NASA Astrophysics Data System (ADS)
Asinari, Pietro
2010-10-01
.gz Programming language: Tested with Matlab version ⩽6.5. However, in principle, any recent version of Matlab or Octave should work Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: 300 MBytes Classification: 23 Nature of problem: The problem consists in integrating the homogeneous Boltzmann equation for a generic collisional kernel in case of isotropic symmetry, by a deterministic direct method. Difficulties arise from the multi-dimensionality of the collisional operator and from satisfying the conservation of particle number and energy (momentum is trivial for this test case) as accurately as possible, in order to preserve the late dynamics. Solution method: The solution is based on the method proposed by Aristov (2001) [1], but with two substantial improvements: (a) the original problem is reformulated in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium). Both these corrections make possible to derive very accurate reference solutions for this test case. Restrictions: The nonlinear Boltzmann equation is extremely challenging from the computational point of view, in particular for deterministic methods, despite the increased computational power of recent hardware. In this work, only the homogeneous isotropic case is considered, for making possible the development of a minimal program (by a simple scripting language) and allowing the user to check the advantages of the proposed improvements beyond Aristov's (2001) method [1]. The initial conditions are supposed parameterized according to a fixed analytical expression, but this can be
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
Ada programming guidelines for deterministic storage management
NASA Technical Reports Server (NTRS)
Auty, David
1988-01-01
Previous reports have established that a program can be written in the Ada language such that the program's storage management requirements are determinable prior to its execution. Specific guidelines for ensuring such deterministic usage of Ada dynamic storage requirements are described. Because requirements may vary from one application to another, guidelines are presented in a most-restrictive to least-restrictive fashion to allow the reader to match appropriate restrictions to the particular application area under investigation.
Research of Hybrid Programming with C#.net and Matlab
NASA Astrophysics Data System (ADS)
Zhang, Yu; An, Jian-Ping; Chen, Pan
Several approaches of integrated programming between C# and Matlab are introduced in this paper, including using Matlab Engine, calling Matlab Workspace in C# Functions and using com component. How to implement these approaches by programming was also shown in this paper, then analyze the characteristic of these methods and give the range of use.
Peer Learning in a MATLAB Programming Course
NASA Astrophysics Data System (ADS)
Reckinger, Shanon
2016-11-01
Three forms of research-based peer learning were implemented in the design of a MATLAB programming course for mechanical engineering undergraduate students. First, a peer learning program was initiated. These undergraduate peer learning leaders played two roles in the course, (I) they were in the classroom helping students' with their work, and, (II) they led optional two hour helps sessions outside of the class time. The second form of peer learning was implemented through the inclusion of a peer discussion period following in class clicker quizzes. The third form of peer learning had the students creating video project assignments and posting them on YouTube to explain course topics to their peers. Several other more informal techniques were used to encourage peer learning. Student feedback in the form of both instructor-designed survey responses and formal course evaluations (quantitative and narrative) will be presented. Finally, effectiveness will be measured by formal assessment, direct and indirect to these peer learning methods. This will include both academic data/grades and pre/post test scores. Overall, the course design and its inclusion of these peer learning techniques demonstrate effectiveness.
MatLab Programming for Engineers Having No Formal Programming Knowledge
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.
QUBIT4MATLAB V3.0: A program package for quantum information science and quantum optics for MATLAB
NASA Astrophysics Data System (ADS)
Tóth, Géza
2008-09-01
A program package for MATLAB is introduced that helps calculations in quantum information science and quantum optics. It has commands for the following operations: (i) Reordering the qudits of a quantum register, computing the reduced state of a quantum register. (ii) Defining important quantum states easily. (iii) Formatted input and output for quantum states and operators. (iv) Constructing operators acting on given qudits of a quantum register and constructing spin chain Hamiltonians. (v) Partial transposition, matrix realignment and other operations related to the detection of quantum entanglement. (vi) Generating random state vectors, random density matrices and random unitaries. Program summaryProgram title:QUBIT4MATLAB V3.0 Catalogue identifier:AEAZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAZ_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:5683 No. of bytes in distributed program, including test data, etc.: 37 061 Distribution format:tar.gz Programming language:MATLAB 6.5; runs also on Octave Computer:Any which supports MATLAB 6.5 Operating system:Any which supports MATLAB 6.5; e.g., Microsoft Windows XP, Linux Classification:4.15 Nature of problem: Subroutines helping calculations in quantum information science and quantum optics. Solution method: A program package, that is, a set of commands is provided for MATLAB. One can use these commands interactively or they can also be used within a program. Running time:10 seconds-1 minute
MatLab program for precision calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik
2004-06-01
Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations
NASA Astrophysics Data System (ADS)
Vergara-Perez, Sandra; Marucho, Marcelo
2016-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.
Vergara-Perez, Sandra; Marucho, Marcelo
2016-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations
Vergara-Perez, Sandra; Marucho, Marcelo
2015-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules. PMID:26924848
[Application of the mixed programming with Labview and Matlab in biomedical signal analysis].
Yu, Lu; Zhang, Yongde; Sha, Xianzheng
2011-01-01
This paper introduces the method of mixed programming with Labview and Matlab, and applies this method in a pulse wave pre-processing and feature detecting system. The method has been proved suitable, efficient and accurate, which has provided a new kind of approach for biomedical signal analysis.
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
ERIC Educational Resources Information Center
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
ERIC Educational Resources Information Center
Ocak, Mehmet A.
2006-01-01
This correlation study examined the relationship between gender and the students' attitude and prior knowledge of using one of the mathematical software programs (MATLAB). Participants were selected from one community college, one state university and one private college. Students were volunteers from three Calculus I classrooms (one class from…
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
ERIC Educational Resources Information Center
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
TC-Investigator: A Matlab Program to Explore Pseudosections
NASA Astrophysics Data System (ADS)
Pearce, Mark; Gazley, Michael; White, Alistair
2014-05-01
Forward modelling of bulk rock compositions to constrain pressures and temperatures of metamorphism based on mineral assemblage is a commonly used technique. The pseudosections produced contain a wealth of information about predicted mineral compositions and abundances that goes far beyond variations in mineral assemblage. A grid of these variations can be contoured using Gibbs free energy minimisation software (such as Theriak-Domino) or precise isopleths calculated for specific quantities in THERMOCALC. We have produced a new piece of software called TC-Investigator that amalgamates these approaches to provide a relatively quick and user friendly way to contour all compositional parameters and mineral modes across a THERMOCALC pseudosection. TC-Investigator takes the postscript pseudosection diagram and creates a grid of points at a user-specified resolution. THERMOCALC is then used to calculate the equilibrium mineral assemblage at each point using an initial starting guess provided by the user (this can be calculated during initial pseudosection calculation). Once all points have been tried, any that failed to calculate are re-tried using interpolated starting guess values from the surrounding points. This procedure is iterated until no more solutions are found. Any remaining unsolved points are then interpolated numerically from surrounding solutions to produce a fully quantified set of mineral modes and compositions. Following calculation, the dataset can be contoured and output as figures, output as a Matlab readable binary structure or selected compositions written to an ASCII text file. Compositional maps created by TC-Investigator have the power to inform the user about compositional variables that are not conventionally considered. The automated calculation method makes it easy to investigate all variables in one go. For example, in metapelitic rocks, garnet shows the variations in composition that are usually contoured, however, these couple to
Supporting image algebra in the Matlab programming language for compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Wilson, Joseph N.; Hayden, Eric T.
2009-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision programs. The University of Florida has been associated with implementations supporting the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved the implementation of a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the MatlabTM programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, this new implementation offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that the image algebra Matlab (IAM) library can employ versatile representations for the operands and operations of the algebra. In this paper, we first outline the purpose and structure of image algebra, then present IAM notation in relationship to the preceding (IAC++) implementation. We then provide examples to show how IAM is more convenient and more readily supports efficient algorithm development. Additionally, we show how image algebra and IAM can be employed in compression algorithm development and analysis.
NASA Astrophysics Data System (ADS)
Konnik, Mikhail V.; Welsh, James
2012-09-01
Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.
MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Lee, Seong Kon; Kim, Hee Joon; Song, Yoonho; Lee, Choon-Ki
2009-08-01
MT2DInvMatlab is an open-source MATLAB® software package for two-dimensional (2D) inversion of magnetotelluric (MT) data; it is written in mixed languages of MATLAB and FORTRAN. MT2DInvMatlab uses the finite element method (FEM) to compute 2D MT model responses, and smoothness-constrained least-squares inversion with a spatially variable regularization parameter algorithm to stabilize the inversion process and provide a high-resolution optimal earth model. It is also able to include terrain effects in inversion by incorporating topography into a forward model. This program runs under the MATLAB environment so that users can utilize the existing general interface of MATLAB, while some specific functions are written in FORTRAN 90 to speed up computation and reuse pre-existing FORTRAN code in the MATLAB environment with minimal modification. This program has been tested using synthetic models, including one with variable topography, and on field data. The results were assessed by comparing inverse models obtained with MT2DInvMatlab and with a non-linear conjugate gradient (NLCG) algorithm. In both tests the new inversion software reconstructs the subsurface resistivity structure very closely and provides an improvement in both resolution and stability.
Design of a program in Matlab environment for gamma spectrum analysis of geological samples
NASA Astrophysics Data System (ADS)
Rojas, M.; Correa, R.
2016-05-01
In this work we present the analysis of gamma ray spectra Ammonites found in different places. One of the fossils was found near the city of Cusco (Perú) and the other in “Cajón del Maipo” in Santiago (Chile). Spectra were taken with a hyperpure germanium detector (HPGe) in an environment cooled with liquid nitrogen, with the technique of high-resolution gamma spectroscopy. A program for automatic detection and classifying of the samples was developed in Matlab. It program has the advantage of being able to make direct interventions or generalize it even more, or make it automate for specific spectra and make comparison between them. For example it can calibrate the spectrum automatically, only by giving the calibration spectrum, without the necessity of putting them. Finally, it also erases the external noise.
How to get students to love (or not hate) MATLAB and programming
NASA Astrophysics Data System (ADS)
Reckinger, Shanon; Reckinger, Scott
2014-11-01
An effective programming course geared toward engineering students requires the utilization of modern teaching philosophies. A newly designed course that focuses on programming in MATLAB involves flipping the classroom and integrating various active teaching techniques. Vital aspects of the new course design include: lengthening in-class contact hours, Process-Oriented Guided Inquiry Learning (POGIL) method worksheets (self-guided instruction), student created video content posted on YouTube, clicker questions (used in class to practice reading and debugging code), programming exams that don't require computers, integrating oral exams into the classroom, fostering an environment for formal and informal peer learning, and designing in a broader theme to tie together assignments. However, possibly the most important piece to this programming course puzzle: the instructor needs to be able to find programming mistakes very fast and then lead individuals and groups through the steps to find their mistakes themselves. The effectiveness of the new course design is demonstrated through pre- and post- concept exam results and student evaluation feedback. Students reported that the course was challenging and required a lot of effort, but left largely positive feedback.
Aerial image simulation for partial coherent system with programming development in MATLAB
NASA Astrophysics Data System (ADS)
Hasan, Md. Nazmul; Rahman, Md. Momtazur; Udoy, Ariful Banna
2014-10-01
Aerial image can be calculated by either Abbe's method or sum of coherent system decomposition (SOCS) method for partial coherent system. This paper introduces a programming with Matlab code that changes the analytical representation of Abbe's method to the matrix form, which has advantages for both Abbe's method and SOCS since matrix calculation is easier than double integration over object plane or pupil plane. First a singular matrix P is derived from a pupil function and effective light source in the spatial frequency domain. By applying Singular Value Decomposition (SVD) to the matrix P, eigenvalues and eigenfunctions are obtained. The aerial image can then be computed by the eigenvalues and eigenfunctions without calculation of Transmission Cross Coefficient (TCC). The aerial final image is almost identical as an original cross mask and the intensity distribution on image plane shows that it is almost uniform across the linewidth of the mask.
2-D Modeling of Energy-z Beam Dynamics Using the LiTrack Matlab Program
Cauley, S.K.; Woods, M.; /SLAC
2005-12-15
Short bunches and the bunch length distribution have important consequences for both the LCLS project at SLAC and the proposed ILC project. For both these projects, it is important to simulate what bunch length distributions are expected and then to perform actual measurements. The goal of the research is to determine the sensitivity of the bunch length distribution to accelerator phase and voltage. This then indicates the level of control and stability that is needed. In this project I simulated beamlines to find the rms bunch length in three different beam lines at SLAC, which are the test beam to End Station A (ILC-ESA) for the ILC studies, Linac Coherent Light Source (LCLS) and LCLS-ESA. To simulate the beamlines, I used the LiTrack program, which does a 2-dimensional tracking of an electron bunch's longitudinal (z) and the energy spread beam (E) parameters. In order to reduce the time of processing the information, I developed a small program to loop over adjustable machine parameters. LiTrack is a Matlab script and Matlab is also used for plotting and saving and loading files. The results show that the LCLS in Linac-A is the most sensitive when looking at the ratio of change in phase degree to rate of change. The results also show a noticeable difference between the LCLS and LCLS-ESA, which suggest that further testing should go into looking the Beam Switch Yard and End Station A to determine why the result of the LCLS and LCLS-ESA vary.
NASA Astrophysics Data System (ADS)
Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.
2011-02-01
We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
NASA Astrophysics Data System (ADS)
Han, Jeongwoo
Decision-making under uncertainty is particularly challenging in the case of multi-disciplinary, multilevel system optimization problems. Subsystem interactions cause strong couplings, which may be amplified by uncertainty. Thus, effective coordination strategies can be particularly beneficial. Analytical target cascading (ATC) is a deterministic optimization method for multilevel hierarchical systems, which was recently extended to probabilistic design. Solving the optimization problem requires propagation of uncertainty, namely, evaluating or estimating output distributions given random input variables. This uncertainty propagation can be a challenging and computationally expensive task for nonlinear functions, but is relatively easy for linear ones. In order to overcome the difficulty in uncertainty propagation, this dissertation introduces the use of Sequential Linear Programming (SLP) for solving ATC problems, and specifically extends this use for Probabilistic Analytical Target Cascading (PATC) problems. A new coordination strategy is proposed for ATC and PATC, which coordinates linking variables among subproblems using sequential lineralizations. By linearizing and solving a hierarchy of problems successively, the algorithm takes advantage of the simplicity and ease of uncertainty propagation for a linear system. Linearity of subproblems is maintained using an Linfinity norm to measure deviations between targets and responses. A subproblem suspension strategy is used to temporarily suspend inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. A global convergence proof of the SLP-based coordination strategy is derived. Experiments with test problems show that, relative to standard ATC and PATC coordination, the number of subproblem evaluations is reduced considerably while maintaining accuracy. To demonstrate the applicability of the proposed strategies to problems of practical complexity, a hybrid
NASA Astrophysics Data System (ADS)
Raju, Lakshmi
2014-03-01
The objective of this project was to develop a low cost infrared spectrophotometer to measure terrestrial or extraterrestrial water vapor and to create a Matlab program to analyze the absorption data. Narrow bandwidth infrared filters of 940 nm and 1000 nm were used to differentially detect absorption due to vibrational frequency of water vapor. Light travelling through a collimating tube with varying humidity was allowed to pass through respective filters. The intensity of exiting light was measured using a silicon photodiode connected to a multimeter and a laptop with Matlab program. Absorption measured (decrease in voltage) using the 940nm filter was significantly higher with increasing humidity (p less than 0.05) demonstrating that the instrument can detect and relatively quantify water vapor. A Matlab program was written to comparatively graph absorption data. In conclusion, a novel, low cost infrared spectrophotometer was successfully created to detect water vapor and serves as a prototype to detect water on the moon. This instrument can also assist in teaching and learning spectrophotometry.
Yang, X.
1998-12-31
Modeling ground motions from multi-shot, delay-fired mining blasts is important to the understanding of their source characteristics such as spectrum modulation. MineSeis is a MATLAB{reg_sign} (a computer language) Graphical User Interface (GUI) program developed for the effective modeling of these multi-shot mining explosions. The program provides a convenient and interactive tool for modeling studies. Multi-shot, delay-fired mining blasts are modeled as the time-delayed linear superposition of identical single shot sources in the program. These single shots are in turn modeled as the combination of an isotropic explosion source and a spall source. Mueller and Murphy`s (1971) model for underground nuclear explosions is used as the explosion source model. A modification of Anandakrishnan et al.`s (1997) spall model is developed as the spall source model. Delays both due to the delay-firing and due to the single-shot location differences are taken into account in calculating the time delays of the superposition. Both synthetic and observed single-shot seismograms can be used to construct the superpositions. The program uses MATLAB GUI for input and output to facilitate user interaction with the program. With user provided source and path parameters, the program calculates and displays the source time functions, the single shot synthetic seismograms and the superimposed synthetic seismograms. In addition, the program provides tools so that the user can manipulate the results, such as filtering, zooming and creating hard copies.
MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts
ERIC Educational Resources Information Center
Jovanovic Dolecek, G.
2012-01-01
An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…
MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts
ERIC Educational Resources Information Center
Jovanovic Dolecek, G.
2012-01-01
An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…
Joshi, Shareen; Schultz, T Paul
2013-02-01
We analyze the impact of an experimental maternal and child health and family planning program that was established in Matlab, Bangladesh, in 1977. Village data from 1974, 1982, and 1996 suggest that program villages experienced a decline in fertility of about 17 %. Household data from 1996 confirm that this decline in "surviving fertility" persisted for nearly two decades. Women in program villages also experienced other benefits: increased birth spacing, lower child mortality, improved health status, and greater use of preventive health inputs. Some benefits also diffused beyond the boundaries of the program villages into neighboring comparison villages. These effects are robust to the inclusion of individual, household, and community characteristics. We conclude that the benefits of this reproductive and child health program in rural Bangladesh have many dimensions extending well beyond fertility reduction, which do not appear to dissipate rapidly after two decades.
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-12-01
This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Calculus Demonstrations Using MATLAB
ERIC Educational Resources Information Center
Dunn, Peter K.; Harman, Chris
2002-01-01
The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…
NASA Astrophysics Data System (ADS)
Monnet, Claude; Bouchet, Stéphane; Thiry-Bastien, Philippe
2003-11-01
The three-dimensional reconstruction of basin sediments has become a major topic in earth sciences and is now a necessary step for modeling and understanding the depositional context of sediments. Because data are generally scattered, the construction of any irregular, continuous surface involves the interpolation of a large number of points over a regular grid. However, interpolation is a highly technical specialty that is still somewhat of a black art for most people. The lack of multi-platform contouring software that is easy to use, fast and automatic, without numerous abstruse parameters, motivated the programming of a software, called ISOPAQ. This program is an interactive desktop tool for spatial analysis, interpolation and display (location, contour and surface mapping) of earth science data, especially stratigraphic data. It handles four-dimensional data sets, where the dimensions are usually longitude, latitude, thickness and time, stored in a single text file. The program uses functions written for the MATLAB ® software. Data are managed by the means of a user-friendly graphical interface, which allows the user to interpolate and generate maps for stratigraphic analyses. This program can process and compare several interpolation methods (nearest neighbor, linear and cubic triangulations, inverse distance and surface splines) and some stratigraphic treatments, such as the decompaction of sediments. Moreover, the window interface helps the user to easily change some parameters like coordinates, grid cell size, and equidistance of contour lines and scale between files. Primarily developed for non-specialists of interpolation thanks to the graphical user interface, practitioners can also easily append the program with their own functions, since it is written in MATLAB open language. As an example, the program is applied here to the Bajocian stratigraphic sequences of eastern France.
FOLD PROFILER: A MATLAB ®—based program for fold shape classification
NASA Astrophysics Data System (ADS)
Lisle, R. J.; Fernández Martínez, J. L.; Bobillo-Ares, N.; Menéndez, O.; Aller, J.; Bastida, F.
2006-02-01
FOLD PROFILER is a MATLAB code for classifying the shapes of profiles of folded surfaces. The classification is based on the comparison of the natural fold profile with curves representing mathematical functions. The user is offered a choice of four methods, each based on a different type of function: cubic Bezier curves, conic sections, power functions and superellipses. The comparison is carried out by the visual matching of the fold profile displayed on-screen from an imported digital image and computed theoretical curves which are superimposed on the image of the fold. To improve the fit with the real fold shape, the parameters of the theoretical curves are changed by simple mouse actions. The parameters of the mathematical function that best fits the real folds are used to classify the fold shape. FOLD PROFILER allows the rapid implementation of four existing methods for fold shape analysis. The attractiveness of this analytical tool lies in the way it gives an instant visual appreciation of the effect of changing the parameters that are used to classify fold geometry.
Franco, E L; Simons, A R
1986-05-01
Two programs are described for the emulation of the dynamics of Reed-Frost progressive epidemics in a handheld programmable calculator (HP-41C series). The programs provide a complete record of cases, susceptibles, and immunes at each epidemic period using either the deterministic formulation or the trough analogue of the mechanical model for the stochastic version. Both programs can compute epidemics that include a constant rate of influx or outflux of susceptibles and single or double infectivity time periods.
NASA Astrophysics Data System (ADS)
Bristow, Gwendolyn; Taillefert, Martial
2008-02-01
Recent progress has resulted in the development of advanced techniques to acquire geochemical information in situ in aquatic systems. Among these techniques, voltammetry has generated significant interest for its ability to detect several important redox-sensitive chemical species in a fast, reliable, and automated manner. Many research groups worldwide have now adopted these techniques for geochemical measurements in various marine and freshwater systems, including water column, sediment, microbial mat, and groundwater, with a high spatial and temporal resolution. Unfortunately, the ability to conduct multiple measurements with great spatial and temporal resolutions generates large data sets that are difficult to integrate manually. We report a new computer program, voltammetric integration software (VOLTINT), that can integrate large voltammetric data sets semi-automatically. This program implemented in Matlab ® is based on a graphical user interface to visualize and identify voltammetric signals. The program differentiates between voltammetric techniques and derives or integrates voltammetric signals to produce output data files containing the redox potentials, current intensities, and, when appropriate, peak surface areas of each electrochemical species that can be detected. VOLTINT was developed with the intention of integrating voltammetric data obtained with potentiostats from a specific company Analytical Instrument Systems, Inc. (AIS). However, the scripts can be easily altered to process any ASCII file containing voltammetric data. The details of the program are presented, and examples provided along with recommendations regarding the analysis of voltammetric data in the context of this program. VOLTINT is available free of charge to anyone who is interested in integrating multiple voltammetric data files in a fast and reliable manner.
NASA Astrophysics Data System (ADS)
Wessel, Paul; Luis, Joaquim F.
2017-02-01
The GMT/MATLAB toolbox is a basic interface between MATLAB® (or Octave) and GMT, the Generic Mapping Tools, which allows MATLAB users full access to all GMT modules. Data may be passed between the two programs using intermediate MATLAB structures that organize the metadata needed; these are produced when GMT modules are run. In addition, standard MATLAB matrix data can be used directly as input to GMT modules. The toolbox improves interoperability between two widely used tools in the geosciences and extends the capability of both tools: GMT gains access to the powerful computational capabilities of MATLAB while the latter gains the ability to access specialized gridding algorithms and can produce publication-quality PostScript-based illustrations. The toolbox is available on all platforms and may be downloaded from the GMT website.
Friedman, R H; Frank, A D
1983-08-01
A rule-based computer system was developed to perform clinical decision-making support within a medical information system, oncology practice, and clinical research. This rule-based system, which has been programmed using deterministic rules, possesses features of generalizability, modularity of structure, convenience in rule acquisition, explanability, and utility for patient care and teaching, features which have been identified as advantages of artificial intelligence (AI) rule-based systems. Formal rules are primarily represented as conditional statements; common conditions and actions are stored in system dictionaries so that they can be recalled at any time to form new decision rules. Important similarities and differences exist in the structure of this system and clinical computer systems utilizing artificial intelligence (AI) production rule techniques. The non-AI rule-based system possesses advantages in cost and ease of implementation. The degree to which significant medical decision problems can be solved by this technique remains uncertain as does whether the more complex AI methodologies will be required.
Friedman, R.H.; Frank, A.D.
1983-08-01
A rule-based computer system was developed to perform clinical decision-making support within a medical information system, oncology practice, and clinical research. This rule-based system, which has been programmed using deterministic rules, possesses features of generalizability, modularity of structure, convenience in rule acquisition, explanability, and utility for patient care and teaching, features which have been identified as advantages of artificial intelligence (AI) rule-based systems. Formal rules are primarily represented as conditional statements; common conditions and actions are stored in system dictionaries so that they can be recalled at any time to form new decision rules. Important similarities and differences exist in the structure of this system and clinical computer systems utilizing artificial intelligence (AI) production rule techniques. The non-AI rule-based system posesses advantages in cost and ease of implementation. The degree to which significant medical decision problems can be solved by this technique remains uncertain as does whether the more complex AI methodologies will be required. 15 references.
Deterministic Entangled Nanosource
2008-08-01
currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE...Final Report 3. DATES COVERED (From - To) Sep 2005 – Sep 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455...Deterministic Entangled Nanosource 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Khitrova, Galina 5e. TASK
Creutz, M.
1986-03-01
A deterministic cellular automation rule is presented which simulates the Ising model. On each cell in addition to an Ising spin is a space-time parity bit and a variable playing the role of a momentum conjugate to the spin. The procedure permits study of nonequilibrium phenomena, heat flow, mixing, and time correlations. The algorithm can make full use of multispin coding, thus permitting fast programs involving parallel processing on serial machines.
ERIC Educational Resources Information Center
Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.
2006-01-01
This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…
ERIC Educational Resources Information Center
Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.
2006-01-01
This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…
Waste package performance assessment: Deterministic system model, program scope and specification
O`Connell, W.J.; Drach, R.S.
1986-10-02
Integrated assessments of the performance of nuclear waste package designs must be made in order to qualify waste package designs with respect to containment time and release-rate requirements. PANDORA is a computer-based model of the waste package and of the processes affecting it over the long terms, specific to conditions at the proposed Yucca Mountain, Nevada, site. The processes PANDORA models include: changes in inventories due to radioactive decay, gamma radiation dose rate in and near the package, heat transfer, mechanical behavior, groundwater contact, corrosion, waste form alteration, and radionuclide release. The model tracks the development and coupling of these processes over time. The process models are simplified ones that focus on major effects and on coupling. This report documents our conceptual model development and provides a specification for the computer program. The current model is the first in a series. Succeeding models will use guidance from results of preceding models in the PANDORA series and will incorporate results of recently completed experiments and calculations on processes affecting performance. 22 refs., 21 figs., 9 tabs.
Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János
2016-04-01
Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Chengjiang Mao
1996-12-31
In typical AI systems, we employ so-called non-deterministic reasoning (NDR), which resorts to some systematic search with backtracking in the search spaces defined by knowledge bases (KBs). An eminent property of NDR is that it facilitates programming, especially programming for those difficult AI problems such as natural language processing for which it is difficult to find algorithms to tell computers what to do at every step. However, poor efficiency of NDR is still an open problem. Our work aims at overcoming this efficiency problem.
Education of optics with Matlab
NASA Astrophysics Data System (ADS)
Miks, Antonin; Novak, Jiri
2003-11-01
In our work there is shown one of possible approaches to education of various parts of optics with a mathematical system MATLAB. The work is focused mainly on education of interference and diffraction of light and the diffraction theory of optical imaging. In our laboratories students can simply perform a computer simulation of various problems, which they can meet in practice, e.g. two-beam interferometry, imaging in coherent, partially coherent or incoherent light, diffraction from gratings of different types, etc. The system Matlab can be also used for simulating problems in holography and holographic interferometry of static and dynamic events. Students can further simulate transforming of optical beams through a simple lens or a system of lenses by means of ray tracing. For every described part of optics we have the software programmed in the Matlab system. Matlab seems to be a very good tool for numerical modelling of properties of various optical systems and for teaching optics.
Portmann, Greg; Safranek, James; Huang, Xiaobiao; /SLAC
2011-10-18
The LOCO algorithm has been used by many accelerators around the world. Although the uses for LOCO vary, the most common use has been to find calibration errors and correct the optics functions. The light source community in particular has made extensive use of the LOCO algorithms to tightly control the beta function and coupling. Maintaining high quality beam parameters requires constant attention so a relatively large effort was put into software development for the LOCO application. The LOCO code was originally written in FORTRAN. This code worked fine but it was somewhat awkward to use. For instance, the FORTRAN code itself did not calculate the model response matrix. It required a separate modeling code such as MAD to calculate the model matrix then one manually loads the data into the LOCO code. As the number of people interested in LOCO grew, it required making it easier to use. The decision to port LOCO to Matlab was relatively easy. It's best to use a matrix programming language with good graphics capability; Matlab was also being used for high level machine control; and the accelerator modeling code AT, [5], was already developed for Matlab. Since LOCO requires collecting and processing a relative large amount of data, it is very helpful to have the LOCO code compatible with the high level machine control, [3]. A number of new features were added while porting the code from FORTRAN and new methods continue to evolve, [7][9]. Although Matlab LOCO was written with AT as the underlying tracking code, a mechanism to connect to other modeling codes has been provided.
Deterministic Entangled Nanosource
2008-08-01
control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE Final Report 3...DATES COVERED (From - To) Sep 2005 - Sep 200? 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455 5b. GRANT NUMBER Deterministic...Entangled Nanosource 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER Khitrova, Galina 5f. WORK UNIT NUMBER 7. PERFORMING
Test Generator for MATLAB Simulations
NASA Technical Reports Server (NTRS)
Henry, Joel
2011-01-01
MATLAB Automated Test Tool, version 3.0 (MATT 3.0) is a software package that provides automated tools that reduce the time needed for extensive testing of simulation models that have been constructed in the MATLAB programming language by use of the Simulink and Real-Time Workshop programs. MATT 3.0 runs on top of the MATLAB engine application-program interface to communicate with the Simulink engine. MATT 3.0 automatically generates source code from the models, generates custom input data for testing both the models and the source code, and generates graphs and other presentations that facilitate comparison of the outputs of the models and the source code for the same input data. Context-sensitive and fully searchable help is provided in HyperText Markup Language (HTML) format.
