Sample records for deterministic optimal control

  1. Integrated Arrival and Departure Schedule Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon

    2014-01-01

    In terminal airspace, integrating arrivals and departures with shared waypoints provides the potential of improving operational efficiency by allowing direct routes when possible. Incorporating stochastic evaluation as a post-analysis process of deterministic optimization, and imposing a safety buffer in deterministic optimization, are two ways to learn and alleviate the impact of uncertainty and to avoid unexpected outcomes. This work presents a third and direct way to take uncertainty into consideration during the optimization. The impact of uncertainty was incorporated into cost evaluations when searching for the optimal solutions. The controller intervention count was computed using a heuristic model and served as another stochastic cost besides total delay. Costs under uncertainty were evaluated using Monte Carlo simulations. The Pareto fronts that contain a set of solutions were identified and the trade-off between delays and controller intervention count was shown. Solutions that shared similar delays but had different intervention counts were investigated. The results showed that optimization under uncertainty could identify compromise solutions on Pareto fonts, which is better than deterministic optimization with extra safety buffers. It helps decision-makers reduce controller intervention while achieving low delays.

  2. Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed

  3. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  4. Control of Finite-State, Finite Memory Stochastic Systems

    NASA Technical Reports Server (NTRS)

    Sandell, Nils R.

    1974-01-01

    A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.

  5. Optimal design for robust control of uncertain flexible joint manipulators: a fuzzy dynamical system approach

    NASA Astrophysics Data System (ADS)

    Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang

    2018-04-01

    A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.

  6. Deterministic methods for multi-control fuel loading optimization

    NASA Astrophysics Data System (ADS)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  7. Guidance and Control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.

    1989-01-01

    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.

  8. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  9. Optimal control problems of epidemic systems with parameter uncertainties: application to a malaria two-age-classes transmission model with asymptomatic carriers.

    PubMed

    Mwanga, Gasper G; Haario, Heikki; Capasso, Vicenzo

    2015-03-01

    The main scope of this paper is to study the optimal control practices of malaria, by discussing the implementation of a catalog of optimal control strategies in presence of parameter uncertainties, which is typical of infectious diseases data. In this study we focus on a deterministic mathematical model for the transmission of malaria, including in particular asymptomatic carriers and two age classes in the human population. A partial qualitative analysis of the relevant ODE system has been carried out, leading to a realistic threshold parameter. For the deterministic model under consideration, four possible control strategies have been analyzed: the use of Long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic and asymptomatic individuals. The numerical results show that using optimal control the disease can be brought to a stable disease free equilibrium when all four controls are used. The Incremental Cost-Effectiveness Ratio (ICER) for all possible combinations of the disease-control measures is determined. The numerical simulations of the optimal control in the presence of parameter uncertainty demonstrate the robustness of the optimal control: the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the designing of cost-effective strategies for disease controls with multiple interventions, even under considerable uncertainty of model parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. General Methodology Combining Engineering Optimization of Primary HVAC and R Plants with Decision Analysis Methods--Part II: Uncertainty and Decision Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Reddy, T. A.; Gurian, Patrick

    2007-01-31

    A companion paper to Jiang and Reddy that presents a general and computationally efficient methodology for dyanmic scheduling and optimal control of complex primary HVAC&R plants using a deterministic engineering optimization approach.

  11. Reliability-based structural optimization: A proposed analytical-experimental study

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Nikolaidis, Efstratios

    1993-01-01

    An analytical and experimental study for assessing the potential of reliability-based structural optimization is proposed and described. In the study, competing designs obtained by deterministic and reliability-based optimization are compared. The experimental portion of the study is practical because the structure selected is a modular, actively and passively controlled truss that consists of many identical members, and because the competing designs are compared in terms of their dynamic performance and are not destroyed if failure occurs. The analytical portion of this study is illustrated on a 10-bar truss example. In the illustrative example, it is shown that reliability-based optimization can yield a design that is superior to an alternative design obtained by deterministic optimization. These analytical results provide motivation for the proposed study, which is underway.

  12. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  13. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.

  14. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  15. Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-05-01

    Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.

  16. Infinite horizon optimal impulsive control with applications to Internet congestion control

    NASA Astrophysics Data System (ADS)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  17. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N.

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  18. Optimization Under Uncertainty for Wake Steering Strategies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presencemore » of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  19. Optimization Under Uncertainty for Wake Steering Strategies

    NASA Astrophysics Data System (ADS)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  20. Optimization Under Uncertainty for Wake Steering Strategies

    DOE PAGES

    Quick, Julian; Annoni, Jennifer; King, Ryan N.; ...

    2017-06-13

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  1. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr

    2016-10-15

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less

  2. Stochastic modelling of slow-progressing tumors: Analysis and applications to the cell interplay and control of low grade gliomas

    NASA Astrophysics Data System (ADS)

    Rodríguez, Clara Rojas; Fernández Calvo, Gabriel; Ramis-Conde, Ignacio; Belmonte-Beitia, Juan

    2017-08-01

    Tumor-normal cell interplay defines the course of a neoplastic malignancy. The outcome of this dual relation is the ultimate prevailing of one of the cells and the death or retreat of the other. In this paper we study the mathematical principles that underlay one important scenario: that of slow-progressing cancers. For this, we develop, within a stochastic framework, a mathematical model to account for tumor-normal cell interaction in such a clinically relevant situation and derive a number of deterministic approximations from the stochastic model. We consider in detail the existence and uniqueness of the solutions of the deterministic model and study the stability analysis. We then focus our model to the specific case of low grade gliomas, where we introduce an optimal control problem for different objective functionals under the administration of chemotherapy. We derive the conditions for which singular and bang-bang control exist and calculate the optimal control and states.

  3. Optimal Stochastic Modeling and Control of Flexible Structures

    DTIC Science & Technology

    1988-09-01

    1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic

  4. The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments

    NASA Astrophysics Data System (ADS)

    Chen, Fajing; Jiao, Meiyan; Chen, Jing

    2013-04-01

    Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.

  5. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  6. Backward bifurcation and optimal control of Plasmodium Knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2014-07-01

    A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.

  7. Expected frontiers: Incorporating weather uncertainty into a policy analysis using an integrated bi-level multi-objective optimization framework

    EPA Science Inventory

    Weather is the main driver in both plant use of nutrients and fate and transport of nutrients in the environment. In previous work, we evaluated a green tax for control of agricultural nutrients in a bi-level optimization framework that linked deterministic models. In this study,...

  8. Optimal Control Inventory Stochastic With Production Deteriorating

    NASA Astrophysics Data System (ADS)

    Affandi, Pardi

    2018-01-01

    In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.

  9. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  10. Optimality, stochasticity, and variability in motor behavior

    PubMed Central

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-01-01

    Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability to explain not only characteristic features of single motor acts, but also statistical properties of repeated actions. Here, we present a critical analysis of stochastic optimality in motor control which reveals several difficulties with this hypothesis. We show that stochastic control may not be necessary to explain the stochastic nature of motor behavior, and we propose an alternative framework, based on the action of a deterministic controller coupled with an optimal state estimator, which relieves drawbacks of stochastic optimality and appropriately explains movement variability. PMID:18202922

  11. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.

  12. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  13. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2016-09-01

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  14. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    NASA Astrophysics Data System (ADS)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  15. Coupled Multi-Disciplinary Optimization for Structural Reliability and Affordability

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented for Non-Deterministic Multidisciplinary Optimization of engine composite materials and structures. A hypothetical engine duct made with ceramic matrix composites (CMC) is evaluated probabilistically in the presence of combined thermo-mechanical loading. The structure is tailored by quantifying the uncertainties in all relevant design variables such as fabrication, material, and loading parameters. The probabilistic sensitivities are used to select critical design variables for optimization. In this paper, two approaches for non-deterministic optimization are presented. The non-deterministic minimization of combined failure stress criterion is carried out by: (1) performing probabilistic evaluation first and then optimization and (2) performing optimization first and then probabilistic evaluation. The first approach shows that the optimization feasible region can be bounded by a set of prescribed probability limits and that the optimization follows the cumulative distribution function between those limits. The second approach shows that the optimization feasible region is bounded by 0.50 and 0.999 probabilities.

  16. Stochastic Adaptive Particle Beam Tracker Using Meer Filter Feedback.

    DTIC Science & Technology

    1986-12-01

    breakthrough required in controlling the beam location. In 1983, Zicker (27] conducted a feasibility study of a simple proportional gain controller... Zicker synthesized his stochastic controller designs from a deterministic optimal LQ controller assuming full state feedback. An LQ controller is a...34Merge" Method 2.5 Simlifying the eer Filter a Zicker ran a performance analysis on the Meer filter and found the Meer filter virtually insensitive to

  17. Optimal Protocols and Optimal Transport in Stochastic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-01

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  18. Optimal protocols and optimal transport in stochastic thermodynamics.

    PubMed

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-24

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  19. Topology optimization under stochastic stiffness

    NASA Astrophysics Data System (ADS)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.

  20. Ordinal optimization and its application to complex deterministic problems

    NASA Astrophysics Data System (ADS)

    Yang, Mike Shang-Yu

    1998-10-01

    We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.

  1. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    PubMed

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  2. On stochastic control and optimal measurement strategies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kramer, L. C.

    1971-01-01

    The control of stochastic dynamic systems is studied with particular emphasis on those which influence the quality or nature of the measurements which are made to effect control. Four main areas are discussed: (1) the meaning of stochastic optimality and the means by which dynamic programming may be applied to solve a combined control/measurement problem; (2) a technique by which it is possible to apply deterministic methods, specifically the minimum principle, to the study of stochastic problems; (3) the methods described are applied to linear systems with Gaussian disturbances to study the structure of the resulting control system; and (4) several applications are considered.

  3. A model for HIV/AIDS pandemic with optimal control

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2015-05-01

    Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.

  4. Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.

    PubMed

    Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen

    In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.

  5. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  6. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  7. Chaos-order transition in foraging behavior of ants.

    PubMed

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-06-10

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

  8. Chaos–order transition in foraging behavior of ants

    PubMed Central

    Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim

    2014-01-01

    The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159

  9. Guidelines 13 and 14—Prediction uncertainty

    USGS Publications Warehouse

    Hill, Mary C.; Tiedeman, Claire

    2005-01-01

    An advantage of using optimization for model development and calibration is that optimization provides methods for evaluating and quantifying prediction uncertainty. Both deterministic and statistical methods can be used. Guideline 13 discusses using regression and post-audits, which we classify as deterministic methods. Guideline 14 discusses inferential statistics and Monte Carlo methods, which we classify as statistical methods.

  10. Evaluation of the selection methods used in the exIWO algorithm based on the optimization of multidimensional functions

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Daniel; Josiński, Henryk

    2016-06-01

    The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.

  11. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  12. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  13. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  14. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  15. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient

    PubMed Central

    2018-01-01

    Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices. PMID:29666634

  17. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.

    PubMed

    Shi, Haibo; Sun, Yaoru; Li, Jie

    2018-01-01

    Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback state. Yet, recent neuroscience studies found that the motor network may constitute an autonomous dynamical system and the temporal patterns of the control command can be contained in the dynamics of the motor network, that is, the dynamical system hypothesis (DSH). Inspired by these findings, here we propose a computational model that incorporates this neural mechanism, in which the control command could be unfolded from a dynamical controller whose initial state is specified with the task parameters. The model is trained in a trial-and-error manner in the framework of deep deterministic policy gradient (DDPG). The experimental results show that the dynamical controller successfully learns the control policy for arm reaching movements, while the analysis of the internal activities of the dynamical controller provides the computational evidence to the DSH of the neural coding in motor cortices.

  18. Optimal Vaccination in a Stochastic Epidemic Model of Two Non-Interacting Populations

    DTIC Science & Technology

    2015-02-17

    of diminishing returns from vacci- nation will generally take place at smaller vaccine allocations V compared to the deterministic model. Optimal...take place and small r0 values where it does not is illustrat- ed in Fig. 4C. As r0 is decreased, the region between the two instances of switching...approximately distribute vaccine in proportion to population size. For large r0 (r0 ≳ 2.9), two switches take place . In the deterministic optimal solution, a

  19. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    PubMed

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  20. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  1. Deterministic Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.

    1998-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  2. A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce

    2008-01-01

    Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.

  3. Stability analysis via the concept of Lyapunov exponents: a case study in optimal controlled biped standing

    NASA Astrophysics Data System (ADS)

    Sun, Yuming; Wu, Christine Qiong

    2012-12-01

    Balancing control is important for biped standing. In spite of large efforts, it is very difficult to design balancing control strategies satisfying three requirements simultaneously: maintaining postural stability, improving energy efficiency and satisfying the constraints between the biped feet and the ground. In this article, a proportional-derivative (PD) controller is proposed for a standing biped, which is simplified as a two-link inverted pendulum with one additional rigid foot-link. The genetic algorithm (GA) is used to search for the control gain meeting all three requirements. The stability analysis of such a deterministic biped control system is carried out using the concept of Lyapunov exponents (LEs), based on which, the system stability, where the disturbance comes from the initial states, and the structural stability, where the disturbance comes from the PD gains, are examined quantitively in terms of stability region. This article contributes to the biped balancing control, more significantly, the method shown in the studied case of biped provides a general framework of systematic stability analysis for certain deterministic nonlinear dynamical systems.

  4. Deterministic Methods in Stochastic Optimal Control.

    DTIC Science & Technology

    1992-10-01

    as (0.1) by adding a correction terito Ot ,h drift . L.tt us con|sidehr the Stoclia.tic optimtal control problem (0.1),(0.2). The dynaumtic progra...with ant icipative drift ) which will be done in Secioni I .sing Ihli decomposition of solutions of SI)E’s (see Kunila [14. p. 268] and Ocone and...programllitig. In the case when nonanticipating controls appear in the drift the Wong-Zakai con•’.rgence result slates that under smoothness and boundedness

  5. Advanced Targeting Cost Function Design for Evolutionary Optimization of Control of Logistic Equation

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana

    2010-06-01

    This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.

  6. Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.

    2000-01-01

    To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.

  7. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    NASA Astrophysics Data System (ADS)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  8. On the decentralized control of large-scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chong, C.

    1973-01-01

    The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.

  9. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.

  10. Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

    PubMed

    Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu

    2013-01-01

    With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

  11. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  12. The fully actuated traffic control problem solved by global optimization and complementarity

    NASA Astrophysics Data System (ADS)

    Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria

    2016-02-01

    Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.

  13. Modelling and Optimal Control of Typhoid Fever Disease with Cost-Effective Strategies.

    PubMed

    Tilahun, Getachew Teshome; Makinde, Oluwole Daniel; Malonza, David

    2017-01-01

    We propose and analyze a compartmental nonlinear deterministic mathematical model for the typhoid fever outbreak and optimal control strategies in a community with varying population. The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents the epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. The model exhibits a forward transcritical bifurcation and the sensitivity analysis is performed. The optimal control problem is designed by applying Pontryagin maximum principle with three control strategies, namely, the prevention strategy through sanitation, proper hygiene, and vaccination; the treatment strategy through application of appropriate medicine; and the screening of the carriers. The cost functional accounts for the cost involved in prevention, screening, and treatment together with the total number of the infected persons averted. Numerical results for the typhoid outbreak dynamics and its optimal control revealed that a combination of prevention and treatment is the best cost-effective strategy to eradicate the disease.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, J. H.; Atzema, E. H.; Boogaard, A. H. van den

    Robust design of forming processes using numerical simulations is gaining attention throughout the industry. In this work, it is demonstrated how robust optimization can assist in further stretching the limits of metal forming processes. A deterministic and a robust optimization study are performed, considering a stretch-drawing process of a hemispherical cup product. For the robust optimization study, both the effect of material and process scatter are taken into account. For quantifying the material scatter, samples of 41 coils of a drawing quality forming steel have been collected. The stochastic material behavior is obtained by a hybrid approach, combining mechanical testingmore » and texture analysis, and efficiently implemented in a metamodel based optimization strategy. The deterministic and robust optimization results are subsequently presented and compared, demonstrating an increased process robustness and decreased number of product rejects by application of the robust optimization approach.« less

  15. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  16. A deterministic global optimization using smooth diagonal auxiliary functions

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.

    2015-04-01

    In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.

  17. Optimal control in adaptive optics modeling of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Herrmann, J.

    The problem of using an adaptive optics system to correct for nonlinear effects like thermal blooming is addressed using a model containing nonlinear lenses through which Gaussian beams are propagated. The best correction of this nonlinear system can be formulated as a deterministic open loop optimal control problem. This treatment gives a limit for the best possible correction. Aspects of adaptive control and servo systems are not included at this stage. An attempt is made to determine that control in the transmitter plane which minimizes the time averaged area or maximizes the fluence in the target plane. The standard minimization procedure leads to a two-point-boundary-value problem, which is ill-conditioned in the case. The optimal control problem was solved using an iterative gradient technique. An instantaneous correction is introduced and compared with the optimal correction. The results of the calculations show that for short times or weak nonlinearities the instantaneous correction is close to the optimal correction, but that for long times and strong nonlinearities a large difference develops between the two types of correction. For these cases the steady state correction becomes better than the instantaneous correction and approaches the optimum correction.

  18. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  19. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive globalmore » information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.« less

  20. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaocai; Song, Ziqi

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  1. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE PAGES

    Liu, Zhaocai; Song, Ziqi

    2017-10-01

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  2. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  3. Efficient computation of optimal actions.

    PubMed

    Todorov, Emanuel

    2009-07-14

    Optimal choice of actions is a fundamental problem relevant to fields as diverse as neuroscience, psychology, economics, computer science, and control engineering. Despite this broad relevance the abstract setting is similar: we have an agent choosing actions over time, an uncertain dynamical system whose state is affected by those actions, and a performance criterion that the agent seeks to optimize. Solving problems of this kind remains hard, in part, because of overly generic formulations. Here, we propose a more structured formulation that greatly simplifies the construction of optimal control laws in both discrete and continuous domains. An exhaustive search over actions is avoided and the problem becomes linear. This yields algorithms that outperform Dynamic Programming and Reinforcement Learning, and thereby solve traditional problems more efficiently. Our framework also enables computations that were not possible before: composing optimal control laws by mixing primitives, applying deterministic methods to stochastic systems, quantifying the benefits of error tolerance, and inferring goals from behavioral data via convex optimization. Development of a general class of easily solvable problems tends to accelerate progress--as linear systems theory has done, for example. Our framework may have similar impact in fields where optimal choice of actions is relevant.

  4. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  5. Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.

    2004-01-01

    A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.

  6. Automated Calibration For Numerical Models Of Riverflow

    NASA Astrophysics Data System (ADS)

    Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey

    2017-04-01

    Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.

  7. Optimization Testbed Cometboards Extended into Stochastic Domain

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.

    2010-01-01

    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  8. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    NASA Technical Reports Server (NTRS)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  9. Purification of complex samples: Implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules

    PubMed Central

    Pudda, Catherine; Boizot, François; Verplanck, Nicolas; Revol-Cavalier, Frédéric; Berthier, Jean; Thuaire, Aurélie

    2018-01-01

    Particle separation in microfluidic devices is a common problematic for sample preparation in biology. Deterministic lateral displacement (DLD) is efficiently implemented as a size-based fractionation technique to separate two populations of particles around a specific size. However, real biological samples contain components of many different sizes and a single DLD separation step is not sufficient to purify these complex samples. When connecting several DLD modules in series, pressure balancing at the DLD outlets of each step becomes critical to ensure an optimal separation efficiency. A generic microfluidic platform is presented in this paper to optimize pressure balancing, when DLD separation is connected either to another DLD module or to a different microfluidic function. This is made possible by generating droplets at T-junctions connected to the DLD outlets. Droplets act as pressure controllers, which perform at the same time the encapsulation of DLD sorted particles and the balance of output pressures. The optimized pressures to apply on DLD modules and on T-junctions are determined by a general model that ensures the equilibrium of the entire platform. The proposed separation platform is completely modular and reconfigurable since the same predictive model applies to any cascaded DLD modules of the droplet-based cartridge. PMID:29768490

  10. Randomly Sampled-Data Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Han, Kuoruey

    1990-01-01

    The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.

