalBLS.m) to "for". (7 data files).
Generalized Simulation Model for a Switched-Mode Power Supply Design Course Using MATLAB/SIMULINK
ERIC Educational Resources Information Center
Liao, Wei-Hsin; Wang, Shun-Chung; Liu, Yi-Hua
2012-01-01
Switched-mode power supplies (SMPS) are becoming an essential part of many electronic systems as the industry drives toward miniaturization and energy efficiency. However, practical SMPS design courses are seldom offered. In this paper, a generalized MATLAB/SIMULINK modeling technique is first presented. A proposed practical SMPS design course at…
ERIC Educational Resources Information Center
Sharp, J. S.; Glover, P. M.; Moseley, W.
2007-01-01
In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…
Computation, Exploration, Visualisation: Reaction to MATLAB in First-Year Mathematics.
ERIC Educational Resources Information Center
Cretchley, Patricia; Harman, Chris; Ellerton, Nerida; Fogarty, Gerard
This paper describes a model for effective incorporation of technology into the learning experience of a large and diverse group of students in first-semester first-year tertiary mathematics. It describes the introduction of elementary use of MATLAB, in a course offered both on-campus and at a distance. The diversity of the student group is…
Computer-Aided Teaching Using MATLAB/Simulink for Enhancing an IM Course With Laboratory Tests
ERIC Educational Resources Information Center
Bentounsi, A.; Djeghloud, H.; Benalla, H.; Birem, T.; Amiar, H.
2011-01-01
This paper describes an automatic procedure using MATLAB software to plot the circle diagram for two induction motors (IMs), with wound and squirrel-cage rotors, from no-load and blocked-rotor tests. The advantage of this approach is that it avoids the need for a direct load test in predetermining the IM characteristics under reduced power.…
Preliminary versions of the MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-07-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS
Gunawan, Budi; Neary, Vincent S
2011-09-01
Standard methods, along with guidance for post-processing the ADCP stationary measurements using MATLAB algorithms that were evaluated and tested by Oak Ridge National Laboratory (ORNL), are presented following an overview of the ADCP operating principles, deployment methods, error sources and recommended protocols for removing and replacing spurious data.
Assessing the performance of a parallel MATLAB-based 3D convection code
NASA Astrophysics Data System (ADS)
Kirkpatrick, G. J.; Hasenclever, J.; Phipps Morgan, J.; Shi, C.
2008-12-01
We are currently building 2D and 3D MATLAB-based parallel finite element codes for mantle convection and melting. The codes use the MATLAB implementation of core MPI commands (eg. Send, Receive, Broadcast) for message passing between computational subdomains. We have found that code development and algorithm testing are much faster in MATLAB than in our previous work coding in C or FORTRAN, this code was built from scratch with only 12 man-months of effort. The one extra cost w.r.t. C coding on a Beowulf cluster is the cost of the parallel MATLAB license for a >4core cluster. Here we present some preliminary results on the efficiency of MPI messaging in MATLAB on a small 4 machine, 16core, 32Gb RAM Intel Q6600 processor-based cluster. Our code implements fully parallelized preconditioned conjugate gradients with a multigrid preconditioner. Our parallel viscous flow solver is currently 20% slower for a 1,000,000 DOF problem on a single core in 2D as the direct solve MILAMIN MATLAB viscous flow solver. We have tested both continuous and discontinuous pressure formulations. We test with various configurations of network hardware, CPU speeds, and memory using our own and MATLAB's built in cluster profiler. So far we have only explored relatively small (up to 1.6GB RAM) test problems. We find that with our current code and Intel memory controller bandwidth limitations we can only get ~2.3 times performance out of 4 cores than 1 core per machine. Even for these small problems the code runs faster with message passing between 4 machines with one core each than 1 machine with 4 cores and internal messaging (1.29x slower), or 1 core (2.15x slower). It surprised us that for 2D ~1GB-sized problems with only 3 multigrid levels, the direct- solve on the coarsest mesh consumes comparable time to the iterative solve on the finest mesh - a penalty that is greatly reduced either by using a 4th multigrid level or by using an iterative solve at the coarsest grid level. We plan to
NASA Astrophysics Data System (ADS)
Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei
2013-04-01
Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.; Haller, William J.; Seidel, Jonathan A.