NASA Astrophysics Data System (ADS)
Chen, Y.; Fischer, U.
2005-10-01
A program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis has been developed to solve problems with complex geometry and bulk shield by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a coupling interface program. A newly-proposed mapping approach is implemented in the interface program to calculate the angular flux distribution from the scored Monte Carlo particle tracks and generate the boundary source file for the use of TORT. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between the results calculated by these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities.
Channel Access Client Toolbox for Matlab
Terebilo, Andrei
2002-08-07
This paper reports on MATLAB Channel Access (MCA) Toolbox--MATLAB [1] interface to EPICS Channel Access (CA) client library. We are developing the toolbox for SPEAR3 accelerator controls, but it is of general use for accelerator and experimental physics applications programming. It is packaged as a MATLAB toolbox to allow easy development of complex CA client applications entirely in MATLAB. The benefits include: the ability to calculate and display parameters that use EPICS process variables as inputs, availability of MATLAB graphics tools for user interface design, and integration with the MATLAB-based accelerator modeling software--Accelerator Toolbox [2-4]. Another purpose of this paper is to propose a feasible path to a synergy between accelerator control systems and accelerator simulation codes, the idea known as on-line accelerator model.
NASA Astrophysics Data System (ADS)
Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.
2014-03-01
A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform
Deterministic Walks with Choice
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Kolda, Tamara G.; Bader, Brett W.
2006-08-03
This software provides a collection of MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. We have also added support for sparse tensor, tensors in Kruskal or Tucker format, and tensors stored as matrices (both dense and sparse).
NASA Astrophysics Data System (ADS)
Umansky, Moti; Weihs, Daphne
2012-08-01
In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program
NASA Astrophysics Data System (ADS)
Rucker, Dale F.; Ferré, Ty P. A.
2004-08-01
A MATLAB program was developed to invert first arrival travel time picks from zero offset profiling borehole ground penetrating radar traces to obtain the electromagnetic wave propagation velocities in soil. Zero-offset profiling refers to a mode of operation wherein the centers of the bistatic antennae being lowered to the same depth below ground for each measurement. The inversion uses a simulated annealing optimization routine, whereby the model attempts to reduce the root mean square error between the measured and modeled travel time by perturbing the velocity in a ray tracing routine. Measurement uncertainty is incorporated through the presentation of the ensemble mean and standard deviation from the results of a Monte Carlo simulation. The program features a pre-processor to modify or delete travel time information from the profile before inversion and post-processing through presentation of the ensemble statistics of the water contents inferred from the velocity profile. The program includes a novel application of a graphical user interface to animate the velocity fitting routine.
NASA Astrophysics Data System (ADS)
Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus
2017-10-01
We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile
Yang, X.
1998-04-01
Large scale (up to 5 kt) chemical blasts are routinely conducted by mining and quarry industries around the world to remove overburden or to fragment rocks. Because of their ability to trigger the future International Monitoring System (IMS) of the Comprehensive Test Ban Treaty (CTBT), these blasts are monitored and studied by verification seismologists for the purpose of discriminating them from possible clandestine nuclear tests. One important component of these studies is the modeling of ground motions from these blasts with theoretical and empirical source models. The modeling exercises provide physical bases to regional discriminants and help to explain the observed signal characteristics. The program MineSeis has been developed to implement the synthetic seismogram modeling of multi-shot blast sources with the linear superposition of single shot sources. Single shot sources used in the modeling are the spherical explosion plus spall model mentioned here. Mueller and Murphy`s (1971) model is used as the spherical explosion model. A modification of Anandakrishnan et al.`s (1997) spall model is developed for the spall component. The program is implemented with the MATLAB{reg_sign} Graphical User Interface (GUI), providing the user with easy, interactive control of the calculation.
Parallelizing AT with MatlabMPI
Li, Evan Y.; /Brown U. /SLAC
2011-06-22
The Accelerator Toolbox (AT) is a high-level collection of tools and scripts specifically oriented toward solving problems dealing with computational accelerator physics. It is integrated into the MATLAB environment, which provides an accessible, intuitive interface for accelerator physicists, allowing researchers to focus the majority of their efforts on simulations and calculations, rather than programming and debugging difficulties. Efforts toward parallelization of AT have been put in place to upgrade its performance to modern standards of computing. We utilized the packages MatlabMPI and pMatlab, which were developed by MIT Lincoln Laboratory, to set up a message-passing environment that could be called within MATLAB, which set up the necessary pre-requisites for multithread processing capabilities. On local quad-core CPUs, we were able to demonstrate processor efficiencies of roughly 95% and speed increases of nearly 380%. By exploiting the efficacy of modern-day parallel computing, we were able to demonstrate incredibly efficient speed increments per processor in AT's beam-tracking functions. Extrapolating from prediction, we can expect to reduce week-long computation runtimes to less than 15 minutes. This is a huge performance improvement and has enormous implications for the future computing power of the accelerator physics group at SSRL. However, one of the downfalls of parringpass is its current lack of transparency; the pMatlab and MatlabMPI packages must first be well-understood by the user before the system can be configured to run the scripts. In addition, the instantiation of argument parameters requires internal modification of the source code. Thus, parringpass, cannot be directly run from the MATLAB command line, which detracts from its flexibility and user-friendliness. Future work in AT's parallelization will focus on development of external functions and scripts that can be called from within MATLAB and configured on multiple nodes, while
Safety lessons from Matlab, Bangladesh.
Chowdhury, N
1998-01-01
Bangladesh has made more progress in extending family planning (FP) than in reducing its maternal mortality rate of 450/100,000 live births. In response to this situation, a community-based Maternity Care Project was created in 1987 in Matlab, where the International Center for Diarrhoeal Disease Research had begun its experimental maternal and child health and FP program a decade before. After determining that 77% of all maternal deaths were directly related to obstetric complications and that 68% occurred during labor or the first 48 hours postpartum, the project recruited four trained nurse-midwives to provide prenatal care, home deliveries, and postpartum care. The midwives also organized referral and transportation to the Matlab central clinic (staffed by paramedics and female physicians) for emergency cases. Efforts to extend the Matlab experience on a national level will be bolstered by government commitment, a well-defined national plan, development of appropriate infrastructures, and partnerships between the nongovernmental and private sector. Problems may arise because maternal health care is currently divided between the directorates of FP and of health, public sector accountability is low, there is a shortage of female physicians, and many factors contribute to the failure to transfer complicated cases to the appropriate health facility in time to prevent death. One of the largest challenges will be to change the attitudes of the people involved and to improve the quality of care offered by health personnel.
Deterministic Execution of Ptides Programs
2013-05-15
are developed in Ptolemy , a design and simulation environment for heteroge- neous systems. This framework also contains a code generation framework... Ptolemy , a design and simulation environment for heteroge- neous systems. This framework also contains a code generation framework which is leveraged to...generation is implemented in Ptolemy II, [4], an academic tool for designing and experimenting with heterogeneous system models. The first section of
Deterministic transport in ratchets
NASA Astrophysics Data System (ADS)
Sarmiento, Antonio; Larralde, Hernán
1999-05-01
We present the deterministic transport properties of driven overdamped particles in a simple piecewise-linear ratchet potential. We consider the effects on the stationary current due to local spatial asymmetry, time asymmetry in the driving force, and we include the possibility of a global spatial asymmetry. We present an extremely simple scheme for evaluating the current that is established on the ratchet within an ``adiabatic'' approximation, and compare the results with exact numerical integration of the process.
A deterministic discrete ordinates transport proxy application
2014-06-03
Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.
An Accelerator Control Middle Layer Using MATLAB
Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei
2005-05-15
Matlab is an interpretive programming language originally developed for convenient use with the LINPACK and EISPACK libraries. Matlab is appealing for accelerator physics because it is matrix-oriented, provides an active workspace for system variables, powerful graphics capabilities, built-in math libraries, and platform independence. A number of accelerator software toolboxes have been written in Matlab -- the Accelerator Toolbox (AT) for model-based machine simulations, LOCO for on-line model calibration, and Matlab Channel Access (MCA) to connect with EPICS. The function of the MATLAB ''MiddleLayer'' is to provide a scripting language for machine simulations and on-line control, including non-EPICS based control systems. The MiddleLayer has simplified and streamlined development of high-level applications including configuration control, energy ramp, orbit correction, photon beam steering, ID compensation, beam-based alignment, tune correction and response matrix measurement. The database-driven Middle Layer software is largely machine-independent and easy to port. Six accelerators presently use the software package with more scheduled to come on line soon.
Safranek, James
2002-08-23
The storage ring linear optics debugging code LOCO (Linear Optics from Closed Orbits)[1] has been rewritten in MATLAB and linked to the accelerator modeling code AT [2]. LOCO uses the measured orbit response matrix to determine normal and skew quadrupole gradients. A MATLAB GUI provides a greatly improved user interface with graphical display of the fitting results. The option of including the shift in orbit with rf-frequency in the orbit response matrix has been added so that the model is adjusted to match the measured dispersion. This facilitates control of the horizontal dispersion, which is important for achieving small horizontal emittance. Also included are error bar calculation, outlier data rejection, accommodation of single-view BPMs (beam position monitors), and the option of including coupling in the fit. The code was written to allow the flexibility of linking it to other accelerator modeling codes.
A Deterministic Microfluidic Ratchet
NASA Astrophysics Data System (ADS)
Loutherback, Kevin; Puchalla, Jason; Austin, Robert; Sturm, James
2009-03-01
We present a deterministic microfluidic ratchet where the trajectory of particles in a certain size range is not reversed when the sign of the driving force is reversed. This ratcheting effect is produced by employing triangular rather than the conventionally circular posts in a post array that selectively displaces particles transported through the array. The underlying mechanism of this method is shown to to be an asymmetric fluid velocity distribution through the gap between triangular posts that results in different critical particle sizes depending on the direction of the flow.
Generalized Deterministic Traffic Rules
NASA Astrophysics Data System (ADS)
Fuks, Henryk; Boccara, Nino
We study a family of deterministic models for highway traffic flow which generalize cellular automaton rule 184. This family is parameterized by the speed limit m and another parameter k that represents a "degree of aggressiveness" in driving, strictly related to the distance between two consecutive cars. We compare two driving strategies with identical maximum throughput: "conservative" driving with high speed limit and "aggressive" driving with low speed limit. Those two strategies are evaluated in terms of accident probability. We also discuss fundamental diagrams of generalized traffic rules and examine limitations of maximum achievable throughput. Possible modifications of the model are considered.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
An Accelerator Control Middle Layer Using MATLAB
Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei
2005-03-15
Matlab is a matrix manipulation language originally developed to be a convenient language for using the LINPACK and EISPACK libraries. What makes Matlab so appealing for accelerator physics is the combination of a matrix oriented programming language, an active workspace for system variables, powerful graphics capability, built-in math libraries, and platform independence. A number of software toolboxes for accelerators have been written in Matlab--the Accelerator Toolbox (AT) for machine simulations, LOCO for accelerator calibration, Matlab Channel Access Toolbox (MCA) for EPICS connections, and the Middle Layer. This paper will describe the ''middle layer'' software toolbox that resides between the high-level control applications and the low-level accelerator control system. This software was a collaborative effort between ALS (LBNL) and SPEAR3 (SSRL) but easily ports to other machines. Five accelerators presently use this software. The high-level Middle Layer functionality includes energy ramp, configuration control (save/restore), global orbit correction, local photon beam steering, insertion device compensation, beam-based alignment, tune correction, response matrix measurement, and script-based programs for machine physics studies.
MATLAB and graphical user interfaces: tools for experimental management.
Harley, E M; Loftus, G R
2000-05-01
MATLAB is a convenient platform for the development and management of psychological experiments because of its easy-to-use programming language, sophisticated graphics features, and statistics and optimization tools. Through implementation of the Brainard-Pelli Psychophysics Toolbox, the MATLAB user gains close temporal and spatial control over the CRT, while retaining the simplicity of an interpreted language conductive to rapid program development. MATLAB's abilities can be further utilized through easily programmable graphical user interfaces (GUIs). We illustrate how a GUI can serve as a powerful and intuitive tool for organizing and controlling all aspects of a psychological experiment, including design, data collection, data analysis, and theory fitting.
Deterministic geologic processes and stochastic modeling
Rautman, C.A.; Flint, A.L.
1991-12-31
Recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. Consideration of the spatial distribution of measured values and geostatistical measures of spatial variability indicates that there are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. These deterministic features have their origin in the complex, yet logical, interplay of a number of deterministic geologic processes, including magmatic evolution; volcanic eruption, transport, and emplacement; post-emplacement cooling and alteration; and late-stage (diagenetic) alteration. Because of geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly, using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling. It is unlikely that any single representation of physical properties at the site will be suitable for all modeling purposes. Instead, the same underlying physical reality will need to be described many times, each in a manner conducive to assessing specific performance issues.
Matlab Cluster Ensemble Toolbox
Sapio, Vincent De; Kegelmeyer, Philip
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.
Matpar: Parallel Extensions for MATLAB
NASA Technical Reports Server (NTRS)
Springer, P. L.
1998-01-01
Matpar is a set of client/server software that allows a MATLAB user to take advantage of a parallel computer for very large problems. The user can replace calls to certain built-in MATLAB functions with calls to Matpar functions.
Matpar: Parallel Extensions for MATLAB
NASA Technical Reports Server (NTRS)
Springer, P. L.
1998-01-01
Matpar is a set of client/server software that allows a MATLAB user to take advantage of a parallel computer for very large problems. The user can replace calls to certain built-in MATLAB functions with calls to Matpar functions.
Self-stabilizing Deterministic Gathering
NASA Astrophysics Data System (ADS)
Dieudonné, Yoann; Petit, Franck
In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, oblivious, deaf, and dumb). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd.
Why did maternal mortality decline in Matlab?
Maine, D; Akalin, M Z; Chakraborty, J; de Francisco, A; Strong, M
1996-01-01
In 1991, an article on the Maternity Care Program in Matlab, Bangladesh, reported a substantial decline in direct obstetric deaths in the intervention area, but not in the control area. The decline was attributed primarily to the posting of midwives at the village level. In this article, data are presented from the same period and area on a variety of intermediate events. They indicate that the decline in deaths was probably due to the combined efforts of community midwives and the physicians at the Matlab maternity clinic. Their ability to refer patients to higher levels of care was important. The data further indicate that the decline in deaths depended upon the functioning of the government hospital in Chandpur, where cesarean sections and blood transfusions were available. Midwives might also have made a special contribution by providing early termination of pregnancy, which is legal in Bangladesh.
Earth Science Curriculum Enrichment Through Matlab!
NASA Astrophysics Data System (ADS)
Salmun, H.; Buonaiuto, F. S.
2016-12-01
The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.
NASA Astrophysics Data System (ADS)
Ricard, Ludovic P.; Chanu, Jean-Baptiste
2013-08-01
The evaluation of potential and resources during geothermal exploration requires accurate and consistent temperature characterization and modelling of the sub-surface. Existing interpretation and modelling approaches of 1D temperature measurements are mainly focusing on vertical heat conduction with only few approaches that deals with advective heat transport. Thermal regimes are strongly correlated to rock and fluid properties. Currently, no consensus exists for the identification of the thermal regime and the analysis of such dataset. We developed a new framework allowing the identification of thermal regimes by rock formations, the analysis and modelling of wireline logging and discrete temperature measurements by taking into account the geological, geophysical and petrophysics data. This framework has been implemented in the GeoTemp software package that allows the complete thermal characterization and modelling at the formation scale and that provides a set of standard tools for the processing wireline and discrete temperature data. GeoTempTM operates via a user friendly graphical interface written in Matlab that allows semi-automatic calculation, display and export of the results. Output results can be exported as Microsoft Excel spreadsheets or vector graphics of publication quality. GeoTemp™ is illustrated here with an example geothermal application from Western Australia and can be used for academic, teaching and professional purposes.
Deterministic multidimensional nonuniform gap sampling.
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.
Mixed deterministic and probabilistic networks
Dechter, Rina
2010-01-01
The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model. PMID:20981243
Fluid turbulence - Deterministic or statistical
NASA Astrophysics Data System (ADS)
Cheng, Sin-I.
The deterministic view of turbulence suggests that the classical theory of fluid turbulence may be treating the wrong entity. The paper explores the physical implications of such an abstract mathematical result, and provides a constructive computational demonstration of the deterministic and the wave nature of fluid turbulence. The associated pressure disturbance for restoring solenoidal velocity is the primary agent, and its reflection from solid surface(s) the dominant mechanism of turbulence production. Statistical properties and their modeling must address to the statistics of the uncertainties of initial boundary data of the ensemble.
NASA Astrophysics Data System (ADS)
Fernández-Martínez, J. L.; Fernández-Alvarez, J. P.; Pedruelo-González, L. M.
2008-03-01
A MATLAB ®-based computer code that analyses the traveltime distribution and performs quality analysis at the pre-inversion stage for 2D transmission experiments is presented. The core tools of this approach are the so-called mean traveltime curves. For any general recording geometry, the user may select any pair of subsets of contiguous sources and receivers. The portion of the domain swept by the implied rays defines a zone of analysis, and for each source (receiver) the outcoming (incoming) ray fan is named a source (receiver) gather. The empirical mean traveltime curves are constructed, for each zone, by assigning the average and the standard deviation of the traveltimes in the gathers to the positions of the sources (receivers). The theoretical expressions assume isotropic homogeneous velocity inside each zone. The empirical counterparts use the observed traveltimes and make no assumptions. Isotropic velocity in each zone is inferred by least-squares fitting of the empirical mean traveltime curves. The user may refine the analysis considering different zones (multi-zone analysis). Initially the whole domain is modelled as a single zone. The procedure compares empirical versus theoretical curves. In addition, residuals can be plotted using source-receiver positions as plane coordinates. The results are used to unravel the possible presence of anomalous gathers, heterogeneities, anisotropies, etc. Depending on the kind of anomalies, velocity estimation and mean time residuals are different in the source and receiver gather curves. This software helps to grasp a better understanding of the data variability before the inversion and provides to the geophysicist an approximate zonal isotropic model and a range of velocity variation that can be used in the inverse problem as a priori information (regularization term). Its use is described through tutorial examples. A guided user interface leads the user through the algorithm steps.
OMPC: an Open-Source MATLAB-to-Python Compiler.
Jurica, Peter; van Leeuwen, Cees
2009-01-01
Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB((R)), the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB((R))-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB((R)) functions into Python programs. The imported MATLAB((R)) modules will run independently of MATLAB((R)), relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB((R)). OMPC is available at http://ompc.juricap.com.
Deterministic models for traffic jams
NASA Astrophysics Data System (ADS)
Nagel, Kai; Herrmann, Hans J.
1993-10-01
We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.
Documentation generator application for MatLab source codes
NASA Astrophysics Data System (ADS)
Niton, B.; Pozniak, K. T.; Romaniuk, R. S.
2011-06-01
The UML, which is a complex system modeling and description technology, has recently been expanding its uses in the field of formalization and algorithmic approach to such systems like multiprocessor photonic, optoelectronic and advanced electronics carriers; distributed, multichannel measurement systems; optical networks, industrial electronics, novel R&D solutions. The paper describes a realization of an application for documenting MatLab source codes. There are presented own novel solution based on Doxygen program which is available on the free license, with accessible source code. The used supporting tools for parser building were Bison and Flex. There are presented the practical results of the documentation generator. The program was applied for exemplary MatLab codes. The documentation generator application is used for design of large optoelectronic and electronic measurement and control systems. The paper consists of three parts which describe the following components of the documentation generator for photonic and electronic systems: concept, MatLab application and VHDL application. This is part two which describes the MatLab application. MatLab is used for description of the measured phenomena.
Deterministic hydrodynamics: Taking blood apart
Davis, John A.; Inglis, David W.; Morton, Keith J.; Lawrence, David A.; Huang, Lotien R.; Chou, Stephen Y.; Sturm, James C.; Austin, Robert H.
2006-01-01
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets from blood plasma at flow velocities of 1,000 μm/sec and volume rates up to 1 μl/min. We verified by flow cytometry that an array using focused injection removed 100% of the lymphocytes and monocytes from the main red blood cell and platelet stream. Using a second design, we demonstrated the separation of blood plasma from the blood cells (white, red, and platelets) with virtually no dilution of the plasma and no cellular contamination of the plasma. PMID:17001005
Analysis of FBC deterministic chaos
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
Deterministic Laws and Epistemic Chances
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
In this paper, a concept of chance is introduced that is compatible with deterministic physical laws, yet does justice to our use of chance-talk in connection with typical games of chance, and in classical statistical mechanics. We take our cue from what Poincaré called "the method of arbitrary functions," and elaborate upon a suggestion made by Savage in connection with this. Comparison is made between this notion of chance, and David Lewis' conception.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Using Matlab to generate families of similar Attneave shapes.
Collin, Charles A; McMullen, Patricia A
2002-02-01
We present a program for Matlab that quickly generates Attneave-style random polygons and families of similar polygons. The function allows a great deal of user control over various aspects of the shape generation process. It also has the ability to detect and eliminate shapes that do not match a variety of user-entered parameters regarding the lengths of the shapes' sides, vertex angles, and topological form. The function eliminates the time-consuming task of generating such shapes by hand and should allow their broader use in behavioral research. The Matlab script function can be downloaded at www.dal.ca/~mcmullen/downloads.html.
Antarctic Mapping Tools for MATLAB
NASA Astrophysics Data System (ADS)
Greene, Chad A.; Gwyther, David E.; Blankenship, Donald D.
2017-07-01
We present the Antarctic Mapping Tools package, an open-source MATLAB toolbox for analysis and plotting of Antarctic geospatial datasets. This toolbox is designed to streamline scientific workflow and maximize repeatability through functions which allow fully scripted data analysis and mapping. Data access is facilitated by several dataset-specific plugins which are freely available online. An open architecture has been chosen to encourage users to develop and share plugins for future Antarctic geospatial datasets. This toolbox includes functions for coordinate transformations, flight line or ship track analysis, and data mapping in georeferenced or projected coordinates. Each function is thoroughly documented with clear descriptions of function syntax alongside examples of data analysis or display using Antarctic geospatial data. The Antarctic Mapping Tools package is designed for ease of use and allows users to perform each step of data processing including raw data import, data analysis, and creation of publication-quality maps, wholly within the numerical environment of MATLAB.
Deterministic chaos in entangled eigenstates
NASA Astrophysics Data System (ADS)
Schlegel, K. G.; Förster, S.
2008-05-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic scale-free networks
NASA Astrophysics Data System (ADS)
Barabási, Albert-László; Ravasz, Erzsébet; Vicsek, Tamás
2001-10-01
Scale-free networks are abundant in nature and society, describing such diverse systems as the world wide web, the web of human sexual contacts, or the chemical network of a cell. All models used to generate a scale-free topology are stochastic, that is they create networks in which the nodes appear to be randomly connected to each other. Here we propose a simple model that generates scale-free networks in a deterministic fashion. We solve exactly the model, showing that the tail of the degree distribution follows a power law.
Acoustic Propagation Modeling Using MATLAB
1993-09-01
M1 Oatoq~wv.$~e 204.*’liqi.VA22202-43. andto %be 0##cejf~d q94o’.et~e *Ad6.aet. Vawe’-ok Aedwg1enPr.o,KtO04i4IS8I. .,a,..qto. DC 2010 ) 1. AGENCY USE...media," in Acoustical Imaging, Volume 14, (A, Berkhout , J. Ridder, and L. van der Wal, eds.), pp. 521-531, New York: Plenum Press, 1985. (16] MATLAB
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Deterministic Bragg Coherent Diffraction Imaging.
Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M
2017-04-25
A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.
OXlearn: a new MATLAB-based simulation tool for connectionist models.
Ruh, Nicolas; Westermann, Gert
2009-11-01
OXlearn is a free, platform-independent MATLAB toolbox in which standard connectionist neural network models can be set up, run, and analyzed by means of a user-friendly graphical interface. Due to its seamless integration with the MATLAB programming environment, the inner workings of the simulation tool can be easily inspected and/or extended using native MATLAB commands or components. This combination of usability, transparency, and extendability makes OXlearn an efficient tool for the implementation of basic research projects or the prototyping of more complex research endeavors, as well as for teaching. Both the MATLAB toolbox and a compiled version that does not require access to MATLAB can be downloaded from http://psych.brookes.ac.uk/oxlearn/.
Deterministic weak localization in periodic structures.
Tian, C; Larkin, A
2005-12-09
In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.
Deterministic Tripartite Controlled Remote State Preparation
NASA Astrophysics Data System (ADS)
Sang, Ming-huang; Nie, Yi-you
2017-07-01
We demonstrate that a seven-qubit entangled state can be used to realize the deterministic tripartite controlled remote state preparation by performing only Pauli operations and single-qubit measurements. In our scheme, three distant senders can simultaneously and deterministically exchange their quantum state with the other senders under the control of the supervisor.
IR FPA sensor characterization and analysis using Matlab tm
NASA Astrophysics Data System (ADS)
Burke, Michael J.; Wan, William H.
1998-08-01
This paper documents the Matlab routines used to conduct infrared focal plane array (IR-FPA) sensor data analysis. Matlab is a commercially available software package that enables users to conduct a multitude of data analysis, file I/O, and generation of graphics with little or no computer programming skills. This effort was conducted in support of the US Army Tank-automotive and Armaments Command-Armament Research, Development and Engineering Center's (TACOM-ARDEC) 120 mm Precision Guided Mortar Munition (PGMM). PGMM's sensor included a 256 X 256 mid-band IR-FPA. This paper summarizes a primer generated to help train PGMM sensor engineers to use Matlab for conducting IR-FPA image analysis. A brief system description of the PGMM IR sensor will be presented, and follow by discussion on the Matlab IR-FPA image analysis, such as measurement of; FPA operability, Noise Equivalent Temperature Difference, temporal noise, spatial noise, as well as gain and offset calibration for non-uniformity correction.
MATLAB as an incentive for student learning of skills
NASA Astrophysics Data System (ADS)
Bank, C. G.; Ghent, R. R.
2016-12-01
Our course "Computational Geology" takes a holistic approach to student learning by using MATLAB as a focal point to increase students' computing, quantitative reasoning, data analysis, report writing, and teamwork skills. The course, taught since 2007 with recent enrollments around 35 and aimed at 2nd to 3rd-year students, is required for the Geology and Earth and Environmental Systems major programs, and can be chosen as elective in our other programs, including Geophysics. The course is divided into five projects: Pacific plate velocity from the Hawaiian hotspot track, predicting CO2 concentration in the atmosphere, volume of Earth's oceans and sea-level rise, comparing wind directions for Vancouver and Squamish, and groundwater flow. Each project is based on real data, focusses on a mathematical concept (linear interpolation, gradients, descriptive statistics, differential equations) and highlights a programming task (arrays, functions, text file input/output, curve fitting). Working in teams of three, students need to develop a conceptional model to explain the data, and write MATLAB code to visualize the data and match it to their conceptional model. The programming is guided, and students work individually on different aspects (for example: reading the data, fitting a function, unit conversion) which they need to put together to solve the problem. They then synthesize their thought process in a paper. Anecdotal evidence shows that students continue using MATLAB in other courses.
Deterministic transfer function for transionospheric propagation
NASA Astrophysics Data System (ADS)
Roussel-Dupre, R.; Argo, P.
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25 - 175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = omega(sub pe)(exp 2)/(omega)(exp 2) where X is assumed to be small compared to one, (omega)(sub pe) is the peak plasma frequency of the ionosphere, and omega is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to, venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
Using Matlab in a Multivariable Calculus Course.
ERIC Educational Resources Information Center
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
Deterministic quantum teleportation with atoms.
Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R
2004-06-17
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
Deterministic patterns in cell motility
NASA Astrophysics Data System (ADS)
Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.
2016-12-01
Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.
GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Duboscq, Romain
2015-08-01
GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.
Connecting deterministic and stochastic metapopulation models.
Barbour, A D; McVinish, R; Pollett, P K
2015-12-01
In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given.
Universality classes for deterministic surface growth
NASA Technical Reports Server (NTRS)
Krug, J.; Spohn, H.
1988-01-01
A scaling theory for the generalized deterministic Kardar-Parisi-Zhang (1986) equation with beta greater than 1, is developed to study the growth of a surface through deterministic local rules. A one-dimensional surface model corresponding to beta = 1 is presented and solved exactly. The model can be studied as a limiting case of ballistic deposition, or as the deterministic limit of the Eden (1961) model. The scaling exponents, the correlation functions, and the skewness of the surface are determined. The results are compared with those of Burgers' (1974) equation for the case of beta = 2.
On the secure obfuscation of deterministic finite automata.
Anderson, William Erik
2008-06-01
In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.
Deterministic noiseless amplification of coherent states
NASA Astrophysics Data System (ADS)
Hu, Meng-Jun; Zhang, Yong-Sheng
2015-08-01
A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification as quantum state transformation, we show that deterministic noiseless amplification of coherent states chosen from a proper set is attainable. The relation between input coherent states and gain of amplification for deterministic noiseless amplification is thus derived. Furthermore, we extend our result to more general situation and show that deterministic noiseless amplification of Gaussian states is also possible. As an example of application, we find that our amplification model can obtain better performance in homodyne detection to measure the phase of state selected from a certain set. Besides, other possible applications are also discussed.
MATLAB toolbox for functional connectivity.
Zhou, Dongli; Thompson, Wesley K; Siegle, Greg
2009-10-01
The term "functional connectivity" is used to denote correlations in activation among spatially-distinct brain regions, either in a resting state or when processing external stimuli. Functional connectivity has been extensively evaluated with several functional neuroimaging methods, particularly PET and fMRI. Yet these relationships have been quantified using very different measures and the extent to which they index the same constructs is unclear. We have implemented a variety of these functional connectivity measures in a new freely available MATLAB toolbox. These measures are categorized into two groups: whole time-series and trial-based approaches. We evaluate these measures via simulations with different patterns of functional connectivity and provide recommendations for their use. We also apply these measures to a previously published fMRI data set (Siegle, G.J., Thompson, W., Carter, C.S., Steinhauer, S.R., Thase, M.E., 2007. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 610 (2), 198-209) in which activity in dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (DLPFC) was evaluated in 32 control subjects during a digit sorting task. Though all implemented measures demonstrate functional connectivity between dACC and DLPFC activity during event-related tasks, different participants appeared to display qualitatively different relationships.