  11. Controllability of Deterministic Networks with the Identical Degree Sequence

    PubMed Central

    Ma, Xiujuan; Zhao, Haixing; Wang, Binghong

    2015-01-01

    Controlling complex network is an essential problem in network science and engineering. Recent advances indicate that the controllability of complex network is dependent on the network's topology. Liu and Barabási, et.al speculated that the degree distribution was one of the most important factors affecting controllability for arbitrary complex directed network with random link weights. In this paper, we analysed the effect of degree distribution to the controllability for the deterministic networks with unweighted and undirected. We introduce a class of deterministic networks with identical degree sequence, called (x,y)-flower. We analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by exact controllability theory in detail and give accurate results of the minimum number of driver nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower networks. Our results show that the family of (x,y)-flower networks have the same degree sequence, but their controllability is totally different. So the degree distribution itself is not sufficient to characterize the controllability of deterministic networks with unweighted and undirected. PMID:26020920

  12. The Deterministic Information Bottleneck

    NASA Astrophysics Data System (ADS)

    Strouse, D. J.; Schwab, David

    2015-03-01

    A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.

  13. Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staschus, K.

    1985-01-01

    In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less

  14. Predictive momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Hatis, P. D.

    1986-01-01

    Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.

  15. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    NASA Astrophysics Data System (ADS)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  16. Quantum demolition filtering and optimal control of unstable systems.

    PubMed

    Belavkin, V P

    2012-11-28

    A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  17. Tradeoff methods in multiobjective insensitive design of airplane control systems

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1984-01-01

    The latest results of an ongoing study of computer-aided design of airplane control systems are given. Constrained minimization algorithms are used, with the design objectives in the constraint vector. The concept of Pareto optimiality is briefly reviewed. It is shown how an experienced designer can use it to find designs which are well-balanced in all objectives. Then the problem of finding designs which are insensitive to uncertainty in system parameters are discussed, introducing a probabilistic vector definition of sensitivity which is consistent with the deterministic Pareto optimal problem. Insensitivity is important in any practical design, but it is particularly important in the design of feedback control systems, since it is considered to be the most important distinctive property of feedback control. Methods of tradeoff between deterministic and stochastic-insensitive (SI) design are described, and tradeoff design results are presented for the example of the a Shuttle lateral stability augmentation system. This example is used because careful studies have been made of the uncertainty in Shuttle aerodynamics. Finally, since accurate statistics of uncertain parameters are usually not available, the effects of crude statistical models on SI designs are examined.

  18. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  19. Intelligent and robust optimization frameworks for smart grids

    NASA Astrophysics Data System (ADS)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.

  20. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    PubMed

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  1. Optimization of forest wildlife objectives

    Treesearch

    John Hof; Robert Haight

    2007-01-01

    This chapter presents an overview of methods for optimizing wildlife-related objectives. These objectives hinge on landscape pattern, so we refer to these methods as "spatial optimization." It is currently possible to directly capture deterministic characterizations of the most basic spatial relationships: proximity relationships (including those that lead to...

  2. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.

    PubMed

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2017-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.

  3. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments

    PubMed Central

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2018-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801

  4. Study of dynamics of X-14B VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Loscutoff, W. V.; Mitchiner, J. L.; Roesener, R. A.; Seevers, J. A.

    1973-01-01

    Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined.

  5. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  6. Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission

    NASA Astrophysics Data System (ADS)

    Huang, Yuechen; Li, Haiyang

    2018-06-01

    This paper presents the reliability-based sequential optimization (RBSO) method to settle the trajectory optimization problem with parametric uncertainties in entry dynamics for Mars entry mission. First, the deterministic entry trajectory optimization model is reviewed, and then the reliability-based optimization model is formulated. In addition, the modified sequential optimization method, in which the nonintrusive polynomial chaos expansion (PCE) method and the most probable point (MPP) searching method are employed, is proposed to solve the reliability-based optimization problem efficiently. The nonintrusive PCE method contributes to the transformation between the stochastic optimization (SO) and the deterministic optimization (DO) and to the approximation of trajectory solution efficiently. The MPP method, which is used for assessing the reliability of constraints satisfaction only up to the necessary level, is employed to further improve the computational efficiency. The cycle including SO, reliability assessment and constraints update is repeated in the RBSO until the reliability requirements of constraints satisfaction are satisfied. Finally, the RBSO is compared with the traditional DO and the traditional sequential optimization based on Monte Carlo (MC) simulation in a specific Mars entry mission to demonstrate the effectiveness and the efficiency of the proposed method.

  7. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

    PubMed Central

    Kim, Seok; Wu, Jian; Carlson, Andrew; Jin, Sung Hun; Kovalsky, Anton; Glass, Paul; Liu, Zhuangjian; Ahmed, Numair; Elgan, Steven L.; Chen, Weiqiu; Ferreira, Placid M.; Sitti, Metin; Huang, Yonggang; Rogers, John A.

    2010-01-01

    Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example. PMID:20858729

  8. Fuzzy linear model for production optimization of mining systems with multiple entities

    NASA Astrophysics Data System (ADS)

    Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar

    2011-12-01

    Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.

  9. ODECS -- A computer code for the optimal design of S.I. engine control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsie, I.; Pianese, C.; Rizzo, G.

    1996-09-01

    The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

  10. Diagnostic Assessment of the Difficulty Using Direct Policy Search in Many-Objective Reservoir Control

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.

    2014-12-01

    Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg MOEA, are statistically superior for the six-objective Susquehanna instance of this important class of problems. Additionally, shifting from deterministic history-based DPS to stochastic DPS significantly increases the difficulty of the problem.

  11. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  12. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  13. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  14. Optimizing Chemical Reactions with Deep Reinforcement Learning

    PubMed Central

    2017-01-01

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability. PMID:29296675

  15. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  16. Learning automata-based solutions to the nonlinear fractional knapsack problem with applications to optimal resource allocation.

    PubMed

    Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin

    2007-02-01

    This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.

  17. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model.

    PubMed

    Agusto, F B; Adekunle, A I

    2014-05-01

    Tuberculosis is a bacterial disease caused by Mycobacterium tuberculosis (TB). The risk for TB infection greatly increases with HIV infection; TB disease occurs in 7-10% of patients with HIV infection each year, increasing the potential for transmission of drug-resistant Mycobacterium tuberculosis strains. In this paper a deterministic model is presented and studied for the transmission of TB-HIV/AIDS co-infection. Optimal control theory is then applied to investigate optimal strategies for controlling the spread of the disease using treatment of infected individuals with TB as the system control variables. Various combination strategies were examined so as to investigate the impact of the controls on the spread of the disease. And incremental cost-effectiveness ratio (ICER) was used to investigate the cost effectiveness of all the control strategies. Our results show that the implementation of the combination strategy involving the prevention of treatment failure in drug-sensitive TB infectious individuals and the treatment of individuals with drug-resistant TB is the most cost-effective control strategy. Similar results were obtained with different objective functionals involving the minimization of the number of individuals with drug-sensitive TB-only and drug-resistant TB-only with the efforts involved in applying the control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    DOE PAGES

    Dar, R. D.; Karig, D. K.; Cooke, J. F.; ...

    2010-09-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less

  19. Stochastic Optimization for Unit Commitment-A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qipeng P.; Wang, Jianhui; Liu, Andrew L.

    2015-07-01

    Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave ismore » focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications.« less

  20. Fast cooling for a system of stochastic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongxin, E-mail: chen2468@umn.edu; Georgiou, Tryphon T., E-mail: tryphon@umn.edu; Pavon, Michele, E-mail: pavon@math.unipd.it

    2015-11-15

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedbackmore » control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and −logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.« less

  1. Greek classicism in living structure? Some deductive pathways in animal morphology.

    PubMed

    Zweers, G A

    1985-01-01

    Classical temples in ancient Greece show two deterministic illusionistic principles of architecture, which govern their functional design: geometric proportionalism and a set of illusion-strengthening rules in the proportionalism's "stochastic margin". Animal morphology, in its mechanistic-deductive revival, applies just one architectural principle, which is not always satisfactory. Whether a "Greek Classical" situation occurs in the architecture of living structure is to be investigated by extreme testing with deductive methods. Three deductive methods for explanation of living structure in animal morphology are proposed: the parts, the compromise, and the transformation deduction. The methods are based upon the systems concept for an organism, the flow chart for a functionalistic picture, and the network chart for a structuralistic picture, whereas the "optimal design" serves as the architectural principle for living structure. These methods show clearly the high explanatory power of deductive methods in morphology, but they also make one open end most explicit: neutral issues do exist. Full explanation of living structure asks for three entries: functional design within architectural and transformational constraints. The transformational constraint brings necessarily in a stochastic component: an at random variation being a sort of "free management space". This variation must be a variation from the deterministic principle of the optimal design, since any transformation requires space for plasticity in structure and action, and flexibility in role fulfilling. Nevertheless, finally the question comes up whether for animal structure a similar situation exists as in Greek Classical temples. This means that the at random variation, that is found when the optimal design is used to explain structure, comprises apart from a stochastic part also real deviations being yet another deterministic part. This deterministic part could be a set of rules that governs actualization in the "free management space".

  2. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  3. A space radiation transport method development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.

  4. A Deterministic Model to Quantify Risk and Guide Mitigation Strategies to Reduce Bluetongue Virus Transmission in California Dairy Cattle

    PubMed Central

    Mayo, Christie; Shelley, Courtney; MacLachlan, N. James; Gardner, Ian; Hartley, David; Barker, Christopher

    2016-01-01

    The global distribution of bluetongue virus (BTV) has been changing recently, perhaps as a result of climate change. To evaluate the risk of BTV infection and transmission in a BTV-endemic region of California, sentinel dairy cows were evaluated for BTV infection, and populations of Culicoides vectors were collected at different sites using carbon dioxide. A deterministic model was developed to quantify risk and guide future mitigation strategies to reduce BTV infection in California dairy cattle. The greatest risk of BTV transmission was predicted within the warm Central Valley of California that contains the highest density of dairy cattle in the United States. Temperature and parameters associated with Culicoides vectors (transmission probabilities, carrying capacity, and survivorship) had the greatest effect on BTV’s basic reproduction number, R0. Based on these analyses, optimal control strategies for reducing BTV infection risk in dairy cattle will be highly reliant upon early efforts to reduce vector abundance during the months prior to peak transmission. PMID:27812161

  5. Deterministic and reliability based optimization of integrated thermal protection system composite panel using adaptive sampling techniques

    NASA Astrophysics Data System (ADS)

    Ravishankar, Bharani

    Conventional space vehicles have thermal protection systems (TPS) that provide protection to an underlying structure that carries the flight loads. In an attempt to save weight, there is interest in an integrated TPS (ITPS) that combines the structural function and the TPS function. This has weight saving potential, but complicates the design of the ITPS that now has both thermal and structural failure modes. The main objectives of this dissertation was to optimally design the ITPS subjected to thermal and mechanical loads through deterministic and reliability based optimization. The optimization of the ITPS structure requires computationally expensive finite element analyses of 3D ITPS (solid) model. To reduce the computational expenses involved in the structural analysis, finite element based homogenization method was employed, homogenizing the 3D ITPS model to a 2D orthotropic plate. However it was found that homogenization was applicable only for panels that are much larger than the characteristic dimensions of the repeating unit cell in the ITPS panel. Hence a single unit cell was used for the optimization process to reduce the computational cost. Deterministic and probabilistic optimization of the ITPS panel required evaluation of failure constraints at various design points. This further demands computationally expensive finite element analyses which was replaced by efficient, low fidelity surrogate models. In an optimization process, it is important to represent the constraints accurately to find the optimum design. Instead of building global surrogate models using large number of designs, the computational resources were directed towards target regions near constraint boundaries for accurate representation of constraints using adaptive sampling strategies. Efficient Global Reliability Analyses (EGRA) facilitates sequentially sampling of design points around the region of interest in the design space. EGRA was applied to the response surface construction of the failure constraints in the deterministic and reliability based optimization of the ITPS panel. It was shown that using adaptive sampling, the number of designs required to find the optimum were reduced drastically, while improving the accuracy. System reliability of ITPS was estimated using Monte Carlo Simulation (MCS) based method. Separable Monte Carlo method was employed that allowed separable sampling of the random variables to predict the probability of failure accurately. The reliability analysis considered uncertainties in the geometry, material properties, loading conditions of the panel and error in finite element modeling. These uncertainties further increased the computational cost of MCS techniques which was also reduced by employing surrogate models. In order to estimate the error in the probability of failure estimate, bootstrapping method was applied. This research work thus demonstrates optimization of the ITPS composite panel with multiple failure modes and large number of uncertainties using adaptive sampling techniques.

  6. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  7. Fencing network direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-07-07

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  8. Fencing network direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-07-14

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  9. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    PubMed

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Bush, K; Han, B

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less

  11. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  12. Petroleum refinery operational planning using robust optimization

    NASA Astrophysics Data System (ADS)

    Leiras, A.; Hamacher, S.; Elkamel, A.

    2010-12-01

    In this article, the robust optimization methodology is applied to deal with uncertainties in the prices of saleable products, operating costs, product demand, and product yield in the context of refinery operational planning. A numerical study demonstrates the effectiveness of the proposed robust approach. The benefits of incorporating uncertainty in the different model parameters were evaluated in terms of the cost of ignoring uncertainty in the problem. The calculations suggest that this benefit is equivalent to 7.47% of the deterministic solution value, which indicates that the robust model may offer advantages to those involved with refinery operational planning. In addition, the probability bounds of constraint violation are calculated to help the decision-maker adopt a more appropriate parameter to control robustness and judge the tradeoff between conservatism and total profit.

  13. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  14. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  15. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  16. Information-theoretic approach to interactive learning

    NASA Astrophysics Data System (ADS)

    Still, S.

    2009-01-01

    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.

  17. Optimization of Systems with Uncertainty: Initial Developments for Performance, Robustness and Reliability Based Designs

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents a study on the optimization of systems with structured uncertainties, whose inputs and outputs can be exhaustively described in the probabilistic sense. By propagating the uncertainty from the input to the output in the space of the probability density functions and the moments, optimization problems that pursue performance, robustness and reliability based designs are studied. Be specifying the desired outputs in terms of desired probability density functions and then in terms of meaningful probabilistic indices, we settle a computationally viable framework for solving practical optimization problems. Applications to static optimization and stability control are used to illustrate the relevance of incorporating uncertainty in the early stages of the design. Several examples that admit a full probabilistic description of the output in terms of the design variables and the uncertain inputs are used to elucidate the main features of the generic problem and its solution. Extensions to problems that do not admit closed form solutions are also evaluated. Concrete evidence of the importance of using a consistent probabilistic formulation of the optimization problem and a meaningful probabilistic description of its solution is provided in the examples. In the stability control problem the analysis shows that standard deterministic approaches lead to designs with high probability of running into instability. The implementation of such designs can indeed have catastrophic consequences.

  18. Small-angle scattering from 3D Sierpinski tetrahedron generated using chaos game

    NASA Astrophysics Data System (ADS)

    Slyamov, Azat

    2017-12-01

    We approximate a three dimensional version of deterministic Sierpinski gasket (SG), also known as Sierpinski tetrahedron (ST), by using the chaos game representation (CGR). Structural properties of the fractal, generated by both deterministic and CGR algorithms are determined using small-angle scattering (SAS) technique. We calculate the corresponding monodisperse structure factor of ST, using an optimized Debye formula. We show that scattering from CGR of ST recovers basic fractal properties, such as fractal dimension, iteration number, scaling factor, overall size of the system and the number of units composing the fractal.

  19. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  20. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  1. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  2. SU-F-T-347: An Absolute Dose-Volume Constraint Based Deterministic Optimization Framework for Multi-Co60 Source Focused Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B; Liu, B; Li, Y

    2016-06-15

    Purpose: Treatment plan optimization in multi-Co60 source focused radiotherapy with multiple isocenters is challenging, because dose distribution is normalized to maximum dose during optimization and evaluation. The objective functions are traditionally defined based on relative dosimetric distribution. This study presents an alternative absolute dose-volume constraint (ADC) based deterministic optimization framework (ADC-DOF). Methods: The initial isocenters are placed on the eroded target surface. Collimator size is chosen based on the area of 2D contour on corresponding axial slice. The isocenter spacing is determined by adjacent collimator sizes. The weights are optimized by minimizing the deviation from ADCs using the steepest descentmore » technique. An iterative procedure is developed to reduce the number of isocenters, where the isocenter with lowest weight is removed without affecting plan quality. The ADC-DOF is compared with the genetic algorithm (GA) using the same arbitrary shaped target (254cc), with a 15mm margin ring structure representing normal tissues. Results: For ADC-DOF, the ADCs imposed on target and ring are (D100>10Gy, D50,10, 0<12Gy, 15Gy and 20Gy) and (D40<10Gy). The resulting D100, 50, 10, 0 and D40 are (9.9Gy, 12.0Gy, 14.1Gy and 16.2Gy) and (10.2Gy). The objectives of GA are to maximize 50% isodose target coverage (TC) while minimize the dose delivered to the ring structure, which results in 97% TC and 47.2% average dose in ring structure. For ADC-DOF (GA) techniques, 20 out of 38 (10 out of 12) initial isocenters are used in the final plan, and the computation time is 8.7s (412.2s) on an i5 computer. Conclusion: We have developed a new optimization technique using ADC and deterministic optimization. Compared with GA, ADC-DOF uses more isocenters but is faster and more robust, and achieves a better conformity. For future work, we will focus on developing a more effective mechanism for initial isocenter determination.« less

  3. Discriminating two nonorthogonal states against a noise channel by feed-forward control

    NASA Astrophysics Data System (ADS)

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Wang, Chao-Quan; Li, Hai; Li, Jun-Gang; Shao, Bin

    2015-02-01

    We propose a scheme by using the feed-forward control (FFC) to realize a better effect of discrimination of two nonorthogonal states after passing a noise channel based on the minimum-error (ME) discrimination. We show that the application of our scheme can highly improve the effect of discrimination compared with the ME discrimination without the FFC for any pair of nonorthogonal states and any degree of amplitude damping. Especially, the effect of our optimal discrimination can reach that of the two initial nonorthogonal pure states in the presence of the noise channel in a deterministic way for equal a priori probabilities or even be better than that in a probabilistic way for unequal a priori probabilities.

  4. Figures of Merit for Control Verification

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Goesu. Daniel P.

    2008-01-01

    This paper proposes a methodology for evaluating a controller's ability to satisfy a set of closed-loop specifications when the plant has an arbitrary functional dependency on uncertain parameters. Control verification metrics applicable to deterministic and probabilistic uncertainty models are proposed. These metrics, which result from sizing the largest uncertainty set of a given class for which the specifications are satisfied, enable systematic assessment of competing control alternatives regardless of the methods used to derive them. A particularly attractive feature of the tools derived is that their efficiency and accuracy do not depend on the robustness of the controller. This is in sharp contrast to Monte Carlo based methods where the number of simulations required to accurately approximate the failure probability grows exponentially with its closeness to zero. This framework allows for the integration of complex, high-fidelity simulations of the integrated system and only requires standard optimization algorithms for its implementation.

  5. Are Individual Differences in Performance on Perceptual and Cognitive Optimization Problems Determined by General Intelligence?

    ERIC Educational Resources Information Center

    Burns, Nicholas R.; Lee, Michael D.; Vickers, Douglas

    2006-01-01

    Studies of human problem solving have traditionally used deterministic tasks that require the execution of a systematic series of steps to reach a rational and optimal solution. Most real-world problems, however, are characterized by uncertainty, the need to consider an enormous number of variables and possible courses of action at each stage in…

  6. On salesmen and tourists: Two-step optimization in deterministic foragers

    NASA Astrophysics Data System (ADS)

    Maya, Miguel; Miramontes, Octavio; Boyer, Denis

    2017-02-01

    We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.

  7. Acceleration techniques in the univariate Lipschitz global optimization

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  8. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  9. Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization

    NASA Astrophysics Data System (ADS)

    Gilani, Seyed-Omid; Sattarvand, Javad

    2016-02-01

    Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade uncertainty causes both deviations from production targets and general financial deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is developed herein to integrate geological uncertainty described through a series of the simulated ore bodies. Two different strategies were developed based on a single predefined probability value (Prob) and multiple probability values (Pro bnt) , respectively in order to improve the initial solutions that created by deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demonstrate the abilities of the stochastic approach to create a single schedule and control the risk of deviating from production targets over time and also increase the project value. A comparison between two strategies and traditional approach illustrates that the multiple probability strategy is able to produce better schedules, however, the single predefined probability is more practical in projects requiring of high flexibility degree.

