Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
SEIR model simulation for Hepatitis B
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.
Lunelli, Antonella; Pugliese, Andrea; Rizzo, Caterina
2009-07-01
Due to the recent emergence of H5N1 virus, the modelling of pandemic influenza has become a relevant issue. Here we present an SEIR model formulated to simulate a possible outbreak in Italy, analysing its structure and, more generally, the effect of including specific details into a model. These details regard population heterogeneities, such as age and spatial distribution, as well as stochasticity, that regulates the epidemic dynamics when the number of infectives is low. We discuss and motivate the specific modelling choices made when building the model and investigate how the model details influence the predicted dynamics. Our analysis may help in deciding which elements of complexity are worth including in the design of a deterministic model for pandemic influenza, in a balance between, on the one hand, keeping the model computationally efficient and the number of parameters low and, on the other hand, maintaining the necessary realistic features.
A SEIR model for transmission of tuberculosis
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Mulbar, Usman; Sidjara, Sahlan; Sanusi, Wahidah
2017-04-01
In this paper will be described Tuberculosis (TB) transmission using Susceptible-Exposed-Infected-Recovered (SEIR) model. SEIR model for transmission of TB were analyzed and performed simulations using data on the number of TB cases in South Sulawesi. The results showed that the levels of the basic reproduction ratio R0 using the model of SEIR is R0 ≤ 1, it means that the status of TB disease in South Sulawesi is at a stage that is not alarming, but based on simulation results using MatLab, predicted that the number of infection cases will continue to increase therefore government needs to take preventive measures to control and reduce the number of TB infections in South Sulawesi.
SEIR model simulation for Hepatitis B
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.
Qualitative and numerical investigations of the impact of a novel pathogen on a seabird colony
NASA Astrophysics Data System (ADS)
O'Regan, S. M.; Kelly, T. C.; Korobeinikov, A.; O'Callaghan, M. J. A.; Pokrovskii, A. V.
2008-11-01
Understanding the dynamics of novel pathogens in dense populations is crucial to public and veterinary health as well as wildlife ecology. Seabirds live in crowded colonies numbering several thousands of individuals. The long-term dynamics of avian influenza H5N1 virus in a seabird colony with no existing herd immunity are investigated using sophisticated mathematical techniques. The key characteristics of seabird population biology and the H5N1 virus are incorporated into a Susceptible-Exposed-Infected-Recovered (SEIR) model. Using the theory of integral manifolds, the SEIR model is reduced to a simpler system of two differential equations depending on the infected and recovered populations only, termed the IR model. The results of numerical experiments indicate that the IR model and the SEIR model are in close agreement. Using Lyapunov's direct method, the equilibria of the SEIR and the IR models are proven to be globally asymptotically stable in the positive quadrant.
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
Huang, Sen-Zhong
2008-09-01
We present a novel SEIR (susceptible-exposure-infective-recovered) model that is suitable for modeling the eradication of diseases by mass vaccination or control of diseases by case isolation combined with contact tracing, incorporating the vaccine efficacy or the control efficacy into the model. Moreover, relying on this novel SEIR model and some probabilistic arguments, we have found four formulas that are suitable for estimating the basic reproductive numbers R(0) in terms of the ratio of the mean infectious period to the mean latent period of a disease. The ranges of R(0) for most known diseases, that are calculated by our formulas, coincide very well with the values of R(0) estimated by the usual method of fitting the models to observed data.
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Molliq Rangkuti, Yulita; Gerhana Pane, Dian; Setia Sinaga, Marlina
2018-01-01
Dengue fever is endemic disease which spread through vector, Aedes Aegypty. This disease is found more than 100 countries, such as, United State, Africa as well Asia, especially in country that have tropic climate. Mathematical modeling in this paper, discusses the speed of the spread of dengue fever. The model adopting divided over four classes, such as Susceptible (S), Exposed (E), Infected (I) and Recovered (R). SEIR model further analyzed to detect the re-breeding value based on the number reported case by dengue in Medan city. Analysis of the stability of the system in this study is asymptotically stable indicating a case of endemic and unstable that show cases the endemic cases. Simulation on the mathematical model of SEIR showed that require a very long time to produce infected humans will be free of dengue virus infection. This happens because of dengue virus infection that occurs continuously between human and vector populations.
Approximate Bayesian computation for spatial SEIR(S) epidemic models.
Brown, Grant D; Porter, Aaron T; Oleson, Jacob J; Hinman, Jessica A
2018-02-01
Approximate Bayesia n Computation (ABC) provides an attractive approach to estimation in complex Bayesian inferential problems for which evaluation of the kernel of the posterior distribution is impossible or computationally expensive. These highly parallelizable techniques have been successfully applied to many fields, particularly in cases where more traditional approaches such as Markov chain Monte Carlo (MCMC) are impractical. In this work, we demonstrate the application of approximate Bayesian inference to spatially heterogeneous Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. These models have a tractable posterior distribution, however MCMC techniques nevertheless become computationally infeasible for moderately sized problems. We discuss the practical implementation of these techniques via the open source ABSEIR package for R. The performance of ABC relative to traditional MCMC methods in a small problem is explored under simulation, as well as in the spatially heterogeneous context of the 2014 epidemic of Chikungunya in the Americas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding viral video dynamics through an epidemic modelling approach
NASA Astrophysics Data System (ADS)
Sachak-Patwa, Rahil; Fadai, Nabil T.; Van Gorder, Robert A.