2016-01-01
This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets.
A deterministic aggregate production planning model considering quality of products
NASA Astrophysics Data System (ADS)
Madadi, Najmeh; Yew Wong, Kuan
2013-06-01
Aggregate Production Planning (APP) is a medium-term planning which is concerned with the lowest-cost method of production planning to meet customers' requirements and to satisfy fluctuating demand over a planning time horizon. APP problem has been studied widely since it was introduced and formulated in 1950s. However, in several conducted studies in the APP area, most of the researchers have concentrated on some common objectives such as minimization of cost, fluctuation in the number of workers, and inventory level. Specifically, maintaining quality at the desirable level as an objective while minimizing cost has not been considered in previous studies. In this study, an attempt has been made to develop a multi-objective mixed integer linear programming model that serves those companies aiming to incur the minimum level of operational cost while maintaining quality at an acceptable level. In order to obtain the solution to the multi-objective model, the Fuzzy Goal Programming approach and max-min operator of Bellman-Zadeh were applied to the model. At the final step, IBM ILOG CPLEX Optimization Studio software was used to obtain the experimental results based on the data collected from an automotive parts manufacturing company. The results show that incorporating quality in the model imposes some costs, however a trade-off should be done between the cost resulting from producing products with higher quality and the cost that the firm may incur due to customer dissatisfaction and sale losses.
Pinti, Antonio; Rambaud, Fabienne; Griffon, Jean-Louis; Ahmed, Abdelmalik Taleb
2010-04-01
Multiple Correspondence factorial Analysis is a multivariate method for the exploratory study of multidimensional contingency tables. Its use can be extended to the analysis of a table of fuzzy coded data resulting from a distribution into fuzzy windows defined by linguistic properties. There are few existing software tools that allow performing this type of analysis on a data table; furthermore these tools are not interactive and do not allow defining and representing fuzzy windowing. This paper presents a software tool, developed with Matlab, to compute and represent results from multiple correspondence factorial analyses. Pre-defined membership functions can be selected by the user according to the distribution histograms of the data. This paper presents an application example of this program onto a data table of morphometric parameters of 150 male skulls throughout 5 periods of Egyptian civilization. The results are compared to those of a principal component analysis, which is more often used for the study of experimental data. Our program allows a rapid description of the morphological evolution of skulls over time, notably thanks to a linguistic description of each variable, whereas the results of the latter method are less obvious to observe and require a deeper analysis in order to arrive at the same conclusions.
Andreu-Perez, Javier; Solnais, Celine; Sriskandarajah, Kumuthan
2016-01-01
Recent advances in the reliability of the eye-tracking methodology as well as the increasing availability of affordable non-intrusive technology have opened the door to new research opportunities in a variety of areas and applications. This has raised increasing interest within disciplines such as medicine, business and education for analysing human perceptual and psychological processes based on eye-tracking data. However, most of the currently available software requires programming skills and focuses on the analysis of a limited set of eye-movement measures (e.g., saccades and fixations), thus excluding other measures of interest to the classification of a determined state or condition. This paper describes 'EALab', a MATLAB toolbox aimed at easing the extraction, multivariate analysis and classification stages of eye-activity data collected from commercial and independent eye trackers. The processing implemented in this toolbox enables to evaluate variables extracted from a wide range of measures including saccades, fixations, blinks, pupil diameter and glissades. Using EALab does not require any programming and the analysis can be performed through a user-friendly graphical user interface (GUI) consisting of three processing modules: 1) eye-activity measure extraction interface, 2) variable selection and analysis interface, and 3) classification interface.