  10. Apparatus for fixing latency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, David R; Bartholomew, David B; Moon, Justin

    2009-09-08

    An apparatus for fixing computational latency within a deterministic region on a network comprises a network interface modem, a high priority module and at least one deterministic peripheral device. The network interface modem is in communication with the network. The high priority module is in communication with the network interface modem. The at least one deterministic peripheral device is connected to the high priority module. The high priority module comprises a packet assembler/disassembler, and hardware for performing at least one operation. Also disclosed is an apparatus for executing at least one instruction on a downhole device within a deterministic region,more » the apparatus comprising a control device, a downhole network, and a downhole device. The control device is near the surface of a downhole tool string. The downhole network is integrated into the tool string. The downhole device is in communication with the downhole network.« less

  11. Defect-free atomic array formation using the Hungarian matching algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-05-01

    Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.

  12. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  13. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  14. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  15. Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real-time, high-dose-rate (HDR) brachytherapy for prostate.

    PubMed

    Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley

    2013-07-08

    The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.

  16. Assessing water reservoir management and development in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.

    2012-04-01

    In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  17. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharroubi, Idris, E-mail: kharroubi@ceremade.dauphine.fr; Lim, Thomas, E-mail: lim@ensiie.fr; Ngoupeyou, Armand, E-mail: armand.ngoupeyou@univ-paris-diderot.fr

    2013-12-15

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

  18. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-04

    Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less

  19. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  20. Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

    PubMed

    Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo

    2017-05-01

    In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.

  1. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation.

    PubMed

    Kowalski, M E; Jin, J M

    2003-03-07

    A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.

  2. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  3. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  4. Design and simulation of a descent controller for strategic four-dimensional aircraft navigation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lax, F. M.

    1975-01-01

    A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.

  5. Unsolved Problems of Intracellular Noise

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Many molecules are present at so low numbers per cell that significant fluctuations arise spontaneously. Such `noise' can randomize developmental pathways, disrupt cell cycle control or force metabolites away from their optimal levels. It can also be exploited for non-genetic individuality or, surprisingly, for more reliable and deterministic control. However, in spite of the mechanistic and evolutionary significance of noise, both explicit modeling and implicit verbal reasoning in molecular biology are completely dominated by macroscopic kinetics. Here I discuss some particularly under-addressed issues of noise in genetic and metabolic networks: 1) relations between systematic macro- and mesoscopic approaches; 2) order and disorder in gene expression; 3) autorepression for checking fluctuations; 4) noise suppression by noise; 5) phase-transitions in metabolic systems; 6) effects of cell growth and division; and 7) mono- and bistable bimodal switches.

  6. A soft computing-based approach to optimise queuing-inventory control problem

    NASA Astrophysics Data System (ADS)

    Alaghebandha, Mohammad; Hajipour, Vahid

    2015-04-01

    In this paper, a multi-product continuous review inventory control problem within batch arrival queuing approach (MQr/M/1) is developed to find the optimal quantities of maximum inventory. The objective function is to minimise summation of ordering, holding and shortage costs under warehouse space, service level and expected lost-sales shortage cost constraints from retailer and warehouse viewpoints. Since the proposed model is Non-deterministic Polynomial-time hard, an efficient imperialist competitive algorithm (ICA) is proposed to solve the model. To justify proposed ICA, both ganetic algorithm and simulated annealing algorithm are utilised. In order to determine the best value of algorithm parameters that result in a better solution, a fine-tuning procedure is executed. Finally, the performance of the proposed ICA is analysed using some numerical illustrations.

  7. Optimal control of population recovery--the role of economic restoration threshold.

    PubMed

    Lampert, Adam; Hastings, Alan

    2014-01-01

    A variety of ecological systems around the world have been damaged in recent years, either by natural factors such as invasive species, storms and global change or by direct human activities such as overfishing and water pollution. Restoration of these systems to provide ecosystem services entails significant economic benefits. Thus, choosing how and when to restore in an optimal fashion is important, but has not been well studied. Here we examine a general model where population growth can be induced or accelerated by investing in active restoration. We show that the most cost-effective method to restore an ecosystem dictates investment until the population approaches an 'economic restoration threshold', a density above which the ecosystem should be left to recover naturally. Therefore, determining this threshold is a key general approach for guiding efficient restoration management, and we demonstrate how to calculate this threshold for both deterministic and stochastic ecosystems. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Delay compensation in integrated communication and control systems. I - Conceptual development and analysis

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.

  9. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.

  10. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  11. A Bayesian model averaging method for the derivation of reservoir operating rules

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai

    2015-09-01

    Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.

  12. Intelligent automated control of life support systems using proportional representations.

    PubMed

    Wu, Annie S; Garibay, Ivan I

    2004-06-01

    Effective automatic control of Advanced Life Support Systems (ALSS) is a crucial component of space exploration. An ALSS is a coupled dynamical system which can be extremely sensitive and difficult to predict. As a result, such systems can be difficult to control using deliberative and deterministic methods. We investigate the performance of two machine learning algorithms, a genetic algorithm (GA) and a stochastic hill-climber (SH), on the problem of learning how to control an ALSS, and compare the impact of two different types of problem representations on the performance of both algorithms. We perform experiments on three ALSS optimization problems using five strategies with multiple variations of a proportional representation for a total of 120 experiments. Results indicate that although a proportional representation can effectively boost GA performance, it does not necessarily have the same effect on other algorithms such as SH. Results also support previous conclusions that multivector control strategies are an effective method for control of coupled dynamical systems.

  13. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix

    PubMed Central

    Andreoli, Daria; Volpe, Giorgio; Popoff, Sébastien; Katz, Ori; Grésillon, Samuel; Gigan, Sylvain

    2015-01-01

    We present a method to measure the spectrally-resolved transmission matrix of a multiply scattering medium, thus allowing for the deterministic spatiospectral control of a broadband light source by means of wavefront shaping. As a demonstration, we show how the medium can be used to selectively focus one or many spectral components of a femtosecond pulse, and how it can be turned into a controllable dispersive optical element to spatially separate different spectral components to arbitrary positions. PMID:25965944

  14. Analyzing transmission dynamics of cholera with public health interventions.

    PubMed

    Posny, Drew; Wang, Jin; Mukandavire, Zindoga; Modnak, Chairat

    2015-06-01

    Cholera continues to be a serious public health concern in developing countries and the global increase in the number of reported outbreaks suggests that activities to control the diseases and surveillance programs to identify or predict the occurrence of the next outbreaks are not adequate. These outbreaks have increased in frequency, severity, duration and endemicity in recent years. Mathematical models for infectious diseases play a critical role in predicting and understanding disease mechanisms, and have long provided basic insights in the possible ways to control infectious diseases. In this paper, we present a new deterministic cholera epidemiological model with three types of control measures incorporated into a cholera epidemic setting: treatment, vaccination and sanitation. Essential dynamical properties of the model with constant intervention controls which include local and global stabilities for the equilibria are carefully analyzed. Further, using optimal control techniques, we perform a study to investigate cost-effective solutions for time-dependent public health interventions in order to curb disease transmission in epidemic settings. Our results show that the basic reproductive number (R0) remains the model's epidemic threshold despite the inclusion of a package of cholera interventions. For time-dependent controls, the results suggest that these interventions closely interplay with each other, and the costs of controls directly affect the length and strength of each control in an optimal strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    NASA Astrophysics Data System (ADS)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  16. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  17. Inconsistent Investment and Consumption Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronborg, Morten Tolver, E-mail: mtk@atp.dk; Steffensen, Mogens, E-mail: mogens@math.ku.dk

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bangmore » strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.« less

  18. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or the SDDP methods. The independent use of surface and groundwater can be examined with and without the aquifer. The ESPAT_DET, ESPATR and ESPAT_SDP modules were executed for the surface system, while the ESPAT_RA and the ESPAT_DET modules were run for the surface-groundwater system. The surface system's results show a similar performance between the ESPAT_SDP and ESPATR modules, with outperform the one showed by the current policies besides being outperformed by the ESPAT_DET results, which have the advantage of the perfect foresight. The surface-groundwater system's results show a robust situation in which the differences between the module's results and the current policies are lower due the use of pumped groundwater in the XX century crops when surface water is scarce. The results are realistic, with the deterministic optimization outperforming the stochastic one, which at the same time outperforms the current policies; showing that the tool is able to stochastically optimize river-aquifer water resources systems. We are currently working in the application of these tools in the analysis of changes in systems' operation under global change conditions. ACKNOWLEDGEMENT: This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) funds.

  19. Positive dwell time algorithm with minimum equal extra material removal in deterministic optical surfacing technology.

    PubMed

    Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun

    2017-11-10

    In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.

  20. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  1. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.

    PubMed

    Morota, Gota

    2017-12-20

    Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.

  2. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  3. Free-form Airfoil Shape Optimization Under Uncertainty Using Maximum Expected Value and Second-order Second-moment Strategies

    NASA Technical Reports Server (NTRS)

    Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.

  4. Working Beyond Moore’s Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots

    DTIC Science & Technology

    2015-07-06

    preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states; (4) Demonstration of nonlocal nuclear...Demonstration of a flying qubit by entanglement of the quantum dot spin polarization with the polarization of a spontaneously emitted photon. Future...coherent optical control steps in preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states in

  5. Large conditional single-photon cross-phase modulation

    PubMed Central

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  6. The development of the deterministic nonlinear PDEs in particle physics to stochastic case

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2018-06-01

    In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also, the control on the randomness input is studied for stability stochastic process solution.

  7. Optimization of Sampling Design to Determine the Spatial Distributions of Emerging Contaminants in Estuaries

    EPA Science Inventory

    Narragansett Bay (NB) has been extensively sampled over the last 50 years by various government agencies, academic institutions, and private groups. To date, most spatial research conducted within the estuary has employed deterministic sampling designs. Several studies have used ...

  8. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.

    2015-06-01

    Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  9. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  10. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-10-15

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies suchmore » as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  11. Counterfactual Quantum Deterministic Key Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wang, Jian; Tang, Chao-Jing

    2013-01-01

    We propose a new counterfactual quantum cryptography protocol concerning about distributing a deterministic key. By adding a controlled blocking operation module to the original protocol [T.G. Noh, Phys. Rev. Lett. 103 (2009) 230501], the correlation between the polarizations of the two parties, Alice and Bob, is extended, therefore, one can distribute both deterministic keys and random ones using our protocol. We have also given a simple proof of the security of our protocol using the technique we ever applied to the original protocol. Most importantly, our analysis produces a bound tighter than the existing ones.

  12. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, J.; Dykes, K.; Graf, P.

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  13. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Dykes, Katherine; Graf, Peter

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained withmore » increasing risk aversion on the part of the designer.« less

  14. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    DOE PAGES

    Quick, J.; Dykes, K.; Graf, P.; ...

    2016-10-03

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. Lastly, if there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtainedmore » with increasing risk aversion on the part of the designer.« less

  15. Robust Planning for Effects-Based Operations

    DTIC Science & Technology

    2006-06-01

    Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models

  16. PROCEEDINGS OF THE SYMPOSIUM ON SYSTEM THEORY, NEW YORK, N. Y. APRIL 20, 21, 22 1965. VOLUME XV.

    DTIC Science & Technology

    The papers presented at the symposium may be grouped as follows: (1) What is system theory ; (2) Representations of systems; (3) System dynamics; (4...Non-deterministic systems; (5) Optimal systems; and (6) Applications of system theory .

  17. Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.

    PubMed

    Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan

    2013-01-01

    This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.

  18. Deterministic quantum annealing expectation-maximization algorithm

    NASA Astrophysics Data System (ADS)

    Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki

    2017-11-01

    Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.

  19. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem.

    PubMed

    Zhou, Jizhong; Deng, Ye; Zhang, Ping; Xue, Kai; Liang, Yuting; Van Nostrand, Joy D; Yang, Yunfeng; He, Zhili; Wu, Liyou; Stahl, David A; Hazen, Terry C; Tiedje, James M; Arkin, Adam P

    2014-03-04

    Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.

  20. Invited Review: A review of deterministic effects in cyclic variability of internal combustion engines

    DOE PAGES

    Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...

    2015-02-18

    Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less

  1. A fuzzy reinforcement learning approach to power control in wireless transmitters.

    PubMed

    Vengerov, David; Bambos, Nicholas; Berenji, Hamid R

    2005-08-01

    We address the issue of power-controlled shared channel access in wireless networks supporting packetized data traffic. We formulate this problem using the dynamic programming framework and present a new distributed fuzzy reinforcement learning algorithm (ACFRL-2) capable of adequately solving a class of problems to which the power control problem belongs. Our experimental results show that the algorithm converges almost deterministically to a neighborhood of optimal parameter values, as opposed to a very noisy stochastic convergence of earlier algorithms. The main tradeoff facing a transmitter is to balance its current power level with future backlog in the presence of stochastically changing interference. Simulation experiments demonstrate that the ACFRL-2 algorithm achieves significant performance gains over the standard power control approach used in CDMA2000. Such a large improvement is explained by the fact that ACFRL-2 allows transmitters to learn implicit coordination policies, which back off under stressful channel conditions as opposed to engaging in escalating "power wars."

  2. Dynamical signatures of isometric force control as a function of age, expertise, and task constraints.

    PubMed

    Vieluf, Solveig; Sleimen-Malkoun, Rita; Voelcker-Rehage, Claudia; Jirsa, Viktor; Reuter, Eva-Maria; Godde, Ben; Temprado, Jean-Jacques; Huys, Raoul

    2017-07-01

    From the conceptual and methodological framework of the dynamical systems approach, force control results from complex interactions of various subsystems yielding observable behavioral fluctuations, which comprise both deterministic (predictable) and stochastic (noise-like) dynamical components. Here, we investigated these components contributing to the observed variability in force control in groups of participants differing in age and expertise level. To this aim, young (18-25 yr) as well as late middle-aged (55-65 yr) novices and experts (precision mechanics) performed a force maintenance and a force modulation task. Results showed that whereas the amplitude of force variability did not differ across groups in the maintenance tasks, in the modulation task it was higher for late middle-aged novices than for experts and higher for both these groups than for young participants. Within both tasks and for all groups, stochastic fluctuations were lowest where the deterministic influence was smallest. However, although all groups showed similar dynamics underlying force control in the maintenance task, a group effect was found for deterministic and stochastic fluctuations in the modulation task. The latter findings imply that both components were involved in the observed group differences in the variability of force fluctuations in the modulation task. These findings suggest that between groups the general characteristics of the dynamics do not differ in either task and that force control is more affected by age than by expertise. However, expertise seems to counteract some of the age effects. NEW & NOTEWORTHY Stochastic and deterministic dynamical components contribute to force production. Dynamical signatures differ between force maintenance and cyclic force modulation tasks but hardly between age and expertise groups. Differences in both stochastic and deterministic components are associated with group differences in behavioral variability, and observed behavioral variability is more strongly task dependent than person dependent. Copyright © 2017 the American Physiological Society.

  3. Stochastic Processes in Physics: Deterministic Origins and Control

    NASA Astrophysics Data System (ADS)

    Demers, Jeffery

    Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.

  4. Hybrid quantum teleportation: A theoretical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  5. Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination.

    PubMed

    Ahmad, Muhammad Dure; Usman, Muhammad; Khan, Adnan; Imran, Mudassar

    2016-07-13

    The 2014 Ebola epidemic is the largest in history, affecting multiple countries in West Africa. Some isolated cases were also observed in other regions of the world. In this paper, we introduce a deterministic SEIR type model with additional hospitalization, quarantine and vaccination components in order to understand the disease dynamics. Optimal control strategies, both in the case of hospitalization (with and without quarantine) and vaccination are used to predict the possible future outcome in terms of resource utilization for disease control and the effectiveness of vaccination on sick populations. Further, with the help of uncertainty and sensitivity analysis we also have identified the most sensitive parameters which effectively contribute to change the disease dynamics. We have performed mathematical analysis with numerical simulations and optimal control strategies on Ebola virus models. We used dynamical system tools with numerical simulations and optimal control strategies on our Ebola virus models. The original model, which allowed transmission of Ebola virus via human contact, was extended to include imperfect vaccination and quarantine. After the qualitative analysis of all three forms of Ebola model, numerical techniques, using MATLAB as a platform, were formulated and analyzed in detail. Our simulation results support the claims made in the qualitative section. Our model incorporates an important component of individuals with high risk level with exposure to disease, such as front line health care workers, family members of EVD patients and Individuals involved in burial of deceased EVD patients, rather than the general population in the affected areas. Our analysis suggests that in order for R 0 (i.e., the basic reproduction number) to be less than one, which is the basic requirement for the disease elimination, the transmission rate of isolated individuals should be less than one-fourth of that for non-isolated ones. Our analysis also predicts, we need high levels of medication and hospitalization at the beginning of an epidemic. Further, optimal control analysis of the model suggests the control strategies that may be adopted by public health authorities in order to reduce the impact of epidemics like Ebola.

  6. Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

    NASA Astrophysics Data System (ADS)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou

    2018-02-01

    We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.

  7. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  8. Comparison of the economic impact of different wind power forecast systems for producers

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.

    2014-05-01

    Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.

  9. On scheduling task systems with variable service times

    NASA Astrophysics Data System (ADS)

    Maset, Richard G.; Banawan, Sayed A.

    1993-08-01

    Several strategies have been proposed for developing optimal and near-optimal schedules for task systems (jobs consisting of multiple tasks that can be executed in parallel). Most such strategies, however, implicitly assume deterministic task service times. We show that these strategies are much less effective when service times are highly variable. We then evaluate two strategies—one adaptive, one static—that have been proposed for retaining high performance despite such variability. Both strategies are extensions of critical path scheduling, which has been found to be efficient at producing near-optimal schedules. We found the adaptive approach to be quite effective.

  10. Enterprise resource planning for hospitals.

    PubMed

    van Merode, Godefridus G; Groothuis, Siebren; Hasman, Arie

    2004-06-30

    Integrated hospitals need a central planning and control system to plan patients' processes and the required capacity. Given the changes in healthcare one can ask the question what type of information systems can best support these healthcare delivery organizations. We focus in this review on the potential of enterprise resource planning (ERP) systems for healthcare delivery organizations. First ERP systems are explained. An overview is then presented of the characteristics of the planning process in hospital environments. Problems with ERP that are due to the special characteristics of healthcare are presented. The situations in which ERP can or cannot be used are discussed. It is suggested to divide hospitals in a part that is concerned only with deterministic processes and a part that is concerned with non-deterministic processes. ERP can be very useful for planning and controlling the deterministic processes.

  11. Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System

    ERIC Educational Resources Information Center

    Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.

    2016-01-01

    Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…

  12. Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System

    ERIC Educational Resources Information Center

    Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.

    2015-01-01

    Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…

  13. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  14. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  15. Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Cheng-Yen; Sepulveda, Abdon; Keller, Scott

    2016-03-21

    In this paper, a fully coupled analytical model between elastodynamics with micromagnetics is used to study the switching energies using voltage induced mechanical bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5 mm) with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces out of plane deformation with bending moments induced in the magnetoelastic bit modifying the magnetic anisotropy. To minimize the energy, two design stages are used. In the first stage, the geometry and bias field (H{submore » b}) of the bit are optimized to minimize the strain energy required to rotate between two stable states. In the second stage, the bit's geometry is fixed, and the electrode position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which is approximately two orders of magnitude lower than spin transfer torque approaches.« less

  16. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Zhang, Ping; Xue, Kai; Liang, Yuting; Van Nostrand, Joy D.; Yang, Yunfeng; He, Zhili; Wu, Liyou; Stahl, David A.; Hazen, Terry C.; Tiedje, James M.; Arkin, Adam P.

    2014-01-01

    Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession. PMID:24550501

  17. Improving Deterministic Reserve Requirements for Security Constrained Unit Commitment and Scheduling Problems in Power Systems

    NASA Astrophysics Data System (ADS)

    Wang, Fengyu

    Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.

  18. Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic Lyapunov function.

    PubMed

    Semenov, Mikhail A; Terkel, Dmitri A

    2003-01-01

    This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.

  19. Dominating Scale-Free Networks Using Generalized Probabilistic Methods

    PubMed Central

    Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.