Remarks on parallel computations in MATLAB environment
NASA Astrophysics Data System (ADS)
Opalska, Katarzyna; Opalski, Leszek
2013-10-01
The paper attempts to summarize author's investigation of parallel computation capability of MATLAB environment in solving large ordinary differential equations (ODEs). Two MATLAB versions were tested and two parallelization techniques: one used multiple processors-cores, the other - CUDA compatible Graphics Processing Units (GPUs). A set of parameterized test problems was specially designed to expose different capabilities/limitations of the different variants of the parallel computation environment tested. Presented results illustrate clearly the superiority of the newer MATLAB version and, elapsed time advantage of GPU-parallelized computations for large dimensionality problems over the multiple processor-cores (with speed-up factor strongly dependent on the problem structure).
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Nuutinen, Mikko; Virtanen, Toni; Rummukainen, Olli; Häkkinen, Jukka
2016-03-01
This article presents VQone, a graphical experiment builder, written as a MATLAB toolbox, developed for image and video quality ratings. VQone contains the main elements needed for the subjective image and video quality rating process. This includes building and conducting experiments and data analysis. All functions can be controlled through graphical user interfaces. The experiment builder includes many standardized image and video quality rating methods. Moreover, it enables the creation of new methods or modified versions from standard methods. VQone is distributed free of charge under the terms of the GNU general public license and allows code modifications to be made so that the program's functions can be adjusted according to a user's requirements. VQone is available for download from the project page (http://www.helsinki.fi/psychology/groups/visualcognition/).
Deterministic transfer function for transionospheric propagation
Roussel-Dupre, R.; Argo, P.
1992-01-01
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25--175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = {omega}{sub pe}{sup 2}/{omega}{sup 2} where X is assumed to be small compared to one, {omega}{sub pe} is the peak plasma frequency of the ionosphere, and {omega} is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to ,venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
Deterministic transfer function for transionospheric propagation
Roussel-Dupre, R.; Argo, P.
1992-09-01
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25--175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = {omega}{sub pe}{sup 2}/{omega}{sup 2} where X is assumed to be small compared to one, {omega}{sub pe} is the peak plasma frequency of the ionosphere, and {omega} is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to ,venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
MOCCASIN: converting MATLAB ODE models to SBML.
Gómez, Harold F; Hucka, Michael; Keating, Sarah M; Nudelman, German; Iber, Dagmar; Sealfon, Stuart C
2016-06-15
MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging-especially for legacy models not written with translation in mind. We developed MOCCASIN (Model ODE Converter for Creating Automated SBML INteroperability) to help. MOCCASIN can convert ODE-based MATLAB models of biochemical reaction networks into the SBML format. MOCCASIN is available under the terms of the LGPL 2.1 license (http://www.gnu.org/licenses/lgpl-2.1.html). Source code, binaries and test cases can be freely obtained from https://github.com/sbmlteam/moccasin : mhucka@caltech.edu More information is available at https://github.com/sbmlteam/moccasin. © The Author 2016. Published by Oxford University Press.
Deterministic sensitivity analysis for first-order Monte Carlo simulations: a technical note.
Geisler, Benjamin P; Siebert, Uwe; Gazelle, G Scott; Cohen, David J; Göhler, Alexander
2009-01-01
Monte Carlo microsimulations have gained increasing popularity in decision-analytic modeling because they can incorporate discrete events. Although deterministic sensitivity analyses are essential for interpretation of results, it remains difficult to combine these alongside Monte Carlo simulations in standard modeling packages without enormous time investment. Our purpose was to facilitate one-way deterministic sensitivity analysis of TreeAge Markov state-transition models requiring first-order Monte Carlo simulations. Using TreeAge Pro Suite 2007 and Microsoft Visual Basic for EXCEL, we constructed a generic script that enables one to perform automated deterministic one-way sensitivity analyses in EXCEL employing microsimulation models. In addition, we constructed a generic EXCEL-worksheet that allows for use of the script with little programming knowledge. Linking TreeAge Pro Suite 2007 and Visual Basic enables the performance of deterministic sensitivity analyses of first-order Monte Carlo simulations. There are other potentially interesting applications for automated analysis.
NASA Technical Reports Server (NTRS)
Barbieri, Enrique
2005-01-01
The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two
A Collection of Nonlinear Aircraft Simulations in MATLAB
NASA Technical Reports Server (NTRS)
Garza, Frederico R.; Morelli, Eugene A.
2003-01-01
Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
SUNDIALSTB, a MATLAB Interface to SUNDIALS
Serban, R
2005-05-09
SUNDIALS [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis capabilities. SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers. The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the various user-callable functions for that solver. However, this MEX file should not be called directly, but rather through the user-callable functions provided for each MATLAB interface. A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible, equally familiar to users of both the SUNDIALS codes and MATLAB. Moreover, we tried to keep the number of user-callable functions to a minimum. For example, the CVODES MATLAB interface contains only 9 such functions, 3 of which interface solely to the adjoint sensitivity module in CVODES. In tune with the MATLAB ODESET function, optional solver inputs in SUNDIALSTB are specified through a single function (CvodeSetOptions for CVODES). However, unlike the ODE solvers in MATLAB, we have kept the more flexible SUNDIALS model in which a separate ''solve'' function (CVodeSolve for CVODES) must be called to return the solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and solution derivatives at additional times) can be obtained at any time with calls to separate functions (CVodeGetStats and CVodeGet for CVODES). This document provides a complete documentation for the SUNDIALSTB functions. For additional details on the methods and underlying SUNDIALS software consult also the corresponding SUNDIALS user guides [3, 1].
A Compilation of MATLAB Scripts and Functions for MACGMC Analyses
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Bednarcyk, Brett A.; Mital, Subodh K.
2017-01-01
The primary aim of the current effort is to provide scripts that automate many of the repetitive pre- and post-processing tasks associated with composite materials analyses using the Micromechanics Analysis Code with the Generalized Method of Cells. This document consists of a compilation of hundreds of scripts that were developed in MATLAB (The Mathworks, Inc., Natick, MA) programming language and consolidated into 16 MATLAB functions. (MACGMC). MACGMC is a composite material and laminate analysis software code developed at NASA Glenn Research Center. The software package has been built around the generalized method of cells (GMC) family of micromechanics theories. The computer code is developed with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated to increase the user friendliness, as well as to make it more robust in terms of input preparation and code execution. Finally, classical lamination theory has been implemented within the software, wherein GMC is used to model the composite material response of each ply. Thus, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. The pre-processing tasks include generation of a multitude of different repeating unit cells (RUCs) for CMCs and PMCs, visualization of RUCs from MACGMC input and output files and generation of the RUC section of a MACGMC input file. The post-processing tasks include visualization of the predicted composite response, such as local stress and strain contours, damage initiation and progression, stress-strain behavior, and fatigue response. In addition to the above, several miscellaneous scripts have been developed that can be used to perform repeated Monte-Carlo simulations to enable probabilistic
Optimal partial deterministic quantum teleportation of qubits
Mista, Ladislav Jr.; Filip, Radim
2005-02-01
We propose a protocol implementing optimal partial deterministic quantum teleportation for qubits. This is a teleportation scheme realizing deterministically an optimal 1{yields}2 asymmetric universal cloning where one imperfect copy of the input state emerges at the sender's station while the other copy emerges at receiver's possibly distant station. The optimality means that the fidelities of the copies saturate the asymmetric cloning inequality. The performance of the protocol relies on the partial deterministic nondemolition Bell measurement that allows us to continuously control the flow of information among the outgoing qubits. We also demonstrate that the measurement is optimal two-qubit operation in the sense of the trade-off between the state disturbance and the information gain.
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Deterministic Remote State Preparation via the χ State
NASA Astrophysics Data System (ADS)
Zhang, Pei; Li, Xian; Ma, Song-Ya; Qu, Zhi-Guo
2017-05-01
Two deterministic schemes using the χ state as the entangled channel are put forward to realize the remote preparation of arbitrary two- and three-qubit states. To design the schemes, we construct sets of ingenious measurement bases, which have no restrictions on the coefficients of the prepared state. At variance with the existing schemes via the χ state, the success probabilities of the proposed schemes are greatly improved. Supported by the National Natural Science Foundation of China under Grant Nos. 61201253, 61373131, 61572246, Priority Academic Program Development of Jiangsu Higher Education Institutions, and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
Decline in maternal mortality in Matlab, Bangladesh: a cautionary tale.
Ronsmans, C; Vanneste, A M; Chakraborty, J; van Ginneken, J
This study examines the impact of the Maternal-Child Health and Family Planning (MCH-FP) program in the Matlab, Bangladesh. Data were obtained from the Matlab surveillance system for treatment and comparison areas. This study reports the trends in maternal mortality since 1976. The MCH-FP area received extensive services in health and family planning since 1977. Services included trained traditional birth attendants and essential obstetric care from government district hospitals and a large number of private clinics. Geographic ease of access to essential obstetric care varied across the study area. Access was most difficult in the northern sector of the MCH-FP area. Contraception was made available through family welfare centers. Tetanus immunization was introduced in 1979. Door-to-door contraceptive services were provided by 80 female community health workers on a twice-monthly basis. In 1987, a community-based maternity care program was added to existing MCH-FP services in the northern treatment area. The demographic surveillance system began collecting data in 1966. During 1976-93 there were 624 maternal deaths among women aged 15-44 years in Matlab (510/100,000 live births). 72.8% of deaths were due to direct obstetric causes: postpartum hemorrhage, induced abortion, eclampsia, dystocia, and postpartum sepsis. Maternal mortality declined in a fluctuating fashion in both treatment and comparison areas. Direct obstetric mortality declined at about 3% per year. After 1987, direct obstetric mortality declined in the north by almost 50%. After the 1990 program expansion in the south, maternal mortality declined, though not significantly, in the south. Maternal mortality declined in the south comparison area during 1987-89 and stabilized. The comparison area of the north showed no decline.
Case studies on optimization problems in MATLAB and COMSOL multiphysics by means of the livelink
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
LiveLink for COMSOL is a tool that integrates COMSOL Multiphysics with MATLAB to extend one's modeling with scripting programming in the MATLAB environment. It allows user to utilize the full power of MATLAB and its toolboxes in preprocessing, model manipulation, and post processing. At first, the head script launches COMSOL with MATLAB and defines initial value of all parameters, refers to the objective function J described in the objective function and creates and runs the defined optimization task. Once the task is launches, the COMSOL model is being called in the iteration loop (from MATLAB environment by use of API interface), changing defined optimization parameters so that the objective function is minimized, using fmincon function to find a local or global minimum of constrained linear or nonlinear multivariable function. Once the minimum is found, it returns exit flag, terminates optimization and returns the optimized values of the parameters. The cooperation with MATLAB via LiveLink enhances a powerful computational environment with complex multiphysics simulations. The paper will introduce using of the LiveLink for COMSOL for chosen case studies in the field of technical cybernetics and bioengineering.
Riedewald, Frank; Byrne, Edmond; Cronin, Kevin
2011-01-01
This work presents a deterministic and a stochastic model for the simulation of industrial-size deionized water and water for injection (DI/WFI) systems. The objective of the simulations is to determine if additional DI/WFI demand from future production processes can be supported by an existing DI/WFI system. The models utilize discrete event simulation to compute the demand profile from the distribution system; they also use a continuous simulation to calculate the variation of the water level in the storage tank. Whereas the deterministic model ignores uncertainties, the stochastic model allows for both volume and schedule uncertainties. The Monte Carlo method is applied to solve the stochastic method. This paper compares the deterministic and stochastic models and shows that the deterministic model may be suitable for most applications and that the stochastic model should only be used if found necessary by the deterministic simulation. The models are programmed within Excel 2003 and are available for download as open public domain software (1), allowing for public modifications and improvements of the model. The proposed models may also be utilized to determine size or analyze the performance of other utilities, such as heat transfer media, drinking water, etc. Water for injection (WFI) and other pharmaceutical water distribution systems are notoriously difficult to analyze analytically due to the highly dynamic variable demand that is drawn from these systems. Discrete event simulation may provide an answer where the typical engineering approach of utilizing a diversity factor fails. This paper develops an Excel based deterministic and stochastic model for a WFI system with the latter allowing for the modeling of offtake volume and schedule uncertainty. The paper also compares the deterministic and stochastic models and shows that the deterministic model may be suitable for most applications while the stochastic model should only be used if found necessary. The
SAR polar format implementation with MATLAB.
Martin, Grant D.; Doerry, Armin Walter
2005-11-01
Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.
Deterministic Quantization by Dynamical Boundary Conditions
Dolce, Donatello
2010-06-15
We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.
Application of MATLAB in optical alignment
NASA Astrophysics Data System (ADS)
Xiao, Shu; Tang, Yong
2008-03-01
The article has mainly introduced a new method in the process of adjusting the average windward area measuring system of cannonball fragment with the aid of MATLAB. The method can not only analyze the amount of deviation qualitatively but also quantitatively, comparing with the traditional method which just can be used for qualitative analyzing. When the measuring system works, four optical axes of CCD cameras should aim at the center point of the universal platform strictly with different object distances and image distances. In the process of assembling and debugging the system, analyzing the image acquired with MATLAB to get the amount of deviation which can be used as gist.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability
Supports of invariant measures for piecewise deterministic Markov processes
NASA Astrophysics Data System (ADS)
Benaïm, M.; Colonius, F.; Lettau, R.
2017-09-01
For a class of piecewise deterministic Markov processes, the supports of the invariant measures are characterized. This is based on the analysis of controllability properties of an associated deterministic control system. Its invariant control sets determine the supports.
Parallel calculations on shared memory, NUMA-based computers using MATLAB
NASA Astrophysics Data System (ADS)
Krotkiewski, Marcin; Dabrowski, Marcin
2014-05-01
Achieving satisfactory computational performance in numerical simulations on modern computer architectures can be a complex task. Multi-core design makes it necessary to parallelize the code. Efficient parallelization on NUMA (Non-Uniform Memory Access) shared memory architectures necessitates explicit placement of the data in the memory close to the CPU that uses it. In addition, using more than 8 CPUs (~100 cores) requires a cluster solution of interconnected nodes, which involves (expensive) communication between the processors. It takes significant effort to overcome these challenges even when programming in low-level languages, which give the programmer full control over data placement and work distribution. Instead, many modelers use high-level tools such as MATLAB, which severely limit the optimization/tuning options available. Nonetheless, the advantage of programming simplicity and a large available code base can tip the scale in favor of MATLAB. We investigate whether MATLAB can be used for efficient, parallel computations on modern shared memory architectures. A common approach to performance optimization of MATLAB programs is to identify a bottleneck and migrate the corresponding code block to a MEX file implemented in, e.g. C. Instead, we aim at achieving a scalable parallel performance of MATLABs core functionality. Some of the MATLABs internal functions (e.g., bsxfun, sort, BLAS3, operations on vectors) are multi-threaded. Achieving high parallel efficiency of those may potentially improve the performance of significant portion of MATLABs code base. Since we do not have MATLABs source code, our performance tuning relies on the tools provided by the operating system alone. Most importantly, we use custom memory allocation routines, thread to CPU binding, and memory page migration. The performance tests are carried out on multi-socket shared memory systems (2- and 4-way Intel-based computers), as well as a Distributed Shared Memory machine with 96 CPU
Deterministic nanoparticle assemblies: from substrate to solution
NASA Astrophysics Data System (ADS)
Barcelo, Steven J.; Kim, Ansoon; Gibson, Gary A.; Norris, Kate J.; Yamakawa, Mineo; Li, Zhiyong
2014-04-01
The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process.
Master equation analysis of deterministic chemical chaos
NASA Astrophysics Data System (ADS)
Wang, Hongli; Li, Qianshu
1998-05-01
The underlying microscopic dynamics of deterministic chemical chaos was investigated in this paper. We analyzed the master equation for the Williamowski-Rössler model by direct stochastic simulation as well as in the generating function representation. Simulation within an ensemble revealed that in the chaotic regime the deterministic mass action kinetics is related neither to the ensemble mean nor to the most probable value within the ensemble. Cumulant expansion analysis of the master equation also showed that the molecular fluctuations do not admit bounded values but increase linearly in time infinitely, indicating the meaninglessness of the chaotic trajectories predicted by the phenomenological equations. These results proposed that the macroscopic description is no longer useful in the chaotic regime and a more microscopic description is necessary in this circumstance.
Deterministic nanoassembly: Neutral or plasma route?
NASA Astrophysics Data System (ADS)
Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.
2006-07-01
It is shown that, owing to selective delivery of ionic and neutral building blocks directly from the ionized gas phase and via surface migration, plasma environments offer a better deal of deterministic synthesis of ordered nanoassemblies compared to thermal chemical vapor deposition. The results of hybrid Monte Carlo (gas phase) and adatom self-organization (surface) simulation suggest that higher aspect ratios and better size and pattern uniformity of carbon nanotip microemitters can be achieved via the plasma route.
Deterministic linear optical quantum Toffoli gate
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-09-01
Quantum Toffoli gate is a crucial part of many quantum information processing schemes. We design a deterministic linear optical quantum Toffoli gate using three degrees of freedom of a single photon. The proposed setup does not require any ancilla photons and is experimentally feasible with current technology. Moreover, we show that our setup can be directly used to demonstrate that hypergraph states violate local realism in an extreme manner.
Nonlinear neural network for deterministic scheduling
Gulati, S.; Iyengar, S.S.; Toomarian, N.; Protopopescu, V.; Barhen, J.
1988-01-01
This paper addresses the NP-complete, deterministic scheduling problem for a single server system. Given a set of n tasks along with the precedence-constraints among them, their timing requirements, setup costs and their completion deadlines, a neuromorphic model is used to construct a non-preemptive optimal processing schedule such that the total completion time, total tarediness and the number of tardy jobs is minimized. This model exhibits faster convergence than techniques based on gradient projection methods.
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d < 2κ. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. Lastly, this is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d < 2κ. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. Lastly, this is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
ACCELERATORS: A GUI tool for beta function measurement using MATLAB
NASA Astrophysics Data System (ADS)
Chen, Guang-Ling; Tian, Shun-Qiang; Jiang, Bo-Cheng; Liu, Gui-Min
2009-04-01
The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10.
MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Modelling of Photovoltaic Module Using Matlab Simulink
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Ajisman; Razlan Yusoff, Ahmad
2016-02-01
Photovoltaic (PV) module consists of numbers of photovoltaic cells that are connected in series and parallel used to generate electricity from solar energy. The characteristics of PV module are different based on the model and environment factors. In this paper, simulation of photovoltaic module using Matlab Simulink approach is presented. The method is used to determine the characteristics of PV module in various conditions especially in different level of irradiations and temperature. By having different values of irradiations and temperature, the results showed the output power, voltage and current of PV module can be determined. In addition, all results from Matlab Simulink are verified with theoretical calculation. This proposed model helps in better understanding of PV module characteristics in various environment conditions.
Matlab as a robust control design tool
NASA Technical Reports Server (NTRS)
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Automated Microarray Image Analysis Toolbox for MATLAB
White, Amanda M.; Daly, Don S.; Willse, Alan R.; Protic, Miroslava; Chandler, Darrell P.
2005-09-01
The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.
MATLAB/Simulink analytic radar modeling environment
NASA Astrophysics Data System (ADS)
Esken, Bruce L.; Clayton, Brian L.
2001-09-01
Analytic radar models are simulations based on abstract representations of the radar, the RF environment that radar signals are propagated, and the reflections produced by targets, clutter and multipath. These models have traditionally been developed in FORTRAN and have evolved over the last 20 years into efficient and well-accepted codes. However, current models are limited in two primary areas. First, by the nature of algorithm based analytical models, they can be difficult to understand by non-programmers and equally difficult to modify or extend. Second, there is strong interest in re-using these models to support higher-level weapon system and mission level simulations. To address these issues, a model development approach has been demonstrated which utilizes the MATLAB/Simulink graphical development environment. Because the MATLAB/Simulink environment graphically represents model algorithms - thus providing visibility into the model - algorithms can be easily analyzed and modified by engineers and analysts with limited software skills. In addition, software tools have been created that provide for the automatic code generation of C++ objects. These objects are created with well-defined interfaces enabling them to be used by modeling architectures external to the MATLAB/Simulink environment. The approach utilized is generic and can be extended to other engineering fields.
Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology.
Schmidt, Henning; Jirstrand, Mats
2006-02-15
We present a Systems Biology Toolbox for the widely used general purpose mathematical software MATLAB. The toolbox offers systems biologists an open and extensible environment, in which to explore ideas, prototype and share new algorithms, and build applications for the analysis and simulation of biological and biochemical systems. Additionally it is well suited for educational purposes. The toolbox supports the Systems Biology Markup Language (SBML) by providing an interface for import and export of SBML models. In this way the toolbox connects nicely to other SBML-enabled modelling packages. Models are represented in an internal model format and can be described either by entering ordinary differential equations or, more intuitively, by entering biochemical reaction equations. The toolbox contains a large number of analysis methods, such as deterministic and stochastic simulation, parameter estimation, network identification, parameter sensitivity analysis and bifurcation analysis.
Deterministic convergence in iterative phase shifting
Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel
2009-03-10
Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.
Deterministic Folding in Stiff Elastic Membranes
NASA Astrophysics Data System (ADS)
Tallinen, T.; Åström, J. A.; Timonen, J.
2008-09-01
Crumpled membranes have been found to be characterized by complex patterns of spatially seemingly random facets separated by narrow ridges of high elastic energy. We demonstrate by numerical simulations that compression of stiff elastic membranes with small randomness in their initial configurations leads to either random ridge configurations (high entropy) or nearly deterministic folds (low elastic energy). For folding with symmetric ridge configurations to appear in part of the crumpling processes, the crumpling rate must be slow enough. Folding stops when the thickness of the folded structure becomes important, and crumpling continues thereafter as a random process.
Diffusion in Deterministic Interacting Lattice Systems
NASA Astrophysics Data System (ADS)
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
Phase Space Transition States for Deterministic Thermostats
NASA Astrophysics Data System (ADS)
Ezra, Gregory; Wiggins, Stephen
2009-03-01
We describe the relation between the phase space structure of Hamiltonian and non-Hamiltonian deterministic thermostats. We show that phase space structures governing reaction dynamics in Hamiltonian systems, such as the transition state, map to the same type of phase space structures for the non-Hamiltonian isokinetic equations of motion for the thermostatted Hamiltonian. Our results establish a general theoretical framework for analyzing thermostat dynamics using concepts and methods developed in reaction rate theory. Numerical results are presented for the isokinetic thermostat.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
YALINA analytical benchmark analyses using the deterministic ERANOS code system.
Gohar, Y.; Aliberti, G.; Nuclear Engineering Division
2009-08-31
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.
Verifying Safety Properties Using Non-Deterministic Infinite-State Automata
1989-09-08
automata [18]. Sistla proved that the verifi- cation problem for unbounded non-deterministic automata is II -completeJ [15]. For languages over...restrain stuttering and allow time-bounded and unbounded stuttering when needed, we prefer these automata. Using a similar approach as in [1], Sistla ...Concurrent Programs by V-automata. Proc. Fourteenth Symp. on the Principles of Programming Languages, ACM, 1987, pp. 1-12. [15] Sistla , A.P. On Verifying
Deterministic prediction of surface wind speed variations
NASA Astrophysics Data System (ADS)
Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.
2014-11-01
Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.
Deterministic forward scatter from surface gravity waves.
Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale
2012-12-01
Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Application in DSP/FPGA design of Matlab/Simulink
NASA Astrophysics Data System (ADS)
Liu, Yong-mei; Guan, Yong; Zhang, Jie; Wu, Min-hua; Wu, Lin-wei
2012-12-01
As an off-line simulation tool, the modular modelling method of Matlab/Simulik has the features of high efficiency and visualization. In order to realize the fast design and the simulation of prototype systems, the new method of SignalWAVe/Simulink mix modelling is presented, and the Reed-Solomon codec encoder-decoder model is built. Reed-Solomon codec encoder-decoder model is simulated by Simulink. Farther, the C language program and model the. out executable file are created by SignalWAVe RTW Options module, which completes the hard ware co-simulation. The simulation result conforms to the theoretical analysis, thus it has proven the validity and the feasibility of this method.
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing.
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment. PMID:25101013
NASA Astrophysics Data System (ADS)
Wang, Fengyu
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch
Development and testing of a user-friendly Matlab interface for the JHU turbulence database system
NASA Astrophysics Data System (ADS)
Graham, Jason; Frederix, Edo; Meneveau, Charles
2011-11-01
One of the challenges that faces researchers today is the ability to store large scale data sets in a way that promotes easy access to the data and sharing among the research community. A public turbulence database cluster has been constructed in which 27 terabytes of a direct numerical simulation of isotropic turbulence is stored (Li et al., 2008, JoT). The public database provides researchers the ability to retrieve subsets of the spatiotemporal data remotely from a client machine anywhere over the internet. In addition to C and Fortran client interfaces, we now present a new Matlab interface based on Matlab's intrinsic SOAP functions. The Matlab interface provides the benefit of a high-level programming language with a plethora of intrinsic functions and toolboxes. In this talk, we will discuss several aspects of the Matlab interface including its development, optimization, usage, and application to the isotropic turbulence data. We will demonstrate several examples (visualizations, statistical analysis, etc) which illustrate the tool. Supported by NSF (CDI-II, CMMI-0941530) and Eindhoven University of Technology's Masters internship program.
Documentation generator for VHDL and MatLab source codes for photonic and electronic systems
NASA Astrophysics Data System (ADS)
Niton, B.; Pozniak, K. T.; Romaniuk, R. S.
2011-06-01
The UML, which is a complex system modeling and description technology, has recently been expanding its uses in the field of formalization and algorithmic approach to such systems like multiprocessor photonic, optoelectronic and advanced electronics carriers; distributed, multichannel measurement systems; optical networks, industrial electronics, novel R&D solutions. The paper describes a new concept of software dedicated for documenting the source codes written in VHDL and MatLab. The work starts with the analysis of available documentation generators for both programming languages, with an emphasis on the open source solutions. There are presented own solutions which base on the Doxygen program available as a free license with the source code. The supporting tools for parsers building were used like Bison and Flex. The documentation generator application is used for design of large optoelectronic and electronic measurement and control systems. The paper consists of three parts which describe the following components of the documentation generator for photonic and electronic systems: concept, MatLab application and VHDL application. This is part one which describes the system concept. Part two describes the MatLab application. MatLab is used for description of the measured phenomena. Part three describes the VHDL application. VHDL is used for behavioral description of the optoelectronic system. All the proposed approach and application documents big, complex software configurations for large systems.
Atmospheric Downscaling using Genetic Programming
NASA Astrophysics Data System (ADS)
Zerenner, Tanja; Venema, Victor; Simmer, Clemens
2013-04-01
Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and
Inductive voltage divider modeling in Matlab
NASA Astrophysics Data System (ADS)
Andreev, S. A.; Kim, V. L.
2017-01-01
Inductive voltage dividers have the most appropriate metrological characteristics on alternative current and are widely used for converting physical signals. The model of a double-decade inductive voltage divider was designed with the help of Matlab/Simulink. The first decade is an inductive voltage divider with balanced winding, the second decade is a single-stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The study shows errors and differences that appeared between the third degree reduced model and a twenty degree unreduced model. The obtained results of amplitude error differ no more than by 7 % between the reduced and unreduced model.
Deterministic and stochastic responses of nonlinear systems
NASA Astrophysics Data System (ADS)
Abou-Rayan, Ashraf Mohamed
The responses of nonlinear systems to both deterministic and stochastic excitations are discussed. For a single degree of freedom system, the response of a simply supported buckled beam to parametric excitations is investigated. Two types of excitations are examined: deterministic and random. For the nonlinear response to a harmonic axial load, the method of multiple scales is used to determine to second order the amplitude and phase modulation equations. Floquet theory is used to analyze the stability of periodic responses. The perturbation results are verified by integrating the governing equation using both digital and analog computers. For small excitation amplitudes, the analytical results are in good agreement with the numerical solutions. The large amplitude responses are investigated by using simulations on a digital computer and are compared with results obtained using an analog computer. For the stochastic response to a wide-band random excitation, the Gaussian and non-Gaussian closure schemes are used to determine the response statistics. The results are compared with those obtained from real-time analysis (analog-computer simulation). The normality assumption is examined. A comparison between the responses to deterministic and random excitation is presented. For two degree of freedom systems, two methods are used to study the response under the action of broad-band random excitations. The first method is applicable to systems having cubic nonlinearities. It involves an averaging approach to reduce the number of moment equations for the non-Gaussian closure scheme from 69 to 14 equations. The results are compared with those obtained from numerical integrations of the moment equations and the exact stationary solution of the Fokker-Planck-Komologorov equation. The second method is applicable to systems having quadratic and cubic nonlinearities. Stationary solutions of the moment equations are determined and their stability is ascertained by examining the
Deterministic Earthquake Hazard Assessment by Public Agencies in California
NASA Astrophysics Data System (ADS)
Mualchin, L.
2005-12-01
Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.
Deterministic approaches to coherent diffractive imaging
NASA Astrophysics Data System (ADS)
Allen, L. J.; D'Alfonso, A. J.; Martin, A. V.; Morgan, A. J.; Quiney, H. M.
2016-01-01
In this review we will consider the retrieval of the wave at the exit surface of an object illuminated by a coherent probe from one or more measured diffraction patterns. These patterns may be taken in the near-field (often referred to as images) or in the far field (the Fraunhofer diffraction pattern, where the wave is the Fourier transform of that at the exit surface). The retrieval of the exit surface wave from such data is an inverse scattering problem. This inverse problem has historically been solved using nonlinear iterative methods, which suffer from convergence and uniqueness issues. Here we review deterministic approaches to obtaining the exit surface wave which ameliorate those problems.