Andreu-Perez, Javier; Solnais, Celine; Sriskandarajah, Kumuthan
2016-01-01
Recent advances in the reliability of the eye-tracking methodology as well as the increasing availability of affordable non-intrusive technology have opened the door to new research opportunities in a variety of areas and applications. This has raised increasing interest within disciplines such as medicine, business and education for analysing human perceptual and psychological processes based on eye-tracking data. However, most of the currently available software requires programming skills and focuses on the analysis of a limited set of eye-movement measures (e.g., saccades and fixations), thus excluding other measures of interest to the classification of a determined state or condition. This paper describes 'EALab', a MATLAB toolbox aimed at easing the extraction, multivariate analysis and classification stages of eye-activity data collected from commercial and independent eye trackers. The processing implemented in this toolbox enables to evaluate variables extracted from a wide range of measures including saccades, fixations, blinks, pupil diameter and glissades. Using EALab does not require any programming and the analysis can be performed through a user-friendly graphical user interface (GUI) consisting of three processing modules: 1) eye-activity measure extraction interface, 2) variable selection and analysis interface, and 3) classification interface. PMID:26358034
In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s ...
ERIC Educational Resources Information Center
Moreland, James D., Jr
2013-01-01
This research investigates the instantiation of a Service-Oriented Architecture (SOA) within a hard real-time (stringent time constraints), deterministic (maximum predictability) combat system (CS) environment. There are numerous stakeholders across the U.S. Department of the Navy who are affected by this development, and therefore the system…
Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System
NASA Astrophysics Data System (ADS)
Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan
2004-12-01
Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.
Calculation of photon pulse height distribution using deterministic and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Akhavan, Azadeh; Vosoughi, Naser
2015-12-01
Radiation transport techniques which are used in radiation detection systems comprise one of two categories namely probabilistic and deterministic. However, probabilistic methods are typically used in pulse height distribution simulation by recreating the behavior of each individual particle, the deterministic approach, which approximates the macroscopic behavior of particles by solution of Boltzmann transport equation, is being developed because of its potential advantages in computational efficiency for complex radiation detection problems. In current work linear transport equation is solved using two methods including collided components of the scalar flux algorithm which is applied by iterating on the scattering source and ANISN deterministic computer code. This approach is presented in one dimension with anisotropic scattering orders up to P8 and angular quadrature orders up to S16. Also, multi-group gamma cross-section library required for this numerical transport simulation is generated in a discrete appropriate form. Finally, photon pulse height distributions are indirectly calculated by deterministic methods that approvingly compare with those from Monte Carlo based codes namely MCNPX and FLUKA.
Deterministic linear-optics quantum computing based on a hybrid approach
Lee, Seung-Woo; Jeong, Hyunseok
2014-12-04
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.
Deterministic switching of hierarchy during wrinkling in quasi-planar bilayers
Saha, Sourabh K.; Culpepper, Martin L.
2016-04-25
Emergence of hierarchy during compression of quasi-planar bilayers is preceded by a mode-locked state during which the quasi-planar form persists. Transition to hierarchy is determined entirely by geometrically observable parameters. This results in a universal transition phase diagram that enables one to deterministically tune hierarchy even with limited knowledge about material properties.
Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model
NASA Astrophysics Data System (ADS)
Novkaniza, F.; Ivana, Aldila, D.
2016-04-01
Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.
NASA Astrophysics Data System (ADS)
Tang, Zhili
2016-06-01
This paper solved aerodynamic drag reduction of transport wing fuselage configuration in transonic regime by using a parallel Nash evolutionary/deterministic hybrid optimization algorithm. Two sets of parameters are used, namely globally and locally. It is shown that optimizing separately local and global parameters by using Nash algorithms is far more efficient than considering these variables as a whole.
Comparison of space radiation calculations for deterministic and Monte Carlo transport codes
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo
For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.
A small-world network derived from the deterministic uniform recursive tree by line graph operation
NASA Astrophysics Data System (ADS)
Hou, Pengfeng; Zhao, Haixing; Mao, Yaping; Wang, Zhao
2016-03-01
The deterministic uniform recursive tree ({DURT}) is one of the deterministic versions of the uniform recursive tree ({URT}). Zhang et al (2008 Eur. Phys. J. B 63 507-13) studied the properties of DURT, including its topological characteristics and spectral properties. Although DURT shows a logarithmic scaling with the size of the network, DURT is not a small-world network since its clustering coefficient is zero. Lu et al (2012 Physica A 391 87-92) proposed a deterministic small-world network by adding some edges with a simple rule in each DURT iteration. In this paper, we intoduce a method for constructing a new deterministic small-world network by the line graph operation in each DURT iteration. The line graph operation brings about cliques at each node of the previous given graph, and the resulting line graph possesses larger clustering coefficients. On the other hand, this operation can decrease the diameter at almost one, then giving the analytic solutions to several topological characteristics of the model proposed. Supported by The Ministry of Science and Technology 973 project (No. 2010C B334708); National Science Foundation of China (Nos. 61164005, 11161037, 11101232, 11461054, 11551001); The Ministry of education scholars and innovation team support plan of Yangtze River (No. IRT1068); Qinghai Province Nature Science Foundation Project (Nos. 2012-Z-943, 2014-ZJ-907).
Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System
ERIC Educational Resources Information Center
Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.
2015-01-01
Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…
Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System
ERIC Educational Resources Information Center
Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.
2016-01-01
Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…
Tag-mediated cooperation with non-deterministic genotype-phenotype mapping
NASA Astrophysics Data System (ADS)
Zhang, Hong; Chen, Shu
2016-01-01
Tag-mediated cooperation provides a helpful framework for resolving evolutionary social dilemmas. However, most of the previous studies have not taken into account genotype-phenotype distinction in tags, which may play an important role in the process of evolution. To take this into consideration, we introduce non-deterministic genotype-phenotype mapping into a tag-based model with spatial prisoner's dilemma. By our definition, the similarity between genotypic tags does not directly imply the similarity between phenotypic tags. We find that the non-deterministic mapping from genotypic tag to phenotypic tag has non-trivial effects on tag-mediated cooperation. Although we observe that high levels of cooperation can be established under a wide variety of conditions especially when the decisiveness is moderate, the uncertainty in the determination of phenotypic tags may have a detrimental effect on the tag mechanism by disturbing the homophilic interaction structure which can explain the promotion of cooperation in tag systems. Furthermore, the non-deterministic mapping may undermine the robustness of the tag mechanism with respect to various factors such as the structure of the tag space and the tag flexibility. This observation warns us about the danger of applying the classical tag-based models to the analysis of empirical phenomena if genotype-phenotype distinction is significant in real world. Non-deterministic genotype-phenotype mapping thus provides a new perspective to the understanding of tag-mediated cooperation.
Vernekar, R; Krüger, T
2015-09-01
We investigate the effect of particle volume fraction on the efficiency of deterministic lateral displacement (DLD) devices. DLD is a popular passive sorting technique for microfluidic applications. Yet, it has been designed for treating dilute suspensions, and its efficiency for denser samples is not well known. We perform 3D simulations based on the immersed-boundary, lattice-Boltzmann and finite-element methods to model the flow of red blood cells (RBCs) in different DLD devices. We quantify the DLD efficiency in terms of appropriate "failure" probabilities and RBC counts in designated device outlets. Our main result is that the displacement mode breaks down upon an increase of RBC volume fraction, while the zigzag mode remains relatively robust. This suggests that the separation of larger particles (such as white blood cells) from a dense RBC background is simpler than separating smaller particles (such as platelets) from the same background. The observed breakdown stems from non-deterministic particle collisions interfering with the designed deterministic nature of DLD devices. Therefore, we postulate that dense suspension effects generally hamper efficient particle separation in devices based on deterministic principles.