    2014-01-01

    We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937

  20. Development of a nanosatellite de-orbiting system by reliability based design optimization

    NASA Astrophysics Data System (ADS)

    Nikbay, Melike; Acar, Pınar; Aslan, Alim Rüstem

    2015-12-01

    This paper presents design approaches to develop a reliable and efficient de-orbiting system for the 3USAT nanosatellite to provide a beneficial orbital decay process at the end of a mission. A de-orbiting system is initially designed by employing the aerodynamic drag augmentation principle where the structural constraints of the overall satellite system and the aerodynamic forces are taken into account. Next, an alternative de-orbiting system is designed with new considerations and further optimized using deterministic and reliability based design techniques. For the multi-objective design, the objectives are chosen to maximize the aerodynamic drag force through the maximization of the Kapton surface area while minimizing the de-orbiting system mass. The constraints are related in a deterministic manner to the required deployment force, the height of the solar panel hole and the deployment angle. The length and the number of layers of the deployable Kapton structure are used as optimization variables. In the second stage of this study, uncertainties related to both manufacturing and operating conditions of the deployable structure in space environment are considered. These uncertainties are then incorporated into the design process by using different probabilistic approaches such as Monte Carlo Simulation, the First-Order Reliability Method and the Second-Order Reliability Method. The reliability based design optimization seeks optimal solutions using the former design objectives and constraints with the inclusion of a reliability index. Finally, the de-orbiting system design alternatives generated by different approaches are investigated and the reliability based optimum design is found to yield the best solution since it significantly improves both system reliability and performance requirements.

  1. In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots

    NASA Astrophysics Data System (ADS)

    Wendi, Dadiyorto; Marwan, Norbert; Merz, Bruno

    As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization.

  2. Examining Errors in Simple Spreadsheet Modeling from Different Research Perspectives

    ERIC Educational Resources Information Center

    Kadijevich, Djordje M.

    2012-01-01

    By using a sample of 1st-year undergraduate business students, this study dealt with the development of simple (deterministic and non-optimization) spreadsheet models of income statements within an introductory course on business informatics. The study examined students' errors in doing this for business situations of their choice and found three…

  3. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  4. Multiple vehicle tracking in aerial video sequence using driver behavior analysis and improved deterministic data association

    NASA Astrophysics Data System (ADS)

    Zhang, Xunxun; Xu, Hongke; Fang, Jianwu

    2018-01-01

    Along with the rapid development of the unmanned aerial vehicle technology, multiple vehicle tracking (MVT) in aerial video sequence has received widespread interest for providing the required traffic information. Due to the camera motion and complex background, MVT in aerial video sequence poses unique challenges. We propose an efficient MVT algorithm via driver behavior-based Kalman filter (DBKF) and an improved deterministic data association (IDDA) method. First, a hierarchical image registration method is put forward to compensate the camera motion. Afterward, to improve the accuracy of the state estimation, we propose the DBKF module by incorporating the driver behavior into the Kalman filter, where artificial potential field is introduced to reflect the driver behavior. Then, to implement the data association, a local optimization method is designed instead of global optimization. By introducing the adaptive operating strategy, the proposed IDDA method can also deal with the situation in which the vehicles suddenly appear or disappear. Finally, comprehensive experiments on the DARPA VIVID data set and KIT AIS data set demonstrate that the proposed algorithm can generate satisfactory and superior results.

  5. Measurement Matrix Design for Phase Retrieval Based on Mutual Information

    NASA Astrophysics Data System (ADS)

    Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.

    2018-01-01

    In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.

  6. Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M; Kisner, Roger A; Muhlheim, Michael David

    2015-07-01

    Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or nomore » human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The integration of deterministic calculations using multi-physics analyses (i.e., neutronics, thermal, and thermal-hydraulics) and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermal-hydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies.« less

  7. Inverse kinematic problem for a random gradient medium in geometric optics approximation

    NASA Astrophysics Data System (ADS)

    Petersen, N. V.

    1990-03-01

    Scattering at random inhomogeneities in a gradient medium results in systematic deviations of the rays and travel times of refracted body waves from those corresponding to the deterministic velocity component. The character of the difference depends on the parameters of the deterministic and random velocity component. However, at great distances to the source, independently of the velocity parameters (weakly or strongly inhomogeneous medium), the most probable depth of the ray turning point is smaller than that corresponding to the deterministic velocity component, the most probable travel times also being lower. The relative uncertainty in the deterministic velocity component, derived from the mean travel times using methods developed for laterally homogeneous media (for instance, the Herglotz-Wiechert method), is systematic in character, but does not exceed the contrast of velocity inhomogeneities by magnitude. The gradient of the deterministic velocity component has a significant effect on the travel-time fluctuations. The variance at great distances to the source is mainly controlled by shallow inhomogeneities. The travel-time flucutations are studied only for weakly inhomogeneous media.

  8. Multi-segmental postural coordination in professional ballet dancers.

    PubMed

    Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G

    2011-05-01

    Ballet dancers have heightened balance skills, but previous studies that compared dancers to non-dancers have not quantified patterns of multi-joint postural coordination. This study utilized a visual tracking task that required professional ballet dancers and untrained control participants to sway with the fore-aft motion of a target while standing on one leg, at target frequencies of 0.2 and 0.6Hz. The mean and variability of relative phase between the ankle and hip, and measures from cross-recurrence quantification analysis (i.e., percent cross-recurrence, percent cross-determinism, and cross-maxline), indexed the coordination patterns and their stability. Dancers exhibited less variable ankle-hip coordination and a less deterministic ankle-hip coupling, compared to controls. The results indicate that ballet dancers have increased coordination stability, potentially achieved through enhanced neuromuscular control and/or perceptual sensitivity, and indicate proficiency at optimizing the constraints that enable dancers to perform complex balance tasks. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Chaotic dynamics and control of deterministic ratchets.

    PubMed

    Family, Fereydoon; Larrondo, H A; Zarlenga, D G; Arizmendi, C M

    2005-11-30

    Deterministic ratchets, in the inertial and also in the overdamped limit, have a very complex dynamics, including chaotic motion. This deterministically induced chaos mimics, to some extent, the role of noise, changing, on the other hand, some of the basic properties of thermal ratchets; for example, inertial ratchets can exhibit multiple reversals in the current direction. The direction depends on the amount of friction and inertia, which makes it especially interesting for technological applications such as biological particle separation. We overview in this work different strategies to control the current of inertial ratchets. The control parameters analysed are the strength and frequency of the periodic external force, the strength of the quenched noise that models a non-perfectly-periodic potential, and the mass of the particles. Control mechanisms are associated with the fractal nature of the basins of attraction of the mean velocity attractors. The control of the overdamped motion of noninteracting particles in a rocking periodic asymmetric potential is also reviewed. The analysis is focused on synchronization of the motion of the particles with the external sinusoidal driving force. Two cases are considered: a perfect lattice without disorder and a lattice with noncorrelated quenched noise. The amplitude of the driving force and the strength of the quenched noise are used as control parameters.

  10. Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Scharf, Daniel P.

    2011-01-01

    An enhanced algorithm is developed that builds on a previous innovation of fuel-optimal powered-descent guidance (PDG) for planetary pinpoint landing. The PDG problem is to compute constrained, fuel-optimal trajectories to land a craft at a prescribed target on a planetary surface, starting from a parachute cut-off point and using a throttleable descent engine. The previous innovation showed the minimal-fuel PDG problem can be posed as a convex optimization problem, in particular, as a Second-Order Cone Program, which can be solved to global optimality with deterministic convergence properties, and hence is a candidate for onboard implementation. To increase the speed and robustness of this convex PDG algorithm for possible onboard implementation, the following enhancements are incorporated: 1) Fast detection of infeasibility (i.e., control authority is not sufficient for soft-landing) for subsequent fault response. 2) The use of a piecewise-linear control parameterization, providing smooth solution trajectories and increasing computational efficiency. 3) An enhanced line-search algorithm for optimal time-of-flight, providing quicker convergence and bounding the number of path-planning iterations needed. 4) An additional constraint that analytically guarantees inter-sample satisfaction of glide-slope and non-sub-surface flight constraints, allowing larger discretizations and, hence, faster optimization. 5) Explicit incorporation of Mars rotation rate into the trajectory computation for improved targeting accuracy. These enhancements allow faster convergence to the fuel-optimal solution and, more importantly, remove the need for a "human-in-the-loop," as constraints will be satisfied over the entire path-planning interval independent of step-size (as opposed to just at the discrete time points) and infeasible initial conditions are immediately detected. Finally, while the PDG stage is typically only a few minutes, ignoring the rotation rate of Mars can introduce 10s of meters of error. By incorporating it, the enhanced PDG algorithm becomes capable of pinpoint targeting.

  11. Design Tool Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.

  12. Pruning-Based, Energy-Optimal, Deterministic I/O Device Scheduling for Hard Real-Time Systems

    DTIC Science & Technology

    2005-02-01

    However, DPM via I/O device scheduling for hard real - time systems has received relatively little attention. In this paper,we present an offline I/O...polynomial time. We present experimental results to show that EDS and MDO reduce the energy consumption of I/O devices significantly for hard real - time systems .

  13. Deterministic Design Optimization of Structures in OpenMDAO Framework

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula M.; Pai, Shantaram S.

    2012-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.

  14. Classification and unification of the microscopic deterministic traffic models.

    PubMed

    Yang, Bo; Monterola, Christopher

    2015-10-01

    We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.

  15. Comparison of three controllers applied to helicopter vibration

    NASA Technical Reports Server (NTRS)

    Leyland, Jane A.

    1992-01-01

    A comparison was made of the applicability and suitability of the deterministic controller, the cautious controller, and the dual controller for the reduction of helicopter vibration by using higher harmonic blade pitch control. A randomly generated linear plant model was assumed and the performance index was defined to be a quadratic output metric of this linear plant. A computer code, designed to check out and evaluate these controllers, was implemented and used to accomplish this comparison. The effects of random measurement noise, the initial estimate of the plant matrix, and the plant matrix propagation rate were determined for each of the controllers. With few exceptions, the deterministic controller yielded the greatest vibration reduction (as characterized by the quadratic output metric) and operated with the greatest reliability. Theoretical limitations of these controllers were defined and appropriate candidate alternative methods, including one method particularly suitable to the cockpit, were identified.

  16. Optimal port-based teleportation

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Strelchuk, Sergii; Horodecki, Michał

    2018-05-01

    Deterministic port-based teleportation (dPBT) protocol is a scheme where a quantum state is guaranteed to be transferred to another system without unitary correction. We characterise the best achievable performance of the dPBT when both the resource state and the measurement is optimised. Surprisingly, the best possible fidelity for an arbitrary number of ports and dimension of the teleported state is given by the largest eigenvalue of a particular matrix—Teleportation Matrix. It encodes the relationship between a certain set of Young diagrams and emerges as the optimal solution to the relevant semidefinite programme.

  17. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  18. An ITK framework for deterministic global optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.

    2006-03-01

    Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.

  19. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  20. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  1. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    PubMed

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.

  2. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  3. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  4. Integrated Risk-Informed Decision-Making for an ALMR PRISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, Michael David; Belles, Randy; Denning, Richard S.

    Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less

  5. Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrisson, G.; Marleau, G.

    2012-07-01

    The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculationmore » performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)« less

  6. Automated Flight Routing Using Stochastic Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  7. Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M

    2012-08-01

    For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADISmore » also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.« less

  8. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    NASA Astrophysics Data System (ADS)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  9. Effect of dilution in asymmetric recurrent neural networks.

    PubMed

    Folli, Viola; Gosti, Giorgio; Leonetti, Marco; Ruocco, Giancarlo

    2018-04-16

    We study with numerical simulation the possible limit behaviors of synchronous discrete-time deterministic recurrent neural networks composed of N binary neurons as a function of a network's level of dilution and asymmetry. The network dilution measures the fraction of neuron couples that are connected, and the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric. For each given neural network, we study the dynamical evolution of all the different initial conditions, thus characterizing the full dynamical landscape without imposing any learning rule. Because of the deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network. For each network we then determine the convergence times, the limit cycles' length, the number of attractors, and the sizes of the attractors' basin. We show that there are two network structures that maximize the number of possible limit behaviors. The first optimal network structure is fully-connected and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric. The latter optimal is similar to what observed in different biological neuronal circuits. These observations lead us to hypothesize that independently from any given learning model, an efficient and effective biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop a connectivity structure similar to one of the optimal networks we found. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. The Tool for Designing Engineering Systems Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.

  11. Simulated annealing in orbital flight planning

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey

    1990-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.

  12. Individual differences in white matter microstructure predict semantic control.

    PubMed

    Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R

    2016-12-01

    In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.

  13. Optimal nonlinear filtering using the finite-volume method

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.

    2018-01-01

    Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.

  14. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  15. A generalization of Fatou's lemma for extended real-valued functions on σ-finite measure spaces: with an application to infinite-horizon optimization in discrete time.

    PubMed

    Kamihigashi, Takashi

    2017-01-01

    Given a sequence [Formula: see text] of measurable functions on a σ -finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure) and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.

  16. Optimal ancilla-free Pauli+V circuits for axial rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blass, Andreas; Bocharov, Alex; Gurevich, Yuri

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less

  17. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    NASA Astrophysics Data System (ADS)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.

  18. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths.

    PubMed

    Olariu, Victor; Manesso, Erica; Peterson, Carsten

    2017-06-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.

  19. Phenotypic switching of populations of cells in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias

    2018-02-01

    In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.

  20. Review of smoothing methods for enhancement of noisy data from heavy-duty LHD mining machines

    NASA Astrophysics Data System (ADS)

    Wodecki, Jacek; Michalak, Anna; Stefaniak, Paweł

    2018-01-01

    Appropriate analysis of data measured on heavy-duty mining machines is essential for processes monitoring, management and optimization. Some particular classes of machines, for example LHD (load-haul-dump) machines, hauling trucks, drilling/bolting machines etc. are characterized with cyclicity of operations. In those cases, identification of cycles and their segments or in other words - simply data segmentation is a key to evaluate their performance, which may be very useful from the management point of view, for example leading to introducing optimization to the process. However, in many cases such raw signals are contaminated with various artifacts, and in general are expected to be very noisy, which makes the segmentation task very difficult or even impossible. To deal with that problem, there is a need for efficient smoothing methods that will allow to retain informative trends in the signals while disregarding noises and other undesired non-deterministic components. In this paper authors present a review of various approaches to diagnostic data smoothing. Described methods can be used in a fast and efficient way, effectively cleaning the signals while preserving informative deterministic behaviour, that is a crucial to precise segmentation and other approaches to industrial data analysis.

  1. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths

    PubMed Central

    Olariu, Victor; Manesso, Erica

    2017-01-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis–Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming. PMID:28680655

  2. Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control by the human brain

    NASA Astrophysics Data System (ADS)

    Roberts, Sean; Eykholt, R.; Thaut, Michael H.

    2000-08-01

    We investigate rhythmic finger tapping in both the presence and the absence of a metronome. We examine both the time intervals between taps and the time lags between the stimulus tones from the metronome and the response taps by the subject. We analyze the correlations in these data sets, and we search for evidence of deterministic chaos, as opposed to randomness, in the fluctuations.

  3. Stochastic Stability of Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.

  4. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE PAGES

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  5. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  6. Quantum teleportation scheme by selecting one of multiple output ports

    NASA Astrophysics Data System (ADS)

    Ishizaka, Satoshi; Hiroshima, Tohya

    2009-04-01

    The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both the deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state and (ii) the state is also optimized as well as Alice’s measurement. We analytically determine the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→∞ . The entanglement properties of the teleportation scheme are also discussed.

  7. Deterministic walks with inverse-square power-law scaling are an emergent property of predators that use chemotaxis to locate randomly distributed prey

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2008-07-01

    The results of numerical simulations indicate that deterministic walks with inverse-square power-law scaling are a robust emergent property of predators that use chemotaxis to locate randomly and sparsely distributed stationary prey items. It is suggested that chemotactic destructive foraging accounts for the apparent Lévy flight movement patterns of Oxyrrhis marina microzooplankton in still water containing prey items. This challenges the view that these organisms are executing an innate optimal Lévy flight searching strategy. Crucial for the emergence of inverse-square power-law scaling is the tendency of chemotaxis to occasionally cause predators to miss the nearest prey item, an occurrence which would not arise if prey were located through the employment of a reliable cognitive map or if prey location were visually cued and perfect.

  8. Multi-Item Multiperiodic Inventory Control Problem with Variable Demand and Discounts: A Particle Swarm Optimization Algorithm

    PubMed Central

    Mousavi, Seyed Mohsen; Niaki, S. T. A.; Bahreininejad, Ardeshir; Musa, Siti Nurmaya

    2014-01-01

    A multi-item multiperiod inventory control model is developed for known-deterministic variable demands under limited available budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit discounts for a number of products and incremental quantity discount for some other items are considered. While the objectives are to minimize both the total inventory cost and the required storage space, the model is formulated into a fuzzy multicriteria decision making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model, a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical approaches show more efficiency of MOPSO compared with MOGA. PMID:25093195

  9. Quantifying uncertainty in partially specified biological models: how can optimal control theory help us?

    PubMed

    Adamson, M W; Morozov, A Y; Kuzenkov, O A

    2016-09-01

    Mathematical models in biology are highly simplified representations of a complex underlying reality and there is always a high degree of uncertainty with regards to model function specification. This uncertainty becomes critical for models in which the use of different functions fitting the same dataset can yield substantially different predictions-a property known as structural sensitivity. Thus, even if the model is purely deterministic, then the uncertainty in the model functions carries through into uncertainty in model predictions, and new frameworks are required to tackle this fundamental problem. Here, we consider a framework that uses partially specified models in which some functions are not represented by a specific form. The main idea is to project infinite dimensional function space into a low-dimensional space taking into account biological constraints. The key question of how to carry out this projection has so far remained a serious mathematical challenge and hindered the use of partially specified models. Here, we propose and demonstrate a potentially powerful technique to perform such a projection by using optimal control theory to construct functions with the specified global properties. This approach opens up the prospect of a flexible and easy to use method to fulfil uncertainty analysis of biological models.

  10. Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources

    NASA Astrophysics Data System (ADS)

    Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.

    2015-12-01

    We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.

  11. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  12. No-go theorem for iterations of unknown quantum gates

    NASA Astrophysics Data System (ADS)

    Soleimanifar, Mehdi; Karimipour, Vahid

    2016-01-01

    We propose a no-go theorem by proving the impossibility of constructing a deterministic quantum circuit that iterates a unitary oracle by calling it only once. Different schemes are provided to bypass this result and to approximately realize the iteration. The optimal scheme is also studied. An interesting observation is that for a large number of iterations, a trivial strategy like using the identity channel has the optimal performance, and preprocessing, postprocessing, or using resources like entanglement does not help at all. Intriguingly, the number of iterations, when being large enough, does not affect the performance of the proposed schemes.

  13. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals.

    PubMed

    Wang, Yi; Peng, Hsin-Chieh; Liu, Jingyue; Huang, Cheng Zhi; Xia, Younan

    2015-02-11

    Kinetic control is a powerful means for maneuvering the twin structure and shape of metal nanocrystals and thus optimizing their performance in a variety of applications. However, there is only a vague understanding of the explicit roles played by reaction kinetics due to the lack of quantitative information about the kinetic parameters. With Pd as an example, here we demonstrate that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal. On a quantitative basis, we were able to determine the ranges of initial reduction rates required for the formation of nanocrystals with a specific twin structure, including single-crystal, multiply twinned, and stacking fault-lined. This work represents a major step forward toward the deterministic syntheses of colloidal noble-metal nanocrystals with specific twin structures and shapes.

  14. Quantum computation over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2011-07-15

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglementmore » resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.« less

  15. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon

    2017-04-01

    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.

  16. Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession.