Deterministic phase slips in mesoscopic superconducting rings
Petković, Ivana; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-11-24
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter’s free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. Furthermore, we also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
Deterministic polishing from theory to practice
NASA Astrophysics Data System (ADS)
Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary
2015-10-01
Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael
1991-01-01
The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Deterministic remote preparation via the Brown state
NASA Astrophysics Data System (ADS)
Ma, Song-Ya; Gao, Cong; Zhang, Pei; Qu, Zhi-Guo
2017-04-01
We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.
Deterministic phase slips in mesoscopic superconducting rings
NASA Astrophysics Data System (ADS)
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-11-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
Deterministic phase slips in mesoscopic superconducting rings
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-01-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924
Block variables for deterministic aperiodic sequences
NASA Astrophysics Data System (ADS)
Hörnquist, Michael
1997-10-01
We use the concept of block variables to obtain a measure of order/disorder for some one-dimensional deterministic aperiodic sequences. For the Thue - Morse sequence, the Rudin - Shapiro sequence and the period-doubling sequence it is possible to obtain analytical expressions in the limit of infinite sequences. For the Fibonacci sequence, we present some analytical results which can be supported by numerical arguments. It turns out that the block variables show a wide range of different behaviour, some of them indicating that some of the considered sequences are more `random' than other. However, the method does not give any definite answer to the question of which sequence is more disordered than the other and, in this sense, the results obtained are negative. We compare this with some other ways of measuring the amount of order/disorder in such systems, and there seems to be no direct correspondence between the measures.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation
Four Forms of the Fourier Transform - for Freshmen, using Matlab
NASA Astrophysics Data System (ADS)
Simons, F. J.; Maloof, A. C.
2016-12-01
In 2015, a Fall "Freshman Seminar" at Princeton University (http://geoweb.princeton.edu/people/simons/FRS-SESC.html) taught students to combine field observations of the natural world with quantitative modeling and interpretation, to answer questions like: "How have Earth and human histories been recorded in the geology of Princeton, the Catskills, France and Spain?" (where we took the students on a data-gathering field trip during Fall Break), and "What experiments and analysis can a first-year (possibly non-future-major) do to query such archives of the past?" In the classroom, through problem sets, and around campus, students gained practical experience collecting geological and geophysical data in a geographic context, and analyzing these data using statistical techniques such as regression, time-series and image analysis, with the programming language Matlab. In this presentation I will detail how we instilled basic Matlab skills for quantitative geoscience data analysis through a 6-week progression of topics and exercises. In the 6 weeks after the Fall Break trip, we strengthened these competencies to make our students fully proficient for further learning, as evidenced by their end-of-term independent research work.The particular case study is focused on introducing power-spectral analysis to Freshmen, in a way that even the least quantitative among them could functionally understand. Not counting (0) "inspection", the four ways by which we have successfully instilled the concept of power-spectral analysis in a hands-on fashion are (1) "correlation", (2) "inversion", (3) "stacking", and formal (4) "Fourier transformation". These four provide the main "mappings". Along the way, of course, we also make sure that the students understand that "power-spectral density estimation" is not the same as "Fourier transformation", nor that every Fourier transform has to be "Fast". Hence, concepts from analysis-of-variance techniques, regression, and hypothesis testing
MBEToolbox: a MATLAB toolbox for sequence data analysis in molecular biology and evolution.
Cai, James J; Smith, David K; Xia, Xuhua; Yuen, Kwok-Yung
2005-03-22
MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454
Deterministic-statistical analysis of a structural-acoustic system
NASA Astrophysics Data System (ADS)
Wang, Xu
2011-09-01
The purpose of this paper is to develop an efficient approach for vibro-acoustic analysis. Being simple and representative, an exited plate-acoustic system is selected as a validation case for the vibro-acoustic analysis as the system presents one two-dimensional statistical component (modal dense structure panel—plate) connected to the other component (deterministic acoustic volume—cavity) through the area junction over a surface domain, rather than at a line boundary. Potential industrial applications of the system vibro-acoustic analysis would be in acoustic modelling of vehicle body panels such as the cabin roof panel, and door panels for the boom noise analysis. A new deterministic-statistical analysis approach is proposed from a combination or hybrid of deterministic analysis and statistical energy analysis (SEA) approaches. General theory of the new deterministic-statistical analysis approach is introduced. The main advantage of the new deterministic-statistical analysis approach is its possibility in place of the time consuming Monte Carlo simulation. In order to illustrate and validate the new deterministic-statistical analysis approach, three approaches of the deterministic analysis, the statistical energy analysis and the new deterministic-statistical analysis are then applied to conduct the plate-acoustic system modelling, and their results will be compared. The vibro-acoustic energy coupling characteristic of the plate-acoustic system will be studied. The most suitable frequency range for the new approach will be identified in consideration of computational accuracy, information and speed.
Non-Deterministic Context and Aspect Choice in Russian.
ERIC Educational Resources Information Center
Koubourlis, Demetrius J.
In any given context, a Russian verb form may be either perfective or imperfective. Perfective aspect signals the completion or result of an action, whereas imperfective does not. Aspect choice is a function of context, and two types of context are distinguished: deterministic and non-deterministic. This paper is part of a larger study whose aim…
Aging in Subdiffusion Generated by a Deterministic Dynamical System
NASA Astrophysics Data System (ADS)
Barkai, Eli
2003-03-01
We investigate aging behavior in a simple dynamical system: a nonlinear map which generates subdiffusion deterministically. Asymptotic behaviors of the diffusion process are described using aging continuous time random walks. We show how these processes are described by an aging diffusion equation which is of fractional order. Our work demonstrates that aging behavior can be found in deterministic low dimensional dynamical systems.
Use of deterministic models in sports and exercise biomechanics research.
Chow, John W; Knudson, Duane V
2011-09-01
A deterministic model is a modeling paradigm that determines the relationships between a movement outcome measure and the biomechanical factors that produce such a measure. This review provides an overview of the use of deterministic models in biomechanics research, a historical summary of this research, and an analysis of the advantages and disadvantages of using deterministic models. The deterministic model approach has been utilized in technique analysis over the last three decades, especially in swimming, athletics field events, and gymnastics. In addition to their applications in sports and exercise biomechanics, deterministic models have been applied successfully in research on selected motor skills. The advantage of the deterministic model approach is that it helps to avoid selecting performance or injury variables arbitrarily and to provide the necessary theoretical basis for examining the relative importance of various factors that influence the outcome of a movement task. Several disadvantages of deterministic models, such as the use of subjective measures for the performance outcome, were discussed. It is recommended that exercise and sports biomechanics scholars should consider using deterministic models to help identify meaningful dependent variables in their studies.
Optimal Deterministic Ring Exploration with Oblivious Asynchronous Robots
NASA Astrophysics Data System (ADS)
Lamani, Anissa; Potop-Butucaru, Maria Gradinariu; Tixeuil, Sébastien
We consider the problem of exploring an anonymous unoriented ring of size n by k identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that k must not divide n for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size n is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots, and that five robots are sufficient for any n that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal.
Object-oriented Matlab adaptive optics toolbox
NASA Astrophysics Data System (ADS)
Conan, R.; Correia, C.
2014-08-01
Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.
Nonstationary discrete-time deterministic and stochastic control systems with infinite horizon
NASA Astrophysics Data System (ADS)
Guo, Xianping; Hernández-del-Valle, Adrián; Hernández-Lerma, Onésimo
2010-09-01
This article is about nonstationary nonlinear discrete-time deterministic and stochastic control systems with Borel state and control spaces, possibly noncompact control constraint sets, and unbounded costs. The control problem is to minimise an infinite-horizon total cost performance index. Using dynamic programming arguments we show that, under suitable assumptions, the optimal cost functions satisfy optimality equations, which in turn give a procedure to find optimal control policies.
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.
Flexible missile autopilot design studies with PC-MATLAB/386
NASA Technical Reports Server (NTRS)
Ruth, Michael J.
1989-01-01
Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.
Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.
Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N
2009-10-27
The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a
Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB
Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N
2009-01-01
Background The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. Results We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime
Deterministic phase slips in mesoscopic superconducting rings
Petković, Ivana; Lollo, A.; Glazman, L. I.; ...
2016-11-24
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter’s free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. Furthermore, we also demonstrate thatmore » phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.« less
Deterministically Driven Avalanche Models of Solar Flares
NASA Astrophysics Data System (ADS)
Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian
2014-08-01
We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.
Quality control in a deterministic manufacturing environment
Barkman, W.E.; Babelay, E.F.; De Mint, P.D.; Lewis, J.C.; Woodard, L.M.
1985-01-24
An approach for establishing quality control in processes which exhibit undesired continual or intermittent excursions in key process parameters is discussed. The method is called deterministic manufacturing, and it is designed to employ automatic monitoring of the key process variables for process certification, but utilizes only sample certification of the process output to verify the validity of the measurement process. The system utilizes a local minicomputer to sample the appropriate process parameters that describe the condition of the machine tool, the cutting process, and the computer numerical control system. Sampled data are pre-processed by the minicomputer and then sent to a host computer that maintains a permanent data base describing the manufacturing conditions for each work piece. Parts are accepted if the various parameters remain within the required limits during the machining cycle. The need for additional actions is flagged if limits are exceeded. With this system it is possible to retrospectively examine the process status just prior to the occurrence of a problem. (LEW)
Analysis of pinching in deterministic particle separation
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German
2011-11-01
We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.
A MATLAB GUI based algorithm for modelling Magnetotelluric data
NASA Astrophysics Data System (ADS)
Timur, Emre; Onsen, Funda
2016-04-01
The magnetotelluric method is an electromagnetic survey technique that images the electrical resistivity distribution of layers in subsurface depths. Magnetotelluric method measures simultaneously total electromagnetic field components such as both time-varying magnetic field B(t) and induced electric field E(t). At the same time, forward modeling of magnetotelluric method is so beneficial for survey planning purpose, for comprehending the method, especially for students, and as part of an iteration process in inverting measured data. The MTINV program can be used to model and to interpret geophysical electromagnetic (EM) magnetotelluric (MT) measurements using a horizontally layered earth model. This program uses either the apparent resistivity and phase components of the MT data together or the apparent resistivity data alone. Parameter optimization, which is based on linearized inversion method, can be utilized in 1D interpretations. In this study, a new MATLAB GUI based algorithm has been written for the 1D-forward modeling of magnetotelluric response function for multiple layers to use in educational studies. The code also includes an automatic Gaussian noise option for a demanded ratio value. Numerous applications were carried out and presented for 2,3 and 4 layer models and obtained theoretical data were interpreted using MTINV, in order to evaluate the initial parameters and effect of noise. Keywords: Education, Forward Modelling, Inverse Modelling, Magnetotelluric
Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities
Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.
2012-03-29
A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TN; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2011-05-17
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Surface plasmon field enhancements in deterministic aperiodic structures.
Shugayev, Roman
2010-11-22
In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.
Deterministic phase retrieval employing spherical illumination
NASA Astrophysics Data System (ADS)
Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.
2015-05-01
Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.
Reproducible and deterministic production of aspheres
NASA Astrophysics Data System (ADS)
Leitz, Ernst Michael; Stroh, Carsten; Schwalb, Fabian
2015-10-01
Aspheric lenses are ground in a single point cutting mode. Subsequently different iterative polishing methods are applied followed by aberration measurements on external metrology instruments. For an economical production, metrology and correction steps need to be reduced. More deterministic grinding and polishing is mandatory. Single point grinding is a path-controlled process. The quality of a ground asphere is mainly influenced by the accuracy of the machine. Machine improvements must focus on path accuracy and thermal expansion. Optimized design, materials and thermal management reduce thermal expansion. The path accuracy can be improved using ISO 230-2 standardized measurements. Repeated interferometric measurements over the total travel of all CNC axes in both directions are recorded. Position deviations evaluated in correction tables improve the path accuracy and that of the ground surface. Aspheric polishing using a sub-aperture flexible polishing tool is a dwell time controlled process. For plano and spherical polishing the amount of material removal during polishing is proportional to pressure, relative velocity and time (Preston). For the use of flexible tools on aspheres or freeform surfaces additional non-linear components are necessary. Satisloh ADAPT calculates a predicted removal function from lens geometry, tool geometry and process parameters with FEM. Additionally the tooĺs local removal characteristics is determined in a simple test. By oscillating the tool on a plano or spherical sample of the same lens material, a trench is created. Its 3-D profile is measured to calibrate the removal simulation. Remaining aberrations of the desired lens shape can be predicted, reducing iteration and metrology steps.
Understanding Vertical Jump Potentiation: A Deterministic Model.
Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L
2016-06-01
This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength.
ZERODUR: deterministic approach for strength design
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two
Deterministic versus stochastic trends: Detection and challenges
NASA Astrophysics Data System (ADS)
Fatichi, S.; Barbosa, S. M.; Caporali, E.; Silva, M. E.
2009-09-01
The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's ρ tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Automated optimum design of wing structures. Deterministic and probabilistic approaches
NASA Technical Reports Server (NTRS)
Rao, S. S.
1982-01-01
The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.
A working memory test battery for MATLAB.
Lewandowsky, Stephan; Oberauer, Klaus; Yang, Lee-Xieng; Ecker, Ullrich K H
2010-05-01
We present a battery of four working memory tasks that are implemented using MATLAB and the free Psychophysics Toolbox. The package includes preprocessing scripts in R and SPSS to facilitate data analysis. The four tasks consist of a sentence-span task, an operation-span task, a spatial short-term memory test, and a memory updating task. These tasks were chosen in order to provide a heterogeneous set of measures of working memory capacity, thus reducing method variance and tapping into two content domains of working memory (verbal, including numerical, vs. spatial) and two of its functional aspects (storage in the context of processing and relational integration). The task battery was validated in three experiments conducted in two languages (English and Chinese), involving more than 350 participants. In all cases, the tasks were found to load on a single latent variable. In a further experiment, the latent working memory variable was found to correlate highly but not perfectly with performance on Raven's matrices test of fluid intelligence. We suggest that the battery constitutes a versatile tool to assess working memory capacity with either English- or Chinese-speaking participants. The battery can be downloaded from www.cogsciwa.com ("Software" button).
Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments
Herrera, Higmar
2006-09-08
This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments.
Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.
Nasiłowski, Krzysztof; Awrejcewicz, Jan; Lewandowski, Donat
2014-01-01
A paralyzed and not fully functional part of human body can be supported by the properly designed exoskeleton system with motoric abilities. It can help in rehabilitation, or movement of a disabled/paralyzed limb. Both suitably selected geometry and specialized software are studied applying the MATLAB environment. A finger exoskeleton was the base for MATLAB/Simulink model. Specialized software, such as MATLAB/Simulink give us an opportunity to optimize calculation reaching precise results, which help in next steps of design process. The calculations carried out yield information regarding movement relation between three functionally connected actuators and showed distance and velocity changes during the whole simulation time.
A Parallel Controls Software Approach for PEP II: AIDA & Matlab Middle Layer
Wittmer, W.; Colocho, W.; White, G.; /SLAC
2007-11-06
The controls software in use at PEP II (Stanford Control Program - SCP) had originally been developed in the eighties. It is very successful in routine operation but due to its internal structure it is difficult and time consuming to extend its functionality. This is problematic during machine development and when solving operational issues. Routinely, data has to be exported from the system, analyzed offline, and calculated settings have to be reimported. Since this is a manual process, it is time consuming and error-prone. Setting up automated processes, as is done for MIA (Model Independent Analysis), is also time consuming and specific to each application. Recently, there has been a trend at light sources to use MATLAB as the platform to control accelerators using a 'MATLAB Middle Layer' (MML), and so called channel access (CA) programs to communicate with the low level control system (LLCS). This has proven very successful, especially during machine development time and trouble shooting. A special CA code, named AIDA (Accelerator Independent Data Access), was developed to handle the communication between MATLAB, modern software frameworks, and the SCP. The MML had to be adapted for implementation at PEP II. Colliders differ significantly in their designs compared to light sources, which poses a challenge. PEP II is the first collider at which this implementation is being done. We will report on this effort, which is still ongoing.
Arc_Mat: a Matlab-based spatial data analysis toolbox
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Lesage, James
2010-03-01
This article presents an overview of Arc_Mat, a Matlab-based spatial data analysis software package whose source code has been placed in the public domain. An earlier version of the Arc_Mat toolbox was developed to extract map polygon and database information from ESRI shapefiles and provide high quality mapping in the Matlab software environment. We discuss revisions to the toolbox that: utilize enhanced computing and graphing capabilities of more recent versions of Matlab, restructure the toolbox with object-oriented programming features, and provide more comprehensive functions for spatial data analysis. The Arc_Mat toolbox functionality includes basic choropleth mapping; exploratory spatial data analysis that provides exploratory views of spatial data through various graphs, for example, histogram, Moran scatterplot, three-dimensional scatterplot, density distribution plot, and parallel coordinate plots; and more formal spatial data modeling that draws on the extensive Spatial Econometrics Toolbox functions. A brief review of the design aspects of the revised Arc_Mat is described, and we provide some illustrative examples that highlight representative uses of the toolbox. Finally, we discuss programming with and customizing the Arc_Mat toolbox functionalities.
OPTICON: Pro-Matlab software for large order controlled structure design
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1989-01-01
A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.
OPTICON: Pro-Matlab software for large order controlled structure design
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1989-01-01
A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TN; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2011-08-23
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.
Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB
NASA Technical Reports Server (NTRS)
Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.
2017-01-01
Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.
Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.
York, George W P; Welch, Thad B; Wright, Cameron H G
2005-01-01
Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation.
Structural deterministic safety factors selection criteria and verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB
Nichols, David F.
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.
Nichols, David F
2015-01-01
Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.
The recursive deterministic perceptron neural network.
Tajine, Mohamed; Elizondo, David
1998-12-01
We introduce a feedforward multilayer neural network which is a generalization of the single layer perceptron topology (SLPT), called recursive deterministic perceptron (RDP). This new model is capable of solving any two-class classification problem, as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets (two subsets X and Y of R(d) are said to be linearly separable if there exists a hyperplane such that the elements of X and Y lie on the two opposite sides of R(d) delimited by this hyperplane). We propose several growing methods for constructing a RDP. These growing methods build a RDP by successively adding intermediate neurons (IN) to the topology (an IN corresponds to a SLPT). Thus, as a result, we obtain a multilayer perceptron topology, which together with the weights, are determined automatically by the constructing algorithms. Each IN augments the affine dimension of the set of input vectors. This augmentation is done by adding the output of each of these INs, as a new component, to every input vector. The construction of a new IN is made by selecting a subset from the set of augmented input vectors which is LS from the rest of this set. This process ends with LS classes in almost n-1 steps where n is the number of input vectors. For this construction, if we assume that the selected LS subsets are of maximum cardinality, the problem is proven to be NP-complete. We also introduce a generalization of the RDP model for classification of m classes (m>2) allowing to always separate m classes. This generalization is based on a new notion of linear separability for m classes, and it follows naturally from the RDP. This new model can be used to compute functions with a finite domain, and thus, to approximate continuous functions. We have also compared - over several classification problems - the percentage of test data correctly classified, or the topology of the 2 and m classes RDPs with that of
Single Ion Implantation and Deterministic Doping
Schenkel, Thomas
2010-06-11
The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion
MOTO: a Matlab object-oriented programming toolbox for optics
NASA Astrophysics Data System (ADS)
Anterrieu, Eric; Pérez, José-Philippe
2007-06-01
The ray optics is the branch of optics in which all the wave effects are neglected: the light is considered as travelling along rays which can only change their direction by refraction or reflection. On one hand, a further simplifying approximation can be made if attention is restricted to rays travelling close to the optical axis and at small angles: the well-known linear or paraxial approximation introduced by Gauss. On the other hand, in order to take into account the geometrical aberrations, it is sometimes necessary to pay attention to marginal rays with the aid of a ray tracing procedure. This contribution describes a toolbox for the study of optical systems which implements both approaches. It has been developed in the framework of an educational project, but it is general enough to be useful in most of the cases.
Matlab-Excel Interface for OpenDSS
2015-04-27
The software allows users of the OpenDSS grid modeling software to access their load flow models using a GUI interface developed in MATLAB. The circuit definitions are entered into a Microsoft Excel spreadsheet which makes circuit creation and editing a much simpler process than the basic text-based editors used in the native OpenDSS interface. Plot tools have been developed which can be accessed through a MATLAB GUI once the desired parameters have been simulated.
Subband/Transform MATLAB Functions For Processing Images
NASA Technical Reports Server (NTRS)
Glover, D.
1995-01-01
SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.
Subband/Transform MATLAB Functions For Processing Images
NASA Technical Reports Server (NTRS)
Glover, D.
1995-01-01
SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.
GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations
NASA Astrophysics Data System (ADS)
Caliari, Marco; Rainer, Stefan
2013-03-01
GSGPEs is a Matlab/GNU Octave suite of programs for the computation of the ground state of systems of Gross-Pitaevskii equations. It can compute the ground state in the defocusing case, for any number of equations with harmonic or quasi-harmonic trapping potentials, in spatial dimension one, two or three. The computation is based on a spectral decomposition of the solution into Hermite functions and direct minimization of the energy functional through a Newton-like method with an approximate line-search strategy. Catalogue identifier: AENT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1417 No. of bytes in distributed program, including test data, etc.: 13673 Distribution format: tar.gz Programming language: Matlab/GNU Octave. Computer: Any supporting Matlab/GNU Octave. Operating system: Any supporting Matlab/GNU Octave. RAM: About 100 MB for a single three-dimensional equation (test run output). Classification: 2.7, 4.9. Nature of problem: A system of Gross-Pitaevskii Equations (GPEs) is used to mathematically model a Bose-Einstein Condensate (BEC) for a mixture of different interacting atomic species. The equations can be used both to compute the ground state solution (i.e., the stationary order parameter that minimizes the energy functional) and to simulate the dynamics. For particular shapes of the traps, three-dimensional BECs can be also simulated by lower dimensional GPEs. Solution method: The ground state of a system of Gross-Pitaevskii equations is computed through a spectral decomposition into Hermite functions and the direct minimization of the energy functional. Running time: About 30 seconds for a single three-dimensional equation with d.o.f. 40 for each spatial direction (test run output).
Teaching Near-Surface Geophysics within the Matlab/Octave Community
NASA Astrophysics Data System (ADS)
Plattner, A.
2016-12-01
Being able to simulate near-surface geophysical data using simple programs can help students grasp the relationship between instrument response and subsurface structure. Computer programs to perform such tasks are sometimes provided with textbooks, but they rarely are open source. This limits the adaptability to the instructor's needs and students cannot look inside the programs to see how the data are simulated and/or processed. The simplicity and efficiency with which MATLAB and Octave allow turning physics and mathematics into computer programs simplifies writing, reading, and editing basic educational near-surface geophysical programs and makes them accessible to students. Here we highlight two Octave/MATLAB-based software packages that are openly available through the GitHub organization NSGeophysics https://github.com/NSGeophysics. The first software package, GPR-O (https://github.com/NSGeophysics/GPR-O), allows for basic ground penetrating radar data analysis and representation. The second software package, Seism-O (https://github.com/NSGeophysics/Seism-O), can be used to simulate various data sets for simple near-surface seismic refraction/reflection investigations. We invite the community to download from, use, change, and contribute to the NSGeophysics repository in the hope that it will serve as a platform for exchanging and developing teaching software for near-surface geophysics.
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Lee, Leng-Feng
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This
Development of a Deterministic Ethernet Building blocks for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Jakovljevic, Mirko
2015-09-01
The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.
Graphics development of DCOR: Deterministic combat model of Oak Ridge
Hunt, G.; Azmy, Y.Y.
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR`s discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Deterministic dynamics of neural activity during absence seizures in rats
NASA Astrophysics Data System (ADS)
Ouyang, Gaoxiang; Li, Xiaoli; Dang, Chuangyin; Richards, Douglas A.
2009-04-01
The study of brain electrical activities in terms of deterministic nonlinear dynamics has recently received much attention. Forbidden ordinal patterns (FOP) is a recently proposed method to investigate the determinism of a dynamical system through the analysis of intrinsic ordinal properties of a nonstationary time series. The advantages of this method in comparison to others include simplicity and low complexity in computation without further model assumptions. In this paper, the FOP of the EEG series of genetic absence epilepsy rats from Strasbourg was examined to demonstrate evidence of deterministic dynamics during epileptic states. Experiments showed that the number of FOP of the EEG series grew significantly from an interictal to an ictal state via a preictal state. These findings indicated that the deterministic dynamics of neural networks increased significantly in the transition from the interictal to the ictal states and also suggested that the FOP measures of the EEG series could be considered as a predictor of absence seizures.
Deterministic dynamics of neural activity during absence seizures in rats.
Ouyang, Gaoxiang; Li, Xiaoli; Dang, Chuangyin; Richards, Douglas A
2009-04-01
The study of brain electrical activities in terms of deterministic nonlinear dynamics has recently received much attention. Forbidden ordinal patterns (FOP) is a recently proposed method to investigate the determinism of a dynamical system through the analysis of intrinsic ordinal properties of a nonstationary time series. The advantages of this method in comparison to others include simplicity and low complexity in computation without further model assumptions. In this paper, the FOP of the EEG series of genetic absence epilepsy rats from Strasbourg was examined to demonstrate evidence of deterministic dynamics during epileptic states. Experiments showed that the number of FOP of the EEG series grew significantly from an interictal to an ictal state via a preictal state. These findings indicated that the deterministic dynamics of neural networks increased significantly in the transition from the interictal to the ictal states and also suggested that the FOP measures of the EEG series could be considered as a predictor of absence seizures.
Estimating the epidemic threshold on networks by deterministic connections
Li, Kezan Zhu, Guanghu; Fu, Xinchu; Small, Michael
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.
Deterministic sensing matrices in compressive sensing: a survey.
Nguyen, Thu L N; Shin, Yoan
2013-01-01
Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.
Deterministic teleportation of electrons in a quantum dot nanostructure.
de Visser, R L; Blaauboer, M
2006-06-23
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this Letter is how to design and implement the most efficient--in terms of the required number of single and two-qubit operations--deterministic teleportation protocol for this system. Using a group-theoretical analysis, we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (square root SWAP) operations. These can be implemented for spin qubits in quantum dots using electron-spin resonance (for single-spin rotations) and exchange interaction (for square root SWAP operations).
Nonsignaling Deterministic Models for Nonlocal Correlations have to be Uncomputable.
Bendersky, Ariel; Senno, Gabriel; de la Torre, Gonzalo; Figueira, Santiago; Acín, Antonio
2017-03-31
Quantum mechanics postulates random outcomes. However, a model making the same output predictions but in a deterministic manner would be, in principle, experimentally indistinguishable from quantum theory. In this work we consider such models in the context of nonlocality on a device-independent scenario. That is, we study pairs of nonlocal boxes that produce their outputs deterministically. It is known that, for these boxes to be nonlocal, at least one of the boxes' outputs has to depend on the other party's input via some kind of hidden signaling. We prove that, if the deterministic mechanism is also algorithmic, there is a protocol that, with the sole knowledge of any upper bound on the time complexity of such an algorithm, extracts that hidden signaling and uses it for the communication of information.
Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology
2011-01-01
Background The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. Methods In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. Results The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the
Using MATLAB software with Tomcat server and Java platform for remote image analysis in pathology.
Markiewicz, Tomasz
2011-03-30
The Matlab software is a one of the most advanced development tool for application in engineering practice. From our point of view the most important is the image processing toolbox, offering many built-in functions, including mathematical morphology, and implementation of a many artificial neural networks as AI. It is very popular platform for creation of the specialized program for image analysis, also in pathology. Based on the latest version of Matlab Builder Java toolbox, it is possible to create the software, serving as a remote system for image analysis in pathology via internet communication. The internet platform can be realized based on Java Servlet Pages with Tomcat server as servlet container. In presented software implementation we propose remote image analysis realized by Matlab algorithms. These algorithms can be compiled to executable jar file with the help of Matlab Builder Java toolbox. The Matlab function must be declared with the set of input data, output structure with numerical results and Matlab web figure. Any function prepared in that manner can be used as a Java function in Java Servlet Pages (JSP). The graphical user interface providing the input data and displaying the results (also in graphical form) must be implemented in JSP. Additionally the data storage to database can be implemented within algorithm written in Matlab with the help of Matlab Database Toolbox directly with the image processing. The complete JSP page can be run by Tomcat server. The proposed tool for remote image analysis was tested on the Computerized Analysis of Medical Images (CAMI) software developed by author. The user provides image and case information (diagnosis, staining, image parameter etc.). When analysis is initialized, input data with image are sent to servlet on Tomcat. When analysis is done, client obtains the graphical results as an image with marked recognized cells and also the quantitative output. Additionally, the results are stored in a server
Chirp Z-transform spectral zoom optimization with MATLAB.
Martin, Grant D.
2005-11-01
The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.
Hunt, G. ); Azmy, Y.Y. )
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR's discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Deterministic and efficient quantum cryptography based on Bell's theorem
Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg
2006-05-15
We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.
Deterministic extinction by mixing in cyclically competing species
NASA Astrophysics Data System (ADS)
Feldager, Cilie W.; Mitarai, Namiko; Ohta, Hiroki
2017-03-01
We consider a cyclically competing species model on a ring with global mixing at finite rate, which corresponds to the well-known Lotka-Volterra equation in the limit of infinite mixing rate. Within a perturbation analysis of the model from the infinite mixing rate, we provide analytical evidence that extinction occurs deterministically at sufficiently large but finite values of the mixing rate for any species number N ≥3 . Further, by focusing on the cases of rather small species numbers, we discuss numerical results concerning the trajectories toward such deterministic extinction, including global bifurcations caused by changing the mixing rate.
Complexity of Monte Carlo and deterministic dose-calculation methods.