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
Saulnier, Dell D.; Persson, Lars-Åke; Streatfield, Peter Kim; Faruque, A. S. G.; Rahman, Anisur
2016-01-01
Background Cholera outbreaks are a continuing problem in Bangladesh, and the timely detection of an outbreak is important for reducing morbidity and mortality. In Matlab, the ongoing Health and Demographic Surveillance System (HDSS) data records symptoms of diarrhea in children under the age of 5 years at the community level. Cholera surveillance in Matlab currently uses hospital-based data. Objective The objective of this study is to determine whether increases in cholera in Matlab can be detected earlier by using HDSS diarrhea symptom data in a syndromic surveillance analysis, when compared to hospital admissions for cholera. Methods HDSS diarrhea symptom data and hospital admissions for cholera in children under 5 years of age over a 2-year period were analyzed with the syndromic surveillance statistical program EARS (Early Aberration Reporting System). Dates when significant increases in either symptoms or cholera cases occurred were compared to one another. Results The analysis revealed that there were 43 days over 16 months when the cholera cases or diarrhea symptoms increased significantly. There were 8 months when both data sets detected days with significant increases. In 5 of the 8 months, increases in diarrheal symptoms occurred before increases of cholera cases. The increases in symptoms occurred between 1 and 15 days before the increases in cholera cases. Conclusions The results suggest that the HDSS survey data may be able to detect an increase in cholera before an increase in hospital admissions is seen. However, there was no direct link between diarrheal symptom increases and cholera cases, and this, as well as other methodological weaknesses, should be taken into consideration. PMID:27193264
Non-Deterministic, Non-Traditional Methods (NDNTM)
NASA Technical Reports Server (NTRS)
Cruse, Thomas A.; Chamis, Christos C. (Technical Monitor)
2001-01-01
The review effort identified research opportunities related to the use of nondeterministic, nontraditional methods to support aerospace design. The scope of the study was restricted to structural design rather than other areas such as control system design. Thus, the observations and conclusions are limited by that scope. The review identified a number of key results. The results include the potential for NASA/AF collaboration in the area of a design environment for advanced space access vehicles. The following key points set the context and delineate the key results. The Principal Investigator's (PI's) context for this study derived from participation as a Panel Member in the Air Force Scientific Advisory Board (AF/SAB) Summer Study Panel on 'Whither Hypersonics?' A key message from the Summer Study effort was a perceived need for a national program for a space access vehicle whose operating characteristics of cost, availability, deployability, and reliability most closely match the NASA 3rd Generation Reusable Launch Vehicle (RLV). The Panel urged the AF to make a significant joint commitment to such a program just as soon as the AF defined specific requirements for space access consistent with the AF Aerospace Vision 2020. The review brought home a concurrent need for a national vehicle design environment. Engineering design system technology is at a time point from which a revolution as significant as that brought about by the finite element method is possible, this one focusing on information integration on a scale that far surpasses current design environments. The study therefore fully supported the concept, if not some of the details of the Intelligent Synthesis Environment (ISE). It became abundantly clear during this study that the government (AF, NASA) and industry are not moving in the same direction in this regard, in fact each is moving in its own direction. NASA/ISE is not yet in an effective leadership position in this regard. However, NASA does
Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E.; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick
2015-01-01
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future. PMID:26485278
Deterministic Design Optimization of Structures in OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.; Pai, Shantaram S.
2012-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.
NASA Technical Reports Server (NTRS)
Gordon, T. E.
1995-01-01
The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.
Gro2mat: a package to efficiently read gromacs output in MATLAB.
Dien, Hung; Deane, Charlotte M; Knapp, Bernhard
2014-07-30
Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc.
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H
2014-02-07
RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.
Image enhancement using MCNP5 code and MATLAB in neutron radiography.
Tharwat, Montaser; Mohamed, Nader; Mongy, T
2014-07-01
This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work.
Predicting the performance of local seismic networks using Matlab and Google Earth.
Chael, Eric Paul
2009-11-01
We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number of stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.
Numerical modeling of ground-penetrating radar in 2-D using MATLAB
NASA Astrophysics Data System (ADS)
Irving, James; Knight, Rosemary
2006-11-01
We present MATLAB codes for finite-difference time-domain (FDTD) modeling of ground-penetrating radar (GPR) in two dimensions. Surface-based reflection GPR is modeled using a transverse magnetic (TM-) mode formulation. Crosshole and vertical radar profiling (VRP) geometries are modeled using a transverse electric (TE-) mode formulation. Matrix notation is used in the codes wherever possible to optimize them for speed in the MATLAB environment. To absorb waves at the edges of the modeling grid, we implement perfectly matched layer (PML) absorbing boundaries. Although our codes are two-dimensional and do not incorporate features such as dispersion in electrical properties, they capture many of the important elements of GPR surveying and run at a fraction of the computational cost of more elaborate algorithms. In addition, the codes are well commented, relatively easy to understand, and can be easily modified for the user's specific purpose.