    PubMed

    Mi, Xiangcheng; Swenson, Nathan G; Jia, Qi; Rao, Mide; Feng, Gang; Ren, Haibao; Bebber, Daniel P; Ma, Keping

    2016-09-07

    Deterministic and stochastic processes jointly determine the community dynamics of forest succession. However, it has been widely held in previous studies that deterministic processes dominate forest succession. Furthermore, inference of mechanisms for community assembly may be misleading if based on a single axis of diversity alone. In this study, we evaluated the relative roles of deterministic and stochastic processes along a disturbance gradient by integrating species, functional, and phylogenetic beta diversity in a subtropical forest chronosequence in Southeastern China. We found a general pattern of increasing species turnover, but little-to-no change in phylogenetic and functional turnover over succession at two spatial scales. Meanwhile, the phylogenetic and functional beta diversity were not significantly different from random expectation. This result suggested a dominance of stochastic assembly, contrary to the general expectation that deterministic processes dominate forest succession. On the other hand, we found significant interactions of environment and disturbance and limited evidence for significant deviations of phylogenetic or functional turnover from random expectations for different size classes. This result provided weak evidence of deterministic processes over succession. Stochastic assembly of forest succession suggests that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical forests.

  17. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications.

    PubMed

    Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon

    2017-04-10

    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.

  18. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead–based applications

    PubMed Central

    Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon

    2017-01-01

    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911

  19. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weerakkody, Sean; Liu, Xiaofei; Sinopoli, Bruno

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochasticmore » systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.« less

  20. Resonant current in coupled inertial Brownian particles with delayed-feedback control

    NASA Astrophysics Data System (ADS)

    Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can

    2017-12-01

    The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.

  1. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  2. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  3. Optimal run-and-tumble-based transportation of a Janus particle with active steering

    NASA Astrophysics Data System (ADS)

    Mano, Tomoyuki; Delfau, Jean-Baptiste; Iwasawa, Junichiro; Sano, Masaki

    2017-03-01

    Although making artificial micrometric swimmers has been made possible by using various propulsion mechanisms, guiding their motion in the presence of thermal fluctuations still remains a great challenge. Such a task is essential in biological systems, which present a number of intriguing solutions that are robust against noisy environmental conditions as well as variability in individual genetic makeup. Using synthetic Janus particles driven by an electric field, we present a feedback-based particle-guiding method quite analogous to the “run-and-tumbling” behavior of Escherichia coli but with a deterministic steering in the tumbling phase: the particle is set to the run state when its orientation vector aligns with the target, whereas the transition to the “steering” state is triggered when it exceeds a tolerance angle αα. The active and deterministic reorientation of the particle is achieved by a characteristic rotational motion that can be switched on and off by modulating the ac frequency of the electric field, which is reported in this work. Relying on numerical simulations and analytical results, we show that this feedback algorithm can be optimized by tuning the tolerance angle αα. The optimal resetting angle depends on signal to noise ratio in the steering state, and it is shown in the experiment. The proposed method is simple and robust for targeting, despite variability in self-propelling speeds and angular velocities of individual particles.

  4. Active adaptive management for reintroduction of an animal population

    USGS Publications Warehouse

    Runge, Michael C.

    2013-01-01

    Captive animals are frequently reintroduced to the wild in the face of uncertainty, but that uncertainty can often be reduced over the course of the reintroduction effort, providing the opportunity for adaptive management. One common uncertainty in reintroductions is the short-term survival rate of released adults (a release cost), an important factor because it can affect whether releasing adults or juveniles is better. Information about this rate can improve the success of the reintroduction program, but does the expected gain offset the costs of obtaining the information? I explored this question for reintroduction of the griffon vulture (Gyps fulvus) by framing the management question as a belief Markov decision process, characterizing uncertainty about release cost with 2 information state variables, and finding the solution using stochastic dynamic programming. For a reintroduction program of fixed length (e.g., 5 years of releases), the optimal policy in the final release year resembles the deterministic solution: release either all adults or all juveniles depending on whether the point estimate for the survival rate in question is above or below a specific threshold. But the optimal policy in the earlier release years 1) includes release of a mixture of juveniles and adults under some circumstances, and 2) recommends release of adults even when the point estimate of survival is much less than the deterministic threshold. These results show that in an iterated decision setting, the optimal decision in early years can be quite different from that in later years because of the value of learning. 

  5. Towards quantifying uncertainty in Greenland's contribution to 21st century sea-level rise

    NASA Astrophysics Data System (ADS)

    Perego, M.; Tezaur, I.; Price, S. F.; Jakeman, J.; Eldred, M.; Salinger, A.; Hoffman, M. J.

    2015-12-01

    We present recent work towards developing a methodology for quantifying uncertainty in Greenland's 21st century contribution to sea-level rise. While we focus on uncertainties associated with the optimization and calibration of the basal sliding parameter field, the methodology is largely generic and could be applied to other (or multiple) sets of uncertain model parameter fields. The first step in the workflow is the solution of a large-scale, deterministic inverse problem, which minimizes the mismatch between observed and computed surface velocities by optimizing the two-dimensional coefficient field in a linear-friction sliding law. We then expand the deviation in this coefficient field from its estimated "mean" state using a reduced basis of Karhunen-Loeve Expansion (KLE) vectors. A Bayesian calibration is used to determine the optimal coefficient values for this expansion. The prior for the Bayesian calibration can be computed using the Hessian of the deterministic inversion or using an exponential covariance kernel. The posterior distribution is then obtained using Markov Chain Monte Carlo run on an emulator of the forward model. Finally, the uncertainty in the modeled sea-level rise is obtained by performing an ensemble of forward propagation runs. We present and discuss preliminary results obtained using a moderate-resolution model of the Greenland Ice sheet. As demonstrated in previous work, the primary difficulty in applying the complete workflow to realistic, high-resolution problems is that the effective dimension of the parameter space is very large.

  6. Dwell time algorithm based on the optimization theory for magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen

    2010-10-01

    Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.

  7. Optimization of Multi-Fidelity Computer Experiments via the EQIE Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xu; Tuo, Rui; Jeff Wu, C. F.

    Computer experiments based on mathematical models are powerful tools for understanding physical processes. This article addresses the problem of kriging-based optimization for deterministic computer experiments with tunable accuracy. Our approach is to use multi- delity computer experiments with increasing accuracy levels and a nonstationary Gaussian process model. We propose an optimization scheme that sequentially adds new computer runs by following two criteria. The first criterion, called EQI, scores candidate inputs with given level of accuracy, and the second criterion, called EQIE, scores candidate combinations of inputs and accuracy. Here, from simulation results and a real example using finite element analysis,more » our method out-performs the expected improvement (EI) criterion which works for single-accuracy experiments.« less

  8. An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate

    NASA Astrophysics Data System (ADS)

    Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu

    2017-12-01

    In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.

  9. Optimization of Multi-Fidelity Computer Experiments via the EQIE Criterion

    DOE PAGES

    He, Xu; Tuo, Rui; Jeff Wu, C. F.

    2017-01-31

    Computer experiments based on mathematical models are powerful tools for understanding physical processes. This article addresses the problem of kriging-based optimization for deterministic computer experiments with tunable accuracy. Our approach is to use multi- delity computer experiments with increasing accuracy levels and a nonstationary Gaussian process model. We propose an optimization scheme that sequentially adds new computer runs by following two criteria. The first criterion, called EQI, scores candidate inputs with given level of accuracy, and the second criterion, called EQIE, scores candidate combinations of inputs and accuracy. Here, from simulation results and a real example using finite element analysis,more » our method out-performs the expected improvement (EI) criterion which works for single-accuracy experiments.« less

  10. The Other Side of Multidisciplinary Design Optimization: Accommodating a Multiobjective, Uncertain and Non-Deterministic World

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1998-01-01

    The evolution of multidisciplinary design optimization (MDO) over the past several years has been one of rapid expansion and development. In this paper, the evolution of MDO as a field is investigated as well as the evolution of its individual linguistic components: multidisciplinary, design, and optimization. The theory and application of each component have indeed evolved on their own, but the true net gain for MDO is how these piecewise evolutions coalesce to form the basis for MDO, present and future. Originating in structural applications, MDO technology has also branched out into diverse fields and application arenas. The evolution and diversification of MDO as a discipline is explored but details are left to the references cited.

  11. The influence of the free space environment on the superlight-weight thermal protection system: conception, methods, and risk analysis

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy; Falchenko, Iurii; Fedorchuk, Viktor; Petrushynets, Lidiia

    2016-07-01

    This report focuses on the results of the EU project "Superlight-weight thermal protection system for space application (LIGHT-TPS)". The bottom line is an analysis of influence of the free space environment on the superlight-weight thermal protection system (TPS). This report focuses on new methods that based on the following models: synergetic, physical, and computational. This report concentrates on four approaches. The first concerns the synergetic approach. The synergetic approach to the solution of problems of self-controlled synthesis of structures and creation of self-organizing technologies is considered in connection with the super-problem of creation of materials with new functional properties. Synergetics methods and mathematical design are considered according to actual problems of material science. The second approach describes how the optimization methods can be used to determine material microstructures with optimized or targeted properties. This technique enables one to find unexpected microstructures with exotic behavior (e.g., negative thermal expansion coefficients). The third approach concerns the dynamic probabilistic risk analysis of TPS l elements with complex characterizations for damages using a physical model of TPS system and a predictable level of ionizing radiation and space weather. Focusing is given mainly on the TPS model, mathematical models for dynamic probabilistic risk assessment and software for the modeling and prediction of the influence of the free space environment. The probabilistic risk assessment method for TPS is presented considering some deterministic and stochastic factors. The last approach concerns results of experimental research of the temperature distribution on the surface of the honeycomb sandwich panel size 150 x 150 x 20 mm at the diffusion welding in vacuum are considered. An equipment, which provides alignment of temperature fields in a product for the formation of equal strength of welded joints is considered. Many tasks in computational materials science can be posed as optimization problems. This technique enables one to find unexpected microstructures with exotic behavior (e.g., negative thermal expansion coefficients). The last approach is concerned with the generation of realizations of materials with specified but limited microstructural information: an intriguing inverse problem of both fundamental and practical importance. Computational models based upon the theories of molecular dynamics or quantum mechanics would enable the prediction and modification of fundamental materials properties. This problem is solved using deterministic and stochastic optimization techniques. The main optimization approaches in the frame of the EU project "Superlight-weight thermal protection system for space application" are discussed. Optimization approach to the alloys for obtaining materials with required properties using modeling techniques and experimental data will be also considered. This report is supported by the EU project "Superlight-weight thermal protection system for space application (LIGHT-TPS)"

  12. The mathematical statement for the solving of the problem of N-version software system design

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.

  13. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  14. Precision production: enabling deterministic throughput for precision aspheres with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Entezarian, Navid; Dumas, Paul

    2017-10-01

    Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.

  15. Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Crutchfield, James P.

    2016-05-01

    We introduce a deterministic chaotic system—the Szilard map—that encapsulates the measurement, control, and erasure protocol by which Maxwellian demons extract work from a heat reservoir. Implementing the demon's control function in a dynamical embodiment, our construction symmetrizes the demon and the thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and those due to erasure. The map's degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems.

  16. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  17. Realistic Simulation for Body Area and Body-To-Body Networks

    PubMed Central

    Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D’Errico, Raffaele

    2016-01-01

    In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices. PMID:27104537

  18. Realistic Simulation for Body Area and Body-To-Body Networks.

    PubMed

    Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D'Errico, Raffaele

    2016-04-20

    In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices.

  19. An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling

    NASA Astrophysics Data System (ADS)

    Qiu, X. N.; Lau, H. Y. K.

    The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.

  20. Extreme current fluctuations in lattice gases: Beyond nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Sasorov, Pavel V.

    2014-01-01

    We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009), 10.1007/s10955-009-9830-1] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics.

  1. Deterministic realization of collective measurements via photonic quantum walks.

    PubMed

    Hou, Zhibo; Tang, Jun-Feng; Shang, Jiangwei; Zhu, Huangjun; Li, Jian; Yuan, Yuan; Wu, Kang-Da; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-12

    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.

  2. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.

  3. Development of a software tool using deterministic logic for the optimization of cochlear implant processor programming.

    PubMed

    Govaerts, Paul J; Vaerenberg, Bart; De Ceulaer, Geert; Daemers, Kristin; De Beukelaer, Carina; Schauwers, Karen

    2010-08-01

    An intelligent agent, Fitting to Outcomes eXpert, was developed to optimize and automate Cochlear implant (CI) programming. The current article describes the rationale, development, and features of this tool. Cochlear implant fitting is a time-consuming procedure to define the value of a subset of the available electric parameters based primarily on behavioral responses. It is comfort-driven with high intraindividual and interindividual variability both with respect to the patient and to the clinician. Its validity in terms of process control can be questioned. Good clinical practice would require an outcome-driven approach. An intelligent agent may help solve the complexity of addressing more electric parameters based on a range of outcome measures. A software application was developed that consists of deterministic rules that analyze the map settings in the processor together with psychoacoustic test results (audiogram, A(section sign)E phoneme discrimination, A(section sign)E loudness scaling, speech audiogram) obtained with that map. The rules were based on the daily clinical practice and the expertise of the CI programmers. The data transfer to and from this agent is either manual or through seamless digital communication with the CI fitting database and the psychoacoustic test suite. It recommends and executes modifications to the map settings to improve the outcome. Fitting to Outcomes eXpert is an operational intelligent agent, the principles of which are described. Its development and modes of operation are outlined, and a case example is given. Fitting to Outcomes eXpert is in use for more than a year now and seems to be capable to improve the measured outcome. It is argued that this novel tool allows a systematic approach focusing on outcome, reducing the fitting time, and improving the quality of fitting. It introduces principles of artificial intelligence in the process of CI fitting.

  4. Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy

    NASA Astrophysics Data System (ADS)

    Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.

    2011-08-01

    The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.

  5. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational techniques and novel prediction methodologies. The value and efficiency of these methods are explored in various case studies. Presented is an overview of chaotic systems with examples taken from the real world. A representation schema for rapid understanding of the various states of deterministically chaotic systems is presented. This schema is then used to detect anomalies and system state changes. Additionally, a novel prediction methodology which utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and compared with other nonlinear prediction methodologies. These novel methodologies are then demonstrated on applications such as wind energy, cyber security and classification of social networks.

  6. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  7. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    PubMed

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  8. Utility indifference pricing of insurance catastrophe derivatives.

    PubMed

    Eichler, Andreas; Leobacher, Gunther; Szölgyenyi, Michaela

    2017-01-01

    We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catastrophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.

  9. Quantum teleportation via quantum channels with non-maximal Schmidt rank

    NASA Astrophysics Data System (ADS)

    Solís-Prosser, M. A.; Jiménez, O.; Neves, L.; Delgado, A.

    2013-03-01

    We study the problem of teleporting unknown pure states of a single qudit via a pure quantum channel with non-maximal Schmidt rank. We relate this process to the discrimination of linearly dependent symmetric states with the help of the maximum-confidence discrimination strategy. We show that with a certain probability, it is possible to teleport with a fidelity larger than the fidelity optimal deterministic teleportation.

  10. Minimization for conditional simulation: Relationship to optimal transport

    NASA Astrophysics Data System (ADS)

    Oliver, Dean S.

    2014-05-01

    In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available. Although there are exact methods for sampling from the posterior (e.g. Markov chain Monte Carlo or acceptance/rejection), these methods tend to be computationally demanding when evaluation of the likelihood function is expensive, as it is for most geoscience applications. As an alternative, in this paper we discuss deterministic mappings of variables distributed according to the prior to variables distributed according to the posterior. Although any deterministic mappings might be equally useful, we will focus our discussion on a class of algorithms that obtain implicit mappings by minimization of a cost function that includes measures of data mismatch and model variable mismatch. Algorithms of this type include quasi-linear estimation, randomized maximum likelihood, perturbed observation ensemble Kalman filter, and ensemble of perturbed analyses (4D-Var). When the prior pdf is Gaussian and the observation operators are linear, we show that these minimization-based simulation methods solve an optimal transport problem with a nonstandard cost function. When the observation operators are nonlinear, however, the mapping of variables from the prior to the posterior obtained from those methods is only approximate. Errors arise from neglect of the Jacobian determinant of the transformation and from the possibility of discontinuous mappings.

  11. Evolutionary and ecological consequences of multiscale variation in pollen receipt for seed production.

    PubMed

    Schreiber, Sebastian J; Rosenheim, Jay A; Williams, Neal W; Harder, Lawrence D

    2015-01-01

    Variation in resource availability can select for traits that reduce the negative impacts of this variability on mean fitness. Such selection may be particularly potent for seed production in flowering plants, as they often experience variation in pollen receipt among individuals and among flowers within individuals. Using analytically tractable models, we examine the optimal allocations for producing ovules, attracting pollen, and maturing seeds in deterministic and stochastic pollen environments. In deterministic environments, the optimal strategy attracts sufficient pollen to fertilize every ovule and mature every zygote into a seed. Stochastic environments select for allocations proportional to the risk of seed production being limited by zygotes or seed maturation. When producing an ovule is cheap and maturing a seed is expensive, among-plant variation selects for attracting more pollen at the expense of producing fewer ovules and having fewer resources for seed maturation. Despite this increased allocation, such populations are likely to be pollen limited. In contrast, within-plant variation generally selects for an overproduction of ovules and, to a lesser extent, pollen attraction. Such populations are likely to be resource limited and exhibit low seed-to-ovule ratios. These results highlight the importance of multiscale variation in the evolution and ecology of resource allocations.

  12. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.; Hinnov, Linda A.

    2010-08-01

    Deterministic orbital controls on climate variability are commonly inferred to dominate across timescales of 104-106 years, although some studies have suggested that stochastic processes may be of equal or greater importance. Here we explicitly quantify changes in deterministic orbital processes (forcing and/or pacing) versus stochastic climate processes during the Plio-Pleistocene, via time-frequency analysis of two prominent foraminifera oxygen isotopic stacks. Our results indicate that development of the Northern Hemisphere ice sheet is paralleled by an overall amplification of both deterministic and stochastic climate energy, but their relative dominance is variable. The progression from a more stochastic early Pliocene to a strongly deterministic late Pleistocene is primarily accommodated during two transitory phases of Northern Hemisphere ice sheet growth. This long-term trend is punctuated by “stochastic events,” which we interpret as evidence for abrupt reorganization of the climate system at the initiation and termination of the mid-Pleistocene transition and at the onset of Northern Hemisphere glaciation. In addition to highlighting a complex interplay between deterministic and stochastic climate change during the Plio-Pleistocene, our results support an early onset for Northern Hemisphere glaciation (between 3.5 and 3.7 Ma) and reveal some new characteristics of the orbital signal response, such as the puzzling emergence of 100 ka and 400 ka cyclic climate variability during theoretical eccentricity nodes.

  13. Development of TIF based figuring algorithm for deterministic pitch tool polishing

    NASA Astrophysics Data System (ADS)

    Yi, Hyun-Su; Kim, Sug-Whan; Yang, Ho-Soon; Lee, Yun-Woo

    2007-12-01

    Pitch is perhaps the oldest material used for optical polishing, leaving superior surface texture, and has been used widely in the optics shop floor. However, for its unpredictable controllability of removal characteristics, the pitch tool polishing has been rarely analysed quantitatively and many optics shops rely heavily on optician's "feel" even today. In order to bring a degree of process controllability to the pitch tool polishing, we added motorized tool motions to the conventional Draper type polishing machine and modelled the tool path in the absolute machine coordinate. We then produced a number of Tool Influence Function (TIF) both from an analytical model and a series of experimental polishing runs using the pitch tool. The theoretical TIFs agreed well with the experimental TIFs to the profile accuracy of 79 % in terms of its shape. The surface figuring algorithm was then developed in-house utilizing both theoretical and experimental TIFs. We are currently undertaking a series of trial figuring experiments to prove the performance of the polishing algorithm, and the early results indicate that the highly deterministic material removal control with the pitch tool can be achieved to a certain level of form error. The machine renovation, TIF theory and experimental confirmation, figuring simulation results are reported together with implications to deterministic polishing.

  14. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  15. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography.

    PubMed

    Xie, Hong-Bo; Dokos, Socrates

    2013-06-01

    We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.

  16. Optimal Joint Remote State Preparation of Arbitrary Equatorial Multi-qudit States

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min

    2017-03-01

    As an important communication technology, quantum information transmission plays an important role in the future network communication. It involves two kinds of transmission ways: quantum teleportation and remote state preparation. In this paper, we put forward a new scheme for optimal joint remote state preparation (JRSP) of an arbitrary equatorial two-qudit state with hybrid dimensions. Moreover, the receiver can reconstruct the target state with 100 % success probability in a deterministic manner via two spatially separated senders. Based on it, we can extend it to joint remote preparation of arbitrary equatorial multi-qudit states with hybrid dimensions using the same strategy.