Börgers, C
1998-03-01
Grid-based deterministic dose-calculation methods for radiotherapy planning require the use of six-dimensional phase space grids. Because of the large number of phase space dimensions, a growing number of medical physicists appear to believe that grid-based deterministic dose-calculation methods are not competitive with Monte Carlo methods. We argue that this conclusion may be premature. Our results do suggest, however, that finite difference or finite element schemes with orders of accuracy greater than one will probably be needed if such methods are to compete well with Monte Carlo methods for dose calculations.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Elliptical quantum dots as on-demand single photons sources with deterministic polarization states
Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng; Zhang, Lei; Hill, Tyler A.; Deng, Hui
2015-11-09
In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.
TRIAC II. A MatLab code for track measurements from SSNT detectors
NASA Astrophysics Data System (ADS)
Patiris, D. L.; Blekas, K.; Ioannides, K. G.
2007-08-01
A computer program named TRIAC II written in MATLAB and running with a friendly GUI has been developed for recognition and parameters measurements of particles' tracks from images of Solid State Nuclear Track Detectors. The program, using image analysis tools, counts the number of tracks and depending on the current working mode classifies them according to their radii (Mode I—circular tracks) or their axis (Mode II—elliptical tracks), their mean intensity value (brightness) and their orientation. Images of the detectors' surfaces are input to the code, which generates text files as output, including the number of counted tracks with the associated track parameters. Hough transform techniques are used for the estimation of the number of tracks and their parameters, providing results even in cases of overlapping tracks. Finally, it is possible for the user to obtain informative histograms as well as output files for each image and/or group of images. Program summaryTitle of program:TRIAC II Catalogue identifier:ADZC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZC_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Pentium III, 600 MHz Installations: MATLAB 7.0 Operating system under which the program has been tested: Windows XP Programming language used:MATLAB Memory required to execute with typical data:256 MB No. of bits in a word:32 No. of processors used:one Has the code been vectorized or parallelized?:no No. of lines in distributed program, including test data, etc.:25 964 No. of bytes in distributed program including test data, etc.: 4 354 510 Distribution format:tar.gz Additional comments: This program requires the MatLab Statistical toolbox and the Image Processing Toolbox to be installed. Nature of physical problem: Following the passage of a charged particle (protons and heavier) through a Solid State Nuclear Track Detector (SSNTD), a damage region is created, usually named latent
A flexible software tool for temporally-precise behavioral control in Matlab
Asaad, Wael F.; Eskandar, Emad N.
2008-01-01
Systems and cognitive neuroscience depend on carefully designed and precisely implemented behavioral tasks to elicit the neural phenomena of interest. To facilitate this process, we have developed a software system that allows for the straightforward coding and temporally-reliable execution of these tasks in Matlab. We find that, in most cases, millisecond accuracy is attainable, and those instances in which it is not are usually related to predictable, programmed events. In this report, we describe the design of our system, benchmark its performance in a real-world setting, and describe some key features. PMID:18706928
A flexible software tool for temporally-precise behavioral control in Matlab.
Asaad, Wael F; Eskandar, Emad N
2008-09-30
Systems and cognitive neuroscience depend on carefully designed and precisely implemented behavioral tasks to elicit the neural phenomena of interest. To facilitate this process, we have developed a software system that allows for the straightforward coding and temporally-reliable execution of these tasks in Matlab. We find that, in most cases, millisecond accuracy is attainable, and those instances in which it is not are usually related to predictable, programmed events. In this report, we describe the design of our system, benchmark its performance in a real-world setting, and describe some key features.
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
Ihlen, Espen A. F.
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra. PMID:22675302
Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2003-01-01
This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.
Introduction to multifractal detrended fluctuation analysis in matlab.
Ihlen, Espen A F
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra.
DNSLab: A gateway to turbulent flow simulation in Matlab
NASA Astrophysics Data System (ADS)
Vuorinen, V.; Keskinen, K.
2016-06-01
Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to
A fast algorithm for voxel-based deterministic simulation of X-ray imaging
NASA Astrophysics Data System (ADS)
Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee
2008-04-01
Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video
Modelling Subsea Coaxial Cable as FIR Filter on MATLAB
NASA Astrophysics Data System (ADS)
Kanisin, D.; Nordin, M. S.; Hazrul, M. H.; Kumar, E. A.
2011-05-01
The paper presents the modelling of subsea coaxial cable as a FIR filter on MATLAB. The subsea coaxial cables are commonly used in telecommunication industry and, oil and gas industry. Furthermore, this cable is unlike a filter circuit, which is a "lumped network" as individual components appear as discrete items. Therefore, a subsea coaxial network can be represented as a digital filter. In overall, the study has been conducted using MATLAB to model the subsea coaxial channel model base on primary and secondary parameters of subsea coaxial cable.
MatTAP: A MATLAB toolbox for the control and analysis of movement synchronisation experiments.
Elliott, Mark T; Welchman, Andrew E; Wing, Alan M
2009-02-15
Investigating movement timing and synchronisation at the sub-second range relies on an experimental setup that has high temporal fidelity, is able to deliver output cues and can capture corresponding responses. Modern, multi-tasking operating systems make this increasingly challenging when using standard PC hardware and programming languages. This paper describes a new free suite of tools (available from http://www.snipurl.com/mattap) for use within the MATLAB programming environment, compatible with Microsoft Windows and a range of data acquisition hardware. The toolbox allows flexible generation of timing cues with high temporal accuracy, the capture and automatic storage of corresponding participant responses and an integrated analysis module for the rapid processing of results. A simple graphical user interface is used to navigate the toolbox and so can be operated easily by users not familiar with programming languages. However, it is also fully extensible and customisable, allowing adaptation for individual experiments and facilitating the addition of new modules in future releases. Here we discuss the relevance of the MatTAP (MATLAB Timing Analysis Package) toolbox to current timing experiments and compare its use to alternative methods. We validate the accuracy of the analysis module through comparison to manual observation methods and replicate a previous sensorimotor synchronisation experiment to demonstrate the versatility of the toolbox features demanded by such movement synchronisation paradigms.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-01-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911
NASA Astrophysics Data System (ADS)
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-04-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.
A deterministic method for estimating attitude from magnetometer data only
NASA Technical Reports Server (NTRS)
Natanson, G. A.
1992-01-01
A new deterministic algorithm which estimates spacecraft attitude utilizing magnetometer data only is presented. This algorithm exploits the dynamic equations of motion to propagate attitude and thus requires knowledge of both internal and external torques, except in the special case of a spacecraft rotating with constant angular velocity. Preliminary results obtained for the uncontrolled Relay Mirror Experiment satellite utilizing real telemetry data are reported.
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Deterministic retrieval of complex Green's functions using hard X rays.
Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E
2009-01-30
A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.
Deterministic dense coding and faithful teleportation with multipartite graph states
Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.
2009-05-15
We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.
A Deterministic Annealing Approach to Clustering AIRS Data
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander
2012-01-01
We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Risk-based versus deterministic explosives safety criteria
Wright, R.E.
1996-12-01
The Department of Defense Explosives Safety Board (DDESB) is actively considering ways to apply risk-based approaches in its decision- making processes. As such, an understanding of the impact of converting to risk-based criteria is required. The objectives of this project are to examine the benefits and drawbacks of risk-based criteria and to define the impact of converting from deterministic to risk-based criteria. Conclusions will be couched in terms that allow meaningful comparisons of deterministic and risk-based approaches. To this end, direct comparisons of the consequences and impacts of both deterministic and risk-based criteria at selected military installations are made. Deterministic criteria used in this report are those in DoD 6055.9-STD, `DoD Ammunition and Explosives Safety Standard.` Risk-based criteria selected for comparison are those used by the government of Switzerland, `Technical Requirements for the Storage of Ammunition (TLM 75).` The risk-based criteria used in Switzerland were selected because they have been successfully applied for over twenty-five years.
A Deterministic Annealing Approach to Clustering AIRS Data
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander
2012-01-01
We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique
Comparison of deterministic and Monte Carlo methods in shielding design.
Oliveira, A D; Oliveira, C
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.
Linear-Time Recognizable Classes of Tree Languages by Deterministic Linear Pushdown Tree Automata
NASA Astrophysics Data System (ADS)
Fujiyoshi, Akio
In this paper, we study deterministic linear pushdown tree automata (deterministic L-PDTAs) and some variations. Since recognition of an input tree by a deterministic L-PDTA can be done in linear time, deterministic L-PDTAs are applicable to many kinds of applications. A strict hierarchy will be shown among the classes of tree languages defined by a variety of deterministic L-PDTAs. It will be also shown that deterministic L-PDTAs are weakly equivalent to nondeterministic L-PDTAs.
Empirical and deterministic accuracies of across-population genomic prediction.
Wientjes, Yvonne C J; Veerkamp, Roel F; Bijma, Piter; Bovenhuis, Henk; Schrooten, Chris; Calus, Mario P L
2015-02-06
Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which reference individuals and selection candidates are from different populations, and to investigate the impact of differences in allele substitution effects across populations and of the number of QTL underlying a trait on the accuracy. A deterministic formula to estimate the accuracy of across-population genomic prediction was derived based on selection index theory. Moreover, accuracies were deterministically predicted using a formula based on population parameters and empirically calculated using simulated phenotypes and a GBLUP (genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein-Friesian, 105 Groninger White Headed and 147 Meuse-Rhine-Yssel cows were simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density SNP (single nucleotide polymorphism) information of three chromosomes, assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution effects across breeds. The simulated heritability was set to 0.95 to resemble the heritability of deregressed proofs of bulls. Accuracies estimated with the deterministic formula based on selection index theory were similar to empirical accuracies for all scenarios, while accuracies predicted with the formula based on population parameters overestimated empirical accuracies by ~25 to 30%. When the between-breed genetic correlation differed from 1, i.e. allele substitution effects differed across breeds, empirical and deterministic accuracies decreased in proportion to the genetic correlation. Using a multi-trait model, it was possible to accurately estimate the genetic correlation between the breeds based on phenotypes and high-density genotypes. The number of QTL underlying the simulated
Constructing stochastic models from deterministic process equations by propensity adjustment
2011-01-01
Background Gillespie's stochastic simulation algorithm (SSA) for chemical reactions admits three kinds of elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. All other types of reaction processes, for instance those containing non-integer kinetic orders or following other types of kinetic laws, are assumed to be convertible to one of the three elementary kinds, so that SSA can validly be applied. However, the conversion to elementary reactions is often difficult, if not impossible. Within deterministic contexts, a strategy of model reduction is often used. Such a reduction simplifies the actual system of reactions by merging or approximating intermediate steps and omitting reactants such as transient complexes. It would be valuable to adopt a similar reduction strategy to stochastic modelling. Indeed, efforts have been devoted to manipulating the chemical master equation (CME) in order to achieve a proper propensity function for a reduced stochastic system. However, manipulations of CME are almost always complicated, and successes have been limited to relative simple cases. Results We propose a rather general strategy for converting a deterministic process model into a corresponding stochastic model and characterize the mathematical connections between the two. The deterministic framework is assumed to be a generalized mass action system and the stochastic analogue is in the format of the chemical master equation. The analysis identifies situations: where a direct conversion is valid; where internal noise affecting the system needs to be taken into account; and where the propensity function must be mathematically adjusted. The conversion from deterministic to stochastic models is illustrated with several representative examples, including reversible reactions with feedback controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic focusing. Conclusions The construction of a stochastic model for a biochemical
Potensoft: MATLAB-based software for potential field data processing, modeling and mapping
NASA Astrophysics Data System (ADS)
Özgü Arısoy, M.; Dikmen, Ünal
2011-07-01
An open-source software including an easy-to-use graphical user interface (GUI) has been developed for processing, modeling and mapping of gravity and magnetic data. The program, called Potensoft, is a set of functions written in MATLAB. The most common application of Potensoft is spatial and frequency domain filtering of gravity and magnetic data. The GUI helps the user easily change all the required parameters. One of the major advantages of the program is to display the input and processed maps in a preview window, thereby allowing the user to track the results during the ongoing process. Source codes can be modified depending on the users' goals. This paper discusses the main features of the program and its capabilities are demonstrated by means of illustrative examples. The main objective is to introduce and ensure usage of the developed package for academic, teaching and professional purposes.
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.
The sisterhood method of estimating maternal mortality: the Matlab experience.
Shahidullah, M
1995-01-01
This study reports the results of a test of validation of the sisterhood method of measuring the level of maternal mortality using data from a Demographic Surveillance System (DSS) operating since 1966 in Matlab, Bangladesh. The records of maternal deaths that occurred during 1976-90 in the Matlab DSS area were used. One of the deceased woman's surviving brothers or sisters, aged 15 or older and born to the same mother, was asked if the deceased sister had died of maternity-related causes. Of the 384 maternal deaths for which siblings were interviewed, 305 deaths were correctly reported, 16 deaths were underreported, and the remaining 63 were misreported as nonmaternal deaths. Information on maternity-related deaths obtained in a sisterhood survey conducted in the Matlab DSS area was compared with the information recorded in the DSS. Results suggest that in places similar to Matlab, the sisterhood method can be used to provide an indication of the level of maternal mortality if no other data exist, though the method will produce negative bias in maternal mortality estimates.
Development and Validation of Reentry Simulation Using MATLAB
2006-03-01
used in the planning for the Mars Airplane (Murray, 2001:3), the aerocapture simulation for the Titan Explorer Mission to the Saturnian system (Way...1980. 17. Way, David W., et al. Aerocapture Simulation and Performance for the Titan Explorer Mission. 2003-4951. American Institute of...DEVELOPMENT AND VALIDATION OF REENTRY SIMULATION USING MATLAB THESIS Robert E Jameson Jr
Equilibrium-Staged Separations Using Matlab and Mathematica
ERIC Educational Resources Information Center
Binous, Housam
2008-01-01
We show a new approach, based on the utilization of Matlab and Mathematica, for solving liquid-liquid extraction and binary distillation problems. In addition, the author shares his experience using these two softwares to teach equilibrium staged separations at the National Institute of Applied Sciences and Technology. (Contains 7 figures.)
Autonomous robot vision software design using Matlab toolboxes
NASA Astrophysics Data System (ADS)
Tedder, Maurice; Chung, Chan-Jin
2004-10-01
The purpose of this paper is to introduce a cost-effective way to design robot vision and control software using Matlab for an autonomous robot designed to compete in the 2004 Intelligent Ground Vehicle Competition (IGVC). The goal of the autonomous challenge event is for the robot to autonomously navigate an outdoor obstacle course bounded by solid and dashed lines on the ground. Visual input data is provided by a DV camcorder at 160 x 120 pixel resolution. The design of this system involved writing an image-processing algorithm using hue, satuaration, and brightness (HSB) color filtering and Matlab image processing functions to extract the centroid, area, and orientation of the connected regions from the scene. These feature vectors are then mapped to linguistic variables that describe the objects in the world environment model. The linguistic variables act as inputs to a fuzzy logic controller designed using the Matlab fuzzy logic toolbox, which provides the knowledge and intelligence component necessary to achieve the desired goal. Java provides the central interface to the robot motion control and image acquisition components. Field test results indicate that the Matlab based solution allows for rapid software design, development and modification of our robot system.
MATLAB: Another Way To Teach the Computer in the Classroom.
ERIC Educational Resources Information Center
Marriott, Shaun
2002-01-01
Describes a pilot project for MATLAB work in both information communication technology (ICT) and mathematics. The ICT work is on flowcharts and algorithms and discusses ways of communicating with computers. Mathematics lessons involve early algebraic ideas of variables representing numbers. Presents an activity involving number sequences. (KHR)
Equilibrium-Staged Separations Using Matlab and Mathematica
ERIC Educational Resources Information Center
Binous, Housam
2008-01-01
We show a new approach, based on the utilization of Matlab and Mathematica, for solving liquid-liquid extraction and binary distillation problems. In addition, the author shares his experience using these two softwares to teach equilibrium staged separations at the National Institute of Applied Sciences and Technology. (Contains 7 figures.)
Enhancing Teaching using MATLAB Add-Ins for Excel
ERIC Educational Resources Information Center
Hamilton, Paul V.
2004-01-01
In this paper I will illustrate how to extend the capabilities of Microsoft Excel spreadsheets with add-ins created by MATLAB. Excel provides a broad array of fundamental tools but often comes up short when more sophisticated scenarios are involved. To overcome this short-coming of Excel while retaining its ease of use, I will describe how…
MATLAB: Another Way To Teach the Computer in the Classroom.
ERIC Educational Resources Information Center
Marriott, Shaun
2002-01-01
Describes a pilot project for MATLAB work in both information communication technology (ICT) and mathematics. The ICT work is on flowcharts and algorithms and discusses ways of communicating with computers. Mathematics lessons involve early algebraic ideas of variables representing numbers. Presents an activity involving number sequences. (KHR)
MATLAB tensor classes for fast algorithm prototyping : source code.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.
Castaño-Díez, Daniel
2017-01-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID
Castaño-Díez, Daniel
2017-06-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
Realization of Fourier and Fresnel computer-generated holograpm based on MATLAB
NASA Astrophysics Data System (ADS)
Lin, GuoQiang; Ren, XueChang
2016-10-01
Computer-generated hologram(CGH) can encode the picture. The image, which equals the original object of traditional optics, can be divided into two parts. A portion of it encoding into Fourier computer generated hologram(CGH), while the remaining are coded into Fresnel computer generated hologram. So in the processing of information transmission, the possibility of being stolen details can be greatly reduced. When the image is coded into the Fourier CGH and Fresnel CGH and reached the receiving end, the original image should be obtained by the reconstruction of the two computer generated holograms. This article presents three important things. Firstly, it provides the recording and reconstruction - both of them consist of the holographic technique - of the source program of Fresnel CGH and Fourier CGH in MATLAB. MATLAB(Matrix Laboratory) is the abbreviation of Laboratory Matrix and commercial mathematical software produced by the United States company. Secondly, it isolates the original image and the conjugate image in regeneration of Fourier CGH by using all zero matrix. Even though the original image and the conjugate image can be separated, the two of them also prevent us to acquire the original message. For reserving the most important image, we should apply the window function to filter one of them. Finally, in the coding of Fourier CGH and Fresnel CGH, this passage describes several functions to decrease the noise of the original image which is encoded into program. The function can be available in Fourier CGH and Fresnel CGH.
Deterministically Polarized Fluorescence from Single Dye Molecules Aligned in Liquid Crystal Host
Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Boyd, R. W.; Stroud, Jr., C. R.; Marshall, K.L.
2005-09-30
We demonstrated for the first time to our konwledge deterministically polarized fluorescence from single dye molecules. Planar aligned nematic liquid crystal hosts provide deterministic alignment of single dye molecules in a preferred direction.
Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy
NASA Astrophysics Data System (ADS)
Jha, S.; Harry, D. L.; Schutt, D.
2016-12-01
The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.
Interfacing MATLAB and Python Optimizers to Black-Box Environmental Simulation Models
NASA Astrophysics Data System (ADS)
Matott, L. S.; Leung, K.; Tolson, B.
2009-12-01
A common approach for utilizing environmental models in a management or policy-analysis context is to incorporate them into a simulation-optimization framework - where an underlying process-based environmental model is linked with an optimization search algorithm. The optimization search algorithm iteratively adjusts various model inputs (i.e. parameters or design variables) in order to minimize an application-specific objective function computed on the basis of model outputs (i.e. response variables). Numerous optimization algorithms have been applied to the simulation-optimization of environmental systems and this research investigated the use of optimization libraries and toolboxes that are readily available in MATLAB and Python - two popular high-level programming languages. Inspired by model-independent calibration codes (e.g. PEST and UCODE), a small piece of interface software (known as PIGEON) was developed. PIGEON allows users to interface Python and MATLAB optimizers with arbitrary black-box environmental models without writing any additional interface code. An initial set of benchmark tests (involving more than 20 MATLAB and Python optimization algorithms) were performed to validate the interface software - results highlight the need to carefully consider such issues as numerical precision in output files and enforcement (or not) of parameter limits. Additional benchmark testing considered the problem of fitting isotherm expressions to laboratory data - with an emphasis on dual-mode expressions combining non-linear isotherms with a linear partitioning component. With respect to the selected isotherm fitting problems, derivative-free search algorithms significantly outperformed gradient-based algorithms. Attempts to improve gradient-based performance, via parameter tuning and also via several alternative multi-start approaches, were largely unsuccessful.
A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences
NASA Astrophysics Data System (ADS)
Fischer, A. M.; Lucieer, V.; Burke, C.
2016-12-01
Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and
EEGVIS: A MATLAB Toolbox for Browsing, Exploring, and Viewing Large Datasets.
Robbins, Kay A
2012-01-01
Recent advances in data monitoring and sensor technology have accelerated the acquisition of very large data sets. Streaming data sets from instrumentation such as multi-channel EEG recording usually must undergo substantial pre-processing and artifact removal. Even when using automated procedures, most scientists engage in laborious manual examination and processing to assure high quality data and to indentify interesting or problematic data segments. Researchers also do not have a convenient method of method of visually assessing the effects of applying any stage in a processing pipeline. EEGVIS is a MATLAB toolbox that allows users to quickly explore multi-channel EEG and other large array-based data sets using multi-scale drill-down techniques. Customizable summary views reveal potentially interesting sections of data, which users can explore further by clicking to examine using detailed viewing components. The viewer and a companion browser are built on our MoBBED framework, which has a library of modular viewing components that can be mixed and matched to best reveal structure. Users can easily create new viewers for their specific data without any programming during the exploration process. These viewers automatically support pan, zoom, resizing of individual components, and cursor exploration. The toolbox can be used directly in MATLAB at any stage in a processing pipeline, as a plug-in for EEGLAB, or as a standalone precompiled application without MATLAB running. EEGVIS and its supporting packages are freely available under the GNU general public license at http://visual.cs.utsa.edu/eegvis.
Borse, N N; Hyder, A A; Bishai, D; Baker, T; Arifeen, S E
2011-11-01
Childhood drowning is a major public health problem that has been neglected in many low- and middle-income countries. In Matlab, rural Bangladesh, more than 40% of child deaths aged 1-4 years are due to drowning. The main objective of this paper was to develop and evaluate a childhood drowning risk prediction index. A literature review was carried out to document risk factors identified for childhood drowning in Bangladesh. The Newacheck model for special health care needs for children was adapted and applied to construct a childhood drowning risk index called "Potential Risk Estimation Drowning Index for Children" (PREDIC). Finally, the proposed PREDIC Index was applied to childhood drowning deaths and compared with the comparison group from children living in Matlab, Bangladesh. This pilot study used t-tests and Receiver Operating Characteristic (ROC) curve to analyze the results. The PREDIC index was applied to 302 drowning deaths and 624 children 0-4 years old living in Matlab. The results of t-test indicate that the drowned children had a statistically (t=-8.58, p=0.0001) significant higher mean PREDIC score (6.01) than those in comparison group (5.26). Drowning cases had a PREDIC score of 6 or more for 68% of the children however, the comparison group had 43% of the children with score of 6 or more which was statistically significant (t=-7.36, p<0.001). The area under the curve for the Receiver Operating Characteristic curve was 0.662. Index score construction was scientifically plausible; and the index is relatively complete, fairly accurate, and practical. The risk index can help identify and target high risk children with drowning prevention programs. PREDIC index needs to be further tested for its accuracy, feasibility and effectiveness in drowning risk reduction in Bangladesh and other countries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Deterministic remote two-qubit state preparation in dissipative environments
NASA Astrophysics Data System (ADS)
Li, Jin-Fang; Liu, Jin-Ming; Feng, Xun-Li; Oh, C. H.
2016-05-01
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein-Podolsky-Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity's approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.
Towards a quasi-deterministic single-photon source
NASA Astrophysics Data System (ADS)
Peters, N. A.; Arnold, K. J.; VanDevender, A. P.; Jeffrey, E. R.; Rangarajan, R.; Hosten, O.; Barreiro, J. T.; Altepeter, J. B.; Kwiat, P. G.
2006-08-01
A source of single photons allows secure quantum key distribution, in addition, to being a critical resource for linear optics quantum computing. We describe our progress on deterministically creating single photons from spontaneous parametric downconversion, an extension of the Pittman, Jacobs and Franson scheme [Phys. Rev A, v66, 042303 (2002)]. Their idea was to conditionally prepare single photons by measuring one member of a spontaneously emitted photon pair and storing the remaining conditionally prepared photon until a predetermined time, when it would be "deterministically" released from storage. Our approach attempts to improve upon this by recycling the pump pulse in order to decrease the possibility of multiple-pair generation, while maintaining a high probability of producing a single pair. Many of the challenges we discuss are central to other quantum information technologies, including the need for low-loss optical storage, switching and detection, and fast feed-forward control.
Deterministic control of ferroelastic switching in multiferroic materials.
Balke, N; Choudhury, S; Jesse, S; Huijben, M; Chu, Y H; Baddorf, A P; Chen, L Q; Ramesh, R; Kalinin, S V
2009-12-01
Multiferroic materials showing coupled electric, magnetic and elastic orderings provide a platform to explore complexity and new paradigms for memory and logic devices. Until now, the deterministic control of non-ferroelectric order parameters in multiferroics has been elusive. Here, we demonstrate deterministic ferroelastic switching in rhombohedral BiFeO(3) by domain nucleation with a scanning probe. We are able to select among final states that have the same electrostatic energy, but differ dramatically in elastic or magnetic order, by applying voltage to the probe while it is in lateral motion. We also demonstrate the controlled creation of a ferrotoroidal order parameter. The ability to control local elastic, magnetic and torroidal order parameters with an electric field will make it possible to probe local strain and magnetic ordering, and engineer various magnetoelectric, domain-wall-based and strain-coupled devices.
Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms
NASA Astrophysics Data System (ADS)
Koshino, K.; Inomata, K.; Lin, Z. R.; Tokunaga, Y.; Yamamoto, T.; Nakamura, Y.
2017-06-01
Entangling remote qubits is an essential technological element in the distributed quantum information processing. Here, we propose a deterministic scheme to generate maximal entanglement between remote superconducting atoms, using a propagating microwave photon as a flying qubit. The building block of this scheme is an atom-photon two-qubit gate, in which the photon qubit is encoded on its carrier frequencies. The gate operation completes deterministically upon reflection of a photon, and the gate type can be continuously varied (including swap, √{SWAP } , and identity gates) through in situ control of the drive field. Applying such atom-photon gates sequentially, we can perform various gate operations between remote superconducting atoms.
Approaches to implementing deterministic models in a probabilistic framework
Talbott, D.V.
1995-04-01
The increasing use of results from probabilistic risk assessments in the decision-making process makes it ever more important to eliminate simplifications in probabilistic models that might lead to conservative results. One area in which conservative simplifications are often made is modeling the physical interactions that occur during the progression of an accident sequence. This paper demonstrates and compares different approaches for incorporating deterministic models of physical parameters into probabilistic models; parameter range binning, response curves, and integral deterministic models. An example that combines all three approaches in a probabilistic model for the handling of an energetic material (i.e. high explosive, rocket propellant,...) is then presented using a directed graph model.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes.
Zeiser, Stefan; Franz, Uwe; Liebscher, Volkmar
2010-02-01
In the present work we propose an alternative approach to model autocatalytic networks, called piecewise-deterministic Markov processes. These were originally introduced by Davis in 1984. Such a model allows for random transitions between the active and inactive state of a gene, whereas subsequent transcription and translation processes are modeled in a deterministic manner. We consider three types of autoregulated networks, each based on a positive feedback loop. It is shown that if the densities of the stationary distributions exist, they are the solutions of a system of equations for a one-dimensional correlated random walk. These stationary distributions are determined analytically. Further, the distributions are analyzed for different simulation periods and different initial concentration values by numerical means. We show that, depending on the network structure, beside a binary response also a graded response is observable.
Deterministic algorithm with agglomerative heuristic for location problems
NASA Astrophysics Data System (ADS)
Kazakovtsev, L.; Stupina, A.
2015-10-01
Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.
Bayesian theory of probabilistic forecasting via deterministic hydrologic model
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman
1999-09-01
Rational decision making (for flood warning, navigation, or reservoir systems) requires that the total uncertainty about a hydrologic predictand (such as river stage, discharge, or runoff volume) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Hydrologic knowledge is typically embodied in a deterministic catchment model. Fundamentals are presented of a Bayesian forecasting system (BFS) for producing a probabilistic forecast of a hydrologic predictand via any deterministic catchment model. The BFS decomposes the total uncertainty into input uncertainty and hydrologic uncertainty, which are quantified independently and then integrated into a predictive (Bayes) distribution. This distribution results from a revision of a prior (climatic) distribution, is well calibrated, and has a nonnegative ex ante economic value. The BFS is compared with Monte Carlo simulation and "ensemble forecasting" technique, none of which can alone produce a probabilistic forecast that meets requirements of rational decision making, but each can serve as a component of the BFS.
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
The deterministic SIS epidemic model in a Markovian random environment.
Economou, Antonis; Lopez-Herrero, Maria Jesus
2016-07-01
We consider the classical deterministic susceptible-infective-susceptible epidemic model, where the infection and recovery rates depend on a background environmental process that is modeled by a continuous time Markov chain. This framework is able to capture several important characteristics that appear in the evolution of real epidemics in large populations, such as seasonality effects and environmental influences. We propose computational approaches for the determination of various distributions that quantify the evolution of the number of infectives in the population.
A deterministic algorithm for constrained enumeration of transmembrane protein folds.
Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.
2004-07-01
A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.
Uniform Deterministic Discrete Method for three dimensional systems
NASA Astrophysics Data System (ADS)
Li, Ben-Wen; Tao, Wen-Quan; Nie, Yu-Hong
1997-06-01
For radiative direct exchange areas in three dimensional system, the Uniform Deterministic Discrete Method (UDDM) was adopted. The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs. The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numerical accuracy.
Glass-ceramics: deterministic microgrinding, lapping, and polishing
NASA Astrophysics Data System (ADS)
Lambropoulos, John C.; Gillman, Birgit E.; Zhou, Yiyang; Jacobs, Stephen D.; Stevens, Harrie J.
1997-10-01
Glass-ceramics are composites consisting of glass and crystalline phases. We report a series of microgrinding and polishing experiments: our first goal is to correlate material mechanical properties with the quality of the resulting surface, determined by surface microroughness and surface grinding-induced residual stresses. Our second goal is to compare deterministic microgrinding and loose abrasive microgrinding in terms of material removal rates and resulting surface quality.
Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators?
NASA Astrophysics Data System (ADS)
Timmer, Jens; Häußler, Siegfried; Lauk, Michael; Lücking, Carl
2000-02-01
Pathological tremors exhibit a nonlinear oscillation that is not strictly periodic. We investigate whether the deviation from periodicity is due to nonlinear deterministic chaotic dynamics or due to nonlinear stochastic dynamics. To do so, we apply methods from linear and nonlinear time series analysis to tremor time series. The results of the different methods suggest that the considered types of pathological tremors represent nonlinear stochastic second order processes.
Deterministic chaos control in neural networks on various topologies
NASA Astrophysics Data System (ADS)
Neto, A. J. F.; Lima, F. W. S.
2017-01-01
Using numerical simulations, we study the control of deterministic chaos in neural networks on various topologies like Voronoi-Delaunay, Barabási-Albert, Small-World networks and Erdös-Rényi random graphs by "pinning" the state of a "special" neuron. We show that the chaotic activity of the networks or graphs, when control is on, can become constant or periodic.
Efficient deterministic secure quantum communication protocols using multipartite entangled states
NASA Astrophysics Data System (ADS)
Joy, Dintomon; Surendran, Supin P.; Sabir, M.
2017-06-01
We propose two deterministic secure quantum communication protocols employing three-qubit GHZ-like states and five-qubit Brown states as quantum channels for secure transmission of information in units of two bits and three bits using multipartite teleportation schemes developed here. In these schemes, the sender's capability in selecting quantum channels and the measuring bases leads to improved qubit efficiency of the protocols.
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions
Deterministic Migration-Based Separation of White Blood Cells.
Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung
2016-10-01
Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
How Does Quantum Uncertainty Emerge from Deterministic Bohmian Mechanics?
NASA Astrophysics Data System (ADS)
Solé, A.; Oriols, X.; Marian, D.; Zanghì, N.
2016-10-01
Bohmian mechanics is a theory that provides a consistent explanation of quantum phenomena in terms of point particles whose motion is guided by the wave function. In this theory, the state of a system of particles is defined by the actual positions of the particles and the wave function of the system; and the state of the system evolves deterministically. Thus, the Bohmian state can be compared with the state in classical mechanics, which is given by the positions and momenta of all the particles, and which also evolves deterministically. However, while in classical mechanics it is usually taken for granted and considered unproblematic that the state is, at least in principle, measurable, this is not the case in Bohmian mechanics. Due to the linearity of the quantum dynamical laws, one essential component of the Bohmian state, the wave function, is not directly measurable. Moreover, it turns out that the measurement of the other component of the state — the positions of the particles — must be mediated by the wave function; a fact that in turn implies that the positions of the particles, though measurable, are constrained by absolute uncertainty. This is the key to understanding how Bohmian mechanics, despite being deterministic, can account for all quantum predictions, including quantum randomness and uncertainty.
Demographic noise can reverse the direction of deterministic selection
Constable, George W. A.; Rogers, Tim; McKane, Alan J.; Tarnita, Corina E.
2016-01-01
Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to r−K theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085
Probabilistic vs deterministic views in facing natural hazards
NASA Astrophysics Data System (ADS)
Arattano, Massimo; Coviello, Velio
2015-04-01
Natural hazards can be mitigated through active or passive measures. Among these latter countermeasures, Early Warning Systems (EWSs) are playing an increasing and significant role. In particular, a growing number of studies investigate the reliability of landslide EWSs, their comparability to alternative protection measures and their cost-effectiveness. EWSs, however, inevitably and intrinsically imply the concept of probability of occurrence and/or probability of error. Since a long time science has accepted and integrated the probabilistic nature of reality and its phenomena. The same cannot be told for other fields of knowledge, such as law or politics, with which scientists sometimes have to interact. These disciplines are in fact still linked to more deterministic views of life. The same is true for what is perceived by the public opinion, which often requires or even pretends a deterministic type of answer to its needs. So, as an example, it might be easy for people to feel completely safe because an EWS has been installed. It is also easy for an administrator or a politician to contribute to spread this wrong feeling, together with the idea of having dealt with the problem and done something definitive to face it. May geoethics play a role to create a link between the probabilistic world of nature and science and the tendency of the society to a more deterministic view of things? Answering this question could help scientists to feel more confident in planning and performing their research activities.
Deterministic form correction of extreme freeform optical surfaces
NASA Astrophysics Data System (ADS)
Lynch, Timothy P.; Myer, Brian W.; Medicus, Kate; DeGroote Nelson, Jessica
2015-10-01
The blistering pace of recent technological advances has led lens designers to rely increasingly on freeform optical components as crucial pieces of their designs. As these freeform components increase in geometrical complexity and continue to deviate further from traditional optical designs, the optical manufacturing community must rethink their fabrication processes in order to keep pace. To meet these new demands, Optimax has developed a variety of new deterministic freeform manufacturing processes. Combining traditional optical fabrication techniques with cutting edge technological innovations has yielded a multifaceted manufacturing approach that can successfully handle even the most extreme freeform optical surfaces. In particular, Optimax has placed emphasis on refining the deterministic form correction process. By developing many of these procedures in house, changes can be implemented quickly and efficiently in order to rapidly converge on an optimal manufacturing method. Advances in metrology techniques allow for rapid identification and quantification of irregularities in freeform surfaces, while deterministic correction algorithms precisely target features on the part and drastically reduce overall correction time. Together, these improvements have yielded significant advances in the realm of freeform manufacturing. With further refinements to these and other aspects of the freeform manufacturing process, the production of increasingly radical freeform optical components is quickly becoming a reality.
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes
NASA Astrophysics Data System (ADS)
Faggionato, A.; Gabrielli, D.; Ribezzi Crivellari, M.
2009-10-01
We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states ( x, σ)∈Ω×Γ, Ω being a region in ℝ d or the d-dimensional torus, Γ being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the σ-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat. Phys. 107(3-4):635-675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at http://www.arxiv.org/abs/0807.4457, 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti-Cohen-type symmetry relation with involution map different from time-reversal.
A deterministic version of Pollard's p-1 algorithm
NASA Astrophysics Data System (ADS)
Zral/Ek, Bartosz
2010-01-01
In this article we present applications of smooth numbers to the unconditional derandomization of some well-known integer factoring algo- rithms. We begin with Pollard's p-1 algorithm, which finds in random polynomial time the prime divisors p of an integer n such that p-1 is smooth. We show that these prime factors can be recovered in deterministic polynomial time. We further generalize this result to give a partial derandomization of the k -th cyclotomic method of factoring ( k≥2 ) devised by Bach and Shallit. We also investigate reductions of factoring to computing Euler's totient function ϕ . We point out some explicit sets of integers n that are completely factorable in deterministic polynomial time given ϕ(n) . These sets consist, roughly speaking, of products of primes p satisfying, with the exception of at most two, certain conditions somewhat weaker than the smoothness of p-1 . Finally, we prove that O(ln n) oracle queries for values of ϕ are sufficient to completely factor any integer n in less than expBigl((1+o(1))(ln n)^{1/3} (lnln n)^{2/3}Bigr) deterministic time.
Extinction thresholds in deterministic and stochastic epidemic models.
Allen, Linda J S; Lahodny, Glenn E
2012-01-01
The basic reproduction number, ℛ(0), one of the most well-known thresholds in deterministic epidemic theory, predicts a disease outbreak if ℛ(0)>1. In stochastic epidemic theory, there are also thresholds that predict a major outbreak. In the case of a single infectious group, if ℛ(0)>1 and i infectious individuals are introduced into a susceptible population, then the probability of a major outbreak is approximately 1-(1/ℛ(0))( i ). With multiple infectious groups from which the disease could emerge, this result no longer holds. Stochastic thresholds for multiple groups depend on the number of individuals within each group, i ( j ), j=1, …, n, and on the probability of disease extinction for each group, q ( j ). It follows from multitype branching processes that the probability of a major outbreak is approximately [Formula: see text]. In this investigation, we summarize some of the deterministic and stochastic threshold theory, illustrate how to calculate the stochastic thresholds, and derive some new relationships between the deterministic and stochastic thresholds.
A deterministic approach to simulate and downscale hydrological records
NASA Astrophysics Data System (ADS)
Maskey, M.; Puente, C. E.; Sivakumar, B.
2016-12-01
Application of a deterministic geometric approach for the simulation and downscaling of hydrologic data, daily rainfall and daily streamflow over a year, is presented. Specifically, it is shown that adaptations of the fractal-multifractal (FM) method, relying on only eight geometric parameters, may do both tasks accurately. The capability of the FM approach in producing plausible synthetic and disaggregated sets is illustrated using rain sets gathered in Laikakota, Bolivia and Tinkham, Washington, USA, and streamflow sets measured at the Sacramento River, USA. It is shown that suitable deterministic synthetic sets, maintaining the texture of the original records, may readily be found that faithfully preserve, for rainfall, the entire records' histogram, entropy and distribution of zeroes, and, for streamflow, the entire data's autocorrelation, histogram and entropy. It is then shown that the FM method readily generates daily series of rainfall and streamflow over a year based on weekly, biweekly and monthly accumulated information, which, while closely preserving the time evolution of the daily records, reasonably captures a variety of key statistical attributes. It is argued that the parsimonious FM deterministic simulations and downscalings may enhance and/or supplement stochastic simulation and disaggregation methods.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
NASA Astrophysics Data System (ADS)
Gupta, Atma Ram; Kumar, Ashwani
2017-08-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is:
Sub-surface single ion detection in diamond: A path for deterministic color center creation
NASA Astrophysics Data System (ADS)
Abraham, John; Aguirre, Brandon; Pacheco, Jose; Camacho, Ryan; Bielejec, Edward; Sandia National Laboratories Team
Deterministic single color center creation remains a critical milestone for the integrated use of diamond color centers. It depends on three components: focused ion beam implantation to control the location, yield improvement to control the activation, and single ion implantation to control the number of implanted ions. A surface electrode detector has been fabricated on diamond where the electron hole pairs generated during ion implantation are used as the detection signal. Results will be presented demonstrating single ion detection. The detection efficiency of the device will be described as a function of implant energy and device geometry. It is anticipated that the controlled introduction of single dopant atoms in diamond will provide a basis for deterministic single localized color centers. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Bianchini, G.; Burgio, N.; Carta, M.; Peluso, V.; Fabrizio, V.; Ricci, L.
2012-07-01
The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Several off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)
Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab
da Silva, R.M.; Fernandes, J.L.M.
2010-12-15
and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)
Stochastic Processes in Physics: Deterministic Origins and Control
NASA Astrophysics Data System (ADS)
Demers, Jeffery
Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with
Kotze, Ben; Jordaan, Gerrit
2014-01-01
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548
Kotze, Ben; Jordaan, Gerrit
2014-08-25
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.
HYDRORECESSION: A Matlab toolbox for streamflow recession analysis
NASA Astrophysics Data System (ADS)
Arciniega-Esparza, Saúl; Breña-Naranjo, José Agustín; Pedrozo-Acuña, Adrián; Appendini, Christian Mario
2017-01-01
Streamflow recession analysis from observed hydrographs allows to extract information about the storage-discharge relationship of a catchment and some of their groundwater hydraulic properties. The HYDRORECESSION toolbox, presented in this paper, is a graphical user interface for Matlab and it was developed to analyse streamflow recession curves with the support of different tools. The software extracts hydrograph recessions segments with three different methods (Vogel, Brutsaert and Aksoy) that are later analysed with four of the most common models to simulate recession curves (Maillet, Boussinesq, Coutagne and Wittenberg) and it includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error). HYDRORECESSION offers tools to parameterize linear and nonlinear storage-outflow relationships and it is useful for regionalization purposes, catchment classification, baseflow separation, hydrological modeling and low flows prediction. HYDRORECESSION is freely available for non-commercial and academic purposes and is available at Matlab File Exchange (http://www.mathworks.com/matlabcentral/fileexchange/51332-hydroecession).
A covariance NMR toolbox for MATLAB and OCTAVE.
Short, Timothy; Alzapiedi, Leigh; Brüschweiler, Rafael; Snyder, David
2011-03-01
The Covariance NMR Toolbox is a new software suite that provides a streamlined implementation of covariance-based analysis of multi-dimensional NMR data. The Covariance NMR Toolbox uses the MATLAB or, alternatively, the freely available GNU OCTAVE computer language, providing a user-friendly environment in which to apply and explore covariance techniques. Covariance methods implemented in the toolbox described here include direct and indirect covariance processing, 4D covariance, generalized indirect covariance (GIC), and Z-matrix transform. In order to provide compatibility with a wide variety of spectrometer and spectral analysis platforms, the Covariance NMR Toolbox uses the NMRPipe format for both input and output files. Additionally, datasets small enough to fit in memory are stored as arrays that can be displayed and further manipulated in a versatile manner within MATLAB or OCTAVE.
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2017-09-01
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false
MATLAB implementation of W-matrix multiresolution analyses
Kwong, Man Kam
1997-01-01
We present a MATLAB toolbox on multiresolution analysis based on the W-transform introduced by Kwong and Tang. The toolbox contains basic commands to perform forward and inverse transforms on finite 1D and 2D signals of arbitrary length, to perform multiresolution analysis of given signals to a specified number of levels, to visualize the wavelet decomposition, and to do compression. Examples of numerical experiments are also discussed.
A Parallel Data Mining Toolbox Using MatlabMPI
2004-08-20
The ready availability of vast quantities of data has driven the need for data mining algorithms that can discover patterns, correlations and changes...in the data. The amount and high dimensionality of the data make data mining an important application for high performance computing Joshi, 2002. The...mathematical and interactive nature of many of the data mining algorithm, makes it natural to use a language like MATLAB both to design algorithms
2012-01-01
Background The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. Results This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. Conclusion The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by
Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano
2012-05-10
The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
Dixon, W.E.
2001-03-15
This paper seeks to begin a discussion with regard to developing standardized Computer Aided Control System Design (CACSD) tools that are typically utilized in an undergraduate controls laboratory. The advocated CACSD design tools are based on the popular, commercially available MATLAB environment, the Simulink toolbox, and the Real-Time Workshop toolbox. The primary advantages of the proposed approach are as follows: (1) the required computer hardware is low cost, (2) commercially available plants from different manufacturers can be supported under the same CACSD environment with no hardware modifications, (3) both the Windows and Linux operating systems can be supported via the MATLAB based Real-Time Windows Target and the Quality Real Time Systems (QRTS) based Real-Time Linux Target, and (4) the Simulink block diagram approach can be utilized to prototype control strategies; thereby, eliminating the need for low level programming skills. It is believed that the above advantages related to standardization of the CACSD design tools will facilitate: (1) the sharing of laboratory resources within each university (i.e., between departments) and (2) the development of Internet laboratory experiences for students (i.e., between universities).
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
MatLab script to C code converter for embedded processors of FLASH LLRF control system
NASA Astrophysics Data System (ADS)
Bujnowski, K.; Siemionczyk, A.; Pucyk, P.; Szewiński, J.; Pożniak, K. T.; Romaniuk, R. S.
2008-01-01
The low level RF control system (LLRF) of FEL serves for stabilization of the electromagnetic (EM) field in the superconducting niobium, resonant, microwave cavities and for controlling high power (MW) klystron. LLRF system of FLASH accelerator bases on FPGA technology and embedded microprocessors. Basic and auxiliary functions of the systems are listed as well as used algorithms for superconductive cavity parameters identification. These algorithms were prepared originally in Matlab. The main part of the paper presents implementation of the cavity parameters identification algorithm in a PowerPC processor embedded in the FPGA circuit VirtexIIPro. A construction of a very compact Matlab script converter to C code was presented, referred to as M2C. The application is designed specifically for embedded systems of very confined resources. The generated code is optimized for the weight. The code should be transferable between different hardware platforms. The converter generates a code for Linux and for stand-alone applications. Functional structure of the program was described and the way it is acting. FLEX and BIZON tools were used for construction of the converter. The paper concludes with an example of the M2C application to convert a complex identification algorithm for superconductive cavities in FLASH laser.
CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei
2014-12-01
We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.
Design of high-performance parallelized gene predictors in MATLAB.
Rivard, Sylvain Robert; Mailloux, Jean-Gabriel; Beguenane, Rachid; Bui, Hung Tien
2012-04-10
This paper proposes a method of implementing parallel gene prediction algorithms in MATLAB. The proposed designs are based on either Goertzel's algorithm or on FFTs and have been implemented using varying amounts of parallelism on a central processing unit (CPU) and on a graphics processing unit (GPU). Results show that an implementation using a straightforward approach can require over 4.5 h to process 15 million base pairs (bps) whereas a properly designed one could perform the same task in less than five minutes. In the best case, a GPU implementation can yield these results in 57 s. The present work shows how parallelism can be used in MATLAB for gene prediction in very large DNA sequences to produce results that are over 270 times faster than a conventional approach. This is significant as MATLAB is typically overlooked due to its apparent slow processing time even though it offers a convenient environment for bioinformatics. From a practical standpoint, this work proposes two strategies for accelerating genome data processing which rely on different parallelization mechanisms. Using a CPU, the work shows that direct access to the MEX function increases execution speed and that the PARFOR construct should be used in order to take full advantage of the parallelizable Goertzel implementation. When the target is a GPU, the work shows that data needs to be segmented into manageable sizes within the GFOR construct before processing in order to minimize execution time.
PFA toolbox: a MATLAB tool for Metabolic Flux Analysis.
Morales, Yeimy; Bosque, Gabriel; Vehí, Josep; Picó, Jesús; Llaneras, Francisco
2016-07-11
Metabolic Flux Analysis (MFA) is a methodology that has been successfully applied to estimate metabolic fluxes in living cells. However, traditional frameworks based on this approach have some limitations, particularly when measurements are scarce and imprecise. This is very common in industrial environments. The PFA Toolbox can be used to face those scenarios. Here we present the PFA (Possibilistic Flux Analysis) Toolbox for MATLAB, which simplifies the use of Interval and Possibilistic Metabolic Flux Analysis. The main features of the PFA Toolbox are the following: (a) It provides reliable MFA estimations in scenarios where only a few fluxes can be measured or those available are imprecise. (b) It provides tools to easily plot the results as interval estimates or flux distributions. (c) It is composed of simple functions that MATLAB users can apply in flexible ways. (d) It includes a Graphical User Interface (GUI), which provides a visual representation of the measurements and their uncertainty. (e) It can use stoichiometric models in COBRA format. In addition, the PFA Toolbox includes a User's Guide with a thorough description of its functions and several examples. The PFA Toolbox for MATLAB is a freely available Toolbox that is able to perform Interval and Possibilistic MFA estimations.
Rose, Jonas; Otto, Tobias; Dittrich, Lars
2008-10-30
The Biopsychology-Toolbox is a free, open-source Matlab-toolbox for the control of behavioral experiments. The major aim of the project was to provide a set of basic tools that allow programming novices to control basic hardware used for behavioral experimentation without limiting the power and flexibility of the underlying programming language. The modular design of the toolbox allows portation of parts as well as entire paradigms between different types of hardware. In addition to the toolbox, this project offers a platform for the exchange of functions, hardware solutions and complete behavioral paradigms.
St Aubin, J. Keyvanloo, A.; Fallone, B. G.; Vassiliev, O.
2015-02-15
Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today’s treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm{sup 2} field as well as a smaller 2 × 2 cm{sup 2} field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm’s high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization
Using STOQS and stoqstoolbox for in situ Measurement Data Access in Matlab
NASA Astrophysics Data System (ADS)
López-Castejón, F.; Schlining, B.; McCann, M. P.
2012-12-01
This poster presents the stoqstoolbox, an extension to Matlab that simplifies the loading of in situ measurement data directly from STOQS databases. STOQS (Spatial Temporal Oceanographic Query System) is a geospatial database tool designed to provide efficient access to data following the CF-NetCDF Discrete Samples Geometries convention. Data are loaded from CF-NetCDF files into a STOQS database where indexes are created on depth, spatial coordinates and other parameters, e.g. platform type. STOQS provides consistent, simple and efficient methods to query for data. For example, we can request all measurements with a standard_name of sea_water_temperature between two times and from between two depths. Data access is simpler because the data are retrieved by parameter irrespective of platform or mission file names. Access is more efficient because data are retrieved via the index on depth and only the requested data are retrieved from the database and transferred into the Matlab workspace. Applications in the stoqstoolbox query the STOQS database via an HTTP REST application programming interface; they follow the Data Access Object pattern, enabling highly customizable query construction. Data are loaded into Matlab structures that clearly indicate latitude, longitude, depth, measurement data value, and platform name. The stoqstoolbox is designed to be used in concert with other tools, such as nctoolbox, which can load data from any OPeNDAP data source. With these two toolboxes a user can easily work with in situ and other gridded data, such as from numerical models and remote sensing platforms. In order to show the capability of stoqstoolbox we will show an example of model validation using data collected during the May-June 2012 field experiment conducted by the Monterey Bay Aquarium Research Institute (MBARI) in Monterey Bay, California. The data are available from the STOQS server at http://odss.mbari.org/canon/stoqs_may2012/query/. Over 14 million data points of
Spatial continuity measures for probabilistic and deterministic geostatistics
Isaaks, E.H.; Srivastava, R.M.
1988-05-01
Geostatistics has traditionally used a probabilistic framework, one in which expected values or ensemble averages are of primary importance. The less familiar deterministic framework views geostatistical problems in terms of spatial integrals. This paper outlines the two frameworks and examines the issue of which spatial continuity measure, the covariance C(h) or the variogram ..sigma..(h), is appropriate for each framework. Although C(h) and ..sigma..(h) were defined originally in terms of spatial integrals, the convenience of probabilistic notation made the expected value definitions more common. These now classical expected value definitions entail a linear relationship between C(h) and ..sigma..(h); the spatial integral definitions do not. In a probabilistic framework, where available sample information is extrapolated to domains other than the one which was sampled, the expected value definitions are appropriate; furthermore, within a probabilistic framework, reasons exist for preferring the variogram to the covariance function. In a deterministic framework, where available sample information is interpolated within the same domain, the spatial integral definitions are appropriate and no reasons are known for preferring the variogram. A case study on a Wiener-Levy process demonstrates differences between the two frameworks and shows that, for most estimation problems, the deterministic viewpoint is more appropriate. Several case studies on real data sets reveal that the sample covariance function reflects the character of spatial continuity better than the sample variogram. From both theoretical and practical considerations, clearly for most geostatistical problems, direct estimation of the covariance is better than the traditional variogram approach.
Statistical methods of parameter estimation for deterministically chaotic time series.
Pisarenko, V F; Sornette, D
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A "segmentation fitting" maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x(1) considered as an additional unknown parameter. The segmentation fitting method, called "piece-wise" ML, is similar in spirit but simpler and has smaller bias than the "multiple shooting" previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
Matching solute breakthrough with deterministic and stochastic aquifer models.
Lemke, Lawrence D; Barrack, William A; Abriola, Linda M; Goovaerts, Pierre
2004-01-01
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.
Optical image encryption technique based on deterministic phase masks
NASA Astrophysics Data System (ADS)
Zamrani, Wiam; Ahouzi, Esmail; Lizana, Angel; Campos, Juan; Yzuel, María J.
2016-10-01
The double-random phase encoding (DRPE) scheme, which is based on a 4f optical correlator system, is considered as a reference for the optical encryption field. We propose a modification of the classical DRPE scheme based on the use of a class of structured phase masks, the deterministic phase masks. In particular, we propose to conduct the encryption process by using two deterministic phase masks, which are built from linear combinations of several subkeys. For the decryption step, the input image is retrieved by using the complex conjugate of the deterministic phase masks, which were set in the encryption process. This concept of structured masks gives rise to encryption-decryption keys which are smaller and more compact than those required in the classical DRPE. In addition, we show that our method significantly improves the tolerance of the DRPE method to shifts of the decrypting phase mask-when no shift is applied, it provides similar performance to the DRPE scheme in terms of encryption-decryption results. This enhanced tolerance to the shift, which is proven by providing numerical simulation results for grayscale and binary images, may relax the rigidity of an encryption-decryption experimental implementation setup. To evaluate the effectiveness of the described method, the mean-square-error and the peak signal-to-noise ratio between the input images and the recovered images are calculated. Different studies based on simulated data are also provided to highlight the suitability and robustness of the method when applied to the image encryption-decryption processes.
Deterministic side-branching during thermal dendritic growth
NASA Astrophysics Data System (ADS)
Mullis, Andrew M.
2015-06-01
The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43 (2012) 391]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here we present simulations at high undercooling that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Not only are multigrid solvers one of the most efficient means of inverting the large, but sparse, system of equations that results from implicit time-stepping, they are also very effective at smoothing noise at all wavelengths. This is in contrast to most Jacobi or Gauss-Seidel iterative schemes which are effective at removing noise with wavelengths comparable to the mesh size but tend to leave noise at longer wavelengths largely undamped. From an analysis of the tangential thermal gradients on the solid-liquid interface the mechanism for side-branching appears to be consistent with the deterministic model proposed by Glicksman.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
Deterministic Smoluchowski-Feynman ratchets driven by chaotic noise.
Chew, Lock Yue
2012-01-01
We have elucidated the effect of statistical asymmetry on the directed current in Smoluchowski-Feynman ratchets driven by chaotic noise. Based on the inhomogeneous Smoluchowski equation and its generalized version, we arrive at analytical expressions of the directed current that includes a source term. The source term indicates that statistical asymmetry can drive the system further away from thermodynamic equilibrium, as exemplified by the constant flashing, the state-dependent, and the tilted deterministic Smoluchowski-Feynman ratchets, with the consequence of an enhancement in the directed current.
Deterministic regularization of three-dimensional optical diffraction tomography
Sung, Yongjin; Dasari, Ramachandra R.
2012-01-01
In this paper we discuss a deterministic regularization algorithm to handle the missing cone problem of three-dimensional optical diffraction tomography (ODT). The missing cone problem arises in most practical applications of ODT and is responsible for elongation of the reconstructed shape and underestimation of the value of the refractive index. By applying positivity and piecewise-smoothness constraints in an iterative reconstruction framework, we effectively suppress the missing cone artifact and recover sharp edges rounded out by the missing cone, and we significantly improve the accuracy of the predictions of the refractive index. We also show the noise handling capability of our algorithm in the reconstruction process. PMID:21811316
Non-deterministic analysis of ocean environment loads
Fang Huacan; Xu Fayan; Gao Guohua; Xu Xingping
1995-12-31
Ocean environment loads consist of the wind force, sea wave force etc. Sea wave force not only has randomness, but also has fuzziness. Hence the non-deterministic description of wave environment must be carried out, in designing of an offshore structure or evaluation of the safety of offshore structure members in service. In order to consider the randomness of sea wave, the wind speed single parameter sea wave spectrum is proposed in the paper. And a new fuzzy grading statistic method for considering fuzziness of sea wave height H and period T is given in this paper. The principle and process of calculating fuzzy random sea wave spectrum will be published lastly.
Deterministic versus stochastic aspects of superexponential population growth models
NASA Astrophysics Data System (ADS)
Grosjean, Nicolas; Huillet, Thierry
2016-08-01
Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.
Nearly deterministic linear optical controlled-NOT gate.
Nemoto, Kae; Munro, W J
2004-12-17
We show how to construct a near deterministic CNOT gate using several single photons sources, linear optics, photon number resolving quantum nondemolition detectors, and feed forward. This gate does not require the use of massively entangled states common to other implementations and is very efficient on resources with only one ancilla photon required. The key element of this gate is nondemolition detectors that use a weak cross-Kerr nonlinearity effect to conditionally generate a phase shift on a coherent probe if a photon is present in the signal mode. These potential phase shifts can then be measured using highly efficient homodyne detection.
The deterministic optical alignment of the HERMES spectrograph
NASA Astrophysics Data System (ADS)
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
Role of infinite invariant measure in deterministic subdiffusion
NASA Astrophysics Data System (ADS)
Akimoto, Takuma; Miyaguchi, Tomoshige
2010-09-01
Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference. Furthermore, the diffusion coefficient becomes a random variable and its limit distribution is characterized by the universal law called the Mittag-Leffler distribution.
Demonstration of deterministic and high fidelity squeezing of quantum information
Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.
2007-12-15
By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.
Deterministic Ants in Labyrinth — Information Gained by Map Sharing
NASA Astrophysics Data System (ADS)
Malinowski, Janusz; Kantelhardt, Jan W.; Kułakowski, Krzysztof
2013-06-01
A few ant robots are placed in a labyrinth, formed by a square lattice with a small number of corridors removed. Ants move according to a deterministic algorithm designed to explore all corridors. Each ant remembers the shape of corridors which it has visited. Once two ants meet, they share the information acquired. We evaluate how the time of getting a complete information by an ant depends on the number of ants, and how the length known by an ant depends on time. Numerical results are presented in the form of scaling relations.
Deterministic shape control in plasma-aided nanotip assembly
NASA Astrophysics Data System (ADS)
Tam, E.; Levchenko, I.; Ostrikov, K.
2006-08-01
The possibility of deterministic plasma-assisted reshaping of capped cylindrical seed nanotips by manipulating the plasma parameter-dependent sheath width is shown. Multiscale hybrid gas phase/solid surface numerical experiments reveal that under the wide-sheath conditions the nanotips widen at the base and when the sheath is narrow, they sharpen up. By combining the wide- and narrow-sheath stages in a single process, it turns out possible to synthesize wide-base nanotips with long- and narrow-apex spikes, ideal for electron microemitter applications. This plasma-based approach is generic and can be applied to a larger number of multipurpose nanoassemblies.