GPU based acceleration of 3D USCT image reconstruction with efficient integration into MATLAB
NASA Astrophysics Data System (ADS)
Kretzek, Ernst; Zapf, Michael; Birk, Matthias; Gemmeke, Hartmut; Ruiter, Nicole V.
2013-03-01
3D ultrasound computer tomography (3D USCT) promises reproducible high-resolution images for early detection of breast tumors. The synthetic aperture focusing technique (SAFT) used for image reconstruction is highly computeintensive but suitable for an accelerated execution on GPUs. In this paper we investigate how a previous implementation of the SAFT algorithm in CUDA C can be further accelerated and integrated into the existing MATLAB signal and image processing chain for 3D USCT. The focus is on an efficient preprocessing and preparation of data blocks in MATLAB as well as an improved utilisation of special hardware like the texture fetching units on GPUs. For 64 slices with 1024×1024 pixels each the overall runtime of the reconstruction including data loading and preprocessing could be decreased from 35 hours with CPU to 2.4 hours with eight GPUs.
RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research
Heasly, Benjamin S.; Cottaris, Nicolas P.; Lichtman, Daniel P.; Xiao, Bei; Brainard, David H.
2014-01-01
RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3. PMID:24511145
NASA Astrophysics Data System (ADS)
Błażejewski, Ryszard; Murat-Błażejewska, Sadżide; Jędrkowiak, Martyna
2014-09-01
The paper presents a water balance of a flow-through, dammed lake, consisted of the following terms: surface inflow, underground inflow/outflow based on the Dupuit's equation, precipitation on the lake surface, evaporation from water surface and outflow from the lake at which a damming weir is located. The balance equation was implemented Matlab-Simulink®. Applicability of the model was assessed on the example of the Sławianowskie Lake of surface area 276 ha and mean depth - 6.6 m, Water balances, performed for month time intervals in the hydrological year 2009, showed good agreement for the first three months only. It is concluded that the balancing time interval should be shorter (1 day) to minimize the errors. For calibration purposes, measurements of ground water levels in the vicinity of the lake are also recommended. Praca przedstawia bilans wodny przepływowego piętrzonego jeziora, uwzględniający dopływ powierzchniowy, dopływ i odpływ podziemny opisany równaniem Dupuita, opad na powierzchnię jeziora, parowanie z powierzchni wody oraz odpływ w przekroju zamkniętym jazem piętrzącym. Z uwagi na nieliniowe związki wymienionych składników bilansu z poziomem wody w jeziorze, do obliczeń wykorzystano program komuterowy Matlab-Simulink®. Przydatność modelu sprawdzono na przykładzie Jeziora Sławianowskiego o powierzchni 276 ha i średniej głębokości - 6,6 m. Jezioro to zostało podzielone na dwa akweny o zróżnicowanej głębokości. Wyniki obliczeń miesięcznych bilansów wodnych dla roku hydrologicznego 2009, wykazały dobrą zgodność z pomiarami jedynie dla trzech pierwszych miesięcy. Stwierdzono, że dla zmniejszenia błędów obliczeniowych należałoby skrócić interwał bilansowania do jednej doby. Kalibracja modelu byłaby łatwiejsza i bardziej adekwatna, gdyby do oszacowania przewodności hydraulicznej przyległych do jeziora gruntów i osadów dennych wykorzystać badania poziomów wody w piezometrach, zlokalizowanych w
POST II Trajectory Animation Tool Using MATLAB, V1.0
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad
2005-01-01
A trajectory animation tool has been developed for accurately depicting position and the attitude of the bodies in flight. The movies generated from This MATLAB based tool serve as an engineering analysis aid to gain further understanding into the dynamic behavior of bodies in flight. This tool has been designed to interface with the output generated from POST II simulations, and is able to animate a single as well as multiple vehicles in flight.
Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.
Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael
2013-03-01
The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.
Poblano v1.0 : a Matlab toolbox for gradient-based optimization.
Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson
2010-03-01
We present Poblano v1.0, a Matlab toolbox for solving gradient-based unconstrained optimization problems. Poblano implements three optimization methods (nonlinear conjugate gradients, limited-memory BFGS, and truncated Newton) that require only first order derivative information. In this paper, we describe the Poblano methods, provide numerous examples on how to use Poblano, and present results of Poblano used in solving problems from a standard test collection of unconstrained optimization problems.