  17. Intelligent Support System of Steel Technical Preparation in an Arc Furnace: Functional Scheme of Interactive Builder of the Multi Objective Optimization Problem

    NASA Astrophysics Data System (ADS)

    Logunova, O. S.; Sibileva, N. S.

    2017-12-01

    The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.

  18. Markovian Search Games in Heterogeneous Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Christopher H

    2009-01-01

    We consider how to search for a mobile evader in a large heterogeneous region when sensors are used for detection. Sensors are modeled using probability of detection. Due to environmental effects, this probability will not be constant over the entire region. We map this problem to a graph search problem and, even though deterministic graph search is NP-complete, we derive a tractable, optimal, probabilistic search strategy. We do this by defining the problem as a differential game played on a Markov chain. We prove that this strategy is optimal in the sense of Nash. Simulations of an example problem illustratemore » our approach and verify our claims.« less

  19. Optimization of vibratory energy harvesters with stochastic parametric uncertainty: a new perspective

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-04-01

    Vibration energy harvesting has been shown as a promising power source for many small-scale applications mainly because of the considerable reduction in the energy consumption of the electronics and scalability issues of the conventional batteries. However, energy harvesters may not be as robust as the conventional batteries and their performance could drastically deteriorate in the presence of uncertainty in their parameters. Hence, study of uncertainty propagation and optimization under uncertainty is essential for proper and robust performance of harvesters in practice. While all studies have focused on expectation optimization, we propose a new and more practical optimization perspective; optimization for the worst-case (minimum) power. We formulate the problem in a generic fashion and as a simple example apply it to a linear piezoelectric energy harvester. We study the effect of parametric uncertainty in its natural frequency, load resistance, and electromechanical coupling coefficient on its worst-case power and then optimize for it under different confidence levels. The results show that there is a significant improvement in the worst-case power of thus designed harvester compared to that of a naively-optimized (deterministically-optimized) harvester.

  20. Neural signatures of experience-based improvements in deterministic decision-making.

    PubMed

    Tremel, Joshua J; Laurent, Patryk A; Wolk, David A; Wheeler, Mark E; Fiez, Julie A

    2016-12-15

    Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neural signatures of experience-based improvements in deterministic decision-making

    PubMed Central

    Tremel, Joshua J.; Laurent, Patryk A.; Wolk, David A.; Wheeler, Mark E.; Fiez, Julie A.

    2016-01-01

    Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. PMID:27523644

  2. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  3. Judging Thieves of Attention: Commentary on "Assessing Cognitive Distraction in the Automobile," by Strayer, Turrill, Cooper, Coleman, Medeiros-Ward, and Biondi (2015).

    PubMed

    Hancock, Peter A; Sawyer, Ben D

    2015-12-01

    The laudable effort by Strayer and his colleagues to derive a systematic method to assess forms of cognitive distraction in the automobile is beset by the problem of nonstationary in driver response capacity. At the level of the overall goal of driving, this problem conflates actual on-road behavior; characterized by underspecified task satisficing, with our own understandable, scientifically inspired aspiration for measuring deterministic performance optimization. Measures of response conceived under this latter imperative are, at best, only shadowy reflections of the actual phenomenological experience involved in real-world vehicle control. Whether we, as a research community, can resolve this issue remains uncertain. However, we believe we can mount a positive attack on what is arguably another equally important dimension of the collision problem. © 2015, Human Factors and Ergonomics Society.

  4. Optimisation of lateral car dynamics taking into account parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Busch, Jochen; Bestle, Dieter

    2014-02-01

    Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.

  5. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  6. Optimal strategies for throwing accurately

    PubMed Central

    2017-01-01

    The accuracy of throwing in games and sports is governed by how errors in planning and initial conditions are propagated by the dynamics of the projectile. In the simplest setting, the projectile path is typically described by a deterministic parabolic trajectory which has the potential to amplify noisy launch conditions. By analysing how parabolic trajectories propagate errors, we show how to devise optimal strategies for a throwing task demanding accuracy. Our calculations explain observed speed–accuracy trade-offs, preferred throwing style of overarm versus underarm, and strategies for games such as dart throwing, despite having left out most biological complexities. As our criteria for optimal performance depend on the target location, shape and the level of uncertainty in planning, they also naturally suggest an iterative scheme to learn throwing strategies by trial and error. PMID:28484641

  7. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  8. On meeting capital requirements with a chance-constrained optimization model.

    PubMed

    Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan

    2016-01-01

    This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.

  9. Optimal strategies for throwing accurately

    NASA Astrophysics Data System (ADS)

    Venkadesan, M.; Mahadevan, L.

    2017-04-01

    The accuracy of throwing in games and sports is governed by how errors in planning and initial conditions are propagated by the dynamics of the projectile. In the simplest setting, the projectile path is typically described by a deterministic parabolic trajectory which has the potential to amplify noisy launch conditions. By analysing how parabolic trajectories propagate errors, we show how to devise optimal strategies for a throwing task demanding accuracy. Our calculations explain observed speed-accuracy trade-offs, preferred throwing style of overarm versus underarm, and strategies for games such as dart throwing, despite having left out most biological complexities. As our criteria for optimal performance depend on the target location, shape and the level of uncertainty in planning, they also naturally suggest an iterative scheme to learn throwing strategies by trial and error.

  10. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  11. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  12. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  13. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  14. Scattering effects of machined optical surfaces

    NASA Astrophysics Data System (ADS)

    Thompson, Anita Kotha

    1998-09-01

    Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.

  15. Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Lai, Ying-Cheng

    1999-02-01

    Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engineering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic attractor from which transient chaos is created. We apply our method to three problems: (1) voltage collapse in electrical power systems, (2) species preservation in ecology, and (3) elimination of undesirable bursting behavior in a chemical reaction system.

  16. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  17. Faust: Flexible Acquistion and Understanding System for Text

    DTIC Science & Technology

    2013-07-01

    second version is still underway and it will continue in development as part of the DARPA DEFT program; it is written in Java and Clojure with MySQL and...SUTime, a Java library that recognizes and normalizes temporal expressions using deterministic patterns [101]. UIUC made another such framework... Java -based, large-scale inference engine called Tuffy. It leverages the full power of a relational optimizer in an RDBMS to perform the grounding of MLN

  18. Modeling the Combined Effects of Deterministic and Statistical Structure for Optimization of Regional Monitoring

    DTIC Science & Technology

    2014-06-30

    Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using ...any other person or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them...stations in Eurasia. This is accomplished by synthesizing seismograms using a radiative transport technique to predict the high frequency coda (>5 Hz

  19. Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities.

    PubMed

    Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T

    2017-05-03

    One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.

  20. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted to a scenario that is different from the one that will actually realize.

  1. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  2. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  3. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  4. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  5. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2011-08-01

    This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.

  6. Etude experimentale et optimisation d'un systeme hybride hydraulique pour camions a ordures et amelioration des performances par raffinement de sa logique de controle

    NASA Astrophysics Data System (ADS)

    Lacroix, Benoit

    The aim of this thesis is to demonstrate experimentally the operation of a hydraulic hybrid system specifically dedicated to the application of refuse trucks in addition to proposing solutions to improve its control strategy. The developed hybrid system recovers the vehicle's kinetic energy during braking. A variable displacement hydraulic motor then uses the energy stored in a hydraulic accumulator to assist the internal combustion engine (ICE) at suitable times. The particular aspect of this system is that assistance to the ICE can occur when it operates at idle and drives the auxiliary hydraulic equipment of the refuse truck. Essentially, the control strategy initially developed maximizes the recovery of braking energy and uses that energy to minimize the solicitation of the ICE at idle. The experimental results obtained with two prototypes tested in real operating conditions show that the hybrid system can recover a significant portion of braking energy. In addition, the results show that it is possible to reduce the load on the ICE during idle with the application of an assisting torque. However, the advantage of assisting the ICE in specific areas of the operating range is slim since the ICE's gross efficiency varies only slightly depending on conditions of operation. This is confirmed by the optimization of the control logic using deterministic dynamic programming. Indeed, by managing the pressure in the accumulator to maximize the amount of energy recovered during braking and by dosing the assistance to the ICE in an ideal fashion, the optimal control only managed to improve fuel savings by 6% in comparison to the original control. Therefore, since the efforts that would be required to emulate the ideal behavior in real time are significant for a relatively small and uncertain gain, the initial control logic is considered near optimal. Finally, this thesis proposes an improved version of the torque assisting hybrid system that could shut down the ICE when the vehicle is stopped while maintaining functional the auxiliary hydraulic equipment. An optimization of the control logic indicates that proper management of the pressure in the accumulator would allow turning off the ICE most of the time at stop and thus, would increase the fuel savings by over 40% compared to the original system. The simulation of a basic control strategy shows that such pressure management may be feasible in real time and that the potential gain in fuel savings is achievable. Keywords: hybrid system, hydraulic, control, refuse truck.

  7. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  9. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  10. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  11. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.

  12. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE PAGES

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...

    2017-08-18

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  13. Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.

    We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less

  14. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  15. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOEpatents

    Blocksome, Michael A; Mamidala, Amith R

    2014-02-11

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  16. Deterministic control of radiative processes by shaping the mode field

    NASA Astrophysics Data System (ADS)

    Pellegrino, D.; Pagliano, F.; Genco, A.; Petruzzella, M.; van Otten, F. W.; Fiore, A.

    2018-04-01

    Quantum dots (QDs) interacting with confined light fields in photonic crystal cavities represent a scalable light source for the generation of single photons and laser radiation in the solid-state platform. The complete control of light-matter interaction in these sources is needed to fully exploit their potential, but it has been challenging due to the small length scales involved. In this work, we experimentally demonstrate the control of the radiative interaction between InAs QDs and one mode of three coupled nanocavities. By non-locally moulding the mode field experienced by the QDs inside one of the cavities, we are able to deterministically tune, and even inhibit, the spontaneous emission into the mode. The presented method will enable the real-time switching of Rabi oscillations, the shaping of the temporal waveform of single photons, and the implementation of unexplored nanolaser modulation schemes.

  17. ({The) Solar System Large Planets influence on a new Maunder Miniμm}

    NASA Astrophysics Data System (ADS)

    Yndestad, Harald; Solheim, Jan-Erik

    2016-04-01

    In 1890´s G. Spörer and E. W. Maunder (1890) reported that the solar activity stopped in a period of 70 years from 1645 to 1715. Later a reconstruction of the solar activity confirms the grand minima Maunder (1640-1720), Spörer (1390-1550), Wolf (1270-1340), and the minima Oort (1010-1070) and Dalton (1785-1810) since the year 1000 A.D. (Usoskin et al. 2007). These minimum periods have been associated with less irradiation from the Sun and cold climate periods on Earth. An identification of a three grand Maunder type periods and two Dalton type periods in a period thousand years, indicates that sooner or later there will be a colder climate on Earth from a new Maunder- or Dalton- type period. The cause of these minimum periods, are not well understood. An expected new Maunder-type period is based on the properties of solar variability. If the solar variability has a deterministic element, we can estimate better a new Maunder grand minimum. A random solar variability can only explain the past. This investigation is based on the simple idea that if the solar variability has a deterministic property, it must have a deterministic source, as a first cause. If this deterministic source is known, we can compute better estimates the next expected Maunder grand minimum period. The study is based on a TSI ACRIM data series from 1700, a TSI ACRIM data series from 1000 A.D., sunspot data series from 1611 and a Solar Barycenter orbit data series from 1000. The analysis method is based on a wavelet spectrum analysis, to identify stationary periods, coincidence periods and their phase relations. The result shows that the TSI variability and the sunspots variability have deterministic oscillations, controlled by the large planets Jupiter, Uranus and Neptune, as the first cause. A deterministic model of TSI variability and sunspot variability confirms the known minimum and grand minimum periods since 1000. From this deterministic model we may expect a new Maunder type sunspot minimum period from about 2018 to 2055. The deterministic model of a TSI ACRIM data series from 1700 computes a new Maunder type grand minimum period from 2015 to 2071. A model of the longer TSI ACRIM data series from 1000 computes a new Dalton to Maunder type minimum irradiation period from 2047 to 2068.

  18. Implementation and verification of global optimization benchmark problems

    NASA Astrophysics Data System (ADS)

    Posypkin, Mikhail; Usov, Alexander

    2017-12-01

    The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.

  19. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) of this section such as— (i) Administrative controls and personnel requirements for fire prevention... reactor coolant inventory, pressure control, and decay heat removal capability (i.e., feed-and-bleed) for... performed in accordance with Section 2.7.3.5 is not required to support deterministic approach calculations...

  20. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) of this section such as— (i) Administrative controls and personnel requirements for fire prevention... reactor coolant inventory, pressure control, and decay heat removal capability (i.e., feed-and-bleed) for... performed in accordance with Section 2.7.3.5 is not required to support deterministic approach calculations...

  1. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  2. Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco

    2017-07-01

    Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

  3. Leveraging Crystal Anisotropy for Deterministic Growth of InAs Quantum Dots with Narrow Optical Linewidths

    DTIC Science & Technology

    2013-08-29

    similar layer thicknesses. This offset indicates that the electric field profile of our Schottky diode is different than for unpatterned samples, implying...sacrificing uniformity by further optimizing the substrate Figure 3. (a) Schematic of the Schottky diode heterostructure, indicating the patterned substrate...and negative (X−) trions are indicated . (c) Distribution of linewidths for 80 PL lines from dots grown in high density arrays such as those in Figure 2b

  4. Optimal Estimation with Two Process Models and No Measurements

    DTIC Science & Technology

    2015-08-01

    models will be lost if either of the models includes deterministic modeling errors. 12 5. References and Notes 1. Brown RG, Hwang PYC. Introduction to...independent process models when no measurements are present. The observer follows a derivation similar to that of the discrete time Kalman filter. A simulation...discrete time Kalman filter. A simulation example is provided in which a process model based on the dynamics of a ballistic projectile is blended with an

  5. Modeling the Combined Effects of Deterministic and Statistical Structure for Optimization of Regional Monitoring

    DTIC Science & Technology

    2015-06-30

    Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings...or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them. This report was...synthesizing seismograms using a radiative transport technique to predict the high frequency coda (2 to 4 Hz) of regional seismic phases at stations

  6. Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization

    DTIC Science & Technology

    2001-03-20

    design of experiments, results of the experiments, and qualitative and quantitative analysis . Conclusions and recommendations based on the qualitative and...characterize the algorithm. Such analysis and comparison between LK and a non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes... based on experiments 5 and 6. All other parameters are the same as the baseline (see 4.2.1.2). 4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global

  7. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  8. Usefulness of multiqubit W-type states in quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.; Adhikari, S.; Kumar, A., E-mail: atulk@iitj.ac.in

    We analyze the efficiency of multiqubit W-type states as resources for quantum information. For this, we identify and generalize four-qubit W-type states. Our results show that these states can be used as resources for deterministic quantum information processing. The utility of results, however, is limited by the availability of experimental setups to perform and distinguish multiqubit measurements. We therefore emphasize protocols where two users want to establish an optimal bipartite entanglement using the partially entangled W-type states. We find that for such practical purposes, four-qubit W-type states can be a better resource in comparison to three-qubit W-type states. For amore » dense coding protocol, our states can be used deterministically to send two bits of classical message by locally manipulating a single qubit. In addition, we also propose a realistic experimental method to prepare the four-qubit W-type states using standard unitary operations and weak measurements.« less

  9. Faster PET reconstruction with a stochastic primal-dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Markiewicz, Pawel; Chambolle, Antonin; Richtárik, Peter; Schott, Jonathan; Schönlieb, Carola-Bibiane

    2017-08-01

    Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.

  10. Noiseless amplification of weak coherent fields exploiting energy fluctuations of the field

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka

    2012-12-01

    Quantum optics dictates that amplification of a pure state by any linear deterministic amplifier always introduces noise in the signal and results in a mixed output state. However, it has recently been shown that noiseless amplification becomes possible if the requirement of a deterministic operation is relaxed. Here we propose and analyze a noiseless amplification scheme where the energy required to amplify the signal originates from the stochastic fluctuations in the field itself. In contrast to previous amplification setups, our setup shows that a signal can be amplified even if no energy is added to the signal from external sources. We investigate the relation between the amplification and its success rate as well as the statistics of the output states after successful and failed amplification processes. Furthermore, we also optimize the setup to find the maximum success rates in terms of the reflectivities of the beam splitters used in the setup and discuss the relation of our setup with the previous setups.

  11. Evaluation of electromagnetic interference and exposure assessment from s-health solutions based on Wi-Fi devices.

    PubMed

    de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance.

  12. Evaluation of Electromagnetic Interference and Exposure Assessment from s-Health Solutions Based on Wi-Fi Devices

    PubMed Central

    de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance. PMID:25632400

  13. Optimal Alignment of Structures for Finite and Periodic Systems.

    PubMed

    Griffiths, Matthew; Niblett, Samuel P; Wales, David J

    2017-10-10

    Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.

  14. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy

    NASA Astrophysics Data System (ADS)

    Lontzek, Thomas S.; Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.

    2015-05-01

    Perhaps the most `dangerous’ aspect of future climate change is the possibility that human activities will push parts of the climate system past tipping points, leading to irreversible impacts. The likelihood of such large-scale singular events is expected to increase with global warming, but is fundamentally uncertain. A key question is how should the uncertainty surrounding tipping events affect climate policy? We address this using a stochastic integrated assessment model, based on the widely used deterministic DICE model. The temperature-dependent likelihood of tipping is calibrated using expert opinions, which we find to be internally consistent. The irreversible impacts of tipping events are assumed to accumulate steadily over time (rather than instantaneously), consistent with scientific understanding. Even with conservative assumptions about the rate and impacts of a stochastic tipping event, today’s optimal carbon tax is increased by ~50%. For a plausibly rapid, high-impact tipping event, today’s optimal carbon tax is increased by >200%. The additional carbon tax to delay climate tipping grows at only about half the rate of the baseline carbon tax. This implies that the effective discount rate for the costs of stochastic climate tipping is much lower than the discount rate for deterministic climate damages. Our results support recent suggestions that the costs of carbon emission used to inform policy are being underestimated, and that uncertain future climate damages should be discounted at a low rate.

  15. Algorithms for optimizing cross-overs in DNA shuffling.

    PubMed

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-21

    DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library. This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more diverse parents and to generate more predictable, optimized libraries. Our CODNS (cross-over optimization for DNA shuffling) approach employs polynomial-time dynamic programming algorithms to select codons for the parental amino acids, allowing for zero or a fixed number of conservative substitutions. We first present efficient algorithms to optimize the local sequence identity or the nearest-neighbor approximation of the change in free energy upon annealing, objectives that were previously optimized by computationally-expensive integer programming methods. We then present efficient algorithms for more powerful objectives that seek to localize and enhance the frequency of recombination by producing "runs" of common nucleotides either overall or according to the sequence diversity of the resulting chimeras. We demonstrate the effectiveness of CODNS in choosing codons and allocating substitutions to promote recombination between parents targeted in earlier studies: two GAR transformylases (41% amino acid sequence identity), two very distantly related DNA polymerases, Pol X and β (15%), and beta-lactamases of varying identity (26-47%). Our methods provide the protein engineer with a new approach to DNA shuffling that supports substantially more diverse parents, is more deterministic, and generates more predictable and more diverse chimeric libraries.

  16. Application of tabu search to deterministic and stochastic optimization problems

    NASA Astrophysics Data System (ADS)

    Gurtuna, Ozgur

    During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is developed. The theoretical underpinnings of the TSMC method and the flow of the algorithm are explained. Its performance is compared to other existing methods for financial option valuation. In the third, and final, problem, TSMC method is used to determine the conditions of feasibility for hybrid electric vehicles and fuel cell vehicles. There are many uncertainties related to the technologies and markets associated with new generation passenger vehicles. These uncertainties are analyzed in order to determine the conditions in which new generation vehicles can compete with established technologies.