Deterministic Models of Channel Headwall Erosion: Initiation and Propagation
1991-06-14
Port Ocean Div., Amer. Soc. Civil Engr. 106(WW3):369-389. Beltaos , S . 1976 Oblique impingement of plane turbulent jets. J. Hydr. Div. Amer. Soc. Civil...Engrs. 102(HY9): 1177-1192. Beltaos , S . and Rajaratnam. 1973. Plane turbulent impinging jets. J. Hydr. Res. 11:29-59. Bradford, J. M. and R. F. Priest...June 14, 1991 FINAL 7!5T Oy7- /%faq 4. TITLE AND SUBTITLE S . FUNDING NUMB ERS Deterministic Models of Channel Headwall Erosion: Initiation and
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Lasing in an optimized deterministic aperiodic nanobeam cavity
NASA Astrophysics Data System (ADS)
Moon, Seul-Ki; Jeong, Kwang-Yong; Noh, Heeso; Yang, Jin-Kyu
2016-12-01
We have demonstrated lasing action from partially extended modes in deterministic aperiodic nanobeam cavities inflated by Rudin-Shapiro sequence with two different air holes at room temperature. By varying the size ratio of the holes and hence the structural aperiodicity, different optical lasing modes were obtained with maximized quality factors. The lasing characteristics of the partially extended modes were confirmed by numerical simulations based on scanning microscope images of the fabricated samples. We believe that this partially extended nanobeam modes will be useful for label-free optical biosensors.
Goreac, Dan; Serea, Oana-Silvia
2012-10-15
We aim at characterizing domains of attraction for controlled piecewise deterministic processes using an occupational measure formulation and Zubov's approach. Firstly, we provide linear programming (primal and dual) formulations of discounted, infinite horizon control problems for PDMPs. These formulations involve an infinite-dimensional set of probability measures and are obtained using viscosity solutions theory. Secondly, these tools allow to construct stabilizing measures and to avoid the assumption of stability under concatenation for controls. The domain of controllability is then characterized as some level set of a convenient solution of the associated Hamilton-Jacobi integral-differential equation. The theoretical results are applied to PDMPs associated to stochastic gene networks. Explicit computations are given for Cook's model for gene expression.
The integrated model for solving the single-period deterministic inventory routing problem
NASA Astrophysics Data System (ADS)
Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik
2016-08-01
This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministic viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.
GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Duboscq, Romain
2014-11-01
This paper presents GPELab (Gross-Pitaevskii Equation Laboratory), an advanced easy-to-use and flexible Matlab toolbox for numerically simulating many complex physics situations related to Bose-Einstein condensation. The model equation that GPELab solves is the Gross-Pitaevskii equation. The aim of this first part is to present the physical problems and the robust and accurate numerical schemes that are implemented for computing stationary solutions, to show a few computational examples and to explain how the basic GPELab functions work. Problems that can be solved include: 1d, 2d and 3d situations, general potentials, large classes of local and nonlocal nonlinearities, multi-components problems, and fast rotating gases. The toolbox is developed in such a way that other physics applications that require the numerical solution of general Schrödinger-type equations can be considered. Catalogue identifier: AETU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETU_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 552 No. of bytes in distributed program, including test data, etc.: 611 289 Distribution format: tar.gz Programming language: Matlab. Computer: PC, Mac. Operating system: Windows, Mac OS, Linux. Has the code been vectorized or parallelized?: Yes RAM: 4000 Megabytes Classification: 2.7, 4.6, 7.7. Nature of problem: Computing stationary solutions for a class of systems (multi-components) of Gross-Pitaevskii equations in 1d, 2d and 3d. This program is particularly well designed for the computation of ground states of Bose-Einstein condensates as well as dynamics. Solution method: We use the imaginary-time method with a Semi-Implicit Backward Euler scheme, a pseudo-spectral approximation and a Krylov subspace method. Running time: From a few minutes
Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules
Singh, M.; Muljadi, E.; Jonkman, J.; Gevorgian, V.; Girsang, I.; Dhupia, J.
2014-04-01
This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. As described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.
Arduino-Based Data Acquisition into Excel, LabVIEW, and MATLAB
NASA Astrophysics Data System (ADS)
Nichols, Daniel
2017-04-01
Data acquisition equipment for physics can be quite expensive. As an alternative, data can be acquired using a low-cost Arduino microcontroller. The Arduino has been used in physics labs where the data are acquired using the Arduino software. The Arduino software, however, does not contain a suite of tools for data fitting and analysis. The data are typically gathered first and then imported manually into an analysis program. There is a way, however, that allows data gathered by the Arduino to be imported in real time into a data analysis package. Illustrated in this article are add-ins for Excel, MATLAB, and LabVIEW that import data directly from the Arduino and allow for real-time plotting and analysis.
GRace: a MATLAB-based application for fitting the discrimination-association model.
Stefanutti, Luca; Vianello, Michelangelo; Anselmi, Pasquale; Robusto, Egidio
2014-10-28
The Implicit Association Test (IAT) is a computerized two-choice discrimination task in which stimuli have to be categorized as belonging to target categories or attribute categories by pressing, as quickly and accurately as possible, one of two response keys. The discrimination association model has been recently proposed for the analysis of reaction time and accuracy of an individual respondent to the IAT. The model disentangles the influences of three qualitatively different components on the responses to the IAT: stimuli discrimination, automatic association, and termination criterion. The article presents General Race (GRace), a MATLAB-based application for fitting the discrimination association model to IAT data. GRace has been developed for Windows as a standalone application. It is user-friendly and does not require any programming experience. The use of GRace is illustrated on the data of a Coca Cola-Pepsi Cola IAT, and the results of the analysis are interpreted and discussed.
KARDIA: a Matlab software for the analysis of cardiac interbeat intervals.
Perakakis, Pandelis; Joffily, Mateus; Taylor, Michael; Guerra, Pedro; Vila, Jaime
2010-04-01
This article presents KARDIA, a Matlab (MathWorks Inc., MA) software developed for the analysis of cardiac interbeat interval (IBI) data. Available functions are called through a graphical user interface and permit the study of phasic cardiac responses (PCRs) and the estimation of time and frequency domain heart rate variability (HRV) parameters. Scaling exponents of heartbeat fluctuations are calculated with the detrended fluctuation analysis (DFA) algorithm. Grand average and individual subject results can be exported to spreadsheets for further statistical analysis. KARDIA is distributed free of charge under the terms of GNU public license so that other users can modify the code and adjust the program's performance according to their own scientific requirements. 2009 Elsevier Ireland Ltd. All rights reserved.
Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.
Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R
2017-02-01
Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph(®))) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.
An advanced deterministic method for spent fuel criticality safety analysis
DeHart, M.D.
1998-01-01
Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.
On the deterministic and stochastic use of hydrologic models
NASA Astrophysics Data System (ADS)
Farmer, William H.; Vogel, Richard M.
2016-07-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-03
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations
NASA Astrophysics Data System (ADS)
Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael
2012-02-01
We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Deterministic composite nanophotonic lattices in large area for broadband applications
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates. PMID:27941869
Predictability of normal heart rhythms and deterministic chaos
NASA Astrophysics Data System (ADS)
Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.
1993-04-01
The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.
Deterministic composite nanophotonic lattices in large area for broadband applications.
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-12
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm(2)) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Made-to-order nanocarbons through deterministic plasma nanotechnology
NASA Astrophysics Data System (ADS)
Ren, Yuping; Xu, Shuyan; Rider, Amanda Evelyn; Ostrikov, Kostya (Ken)
2011-02-01
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Deterministic doping and the exploration of spin qubits
Schenkel, T.; Weis, C. D.; Persaud, A.; Lo, C. C.; Chakarov, I.; Schneider, D. H.; Bokor, J.
2015-01-09
Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.
Using MCBEND for neutron or gamma-ray deterministic calculations
NASA Astrophysics Data System (ADS)
Geoff, Dobson; Adam, Bird; Brendan, Tollit; Paul, Smith
2017-09-01
MCBEND 11 is the latest version of the general radiation transport Monte Carlo code from AMEC Foster Wheeler's ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. MCBEND supports a number of acceleration techniques, for example the use of an importance map in conjunction with Splitting/Russian Roulette. MCBEND has a well established automated tool to generate this importance map, commonly referred to as the MAGIC module using a diffusion adjoint solution. This method is fully integrated with the MCBEND geometry and material specification, and can easily be run as part of a normal MCBEND calculation. An often overlooked feature of MCBEND is the ability to use this method for forward scoping calculations, which can be run as a very quick deterministic method. Additionally, the development of the Visual Workshop environment for results display provides new capabilities for the use of the forward calculation as a productivity tool. In this paper, we illustrate the use of the combination of the old and new in order to provide an enhanced analysis capability. We also explore the use of more advanced deterministic methods for scoping calculations used in conjunction with MCBEND, with a view to providing a suite of methods to accompany the main Monte Carlo solver.
Deterministic composite nanophotonic lattices in large area for broadband applications
NASA Astrophysics Data System (ADS)
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Made-to-order nanocarbons through deterministic plasma nanotechnology.
Ren, Yuping; Xu, Shuyan; Rider, Amanda Evelyn; Ostrikov, Kostya Ken
2011-02-01
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar+CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications.
A deterministic approach to modeling a scintillator cell for NICADD
NASA Astrophysics Data System (ADS)
Barendregt, Alan Carl
CERN uses many detectors in the particle accelerator to find the building blocks of the universe. One type of detector used is a scintillator cell. These detectors are being optimized by NICADD to have a uniform detection range at the lowest cost. To assist in this endeavor, computer modeling gives the designer the ability to test many designs in a virtual environment prior to making a physical prototype design. Current virtual models for this field have been stochastic, which means the designer will have to repeatedly run the same simulation many times to get rid of the statistical "noise" in the results. In the field of nuclear science engineering, deterministic softwares have proven themselves to be a valid prediction tool for such problems as neutron embrittlement. These models account for the probabilities up front and will provide a single result that can help confirm improvements in design in a single step. This has advantages especially when it comes to comparing two different models. This thesis discusses the method of using TransMED, a deterministic software, to assist NICADD in optimizing scintillator cell design. This thesis provides a road-map on how NICADD can use TransMED in there design work for this project and other anisotripic scattering problems as well.
Stochastic and deterministic causes of streamer branching in liquid dielectrics
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-08-14
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.
Deterministic nature of the underlying dynamics of surface wind fluctuations
NASA Astrophysics Data System (ADS)
Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.
2012-10-01
Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Shock-induced explosive chemistry in a deterministic sample configuration.
Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III; Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith
2005-10-01
Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.
Dynamic model of the vergence eye movement system: simulations using MATLAB/SIMULINK.
Hung, G K
1998-01-01
A dynamic model of the vergence eye movement system was developed and simulated using MATLAB/SIMULINK. The model was based on a dual-mode dynamic model previously written in FORTRAN. It consisted of a fast open-loop component and a slow closed-loop component. The new model contained several important modifications. For example, in the fast component, a zero-order hold element replaced the sampler and the target trajectory estimator in the earlier model to provide more stable and accurate responses. Also, a periodicity detector was added to automatically detect periodicity in the stimulus waveform. The stored periodic stimulus, with a reduction in latency, was used to drive the fast component output. Moreover, a connection representing the efference copy signal was added from the fast component output to the disparity input to provide an accurate estimate of the stimulus waveform. Further, Robinson's model of the extraocular muscles replaced the earlier 2nd-order plant to provide more realistic muscle dynamics. The entire model, containing the fast and slow components, was simulated using a variety of stimuli such as pulses, positive and negative ramps, square-wave, and sine-wave. The responses showed dynamic characteristics similar to experimental results. Thus, this new MATLAB/SIMULINK program provides a relatively easy-to-use, versatile, and powerful simulation environment for investigating the basic as well as clinical aspects of vergence dynamics. Moreover, the simulation program has general characteristics that can be modified to represent other oculomotor systems such as the versional and accommodation systems. This provides a framework for future investigation of dynamic interactions between oculomotor systems.
Parallel distance matrix computation for Matlab data mining
NASA Astrophysics Data System (ADS)
Skurowski, Przemysław; Staniszewski, Michał
2016-06-01
The paper presents utility functions for computing of a distance matrix, which plays a crucial role in data mining. The goal in the design was to enable operating on relatively large datasets by overcoming basic shortcoming - computing time - with an interface easy to use. The presented solution is a set of functions, which were created with emphasis on practical applicability in real life. The proposed solution is presented along the theoretical background for the performance scaling. Furthermore, different approaches of the parallel computing are analyzed, including shared memory, which is uncommon in Matlab environment.
Causes of maternal mortality decline in Matlab, Bangladesh.
Chowdhury, Mahbub Elahi; Ahmed, Anisuddin; Kalim, Nahid; Koblinsky, Marge
2009-04-01
Bangladesh is distinct among developing countries in achieving a low maternal mortality ratio (MMR) of 322 per 100,000 livebirths despite the very low use of skilled care at delivery (13% nationally). This variation has also been observed in Matlab, a rural area in Bangladesh, where longitudinal data on maternal mortality are available since the mid-1970s. The current study investigated the possible causes of the maternal mortality decline in Matlab. The study analyzed 769 maternal deaths and 215,779 pregnancy records from the Health and Demographic Surveillance System (HDSS) and other sources of safe motherhood data in the ICDDR,B and government service areas in Matlab during 1976-2005. The major interventions that took place in both the areas since the early 1980s were the family-planning programme plus safe menstrual regulation services and safe motherhood interventions (midwives for normal delivery in the ICDDR,B service area from the late 1980s and equal access to comprehensive emergency obstetric care [EmOC] in public facilities for women from both the areas). National programmes for social development and empowerment of women through education and microcredit programmes were implemented in both the areas. The quantitative findings were supplemented by a qualitative study by interviewing local community care providers for their change in practices for maternal healthcare over time. After the introduction of the safe motherhood programme, reduction in maternal mortality was higher in the ICDDR,B service area (68.6%) than in the government service area (50.4%) during 1986-1989 and 2001-2005. Reduction in the number of maternal deaths due to the fertility decline was higher in the government service area (30%) than in the ICDDR,B service area (23%) during 1979-2005. In each area, there has been substantial reduction in abortion-related mortality--86.7% and 78.3%--in the ICDDR,B and government service areas respectively. Education of women was a strong predictor
SBEToolbox: A Matlab Toolbox for Biological Network Analysis.
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
Orthogonal frequency division multiplexing simulation based on MATLAB
NASA Astrophysics Data System (ADS)
Qiao, Yuan
2017-09-01
OFDM (Orthogonal Frequency Division Multiplexing) is one of the core technologies in the fourth generation mobile communication system. It is a widely-used method of the multi-carrier modulations based on IFFT and FFT transform, it can achieve the lowest complexity and effectively combat frequency selective fading. In this paper, we successfully use MATLAB to do the simulation of OFDM, and obtained good results, in which successful recovery out of the original signal under real channel condition, and error is less than 5% with the original signal.
Causes of Maternal Mortality Decline in Matlab, Bangladesh
Ahmed, Anisuddin; Kalim, Nahid; Koblinsky, Marge
2009-01-01
Bangladesh is distinct among developing countries in achieving a low maternal mortality ratio (MMR) of 322 per 100,000 livebirths despite the very low use of skilled care at delivery (13% nationally). This variation has also been observed in Matlab, a rural area in Bangladesh, where longitudinal data on maternal mortality are available since the mid-1970s. The current study investigated the possible causes of the maternal mortality decline in Matlab. The study analyzed 769 maternal deaths and 215,779 pregnancy records from the Health and Demographic Surveillance System (HDSS) and other sources of safe motherhood data in the ICDDR,B and government service areas in Matlab during 1976-2005. The major interventions that took place in both the areas since the early 1980s were the family-planning programme plus safe menstrual regulation services and safe motherhood interventions (midwives for normal delivery in the ICDDR,B service area from the late 1980s and equal access to comprehensive emergency obstetric care [EmOC] in public facilities for women from both the areas). National programmes for social development and empowerment of women through education and microcredit programmes were implemented in both the areas. The quantitative findings were supplemented by a qualitative study by interviewing local community care providers for their change in practices for maternal healthcare over time. After the introduction of the safe motherhood programme, reduction in maternal mortality was higher in the ICDDR,B service area (68.6%) than in the government service area (50.4%) during 1986-1989 and 2001-2005. Reduction in the number of maternal deaths due to the fertility decline was higher in the government service area (30%) than in the ICDDR,B service area (23%) during 1979-2005. In each area, there has been substantial reduction in abortion-related mortality—86.7% and 78.3%—in the ICDDR,B and government service areas respectively. Education of women was a strong
Private demand for cholera vaccines in rural Matlab, Bangladesh.
Islam, Ziaul; Maskery, Brian; Nyamete, Andrew; Horowitz, Mark S; Yunus, Mohammad; Whittington, Dale
2008-02-01
To estimate household willingness to pay (WTP) for cholera vaccines in a rural area of Bangladesh, which had participated in a 1985 oral cholera vaccine trial. A contingent valuation study was undertaken in Matlab, Bangladesh in summer 2005. All respondents (N=591) received a description of a cholera vaccine that was 50% effective for 3 years and had negligible side effects. Respondents were asked how many vaccines they would purchase for their household at randomly pre-assigned prices. Negative binomial regression models were used to estimate the number of vaccines demanded and to calculate average WTP. On average, respondents were willing to pay about US$ 9.50 to purchase vaccines for all members of their household (i.e. US$ 1.70 per vaccine). Average WTP per person is US$ 2.40 for young children (1-4 years), US$ 1.20 for school-age children, and US$ 1.05 for adults. Median WTP estimates are significantly smaller: US$ 1.00 for young children, US$ 0.05 for schoolchildren, and US$ 0 for adults. There is significant demand for cholera vaccines in Matlab at low prices. Recent herd protection research suggests that unvaccinated persons would also experience reduced incidence via indirect effects at low coverage rates associated with moderate vaccine prices.
Influences on pregnancy-termination decisions in Matlab, Bangladesh.
DaVanzo, Julie; Rahman, Mizanur; Ahmed, Shahabuddin; Razzaque, Abdur
2013-10-01
We investigate factors affecting women's decisions to terminate pregnancies in Matlab, Bangladesh, using logistic regression on high-quality data from the Demographic Surveillance System on more than 215,000 pregnancies that occurred between 1978 and 2008. Variables associated with the desire not to have another birth soon (very young and older maternal age, a greater number of living children, the recent birth of twins or of a son, a short interval since a recent live birth) are associated with a greater likelihood of pregnancy termination, and the effects of many of these explanatory variables are stronger in more recent years. Women are less likely to terminate a pregnancy if they don't have any living sons or recently experienced a miscarriage, a stillbirth, or the death of a child. The higher the woman's level of education, the more likely she is to terminate a pregnancy. Between 1982 and the mid-2000s, pregnancy termination was significantly less likely in the area of Matlab with better family planning services.
KiT: a MATLAB package for kinetochore tracking.
Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J
2016-06-15
During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.
Improved Modeling in a Matlab-Based Navigation System
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.
1999-01-01
An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.
Ground Motion and Variability from 3-D Deterministic Broadband Simulations
NASA Astrophysics Data System (ADS)
Withers, Kyle Brett
The accuracy of earthquake source descriptions is a major limitation in high-frequency (> 1 Hz) deterministic ground motion prediction, which is critical for performance-based design by building engineers. With the recent addition of realistic fault topography in 3D simulations of earthquake source models, ground motion can be deterministically calculated more realistically up to higher frequencies. We first introduce a technique to model frequency-dependent attenuation and compare its impact on strong ground motions recorded for the 2008 Chino Hills earthquake. Then, we model dynamic rupture propagation for both a generic strike-slip event and blind thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We incorporate frequency-dependent attenuation via a power law above a reference frequency in the form Q0fn, with high accuracy down to Q values of 15, and include nonlinear effects via Drucker-Prager plasticity. We model the region surrounding the fault with and without small-scale medium complexity in both a 1D layered model characteristic of southern California rock and a 3D medium extracted from the SCEC CVMSi.426 including a near-surface geotechnical layer. We find that the spectral acceleration from our models are within 1-2 interevent standard deviations from recent ground motion prediction equations (GMPEs) and compare well with that of recordings from strong ground motion stations at both short and long periods. At periods shorter than 1 second, Q(f) is needed to match the decay of spectral acceleration seen in the GMPEs as a function of distance from the fault. We find that the similarity between the intraevent variability of our simulations and observations increases when small-scale heterogeneity and plasticity are included, extremely important as uncertainty in ground motion estimates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we compare with simple
ImageJ-MATLAB: a bidirectional framework for scientific image analysis interoperability.
Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W
2017-02-15
ImageJ-MATLAB is a lightweight Java library facilitating bi-directional interoperability between MATLAB and ImageJ. By defining a standard for translation between matrix and image data structures, researchers are empowered to select the best tool for their image-analysis tasks. Freely available extension to ImageJ2 ( http://imagej.net/Downloads ). Installation and use instructions available at http://imagej.net/MATLAB_Scripting. Tested with ImageJ 2.0.0-rc-54 , Java 1.8.0_66 and MATLAB R2015b. eliceiri@wisc.edu. Supplementary data are available at Bioinformatics online.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
NASA Astrophysics Data System (ADS)
Akca, Irfan
2016-04-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
Deterministic simulation of thermal neutron radiography and tomography
NASA Astrophysics Data System (ADS)
Pal Chowdhury, Rajarshi; Liu, Xin
2016-05-01
In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.
Additivity Principle in High-Dimensional Deterministic Systems
NASA Astrophysics Data System (ADS)
Saito, Keiji; Dhar, Abhishek
2011-12-01
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.180601], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.
Additivity principle in high-dimensional deterministic systems.
Saito, Keiji; Dhar, Abhishek
2011-12-16
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
Working Memory and Its Relation to Deterministic Sequence Learning
Martini, Markus; Furtner, Marco R.; Sachse, Pierre
2013-01-01
Is there a relation between working memory (WM) and incidental sequence learning? Nearly all of the earlier investigations in the role of WM capacity (WMC) in sequence learning suggest no correlations in incidental learning conditions. However, the theoretical view of WM and operationalization of WMC made strong progress in recent years. The current study related performance in a coordination and transformation task to sequence knowledge in a four-choice incidental deterministic serial reaction time (SRT) task and a subsequent free generation task. The response-to-stimulus interval (RSI) was varied between 0 ms and 300 ms. Our results show correlations between WMC and error rates in condition RSI 0 ms. For condition RSI 300 ms we found relations between WMC and sequence knowledge in the SRT task as well as between WMC and generation task performance. Theoretical implications of these findings for ongoing processes during sequence learning and retrieval of sequence knowledge are discussed. PMID:23409148
Deterministic Production of Photon Number States via Quantum Feedback Control
NASA Astrophysics Data System (ADS)
Geremia, J. M.
2006-05-01
It is well-known that measurements reduce the state of a quantum system, at least approximately, to an eigenstate of the operator associated with the physical property being measured. Here, we employ a continuous measurement of cavity photon number to achieve a robust, nondestructively verifiable procedure for preparing number states of an optical cavity mode. Such Fock states are highly sought after for the enabling role they play in quantum computing, networking and precision metrology. Furthermore, we demonstrate that the particular Fock state produced in each application of the continuous photon number measurement can be controlled using techniques from real-time quantum feedback control. The result of the feedback- stabilized measurement is a deterministic source of (nearly ideal) cavity Fock states. An analysis of feedback stability and the experimental viability of a quantum optical implementation currently underway at the University of New Mexico will be presented.
Capillary-mediated interface perturbations: Deterministic pattern formation
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
Deterministic entanglement generation from driving through quantum phase transitions
NASA Astrophysics Data System (ADS)
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-01
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.
Deterministic spin-wave interferometer based on the Rydberg blockade
Wei Ran; Deng Youjin; Pan Jianwei; Zhao Bo; Chen Yuao
2011-06-15
The spin-wave (SW) N-particle path-entangled |N,0>+|0,N> (NOON) state is an N-particle Fock state with two atomic spin-wave modes maximally entangled. Attributed to the property that the phase is sensitive to collective atomic motion, the SW NOON state can be utilized as an atomic interferometer and has promising application in quantum enhanced measurement. In this paper we propose an efficient protocol to deterministically produce the atomic SW NOON state by employing the Rydberg blockade. Possible errors in practical manipulations are analyzed. A feasible experimental scheme is suggested. Our scheme is far more efficient than the recent experimentally demonstrated one, which only creates a heralded second-order SW NOON state.
Safe microburst penetration techniques: A deterministic, nonlinear, optimal control approach
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1987-01-01
A relatively large amount of computer time was used for the calculation of a optimal trajectory, but it is subject to reduction with moderate effort. The Deterministic, Nonlinear, Optimal Control algorithm yielded excellent aircraft performance in trajectory tracking for the given microburst. It did so by varying the angle of attack to counteract the lift effects of microburst induced airspeed variations. Throttle saturation and aerodynamic stall limits were not a problem for the case considered, proving that the aircraft's performance capabilities were not violated by the given wind field. All closed loop control laws previously considered performed very poorly in comparison, and therefore do not come near to taking full advantage of aircraft performance.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Deterministic secure communications using two-mode squeezed states
Marino, Alberto M.; Stroud, C. R. Jr.
2006-08-15
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.
Qubit-mediated deterministic nonlinear gates for quantum oscillators.
Park, Kimin; Marek, Petr; Filip, Radim
2017-09-14
Quantum nonlinear operations for harmonic oscillator systems play a key role in the development of analog quantum simulators and computers. Since strong highly nonlinear operations are often unavailable in the existing physical systems, it is a common practice to approximate them by using conditional measurement-induced methods. The conditional approach has several drawbacks, the most severe of which is the exponentially decreasing success rate of the strong and complex nonlinear operations. We show that by using a suitable two level system sequentially interacting with the oscillator, it is possible to resolve these issues and implement a nonlinear operation both nearly deterministically and nearly perfectly. We explicitly demonstrate the approach by constructing self-Kerr and cross-Kerr couplings in a realistic situation, which require a feasible dispersive coupling between the two-level system and the oscillator.
Deterministic generation of a cluster state of entangled photons
NASA Astrophysics Data System (ADS)
Schwartz, I.; Cogan, D.; Schmidgall, E. R.; Don, Y.; Gantz, L.; Kenneth, O.; Lindner, N. H.; Gershoni, D.
2016-10-01
Photonic cluster states are a resource for quantum computation based solely on single-photon measurements. We use semiconductor quantum dots to deterministically generate long strings of polarization-entangled photons in a cluster state by periodic timed excitation of a precessing matter qubit. In each period, an entangled photon is added to the cluster state formed by the matter qubit and the previously emitted photons. In our prototype device, the qubit is the confined dark exciton, and it produces strings of hundreds of photons in which the entanglement persists over five sequential photons. The measured process map characterizing the device has a fidelity of 0.81 with that of an ideal device. Further feasible improvements of this device may reduce the resources needed for optical quantum information processing.
More on exact state reconstruction in deterministic digital control systems
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
Presented is a special form of the Ideal State Reconstructor for deterministic digital control systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so named because, if the plant parameters are known exactly, its output will exactly equal, not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects the measurement equation only. It is characterized by the fact that discrete measurements are generated every T/N seconds and input into a multi-input/multi-output moving-average (MA) process. The output of this process is sampled every T seconds and utilized in reconstructing the state of the system.
Derivation Of Probabilistic Damage Definitions From High Fidelity Deterministic Computations
Leininger, L D
2004-10-26
This paper summarizes a methodology used by the Underground Analysis and Planning System (UGAPS) at Lawrence Livermore National Laboratory (LLNL) for the derivation of probabilistic damage curves for US Strategic Command (USSTRATCOM). UGAPS uses high fidelity finite element and discrete element codes on the massively parallel supercomputers to predict damage to underground structures from military interdiction scenarios. These deterministic calculations can be riddled with uncertainty, especially when intelligence, the basis for this modeling, is uncertain. The technique presented here attempts to account for this uncertainty by bounding the problem with reasonable cases and using those bounding cases as a statistical sample. Probability of damage curves are computed and represented that account for uncertainty within the sample and enable the war planner to make informed decisions. This work is flexible enough to incorporate any desired damage mechanism and can utilize the variety of finite element and discrete element codes within the national laboratory and government contractor community.
Entanglement and deterministic quantum computing with one qubit
NASA Astrophysics Data System (ADS)
Boyer, Michel; Brodutch, Aharon; Mor, Tal
2017-02-01
The role of entanglement and quantum correlations in complex physical systems and quantum information processing devices has become a topic of intense study in the past two decades. In this work we present tools for learning about entanglement and quantum correlations in dynamical systems where the quantum states are mixed and the eigenvalue spectrum is highly degenerate. We apply these results to the deterministic quantum computing with one qubit (DQC1) computation model and show that the states generated in a DQC1 circuit have an eigenvalue structure that makes them difficult to entangle, even when they are relatively far from the completely mixed state. Our results strengthen the conjecture that it may be possible to find quantum algorithms that do not generate entanglement and yet still have an exponential advantage over their classical counterparts.
Deterministic processes vary during community assembly for ecologically dissimilar taxa
Powell, Jeff R.; Karunaratne, Senani; Campbell, Colin D.; Yao, Huaiying; Robinson, Lucinda; Singh, Brajesh K.
2015-01-01
The continuum hypothesis states that both deterministic and stochastic processes contribute to the assembly of ecological communities. However, the contextual dependency of these processes remains an open question that imposes strong limitations on predictions of community responses to environmental change. Here we measure community and habitat turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and fungi, both dominant and functionally vital components of all soils but which differ substantially in their growth habit and dispersal capability. We find that habitat turnover is the primary driver of bacterial community turnover in general, although its importance decreases with increasing isolation and disturbance. Fungal communities, however, exhibit a highly stochastic assembly process, both neutral and non-neutral in nature, largely independent of disturbance. These findings suggest that increased focus on dispersal limitation and biotic interactions are necessary to manage and conserve the key ecosystem services provided by these assemblages. PMID:26436640
Location deterministic biosensing from quantum-dot-nanowire assemblies
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.
Sensitivity analysis in a Lassa fever deterministic mathematical model
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman
2015-05-01
Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.
Deterministic single-file dynamics in collisional representation.