A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-07-01
We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer
A MATLAB function for 3-D and 4-D topographical visualization in geosciences
NASA Astrophysics Data System (ADS)
Zekollari, Harry
2016-04-01
Combining topographical information and spatially varying variables in visualizations is often crucial and inherent to geoscientific problems. Despite this, it is often an impossible or a very time-consuming and difficult task to create such figures by using classic software packages. This is also the case in the widely used numerical computing environment MATLAB. Here a MATLAB function is introduced for plotting a variety of natural environments with a pronounced topography, such as for instance glaciers, volcanoes and lakes in mountainous regions. Landscapes can be visualized in 3-D, with a single colour defining a featured surface type (e.g. ice, snow, water, lava), or with a colour scale defining the magnitude of a variable (e.g. ice thickness, snow depth, water depth, surface velocity, gradient, elevation). As an input only the elevation of the subsurface (typically the bedrock) and the surface are needed, which can be complemented by various input parameters in order to adapt the figure to specific needs. The figures are particularly suited to make time-evolving animations of natural processes, such as for instance a glacier retreat or a lake drainage event. Several visualization examples will be provided alongside with animations. The function, which is freely available for download, only requires the basic package of MATLAB and can be run on any standard stationary or portable personal computer.
Fly eye based sensor model and animation using matlab - biomed 2011.
Anderson, Jeffrey R; Barrett, Steven F; Wright, Cameron H G
2011-01-01
A new optical sensor based on the common house fly, Musca domestica, has been under development for some time at the University of Wyoming. Each sensor consists of a series of photodiodes with overlapping Gaussian field of views. The photodiodes share a common facet lens. This type of sensor provides higher movement detection and resolution than can be obtained in current charged-couple detector (CCD) arrays that are commonly used in digital imaging systems. The purpose of this research is to aid in the application and development of the fly based sensor by creating a MATLAB simulation tool to model and study the response signals from various input stimuli. In particular, the sensor detection capability and limits for line, edge and pulse stimuli will be modeled, and analyzed. Increased knowledge of the detection characteristics and limits of this type of sensor will provide insight and guidance to determine possible sensor applications. The signal analysis makes use of the Gaussian profiles that are created in MATLAB. A user-selectable input signal can be applied, while observing the output signal. The information is animated, and plotted for study and analysis. This interactive MATLAB model is a powerful tool to help understand the complex interactions of the optical signals. This sensor configuration has a variety of applications in wheelchair odometry, power line detection by unmanned aerial systems (AES), high speed railroad line inspection, and remote building monitoring.
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches. PMID:24904401
Time-stepping methods for the simulation of the self-assembly of nano-crystals in MATLAB on a GPU
NASA Astrophysics Data System (ADS)
Korzec, M. D.; Ahnert, T.
2013-10-01
Partial differential equations describing the patterning of thin crystalline films are typically of fourth or sixth order, they are quasi- or semilinear and they are mostly defined on simple geometries such as rectangular domains. For the numerical simulation of these kinds of problems spectral methods are an efficient approach. We apply several implicit-explicit schemes to one recently derived PDE that we express in terms of coefficients of trigonometric interpolants. While the simplest IMEX scheme turns out to have the mildest step-size restriction, higher order SBDF schemes tend to be more unstable and exponential time integrators are fastest for the calculation of very accurate solutions. We implemented a reduced model in the EXPINT package syntax [3] and compared various exponential schemes. A convexity splitting approach was employed to stabilize the SBDF1 scheme. We show that accuracy control is crucial when using this idea, therefore we present a time-adaptive SBDF1/SBDF1-2-step method that yields convincing results reflecting the change in timescales during topological changes of the nanostructures. The implementation of all presented methods is carried out in MATLAB. We used the open source GPUmat package to gain up to 5-fold runtime benefits by carrying out calculations on a low-cost GPU without having to prescribe any knowledge in low-level programming or CUDA implementations and found comparable speedups as with MATLAB's PCT or with GPUmat run on Octave.