  17. Effectiveness of the food recovery at the retailing stage under shelf life uncertainty: An application to Italian food chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muriana, Cinzia, E-mail: cinzia.muriana@unipa.it

    Highlights: • The food recovery is seen as suitable way to manage food near to its expiry date. • The variability of the products shelf life must be taken into account. • The paper addresses the mathematic modeling of the profit related to food recovery. • The optimal time to withdraw the products is determinant for food recovery. - Abstract: Food losses represent a significant issue affecting food supply chains. The possibility of recovering such products can be seen as an effective way to reduce such a phenomenon, improve supply chain performances and ameliorate the conditions of undernourished people. Themore » topic has been already investigated by a previous paper enforcing the hypothesis of deterministic and constant Shelf Life (SL) of products. However, such a model cannot be properly extended to products affected by uncertainties of the SL as it does not take into account the deterioration costs and loss of profits due to the overcoming of the SL within the cycle time. Thus the present paper presents an extension of the previous one under stochastic conditions of the food quality. Differently from the previous publication, this work represents a general model applicable to all supply chains, especially to those managing fresh products characterized by uncertain SL such as fruits and vegetables. The deterioration costs and loss of profits are included in the model and the optimal time at which to withdraw the products from the shelves as well as the quantities to be shipped at each alternative destination have been determined. A comparison of the proposed model with that reported in the previous publication has been carried out in order to underline the impact of the SL variability on the optimality conditions. The results show that the food recovery strategy in the presence of uncertainty of the food quality is rewarding, even if the optimal profit is lower than that of the deterministic case.« less

  18. The optimally sampled galaxy-wide stellar initial mass function. Observational tests and the publicly available GalIMF code

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel

    2017-11-01

    Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR < 10-4M⊙/yr should host no Type II supernova events. In addition, a specific list of initial stellar masses can be useful in numerical simulations of stellar systems. For the first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126

  19. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome

    DOE PAGES

    Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; ...

    2018-04-12

    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a nullmore » model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. As a result, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.« less

  20. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome.

    PubMed

    Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; Veach, Allison; Ialonardi, Florencia; Iribarne, Oscar; Silliman, Brian

    2018-06-01

    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization. © 2018 by the Ecological Society of America.

  1. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleo, Pedro; Alberti, Juan; Jumpponen, Ari

    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a nullmore » model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. As a result, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.« less

  2. Deterministic and unambiguous dense coding

    NASA Astrophysics Data System (ADS)

    Wu, Shengjun; Cohen, Scott M.; Sun, Yuqing; Griffiths, Robert B.

    2006-04-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank Dmacr and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most Ld messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τx ) Bob knows for sure that Alice sent message x , and when it fails (probability 1-τx ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For Dmacr ⩽D a bound is obtained for Ld in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes [Phys. Rev. A71, 012311 (2005)]. For Dmacr >D it is shown that Ld is strictly less than D2 unless Dmacr is an integer multiple of D , in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for Dmacr ⩽D , assuming τx>0 for a set of Dmacr D messages, and a bound is obtained for the average ⟨1/τ⟩ . A bound on the average ⟨τ⟩ requires an additional assumption of encoding by isometries (unitaries when Dmacr =D ) that are orthogonal for different messages. Both bounds are saturated when τx is a constant independent of x , by a protocol based on one-shot entanglement concentration. For Dmacr >D it is shown that (at least) D2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states.

  3. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    PubMed Central

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-01-01

    Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289

  4. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.

    PubMed

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-11-02

    We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.

  5. Effectiveness of the food recovery at the retailing stage under shelf life uncertainty: An application to Italian food chains.

    PubMed

    Muriana, Cinzia

    2015-07-01

    Food losses represent a significant issue affecting food supply chains. The possibility of recovering such products can be seen as an effective way to reduce such a phenomenon, improve supply chain performances and ameliorate the conditions of undernourished people. The topic has been already investigated by a previous paper enforcing the hypothesis of deterministic and constant Shelf Life (SL) of products. However, such a model cannot be properly extended to products affected by uncertainties of the SL as it does not take into account the deterioration costs and loss of profits due to the overcoming of the SL within the cycle time. Thus the present paper presents an extension of the previous one under stochastic conditions of the food quality. Differently from the previous publication, this work represents a general model applicable to all supply chains, especially to those managing fresh products characterized by uncertain SL such as fruits and vegetables. The deterioration costs and loss of profits are included in the model and the optimal time at which to withdraw the products from the shelves as well as the quantities to be shipped at each alternative destination have been determined. A comparison of the proposed model with that reported in the previous publication has been carried out in order to underline the impact of the SL variability on the optimality conditions. The results show that the food recovery strategy in the presence of uncertainty of the food quality is rewarding, even if the optimal profit is lower than that of the deterministic case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2011-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  7. Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Son, J.; Medina-Cetina, Z.

    2017-12-01

    We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.

  8. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  9. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation

    PubMed Central

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487

  10. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    PubMed

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.

  11. Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using GHZ States

    NASA Astrophysics Data System (ADS)

    Huang, Li; Zhao, Hong-xia

    2017-03-01

    In this paper, we demonstrate that two Greenberger-Horne-Zeilinger (GHZ) states can be used to realize the perfect and deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only the two-qubit projective measurements and appropriate unitary operations.

  12. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  13. Heralded ions via ionization coincidence

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Speirs, R. W.; Wissenberg, S. H.; Tielen, R. P. M.; Sparkes, B. M.; Scholten, R. E.

    2018-04-01

    We demonstrate a method for the deterministic production of single ions by exploiting the correlation between an electron and associated ion following ionization. Coincident detection and feedback in combination with Coulomb-driven particle selection allows for high-fidelity heralding of ions at a high repetition rate. Extension of the scheme beyond time-correlated feedback to position- and momentum-correlated feedback will provide a general and powerful means to optimize the ion beam brightness for the development of next-generation focused ion beam technologies.

  14. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    NASA Astrophysics Data System (ADS)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  15. Jitter and phase noise of ADPLL due to PSN with deterministic frequency

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoying; Yang, Jun; Wu, Jianhui

    2011-09-01

    In this article, jitter and phase noise of all-digital phase-locked loop due to power supply noise (PSN) with deterministic frequency are analysed. It leads to the conclusion that jitter and phase noise heavily depend on the noise frequency. Compared with jitter, phase noise is much less affected by the deterministic PSN. Our method is utilised to study a CMOS ADPLL designed and simulated in SMIC 0.13 µm standard CMOS process. A comparison between the results obtained by our method and those obtained by simulation and measurement proves the accuracy of the predicted model. When the digital controlled oscillator was corrupted by PSN with 100 mVpk-pk, the measured jitters were 33.9 ps at the rate of fG = 192 MHz and 148.5 ps at the rate of fG = 40 MHz. However, the measured phase noise was exactly the same except for two impulses appearing at 192 and 40 MHz, respectively.

  16. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  17. Deterministic Creation of Macroscopic Cat States

    PubMed Central

    Lombardo, Daniel; Twamley, Jason

    2015-01-01

    Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157

  18. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  19. Optimal ordering quantities for substitutable deteriorating items under joint replenishment with cost of substitution

    NASA Astrophysics Data System (ADS)

    Mishra, Vinod Kumar

    2017-09-01

    In this paper we develop an inventory model, to determine the optimal ordering quantities, for a set of two substitutable deteriorating items. In this inventory model the inventory level of both items depleted due to demands and deterioration and when an item is out of stock, its demands are partially fulfilled by the other item and all unsatisfied demand is lost. Each substituted item incurs a cost of substitution and the demands and deterioration is considered to be deterministic and constant. Items are order jointly in each ordering cycle, to take the advantages of joint replenishment. The problem is formulated and a solution procedure is developed to determine the optimal ordering quantities that minimize the total inventory cost. We provide an extensive numerical and sensitivity analysis to illustrate the effect of different parameter on the model. The key observation on the basis of numerical analysis, there is substantial improvement in the optimal total cost of the inventory model with substitution over without substitution.

  20. Design optimization and uncertainty quantification for aeromechanics forced response of a turbomachinery blade

    NASA Astrophysics Data System (ADS)

    Modgil, Girish A.

    Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single Stage (HWSS) turbine blisk provides a baseline to demonstrate the process. The generalized polynomial chaos (gPC) toolbox which was developed includes sampling methods and constructs polynomial approximations. The toolbox provides not only the means for uncertainty quantification of the final blade design, but also facilitates construction of the surrogate models used for the blade optimization. This paper shows that gPC , with a small number of samples, achieves very fast rates of convergence and high accuracy in describing probability distributions without loss of detail in the tails . First, an optimization problem maximizes stage efficiency using turbine aerodynamic design rules as constraints; the function evaluations for this optimization are surrogate models from detailed 3D steady Computational Fluid Dynamics (CFD) analyses. The resulting optimal shape provides a starting point for the 3D high-fidelity aeromechanics (unsteady CFD and 3D Finite Element Analysis (FEA)) UQ study assuming three uncertain input parameters. This investigation seeks to find the steady and vibratory stresses associated with the first torsion mode for the HWSS turbine blisk near maximum operating speed of the engine. Using gPC to provide uncertainty estimates of the steady and vibratory stresses enables the creation of a Probabilistic Goodman Diagram, which - to the authors' best knowledge - is the first of its kind using high fidelity aeromechanics for turbomachinery blades. The Probabilistic Goodman Diagram enables turbine blade designers to make more informed design decisions and it allows the aeromechanics expert to assess quantitatively the risk associated with HCF for any mode crossing based on high fidelity simulations.

  1. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE PAGES

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  2. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  3. Capturing planar shapes by approximating their outlines

    NASA Astrophysics Data System (ADS)

    Sarfraz, M.; Riyazuddin, M.; Baig, M. H.

    2006-05-01

    A non-deterministic evolutionary approach for approximating the outlines of planar shapes has been developed. Non-uniform Rational B-splines (NURBS) have been utilized as an underlying approximation curve scheme. Simulated Annealing heuristic is used as an evolutionary methodology. In addition to independent studies of the optimization of weight and knot parameters of the NURBS, a separate scheme has also been developed for the optimization of weights and knots simultaneously. The optimized NURBS models have been fitted over the contour data of the planar shapes for the ultimate and automatic output. The output results are visually pleasing with respect to the threshold provided by the user. A web-based system has also been developed for the effective and worldwide utilization. The objective of this system is to provide the facility to visualize the output to the whole world through internet by providing the freedom to the user for various desired input parameters setting in the algorithm designed.

  4. The quasi-optimality criterion in the linear functional strategy

    NASA Astrophysics Data System (ADS)

    Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey

    2018-07-01

    The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.

  5. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.

    PubMed

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung

    2017-04-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.

  6. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization

    PubMed Central

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung

    2017-01-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617

  7. MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes

    USGS Publications Warehouse

    Williams, B.K.

    1988-01-01

    Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.

  8. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  9. Trajectory Optimization for Crewed Missions to an Earth-Moon L2 Halo Orbit

    NASA Astrophysics Data System (ADS)

    Dowling, Jennifer

    Baseline trajectories to an Earth-Moon L2 halo orbit and round trip trajectories for crewed missions have been created in support of an advanced Orion mission concept. Various transfer durations and orbit insertion locations have been evaluated. The trajectories often include a deterministic mid-course maneuver that decreases the overall change in velocity in the trajectory. This paper presents the application of primer vector theory to study the existence, location, and magnitude of the mid-course maneuver in order to understand how to build an optimal round trip trajectory to an Earth-Moon L2 halo orbit. The lessons learned about when to add mid-course maneuvers can be applied to other mission designs.

  10. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    PubMed

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  11. On the preventive management of sediment-related sewer blockages: a combined maintenance and routing optimization approach.

    PubMed

    Fontecha, John E; Akhavan-Tabatabaei, Raha; Duque, Daniel; Medaglia, Andrés L; Torres, María N; Rodríguez, Juan Pablo

    In this work we tackle the problem of planning and scheduling preventive maintenance (PM) of sediment-related sewer blockages in a set of geographically distributed sites that are subject to non-deterministic failures. To solve the problem, we extend a combined maintenance and routing (CMR) optimization approach which is a procedure based on two components: (a) first a maintenance model is used to determine the optimal time to perform PM operations for each site and second (b) a mixed integer program-based split procedure is proposed to route a set of crews (e.g., sewer cleaners, vehicles equipped with winches or rods and dump trucks) in order to perform PM operations at a near-optimal minimum expected cost. We applied the proposed CMR optimization approach to two (out of five) operative zones in the city of Bogotá (Colombia), where more than 100 maintenance operations per zone must be scheduled on a weekly basis. Comparing the CMR against the current maintenance plan, we obtained more than 50% of cost savings in 90% of the sites.

  12. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purvine, Emilie AH; Monson, Kyle E.; Jurrus, Elizabeth R.

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of maximum flow-minimum cut graph analysis. The interaction energy graph, a graph in which verticesmore » (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.« less

  13. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    PubMed Central

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.

    2016-01-01

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  14. Global Optimal Trajectory in Chaos and NP-Hardness

    NASA Astrophysics Data System (ADS)

    Latorre, Vittorio; Gao, David Yang

    This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.

  15. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degreemore » of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).« less

  16. Deterministic radiative coupling of two semiconductor quantum dots to the optical mode of a photonic crystal nanocavity.

    PubMed

    Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E

    2017-06-22

    A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.

  17. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segmentmore » of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.« less

  18. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers are developed to maximize the energy usage from rooftop photovoltaic (PV) generation locally and minimize heat-ventilation and air conditioning (HVAC) consumption while maintaining inside temperature within comfort zone. The performance of the developed multi-layer architecture has been analyzed using test case studies and results show the robustness of developed controller in the presence of uncertainty.

  19. Comparative study on neutronics characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor

    DOE PAGES

    Ohgama, Kazuya; Aliberti, Gerardo; Stauff, Nicolas E.; ...

    2017-02-28

    Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions show a good agreement with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on themore » sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic approaches were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. From the detailed analysis of methodologies, it was found that the good agreement in multiplication factor from the deterministic calculations comes from the cancellation of the differences on the methodology (0.4%) and nuclear data (0.6%). The different treatment in reflector cross section generation was estimated as the major cause of the discrepancy between the multiplication factors by the JAEA and ANL deterministic methodologies. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology. Furthermore, the differences on the inelastic scattering cross sections of U-238, ν values and fission cross sections of Pu-239 and µ-average of Na-23 are the major contributors to the difference on the multiplication factors.« less

  20. Comparative study on neutronics characteristics of a 1500 MWe metal fuel sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohgama, Kazuya; Aliberti, Gerardo; Stauff, Nicolas E.

    Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions show a good agreement with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on themore » sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic approaches were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. From the detailed analysis of methodologies, it was found that the good agreement in multiplication factor from the deterministic calculations comes from the cancellation of the differences on the methodology (0.4%) and nuclear data (0.6%). The different treatment in reflector cross section generation was estimated as the major cause of the discrepancy between the multiplication factors by the JAEA and ANL deterministic methodologies. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology. Furthermore, the differences on the inelastic scattering cross sections of U-238, ν values and fission cross sections of Pu-239 and µ-average of Na-23 are the major contributors to the difference on the multiplication factors.« less

  1. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  2. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  3. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.

    PubMed

    Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L

    2018-05-09

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  4. Model selection for integrated pest management with stochasticity.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2018-04-07

    In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2014-11-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.

  6. Intelligent Manufacturing of Commercial Optics Final Report CRADA No. TC-0313-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J. S.; Pollicove, H.

    The project combined the research and development efforts of LLNL and the University of Rochester Center for Manufacturing Optics (COM), to develop a new generation of flexible computer controlled optics· grinding machines. COM's principal near term development effort is to commercialize the OPTICAM-SM, a new prototype spherical grinding machine. A crucial requirement for commercializing the OPTICAM-SM is the development of a predictable and repeatable material removal process ( deterministic micro-grinding) that yields high quality surfaces that minimize non-deterministic polishing. OPTICAM machine tools and the fabrication process development studies are part of COM' s response to the DOD (ARPA) request tomore » implement a modernization strategy for revitalizing the U.S. optics manufacturing base. This project was entered into in order to develop a new generation of :flexible, computer-controlled optics grinding machines.« less

  7. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  8. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  9. Investigation of effective decision criteria for multiobjective optimization in IMRT.

    PubMed

    Holdsworth, Clay; Stewart, Robert D; Kim, Minsun; Liao, Jay; Phillips, Mark H

    2011-06-01

    To investigate how using different sets of decision criteria impacts the quality of intensity modulated radiation therapy (IMRT) plans obtained by multiobjective optimization. A multiobjective optimization evolutionary algorithm (MOEA) was used to produce sets of IMRT plans. The MOEA consisted of two interacting algorithms: (i) a deterministic inverse planning optimization of beamlet intensities that minimizes a weighted sum of quadratic penalty objectives to generate IMRT plans and (ii) an evolutionary algorithm that selects the superior IMRT plans using decision criteria and uses those plans to determine the new weights and penalty objectives of each new plan. Plans resulting from the deterministic algorithm were evaluated by the evolutionary algorithm using a set of decision criteria for both targets and organs at risk (OARs). Decision criteria used included variation in the target dose distribution, mean dose, maximum dose, generalized equivalent uniform dose (gEUD), an equivalent uniform dose (EUD(alpha,beta) formula derived from the linear-quadratic survival model, and points on dose volume histograms (DVHs). In order to quantatively compare results from trials using different decision criteria, a neutral set of comparison metrics was used. For each set of decision criteria investigated, IMRT plans were calculated for four different cases: two simple prostate cases, one complex prostate Case, and one complex head and neck Case. When smaller numbers of decision criteria, more descriptive decision criteria, or less anti-correlated decision criteria were used to characterize plan quality during multiobjective optimization, dose to OARs and target dose variation were reduced in the final population of plans. Mean OAR dose and gEUD (a = 4) decision criteria were comparable. Using maximum dose decision criteria for OARs near targets resulted in inferior populations that focused solely on low target variance at the expense of high OAR dose. Target dose range, (D(max) - D(min)), decision criteria were found to be most effective for keeping targets uniform. Using target gEUD decision criteria resulted in much lower OAR doses but much higher target dose variation. EUD(alpha,beta) based decision criteria focused on a region of plan space that was a compromise between target and OAR objectives. None of these target decision criteria dominated plans using other criteria, but only focused on approaching a different area of the Pareto front. The choice of decision criteria implemented in the MOEA had a significant impact on the region explored and the rate of convergence toward the Pareto front. When more decision criteria, anticorrelated decision criteria, or decision criteria with insufficient information were implemented, inferior populations are resulted. When more informative decision criteria were used, such as gEUD, EUD(alpha,beta), target dose range, and mean dose, MOEA optimizations focused on approaching different regions of the Pareto front, but did not dominate each other. Using simple OAR decision criteria and target EUD(alpha,beta) decision criteria demonstrated the potential to generate IMRT plans that significantly reduce dose to OARs while achieving the same or better tumor control when clinical requirements on target dose variance can be met or relaxed.

  10. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  11. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  12. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas

    USGS Publications Warehouse

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.

    2008-01-01

    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  13. A novel approach based on preference-based index for interval bilevel linear programming problem.

    PubMed

    Ren, Aihong; Wang, Yuping; Xue, Xingsi

    2017-01-01

    This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.

  14. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  15. Sorting signed permutations by inversions in O(nlogn) time.

    PubMed

    Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E

    2010-03-01

    The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.

  16. Blocked inverted indices for exact clustering of large chemical spaces.

    PubMed

    Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver

    2014-09-22

    The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.

  17. Optimal trading from minimizing the period of bankruptcy risk

    NASA Astrophysics Data System (ADS)

    Liehr, S.; Pawelzik, K.

    2001-04-01

    Assuming that financial markets behave similar to random walk processes we derive a trading strategy with variable investment which is based on the equivalence of the period of bankruptcy risk and the risk to profit ratio. We define a state dependent predictability measure which can be attributed to the deterministic and stochastic components of the price dynamics. The influence of predictability variations and especially of short term inefficiency structures on the optimal amount of investment is analyzed in the given context and a method for adaptation of a trading system to the proposed objective function is presented. Finally we show the performance of our trading strategy on the DAX and S&P 500 as examples for real world data using different types of prediction models in comparison.

  18. Global Search Capabilities of Indirect Methods for Impulsive Transfers

    NASA Astrophysics Data System (ADS)

    Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong

    2015-09-01

    An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.

  19. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  20. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  1. Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit

    2010-10-01

    The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.

  2. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  3. Structural Deterministic Safety Factors Selection Criteria and Verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  4. Development of DCGLs by using both probabilistic and deterministic analyses in RESRAD (onsite) and RESRAD-OFFSITE codes.