Marchesoni, F; Taloni, A
2007-12-01
We re-examine numerically the diffusion of a deterministic, or ballistic single file with preassigned velocity distribution (Jepsen's gas) from a collisional viewpoint. For a two-modal velocity distribution, where half the particles have velocity +/-c, the collisional statistics is analytically proven to reproduce the continuous time representation. For a three-modal velocity distribution with equal fractions, where less than 12 of the particles have velocity +/-c, with the remaining particles at rest, the collisional process is shown to be inhomogeneous; its stationary properties are discussed here by combining exact and phenomenological arguments. Collisional memory effects are then related to the negative power-law tails in the velocity autocorrelation functions, predicted earlier in the continuous time formalism. Numerical and analytical results for Gaussian and four-modal Jepsen's gases are also reported for the sake of a comparison.
Integrating Clonal Selection and Deterministic Sampling for Efficient Associative Classification
Elsayed, Samir A. Mohamed; Rajasekaran, Sanguthevar; Ammar, Reda A.
2013-01-01
Traditional Associative Classification (AC) algorithms typically search for all possible association rules to find a representative subset of those rules. Since the search space of such rules may grow exponentially as the support threshold decreases, the rules discovery process can be computationally expensive. One effective way to tackle this problem is to directly find a set of high-stakes association rules that potentially builds a highly accurate classifier. This paper introduces AC-CS, an AC algorithm that integrates the clonal selection of the immune system along with deterministic data sampling. Upon picking a representative sample of the original data, it proceeds in an evolutionary fashion to populate only rules that are likely to yield good classification accuracy. Empirical results on several real datasets show that the approach generates dramatically less rules than traditional AC algorithms. In addition, the proposed approach is significantly more efficient than traditional AC algorithms while achieving a competitive accuracy. PMID:24500504
Testing for chaos in deterministic systems with noise
NASA Astrophysics Data System (ADS)
Gottwald, Georg A.; Melbourne, Ian
2005-12-01
Recently, we introduced a new test for distinguishing regular from chaotic dynamics in deterministic dynamical systems and argued that the test had certain advantages over the traditional test for chaos using the maximal Lyapunov exponent. In this paper, we investigate the capability of the test to cope with moderate amounts of noisy data. Comparisons are made between an improved version of our test and both the “tangent space method” and “direct method” for computing the maximal Lyapunov exponent. The evidence of numerical experiments, ranging from the logistic map to an eight-dimensional Lorenz system of differential equations (the Lorenz 96 system), suggests that our method is superior to tangent space methods and that it compares very favourably with direct methods.
Classification and unification of the microscopic deterministic traffic models
NASA Astrophysics Data System (ADS)
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.
A deterministic computational procedure for space environment electron transport
NASA Astrophysics Data System (ADS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-08-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui
2013-10-01
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.
Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms.
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P; Zhao, Hui Jun; Yang, Hua Gui
2013-10-31
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
Deterministic Direct Aperture Optimization Using Multiphase Piecewise Constant Segmentation
NASA Astrophysics Data System (ADS)
Nguyen, Dan Minh
Purpose: Direct Aperture Optimization (DAO) attempts to incorporate machine constraints in the inverse optimization to eliminate the post-processing steps in fluence map optimization (FMO) that degrade plan quality. Current commercial DAO methods utilize a stochastic or greedy approach to search a small aperture solution space. In this study, we propose a novel deterministic direct aperture optimization that integrates the segmentation of fluence map in the optimization problem using the multiphase piecewise constant Mumford-Shah formulation. Methods: The deterministic DAO problem was formulated to include an L2-norm dose fidelity term to penalize differences between the projected dose and the prescribed dose, an anisotropic total variation term to promote piecewise continuity in the fluence maps, and the multiphase piecewise constant Mumford-Shah function to partition the fluence into pairwise discrete segments. A proximal-class, first-order primal-dual solver was implemented to solve the large scale optimization problem, and an alternating module strategy was implemented to update fluence and delivery segments. Three patients of varying complexity-one glioblastoma multiforme (GBM) patient, one lung (LNG) patient, and one bilateral head and neck (H&N) patient with 3 PTVs-were selected to test the new DAO method. For comparison, a popular and successful approach to DAO known as simulated annealing-a stochastic approach-was replicated. Each patient was planned using the Mumford-Shah based DAO (DAOMS) and the simulated annealing based DAO (DAOSA). PTV coverage, PTV homogeneity (D95/D5), and OAR sparing were assessed for each plan. In addition, high dose spillage, defined as the 50% isodose volume divided by the tumor volume, as well as conformity, defined as the van't Riet conformation number, were evaluated. Results: DAOMS achieved essentially the same OAR doses compared with the DAOSA plans for the GBM case. The average difference of OAR Dmax and Dmean between the
Conservative deterministic spectral Boltzmann solver near the grazing collisions limit
NASA Astrophysics Data System (ADS)
Haack, Jeffrey R.; Gamba, Irene M.
2012-11-01
We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. Within this framework we have extended the formulation to the case of more general case of collision operators with anisotropic scattering mechanisms, which requires a new formulation of the convolution weights. We also derive the grazing collisions limit for the method, and show that it is consistent with the Fokker-Planck-Landau equations as the grazing collisions parameter goes to zero.
Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Pei, Yezhe
This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.
Deterministic and stochastic modeling of aquifer stratigraphy, South Carolina
Miller, R.B.; Castle, J.W.; Temples, T.J.
2000-04-01
Deterministic and stochastic methods of three-dimensional hydrogeologic modeling are applied to characterization of contaminated Eocene aquifers at the Savannah River Site, South Carolina. The results address several important issues, including the use of multiple types of data in creating high-resolution aquifer models and the application of sequence-stratigraphic constraints. Specific procedures used include defining grid architecture stratigraphically, upscaling, modeling lithologic properties, and creating multiple equiprobable realizations of aquifer stratigraphy. An important question answered by the study is how to incorporate gamma-ray borehole-geophysical data in areas of anomalous log response, which occurs commonly in aquifers and confining units of the Atlantic Coastal Plain and other areas. To overcome this problem, gamma-ray models were conditioned to grain-size and lithofacies realizations. The investigation contributes to identifying potential pathways for downward migration of contaminants, which have been detected in confined aquifers at the modeling site. The approach followed in this investigation produces quantitative, stratigraphically constrained, geocellular models that incorporate multiple types of data from borehole-geophysical logs and continuous cores. The use of core-based stochastic realizations in conditioning deterministic models provides the advantage of incorporating lithologic information based on direct observations of cores rather than using only indirect measurements from geophysical logs. The high resolution of the models is demonstrated by the representation of thin, discontinuous clay beds that act as local barriers to flow. The models are effective in depicting the contrasts in geometry and heterogeneity between sheet-like nearshore-transgressive sands and laterally discontinuous sands of complex shoreline environments.
Deterministic diffusion fiber tracking improved by quantitative anisotropy.
Yeh, Fang-Cheng; Verstynen, Timothy D; Wang, Yibao; Fernández-Miranda, Juan C; Tseng, Wen-Yih Isaac
2013-01-01
Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics.
Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren
2010-01-01
. These scripts would require minor to moderate modifications for use elsewhere, primarily to customize directory navigation. If the user has some familiarity with MATLAB, or programming in general, these modifications should be easy. Although we originally anticipated needing the Image Processing Toolbox, the scripts in the appendixes do not require it. Thus, only the base installation of MATLAB is needed. Because fairly basic MATLAB functions are used, we expect that the script can be run successfully by versions earlier than 2009b.
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation
2013-01-01
The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.
Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid
2013-08-09
: The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.
SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
Smith, Lucas R; Barton, Elisabeth R
2014-01-01
Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection
NASA Astrophysics Data System (ADS)
Nicolay, S.; Brodie of Brodie, E. B.; Touchon, M.; d'Aubenton-Carafa, Y.; Thermes, C.; Arneodo, A.
2004-10-01
We use the continuous wavelet transform to perform a space-scale analysis of the AT and GC skews (strand asymmetries) in human genomic sequences, which have been shown to correlate with gene transcription. This study reveals the existence of a characteristic scale ℓ c≃25±10 kb that separates a monofractal long-range correlated noisy regime at small scales (ℓ<ℓ c) from relaxational oscillatory behavior at large-scale (ℓ>ℓ c). We show that these large scale nonlinear oscillations enlighten an organization of the human genome into adjacent domains ( ≈400 kb) with preferential gene orientation. When using classical techniques from dynamical systems theory, we demonstrate that these relaxational oscillations display all the characteristic properties of the chaotic strange attractor behavior observed nearby homoclinic orbits of Shil'nikov type. We discuss the possibility that replication and gene regulation processes are governed by a low-dimensional dynamical system that displays deterministic chaos.
Deterministic or Probabilistic - Robustness or Resilience: How to Respond to Climate Change?
NASA Astrophysics Data System (ADS)
Plag, H.; Earnest, D.; Jules-Plag, S.
2013-12-01
suggests an intriguing hypothesis: disaster risk reduction programs need to account for whether they also facilitate the public trust, cooperation, and communication needed to recover from a disaster. Our work in the Hampton Roads area, where the probability of hazardous flooding and inundation events exceeding the thresholds of the infrastructure is high, suggests that to facilitate the paradigm shift from the deterministic to a probabilistic approach, natural sciences have to focus on hazard probabilities, while engineering and social sciences have to work together to understand how interactions of the built and social environments impact robustness and resilience. The current science-policy relationship needs to be augmented by social structures that can learn from previous unexpected events. In this response to climate change, science does not have the primary goal to reduce uncertainties and prediction errors, but rather to develop processes that can utilize uncertainties and surprises to increase robustness, strengthen resilience, and reduce fragility of the social systems during times when infrastructure fails.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
Numerical simulation of dimples in airfoil using MATLAB
NASA Astrophysics Data System (ADS)
Booma Devi, P.; Shah, Dilip A.
2017-05-01
The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.
Perinatal mortality attributable to complications of childbirth in Matlab, Bangladesh.
Kusiako, T.; Ronsmans, C.; Van der Paal, L.
2000-01-01
Very few population-based studies of perinatal mortality in developing countries have examined the role of intrapartum risk factors. In the present study, the proportion of perinatal deaths that are attributable to complications during childbirth in Matlab, Bangladesh, was assessed using community-based data from a home-based programme led by professional midwives between 1987 and 1993. Complications during labour and delivery--such as prolonged or obstructed labour, abnormal fetal position, and hypertensive diseases of pregnancy--increased the risk of perinatal mortality fivefold and accounted for 30% of perinatal deaths. Premature labour, which occurred in 20% of pregnancies, accounted for 27% of perinatal mortality. Better care by qualified staff during delivery and improved care of newborns should substantially reduce perinatal mortality in this study population. PMID:10859856
Matlab Cluster Ensemble Toolbox v. 1.0
2009-04-27
This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.
SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy.
Křížek, Pavel; Lukeš, Tomáš; Ovesný, Martin; Fliegel, Karel; Hagen, Guy M
2016-01-15
SIMToolbox is an open-source, modular set of functions for MATLAB equipped with a user-friendly graphical interface and designed for processing two-dimensional and three-dimensional data acquired by structured illumination microscopy (SIM). Both optical sectioning and super-resolution applications are supported. The software is also capable of maximum a posteriori probability image estimation (MAP-SIM), an alternative method for reconstruction of structured illumination images. MAP-SIM can potentially reduce reconstruction artifacts, which commonly occur due to refractive index mismatch within the sample and to imperfections in the illumination. SIMToolbox, example data and the online documentation are freely accessible at http://mmtg.fel.cvut.cz/SIMToolbox. ghagen@uccs.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
MATLAB tools for lidar data conversion, visualization, and processing
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhou, Kaijing; Yang, Jie; Lu, Yilong
2011-10-01
LIDAR (LIght Detection and Ranging) [1] is an optical remote sensing technology that has gained increasing acceptance for topographic mapping. LIDAR technology has higher accuracy than RADAR and has wide applications. The relevant commercial market for LIDAR has developed greatly in the last few years. LAS format is approved to be the standard data format for interchanging LIDAR data among different software developers, manufacturers and end users. LAS data format reduces the data size compared to ASCII data format. However, LAS data file can only be visualized by some expensive commercial software. There are some free tools available, but they are not user-friendly and have less or poor visualization functionality. This makes it difficult for researchers to investigate and use LIDAR data. Therefore, there is a need to develop an efficient and low cost LIDAR data toolbox. For this purpose we have developed a free and efficient Matlab tool for LIDAR data conversion, visualization and processing.
A MATLAB GUI to study Ising model phase transition
NASA Astrophysics Data System (ADS)
Thornton, Curtislee; Datta, Trinanjan
We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.
Polar format algorithm for SAR imaging with Matlab
NASA Astrophysics Data System (ADS)
Deming, Ross; Best, Matthew; Farrell, Sean
2014-06-01
Due to its computational efficiency, the polar format algorithm (PFA) is considered by many to be the workhorse for airborne synthetic aperture radar (SAR) imaging. PFA is implemented in spatial Fourier space, also known as "K-space", which is a convenient domain for understanding SAR performance metrics, sampling requirements, etc. In this paper the mathematics behind PFA are explained and computed examples are presented, both using simulated data, and experimental airborne radar data from the Air Force Research Laboratory (AFRL) Gotcha Challenge collect. In addition, a simple graphical method is described that can be used to model and predict wavefront curvature artifacts in PFA imagery, which are due to the limited validity of the underlying far-field approximation. The appendix includes Matlab code for computing SAR images using PFA.
A smart grid simulation testbed using Matlab/Simulink
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2014-06-01
The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
SBEToolbox: A Matlab Toolbox for Biological Network Analysis
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J.
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases. PMID:24027418
MATLAB script for analyzing and visualizing scanline data
NASA Astrophysics Data System (ADS)
Markovaara-Koivisto, M.; Laine, E.
2012-03-01
Scanline surveys consist of directional and qualitative measurements of rock discontinuities. These surveys are used in geologic and engineering investigations of fractured rock masses. This paper introduces a new MATLAB script developed for visualizing results from scanline surveys as traces in 2D and disks in 3D. The script is also able to cluster orientation data and to present statistical summaries and to reflect the change in degree of rock brokenness along the scanline. Advantages of this new script are that it can present undulating discontinuities as wavy surfaces and different discontinuity properties using color codes. An intensity rose diagram is utilized to visualize interdependency of certain properties and orientation. This new script has a potential for preprocessing vast amounts of scanline and oriented drill core logging data before using it in 3D discontinuity network modeling. The script is demonstrated using data concerning rock fracturing gathered from a dimension stone quarry in Southern Finland.
Epidemiology of child deaths due to drowning in Matlab, Bangladesh.
Ahmed, M K; Rahman, M; van Ginneken, J
1999-04-01
A study based upon verbal autopsies conducted in a sample of children who died in Bangladesh during 1989-92 found that approximately 21% of deaths among children aged 1-4 years were due to drowning. Such mortality may be expected in Bangladesh, for its villages are usually surrounded and intersected by canals and rivers, and there are many ponds surrounding households which are used for bathing and washing year round. Children also play in these bodies of water, and most villages are inundated by the monsoon for several months each year. Drawn from the Matlab Demographic Surveillance System (DSS) operated by the International Center for Diarrheal Disease Research, Bangladesh (ICDDR,B), data are presented on the mortality of children aged 1-4 years due to drowning in Matlab thana, a rural area of Bangladesh, during 1983-95. 10-25% of child deaths during 1983-95 were due to drowning. The absolute risk of dying from drowning remained almost the same over the study period, but the proportion of drownings to all causes of death increased. Drowning is especially prevalent during the second year of life. Mother's age and parity significantly affect drowning, with the risk of dying from drowning increasing with mother's age and far more sharply with the number of living children in the family. Maternal education and dwelling space had no influence upon the risk of drowning. A major portion of these deaths could be averted if parents and other close relatives paid more attention to child safety.
Contraceptive failure: levels, trends and determinants in Matlab, Bangladesh.
Bairagi, R; Islam, M M; Barua, M K
2000-01-01
This study investigated the levels, trends and determinants of contraceptive use-failure in Matlab, Bangladesh, using a set of prospective data on 25,960 women of reproductive age. The data were extracted from the Record Keeping System (RKS) of Matlab for the period 1978-94. If there was any live birth during the use or within 7 months after the discontinuation of use, it was considered as a failure. The life table technique and hazard model were used as analytical tools. The results suggest that use-failure for pills, IUDs (TCu 200) and injectables and other temporary methods increased from 1978 to 1988, but began to decline after 1988. The cumulative probability of first-method failure within 1 year of method acceptance of the cohort of 1990-94 acceptors was 12.9% for pills, 2.0% for IUDs, 0.5% for injectables, 22.0% for condoms and 13.4% for 'other' methods (sampoon, foam, jelly and traditional methods). For pills, condoms and 'other' methods, the likelihood of failure declined with the duration of use; by contrast, the probability of an IUD failure increased over time, peaking at 3 years of use. The injectables maintained a low likelihood of failure regardless of the duration of use. The quality of Community Health Workers' (CHWs) performance was associated with the risk of failure of all temporary methods except condoms; women's background characteristics associated with failure varied by method. The effect of the quality of the CHWs' performance and the background variables on failure did not change much over time. It is felt that contraceptive failure deserves the serious attention of programme managers and policy makers to make the Bangladesh national family planning programme more successful.
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
A Matlab/Simulink-Based Interactive Module for Servo Systems Learning
ERIC Educational Resources Information Center
Aliane, N.
2010-01-01
This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…
A Matlab/Simulink-Based Interactive Module for Servo Systems Learning
ERIC Educational Resources Information Center
Aliane, N.
2010-01-01
This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…
NASA Astrophysics Data System (ADS)
Vienhage, Paul; Barcomb, Heather; Marshall, Karel; Black, William A.; Coons, Amanda; Tran, Hien T.; Nguyen, Tien M.; Guillen, Andy T.; Yoh, James; Kizer, Justin; Rogers, Blake A.
2017-05-01
The paper describes the MATLAB (MathWorks) programs that were developed during the REU workshop1 to implement The Aerospace Corporation developed Unified Game-based Acquisition Framework and Advanced Game - based Mathematical Framework (UGAF-AGMF) and its associated War-Gaming Engine (WGE) models. Each game can be played from the perspectives of the Department of Defense Acquisition Authority (DAA) or of an individual contractor (KTR). The programs also implement Aerospace's optimum "Program and Technical Baseline (PTB) and associated acquisition" strategy that combines low Total Ownership Cost (TOC) with innovative designs while still meeting warfighter needs. The paper also describes the Bayesian Acquisition War-Gaming approach using Monte Carlo simulations, a numerical analysis technique to account for uncertainty in decision making, which simulate the PTB development and acquisition processes and will detail the procedure of the implementation and the interactions between the games.
NASA Astrophysics Data System (ADS)
Mirzadeh, Zeynab; Mehri, Razieh; Rabbani, Hossein
2010-01-01
In this paper the degraded video with blur and noise is enhanced by using an algorithm based on an iterative procedure. In this algorithm at first we estimate the clean data and blur function using Newton optimization method and then the estimation procedure is improved using appropriate denoising methods. These noise reduction techniques are based on local statistics of clean data and blur function. For estimated blur function we use LPA-ICI (local polynomial approximation - intersection of confidence intervals) method that use an anisotropic window around each point and obtain the enhanced data employing Wiener filter in this local window. Similarly, to improvement the quality of estimated clean video, at first we transform the data to wavelet transform domain and then improve our estimation using maximum a posterior (MAP) estimator and local Laplace prior. This procedure (initial estimation and improvement of estimation by denoising) is iterated and finally the clean video is obtained. The implementation of this algorithm is slow in MATLAB1 environment and so it is not suitable for online applications. However, MATLAB has the capability of running functions written in C. The files which hold the source for these functions are called MEX-Files. The MEX functions allow system-specific APIs to be called to extend MATLAB's abilities. So, in this paper to speed up our algorithm, the written code in MATLAB is sectioned and the elapsed time for each section is measured and slow sections (that use 60% of complete running time) are selected. Then these slow sections are translated to C++ and linked to MATLAB. In fact, the high loads of information in images and processed data in the "for" loops of relevant code, makes MATLAB an unsuitable candidate for writing such programs. The written code for our video deblurring algorithm in MATLAB contains eight "for" loops. These eighth "for" utilize 60% of the total execution time of the entire program and so the runtime should be
Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico
2009-09-01
Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.
Electromagnetic field enhancement and light localization in deterministic aperiodic nanostructures
NASA Astrophysics Data System (ADS)
Gopinath, Ashwin
The control of light matter interaction in periodic and random media has been investigated in depth during the last few decades, yet structures with controlled degree of disorder such as Deterministic Aperiodic Nano Structures (DANS) have been relatively unexplored. DANS are characterized by non-periodic yet long-range correlated (deterministic) morphologies and can be generated by the mathematical rules of symbolic dynamics and number theory. In this thesis, I have experimentally investigated the unique light transport and localization properties in planar dielectric and metal (plasmonics) DANS. In particular, I have focused on the design, nanofabrication and optical characterization of DANS, formed by arranging metal/dielectric nanoparticles in an aperiodic lattice. This effort is directed towards development of on-chip nanophotonic applications with emphasis on label-free bio-sensing and enhanced light emission. The DANS designed as Surface Enhanced Raman Scattering (SERS) substrate is composed of multi-scale aperiodic nanoparticle arrays fabricated by e-beam lithography and are capable of reproducibly demonstrating enhancement factors as high as ˜107. Further improvement of SERS efficiency is achieved by combining DANS formed by top-down approach with bottom-up reduction of gold nanoparticles, to fabricate novel nanostructures called plasmonic "nano-galaxies" which increases the SERS enhancement factors by 2--3 orders of magnitude while preserving the reproducibility. In this thesis, along with presenting details of fabrication and SERS characterization of these "rationally designed" SERS substrates, I will also present results on using these substrates for detection of DNA nucleobases, as well as reproducible label-free detection of pathogenic bacteria with species specificity. In addition to biochemical detection, the combination of broadband light scattering behavior and the ability for the generation of reproducible high fields in DANS make these
NASA Astrophysics Data System (ADS)
Reimer, Ashton S.; Cheviakov, Alexei F.
2013-03-01
A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.
ELDIN NAFEE, SHERIF SALAH
2013-07-24
Version 00 Calculations of the decay heat is of great importance for the design of the shielding of discharged fuel, the design and transport of fuel-storage flasks and the management of the resulting radioactive waste. These are relevant to safety and have large economic and legislative consequences. In the HEATKAU code, a new approach has been proposed to evaluate the decay heat power after a fission burst of a fissile nuclide for short cooling time. This method is based on the numerical solution of coupled linear differential equations that describe decays and buildups of the minor fission products (MFPs) nuclides. HEATKAU is written entirely in the MATLAB programming environment. The MATLAB data can be stored in a standard, fast and easy-access, platform- independent binary format which is easy to visualize.
Boyd, O.S.
2006-01-01
We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.
Deterministic entanglement generation from driving through quantum phase transitions.
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-10
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers
Stangl, Thomas; Wilhelm, Philipp; Remmerssen, Klaas; Höger, Sigurd; Vogelsang, Jan; Lupton, John M.
2015-01-01
An appealing definition of the term “molecule” arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder. PMID:26417079
Equivalence of deterministic walks on regular lattices on the plane
NASA Astrophysics Data System (ADS)
Rechtman, Ana; Rechtman, Raúl
2017-01-01
We consider deterministic walks on square, triangular and hexagonal two dimensional lattices. In each case, there is a scatterer at every lattice site that can be in one of two states that forces the walker to turn either to his/her immediate right or left. After the walker is scattered, the scatterer changes state. A lattice with an arrangement of scatterers is an environment. We show that there are only two environments for which the scattering rules are injective, mirrors or rotators, on the three lattices. On hexagonal lattices Webb and Cohen (2014), proved that if a walker with a given initial position and velocity moves through an environment of mirrors (rotators) then there is an environment of rotators (mirrors) through which the walker would move with the same trajectory. We refer to these trajectories on mirror and rotator environments as equivalent walks. We prove the equivalence of walks on square and triangular lattices and include a proof of the equivalence of walks on hexagonal lattices. The proofs are based both on the geometry of the lattice and the structure of the scattering rule.
Entrepreneurs, chance, and the deterministic concentration of wealth.
Fargione, Joseph E; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels.
Deterministic versus evidence-based attitude towards clinical diagnosis.
Soltani, Akbar; Moayyeri, Alireza
2007-08-01
Generally, two basic classes have been proposed for scientific explanation of events. Deductive reasoning emphasizes on reaching conclusions about a hypothesis based on verification of universal laws pertinent to that hypothesis, while inductive or probabilistic reasoning explains an event by calculation of some probabilities for that event to be related to a given hypothesis. Although both types of reasoning are used in clinical practice, evidence-based medicine stresses on the advantages of the second approach for most instances in medical decision making. While 'probabilistic or evidence-based' reasoning seems to involve more mathematical formulas at the first look, this attitude is more dynamic and less imprisoned by the rigidity of mathematics comparing with 'deterministic or mathematical attitude'. In the field of medical diagnosis, appreciation of uncertainty in clinical encounters and utilization of likelihood ratio as measure of accuracy seem to be the most important characteristics of evidence-based doctors. Other characteristics include use of series of tests for refining probability, changing diagnostic thresholds considering external evidences and nature of the disease, and attention to confidence intervals to estimate uncertainty of research-derived parameters.
The dynamical system of weathering: deterministic and stochastic analysis
NASA Astrophysics Data System (ADS)
Calabrese, S.; Parolari, A.; Porporato, A. M.
2016-12-01
The critical zone is fundamental to human society as it provides most of the ecosystem services such as food and fresh water. However, climate change and intense land use are threatening the critical zone, so that theoretical frameworks, to predict its future response, are needed. In this talk, a new modeling approach to evaluate the effect of hydrologic fluctuations on soil water chemistry and weathering reactions is analyzed by means of a dynamical system approach. In this model, equilibrium is assumed for the aqueous carbonate system while a kinetic law is adopted for the weathering reaction. Also, through an algebraic manipulation, we eliminate the equilibrium reactions and reduce the order of the system. We first analyze the deterministic temporal evolution, and study the stability of the nonlinear system and its trajectories, as a function of the hydro-climatic parameters. By introducing a stochastic rainfall forcing, we then analyze the system probabilistically, and through averaging techniques determine the inter-annual response of the nonlinear stochastic system to the climatic regime and hydrologic parameters (e.g., ET, soil texture). Some fundamental thermodynamic aspects of the chemical reactions are also discussed. By introducing the weathering reaction into the system, any mineral, such as calcium carbonate or a silicate mineral, can be considered.
Non-Deterministic Modelling of Food-Web Dynamics
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null models of food-webs’ as originally advocated. PMID:25299245
Experimental evidence for deterministic chaos in thermal pulse combustion
Daw, C.S.; Thomas, J.F.; Richards, G.A.; Narayanaswami, L.L.
1994-12-31
Given the existence of chaotic oscillations in reacting chemical systems, it is reasonable to ask whether or not similar phenomena can occur in combustion. In this paper, the authors present experimental evidence that kinetically driven chaos occurs in a highly simplified thermal pulse combustor. The combustor is a well-stirred reactor with a tailpipe extending from one end. Fuel and air are injected into the combustion chamber through orifices in the end opposite the tailpipe. Propane with the fuel used in all cases. From the experimental data analyses, it is clear that deterministic chaos is an important factor in thermal pulse combustor dynamics. While the authors have only observed such behavior in this particular type combustor to date, they infer from their understanding of the origins of the chaos that it is likely to exist in other pulse combustors and even nonpulsing combustion. They speculate that realization of the importance of chaos in affecting flame stability could lead to significant changes in combustor design and control.
Entrepreneurs, Chance, and the Deterministic Concentration of Wealth
Fargione, Joseph E.; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs–individuals with ownership in for-profit enterprises–comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels. PMID:21814540
Fisher-Wright model with deterministic seed bank and selection.
Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel
2017-04-01
Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.
A deterministic method for transient, three-dimensional neutron transport
NASA Astrophysics Data System (ADS)
Goluoglu, Sedat
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable is the improved quasi-static (IQS) method. The position, energy, and angle variables of the neutron flux are computed using the three-dimensional (3-D) discrete ordinates code TORT. The resulting time-dependent, 3-D code is called TDTORT. The flux shape calculated by TORT is used to compute the point kinetics parameters (e.g., reactivity, generation time, etc.). The amplitude function is calculated by solving the point kinetics equations using LSODE (Livermore Solver of Ordinary differential Equations). Several transient 1-D, 2-D, and 3-D benchmark problems are used to verify TDTORT. The results show that methodology and code developed in this work have sufficient accuracy and speed to serve as a benchmarking tool for other less accurate models and codes. More importantly, a new computational tool based on transport theory now exists for analyzing the dynamic behavior of complex neutronic systems.
Insights into the deterministic skill of air quality ensembles ...
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each stati
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Rapid detection of small oscillation faults via deterministic learning.
Wang, Cong; Chen, Tianrui
2011-08-01
Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.
Estimating interdependences in networks of weakly coupled deterministic systems
NASA Astrophysics Data System (ADS)
de Feo, Oscar; Carmeli, Cristian
2008-02-01
The extraction of information from measured data about the interactions taking place in a network of systems is a key topic in modern applied sciences. This topic has been traditionally addressed by considering bivariate time series, providing methods which are sometimes difficult to extend to multivariate data, the limiting factor being the computational complexity. Here, we present a computationally viable method based on black-box modeling which, while theoretically applicable only when a deterministic hypothesis about the processes behind the recordings is plausible, proves to work also when this assumption is severely affected. Conceptually, the method is very simple and is composed of three independent steps: in the first step a state-space reconstruction is performed separately on each measured signal; in the second step, a local model, i.e., a nonlinear dynamical system, is fitted separately on each (reconstructed) measured signal; afterward, a linear model of the dynamical interactions is obtained by cross-relating the (reconstructed) measured variables to the dynamics unexplained by the local models. The method is successfully validated on numerically generated data. An assessment of its sensitivity to data length and modeling and measurement noise intensity, and of its applicability to large-scale systems, is also provided.
Method to deterministically study photonic nanostructures in different experimental instruments.
Husken, B H; Woldering, L A; Blum, C; Vos, W L
2009-01-01
We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.