    PubMed

    Kamboj, Sunita; Yu, Charley; Johnson, Robert

    2013-05-01

    The Derived Concentration Guideline Levels for two building areas previously used in waste processing and storage at Argonne National Laboratory were developed using both probabilistic and deterministic radiological environmental pathway analysis. Four scenarios were considered. The two current uses considered were on-site industrial use and off-site residential use with farming. The two future uses (i.e., after an institutional control period of 100 y) were on-site recreational use and on-site residential use with farming. The RESRAD-OFFSITE code was used for the current-use off-site residential/farming scenario and RESRAD (onsite) was used for the other three scenarios. Contaminants of concern were identified from the past operations conducted in the buildings and the actual characterization done at the site. Derived Concentration Guideline Levels were developed for all four scenarios using deterministic and probabilistic approaches, which include both "peak-of-the-means" and "mean-of-the-peaks" analyses. The future-use on-site residential/farming scenario resulted in the most restrictive Derived Concentration Guideline Levels for most radionuclides.

  5. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, T.; Smith, K.S.; Severino, F.

    A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To providemore » synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.« less

  7. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.

  8. Stochastic Convection Parameterizations: The Eddy-Diffusivity/Mass-Flux (EDMF) Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2013-12-01

    In this presentation it is argued that moist convection parameterizations need to be stochastic in order to be realistic - even in deterministic atmospheric prediction systems. A new unified convection and boundary layer parameterization (EDMF) that optimally combines the Eddy-Diffusivity (ED) approach for smaller-scale boundary layer mixing with the Mass-Flux (MF) approach for larger-scale plumes is discussed. It is argued that for realistic simulations stochastic methods have to be employed in this new unified EDMF. Positive results from the implementation of the EDMF approach in atmospheric models are presented.

  9. Optimization of Contrast Detection Power with Probabilistic Behavioral Information

    PubMed Central

    Cordes, Dietmar; Herzmann, Grit; Nandy, Rajesh; Curran, Tim

    2012-01-01

    Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data, in the genetic algorithm. As a particular application, a recognition memory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items (pictures of objects) and the recollection of qualitative information associated with the items (left/right orientation). Optimization of contrast efficiency is a complicated issue whenever subjects’ responses are not deterministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are included in the design optimization. However, available software for design optimization does not include options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting contrast efficiency is greater than what either a block design or a random design can achieve. Furthermore, improvements of contrast detection power depend strongly on the behavioral probabilities, the perceived randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data. PMID:22326984

  10. Transmutation approximations for the application of hybrid Monte Carlo/deterministic neutron transport to shutdown dose rate analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, Elliott D.; Wilson, Paul P. H.

    In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less

  11. Transmutation approximations for the application of hybrid Monte Carlo/deterministic neutron transport to shutdown dose rate analysis

    DOE PAGES

    Biondo, Elliott D.; Wilson, Paul P. H.

    2017-05-08

    In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less

  12. Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation.

    PubMed

    Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M

    2017-06-01

    This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Controlled Secure Direct Communication with Seven-Qubit Entangled States

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Kai; Zha, Xin-Wei; Wu, Hao

    2018-01-01

    In this paper, a new controlled secure direct communication protocol based on a maximally seven-qubit entangled state is proposed. the outcomes of measurement is performed by the sender and the controller, the receiver can obtain different secret messages in a deterministic way with unit successful probability.In this scheme,by using entanglement swapping, no qubits carrying secret messages are transmitted.Therefore, the protocol is completely secure.

  14. A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.

    2012-05-01

    The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.

  15. The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Goode, Plesent W.

    2002-01-01

    The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.

  16. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  17. Robust optimization of supersonic ORC nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Bufi, Elio A.; Cinnella, Paola

    2017-03-01

    An efficient Robust Optimization (RO) strategy is developed for the design of 2D supersonic Organic Rankine Cycle turbine expanders. The dense gas effects are not-negligible for this application and they are taken into account describing the thermodynamics by means of the Peng-Robinson-Stryjek-Vera equation of state. The design methodology combines an Uncertainty Quantification (UQ) loop based on a Bayesian kriging model of the system response to the uncertain parameters, used to approximate statistics (mean and variance) of the uncertain system output, a CFD solver, and a multi-objective non-dominated sorting algorithm (NSGA), also based on a Kriging surrogate of the multi-objective fitness function, along with an adaptive infill strategy for surrogate enrichment at each generation of the NSGA. The objective functions are the average and variance of the isentropic efficiency. The blade shape is parametrized by means of a Free Form Deformation (FFD) approach. The robust optimal blades are compared to the baseline design (based on the Method of Characteristics) and to a blade obtained by means of a deterministic CFD-based optimization.

  18. Probabilistic framework for product design optimization and risk management

    NASA Astrophysics Data System (ADS)

    Keski-Rahkonen, J. K.

    2018-05-01

    Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.

  19. Development of robust building energy demand-side control strategy under uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Sean Hay

    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.

  20. Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

    NASA Astrophysics Data System (ADS)

    Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.

    2013-04-01

    Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.

  1. CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers with Tolerance sensitivity

    NASA Technical Reports Server (NTRS)

    Finckenor, J.; Bevill, M.

    1995-01-01

    Cylinder Optimization of Rings, Skin, and Stringers with Tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs. CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined. During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.

  2. A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.

    PubMed

    Zhang, Yu; Zhang, Bing; Zhang, Shi

    2017-06-02

    Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.

  3. Who's flying the plane: serotonin levels, aggression and free will.

    PubMed

    Siegel, Allan; Douard, John

    2011-01-01

    The present paper addresses the philosophical problem raised by current causal neurochemical models of impulsive violence and aggression: to what extent can we hold violent criminal offenders responsible for their conduct if that conduct is the result of deterministic biochemical processes in the brain. This question is currently receiving a great deal of attention among neuroscientists, legal scholars and philosophers. We examine our current knowledge of neuroscience to assess the possible roles of deterministic factors which induce impulsive aggression, and the extent to which this behavior can be controlled by neural conditioning mechanisms. Neural conditioning mechanisms, we suggest, may underlie what we consider the basis of responsible (though not necessarily moral) behavior: the capacity to give and take reasons. The models we first examine are based in part upon the role played by the neurotransmitter, serotonin, in the regulation of violence and aggression. Collectively, these results would appear to argue in favor of the view that low brain serotonin levels induce impulsive aggression which overrides mechanisms related to rational decision making processes. We next present an account of responsibility as based on the capacity to exercise a certain kind of reason-responsive control over one's conduct. The problem with such accounts of responsibility, however, is that they fail to specify a neurobiological realization of such mechanisms of control. We present a neurobiological, and weakly determinist, framework for understanding how persons can exercise guidance control over their conduct. This framework is based upon classical conditioning of neurons in the prefrontal cortex that allow for a decision making mechanism that provides for prefrontal cortical control of the sites in the brain which express aggressive behavior that include the hypothalamus and midbrain periaqueductal gray. The authors support the view that, in many circumstances, neural conditioning mechanisms provide the basis for the control of human aggression in spite of the presence of brain serotonin levels that might otherwise favor the expression of impulsive aggressive behavior. Indeed if those neural conditioning mechanisms underlie the human capacity to exercise control, they may be the neural realization of reason-responsiveness generally. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Who's flying the plane: Serotonin levels, aggression and free will

    PubMed Central

    Siegel, Allan; Douard, John

    2010-01-01

    The present paper addresses the philosophical problem raised by current causal neurochemical models of impulsive violence and aggression: to what extent can we hold violent criminal offenders responsible for their conduct if that conduct is the result of deterministic biochemical processes in the brain. This question is currently receiving a great deal of attention among neuroscientists, legal scholars and philosophers. We examine our current knowledge of neuroscience to assess the possible roles of deterministic factors which induce impulsive aggression, and the extent to which this behavior can be controlled by neural conditioning mechanisms. Neural conditioning mechanisms, we suggest, may underlie what we consider the basis of responsible (though not necessarily moral) behavior: the capacity to give and take reasons. The models we first examine are based in part upon the role played by the neurotransmitter, serotonin, in the regulation of violence and aggression. Collectively, these results would appear to argue in favor of the view that low brain serotonin levels induce impulsive aggression which overrides mechanisms related to rational decision making processes. We next present an account of responsibility as based on the capacity to exercise a certain kind of reason-responsive control over one's conduct. The problem with such accounts of responsibility, however, is that they fail to specify a neurobiological realization of such mechanisms of control. We present a neurobiological, and weakly determinist, framework for understanding how persons can exercise guidance control over their conduct. This framework is based upon classical conditioning of neurons in the prefrontal cortex that allow for a decision making mechanism that provides for prefrontal cortical control of the sites in the brain which express aggressive behavior that include the hypothalamus and midbrain periaqueductal gray. The authors support the view that, in many circumstances, neural conditioning mechanisms provide the basis for the control of human aggression in spite of the presence of brain serotonin levels that might otherwise favor the expression of impulsive aggressive behavior. Indeed if those neural conditioning mechanisms underlie the human capacity to exercise control, they may be the neural realization of reason-responsiveness generally. PMID:21112635

  5. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  6. Optimal causal filtering for 1 /fα-type noise in single-electrode EEG signals.

    PubMed

    Paris, Alan; Atia, George; Vosoughi, Azadeh; Berman, Stephen A

    2016-08-01

    Understanding the mode of generation and the statistical structure of neurological noise is one of the central problems of biomedical signal processing. We have developed a broad class of abstract biological noise sources we call hidden simplicial tissues. In the simplest cases, such tissue emits what we have named generalized van der Ziel-McWhorter (GVZM) noise which has a roughly 1/fα spectral roll-off. Our previous work focused on the statistical structure of GVZM frequency spectra. However, causality of processing operations (i.e., dependence only on the past) is an essential requirement for real-time applications to seizure detection and brain-computer interfacing. In this paper we outline the theoretical background for optimal causal time-domain filtering of deterministic signals embedded in GVZM noise. We present some of our early findings concerning the optimal filtering of EEG signals for the detection of steady-state visual evoked potential (SSVEP) responses and indicate the next steps in our ongoing research.

  7. Reliability-based design optimization of reinforced concrete structures including soil-structure interaction using a discrete gravitational search algorithm and a proposed metamodel

    NASA Astrophysics Data System (ADS)

    Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.

    2013-10-01

    A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.

  8. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  9. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  10. On the design of innovative heterogeneous tests using a shape optimization approach

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    The development of full-field measurement methods enabled a new trend of mechanical tests. By providing the inhomogeneous strain field from the tests, these techniques are being widely used in sheet metal identification strategies, through heterogeneous mechanical tests. In this work, a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich heterogeneous strain paths providing extensive information on material behavior, is aimed. The specimen is found using a shape optimization process where a dedicated indicator that evaluates the richness of strain information is used. The methodology and results here presented are extended to non-specimen geometry dependence and to the non-dependence of the geometry parametrization through the use of the Ritz method for boundary value problems. Different curve models, such as Splines, B-Splines and NURBS, are used and C1 continuity throughout the specimen is guaranteed. Moreover, various optimization methods are used, deterministic and stochastic, in order to find the method or a combination of methods able to effectively minimize the cost function.

  11. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle

    NASA Astrophysics Data System (ADS)

    Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun

    2018-05-01

    The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.

  12. Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize themore » system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.« less

  13. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  14. Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.

    PubMed

    Ćwik, Michał; Józefczyk, Jerzy

    2018-01-01

    An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.

  15. Robust Fixed-Structure Control

    DTIC Science & Technology

    1994-10-30

    Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp

  16. Deterministic quantum dense coding networks

    NASA Astrophysics Data System (ADS)

    Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal

    2018-07-01

    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.

  17. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  18. Optimal exploitation strategies for an animal population in a Markovian environment: A theory and an example

    USGS Publications Warehouse

    Anderson, D.R.

    1975-01-01

    Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra-biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient.

  19. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and increased hydropower production. The ensemble precipitation forecasts extend from March 1st of 2002 to December 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used within HYDROTEL in order to compare ensemble streamflow forecasts with their deterministic counterparts. Although this study does not incorporate all the sources of uncertainty, precipitation is certainly the most important input for hydrological modeling and conveys a great portion of the total uncertainty. References: Fortin, J.P., Moussa, R., Bocquillon, C. and Villeneuve, J.P. 1995: HYDROTEL, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique, Revue des Sciences de l'Eau, 8(1), 94-124. Jaun, S., Ahrens, B., Walser, A., Ewen, T. and Schaer, C. 2008: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Natural Hazards and Earth System Sciences, 8 (2), 281-291. Krzysztofowicz, R. 2001: The case for probabilistic forecasting in hydrology, Journal of Hydrology, 249, 2-9. Murphy, A.H. 1994: Assessing the economic value of weather forecasts: An overview of methods, results and issues, Meteorological Applications, 1, 69-73. Mylne, K.R. 2002: Decision-Making from probability forecasts based on forecast value, Meteorological Applications, 9, 307-315. Laio, F. and Tamea, S. 2007: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277. Roulin, E. 2007: Skill and relative economic value of medium-range hydrological ensemble predictions, Hydrology and Earth System Sciences, 11, 725-737. Velazquez, J.-A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R., Fortin, V. and Anctil, F. 2009: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrology and Earth System Sciences, 13(11), 2221-2231. Wilks, D.S. and Hamill, T.M. 1995: Potential economic value of ensemble-based surface weather forecasts, Monthly Weather Review, 123(12), 3565-3575.

  20. Deterministic multi-zone ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael

    1991-01-01

    The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.

  1. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

    NASA Astrophysics Data System (ADS)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.

    2016-07-01

    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  2. Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs

    NASA Astrophysics Data System (ADS)

    Li, Wenqian; Chen, Hanwu; Liu, Zhihao

    2017-02-01

    Using four Einstein-Podolsky-Rosen (EPR) pairs as the pre-shared quantum channel, an economic and feasible scheme for deterministic joint remote preparation of the four-particle cluster-type state is presented. In the scheme, one of the senders performs a four-qubit projective measurement based on a set of ingeniously constructed vectors with real coefficients, while the other performs the bipartite projective measurements in terms of the imaginary coefficients. Followed with some appropriate unitary operations and controlled-NOT operations, the receiver can reconstruct the desired state. Compared with other analogous JRSP schemes, our scheme can not only reconstruct the original state (to be prepared remotely) with unit successful probability, but also ensure greater efficiency.

  3. Transforming Better Babies into Fitter Families: archival resources and the history of American eugenics movement, 1908-1930.

    PubMed

    Selden, Steven

    2005-06-01

    In the early 1920s, determinist conceptions of biology helped to transform Better Babies contest into Fitter Families competitions with a strong commitment to controlled human breeding. While the earlier competitions were concerned for physical and mental standards, the latter contests collected data on a broad range of presumed hereditary characters. The complex behaviors thought to be determined by one's heredity included being generous, jealous, and cruel. In today's context, the popular media often interpret advances in molecular genetics in a similarly reductive and determinist fashion. This paper argues that such a narrow interpretation of contemporary biology unnecessarily constrains the public in developing social policies concerning complex social behavior ranging from crime to intelligence.

  4. Ant Lion Optimization algorithm for kidney exchanges.

    PubMed

    Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada

    2018-01-01

    The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

  5. Functional surfaces for tribological applications: inspiration and design

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Hisham A.

    2016-12-01

    Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.

  6. Short-range solar radiation forecasts over Sweden

    NASA Astrophysics Data System (ADS)

    Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra

    2018-04-01

    In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  7. Bidirectional Controlled Quantum Information Transmission by Using a Five-Qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Sang, Zhi-wen

    2017-11-01

    We demonstrate that an entangled five-qubit cluster state can be used to realize the deterministic bidirectional controlled quantum information transmission by performing only Bell-state measurement and single-qubit measurements. In our protocol, Alice can teleport an arbitrary unknown single-qubit state to Bob and at the same time Bob can remotely prepare an arbitrary known single-qubit state for Alice via the control of the supervisor Charlie.

  8. Distinctions between intelligent manufactured and constructed systems and a new discipline for intelligent infrastructure hypersystems

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin

    2003-08-01

    Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.

  9. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  10. Robust Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay

    2015-03-01

    We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less

  11. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  12. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The Deterministic Origins of Sexism.

    ERIC Educational Resources Information Center

    Perry, Melissa J.; Albee, George W.

    1998-01-01

    Discusses the physical, sexual, and psychological ramifications of biological determinism using examples from the global status of women's health, the continuation of female genital mutilation, and the history of sexist beliefs in psychology that serve a social control function of creating and defining women's psychopathology. (Author/SLD)

  14. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  15. Experimental realization of real-time feedback-control of single-atom arrays

    NASA Astrophysics Data System (ADS)

    Kim, Hyosub; Lee, Woojun; Ahn, Jaewook

    2016-05-01

    Deterministic loading of neutral atoms on particular locations has remained a challenging problem. Here we show, in a proof-of-principle experimental demonstration, that such deterministic loading can be achieved by rearrangement of atoms. In the experiment, cold rubidium atom were trapped by optical tweezers, which are the hologram images made by a liquid-crystal spatial light modulator (LC-SLM). After the initial occupancy was identified, the hologram was actively controlled to rearrange the captured atoms on to unfilled sites. For this, we developed a new flicker-free hologram algorithm that enables holographic atom translation. Our demonstration show that up to N=9 atoms were simultaneously moved in the 2D plane with the movable degrees of freedom of 2N=18 and the fidelity of 99% for single-atom 5- μm translation. It is hoped that our in situ atom rearrangement becomes useful in scaling quantum computers. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  16. Optimal perturbations for nonlinear systems using graph-based optimal transport

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  17. Implementation and Operational Analysis of an Interactive Intensive Care Unit within a Smart Health Context.

    PubMed

    Lopez-Iturri, Peio; Aguirre, Erik; Trigo, Jesús Daniel; Astrain, José Javier; Azpilicueta, Leyre; Serrano, Luis; Villadangos, Jesús; Falcone, Francisco

    2018-01-29

    In the context of hospital management and operation, Intensive Care Units (ICU) are one of the most challenging in terms of time responsiveness and criticality, in which adequate resource management and signal processing play a key role in overall system performance. In this work, a context aware Intensive Care Unit is implemented and analyzed to provide scalable signal acquisition capabilities, as well as to provide tracking and access control. Wireless channel analysis is performed by means of hybrid optimized 3D Ray Launching deterministic simulation to assess potential interference impact as well as to provide required coverage/capacity thresholds for employed transceivers. Wireless system operation within the ICU scenario, considering conventional transceiver operation, is feasible in terms of quality of service for the complete scenario. Extensive measurements of overall interference levels have also been carried out, enabling subsequent adequate coverage/capacity estimations, for a set of Zigbee based nodes. Real system operation has been tested, with ad-hoc designed Zigbee wireless motes, employing lightweight communication protocols to minimize energy and bandwidth usage. An ICU information gathering application and software architecture for Visitor Access Control has been implemented, providing monitoring of the Boxes external doors and the identification of visitors via a RFID system. The results enable a solution to provide ICU access control and tracking capabilities previously not exploited, providing a step forward in the implementation of a Smart Health framework.

  18. The relationship between stochastic and deterministic quasi-steady state approximations.

    PubMed

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R

    2015-11-23

    The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.

  19. Deterministic magnetorheological finishing of optical aspheric mirrors

    NASA Astrophysics Data System (ADS)

    Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng

    2009-05-01

    A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.

  20. Computer modeling of dynamic necking in bars

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Lindenfeld, Avishay

    2017-06-01

    Necking of thin bodies (bars, plates, shells) is one form of strain localization in ductile materials that may lead to fracture. The phenomenon of necking has been studied extensively, initially for quasistatic loading and then also for dynamic loading. Nevertheless, many issues concerning necking are still unclear. Among these are: 1) is necking a random or deterministic process; 2) how does the specimen choose the final neck location; 3) to what extent do perturbations (material or geometrical) influence the neck forming process; and 4) how do various parameters (material, geometrical, loading) influence the neck forming process. Here we address these issues and others using computer simulations with a hydrocode. Among other things we find that: 1) neck formation is a deterministic process, and by changing one of the parameters influencing it monotonously, the final neck location moves monotonously as well; 2) the final neck location is sensitive to the radial velocity of the end boundaries, and as motion of these boundaries is not fully controlled in tests, this may be the reason why neck formation is sometimes regarded as a random process; and 3) neck formation is insensitive to small perturbations, which is probably why it is a deterministic process.

Top