2018-07-01
Motivated by the hypothesis that the spread of viral videos is analogous to the spread of a disease epidemic, we formulate a novel susceptible-exposed-infected-recovered-susceptible (SEIRS) delay differential equation epidemic model to describe the popularity evolution of viral videos. Our models incorporate time-delay, in order to accurately describe the virtual contact process between individuals and the temporary immunity of individuals to videos after they have grown tired of watching them. We validate our models by fitting model parameters to viewing data from YouTube music videos, in order to demonstrate that the model solutions accurately reproduce real behaviour seen in this data. We use an SEIR model to describe the initial growth and decline of daily views, and an SEIRS model to describe the long term behaviour of the popularity of music videos. We also analyse the decay rates in the daily views of videos, determining whether they follow a power law or exponential distribution. Although we focus on viral videos, the modelling approach may be used to understand dynamics emergent from other areas of science which aim to describe consumer behaviour.
Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment
NASA Astrophysics Data System (ADS)
Khan, Muhammad Altaf; Khan, Yasir; Islam, Saeed
2018-03-01
In this paper, we describe the dynamics of an SEIR epidemic model with saturated incidence, treatment function, and optimal control. Rigorous mathematical results have been established for the model. The stability analysis of the model is investigated and found that the model is locally asymptotically stable when R0 < 1. The model is locally as well as globally asymptotically stable at endemic equilibrium when R0 > 1. The proposed model may possess a backward bifurcation. The optimal control problem is designed and obtained their necessary results. Numerical results have been presented for justification of theoretical results.
ASEI-SEIR model with vaccination for dengue control in Shah Alam, Malaysia
NASA Astrophysics Data System (ADS)
Tay, Chai Jian; Teh, Su Yean; Koh, Hock Lye
2018-03-01
Epidemiology modelling provides an understanding of the underlying mechanisms that influence the spread of dengue disease. The most common mathematical models used are the compartment models abbreviated by ASI-SIR, ASEI-SIR and ASEI-SEIR. This paper starts with a discussion of these common models, followed by the derivation of the basic reproduction number (Ro) of each model. The value of Ro in ASI-SIR model is higher than that in ASEI-SIR and ASEI-SEIR models due to the exclusion of exposed adult mosquito in ASI-SIR model. Further, sensitivity analysis on Ro indicates that natural mortality and biting rate of adult mosquito have significant effects on dengue transmission dynamics. Next, an in-house mathematical model named MOSSEIR is developed, based upon the ASEI-SEIR compartment model, in which both mosquito and human populations are considered. The mosquito population is divided into four compartments consisting of aquatic mosquito, susceptible, exposed and infected adult mosquito; while the human population is classified into four compartments comprising susceptible, exposed, infected and recovered human. MOSSEIR is then used to replicate the number of dengue cases in 2010 for Shah Alam, a capital city of Selangor with high incidence of dengue fever. Finally, effectiveness of control strategies, including mosquito breeding sites control, fogging and vaccination, are evaluated for Shah Alam. Simulation results indicate that these three control strategies can significantly reduce dengue transmission, in theory. In reality, the effectiveness of traditional control methods such as elimination of mosquito breeding sites and fogging is below expectation due to non-compliance. Therefore, the adoption of a safe, effective and affordable vaccine remains the best prospect for controlling dengue.
Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough
Black, Andrew J.; McKane, Alan J.
2010-01-01
Although many stochastic models can accurately capture the qualitative epidemic patterns of many childhood diseases, there is still considerable discussion concerning the basic mechanisms generating these patterns; much of this stems from the use of deterministic models to try to understand stochastic simulations. We argue that a systematic method of analysing models of the spread of childhood diseases is required in order to consistently separate out the effects of demographic stochasticity, external forcing and modelling choices. Such a technique is provided by formulating the models as master equations and using the van Kampen system-size expansion to provide analytical expressions for quantities of interest. We apply this method to the susceptible–exposed–infected–recovered (SEIR) model with distributed exposed and infectious periods and calculate the form that stochastic oscillations take on in terms of the model parameters. With the use of a suitable approximation, we apply the formalism to analyse a model of whooping cough which includes seasonal forcing. This allows us to more accurately interpret the results of simulations and to make a more quantitative assessment of the predictions of the model. We show that the observed dynamics are a result of a macroscopic limit cycle induced by the external forcing and resonant stochastic oscillations about this cycle. PMID:20164086
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies. PMID:21437002
Effects of the infectious period distribution on predicted transitions in childhood disease dynamics
Krylova, Olga; Earn, David J. D.
2013-01-01
The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions. PMID:23676892
Krylova, Olga; Earn, David J D
2013-07-06
The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.
Impact of time delay on the dynamics of SEIR epidemic model using cellular automata
NASA Astrophysics Data System (ADS)
Sharma, Natasha; Gupta, Arvind Kumar
2017-04-01
The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR (susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.
Study of the stability of a SEIRS model for computer worm propagation
NASA Astrophysics Data System (ADS)
Hernández Guillén, J. D.; Martín del Rey, A.; Hernández Encinas, L.
2017-08-01
Nowadays, malware is the most important threat to information security. In this sense, several mathematical models to simulate malware spreading have appeared. They are compartmental models where the population of devices is classified into different compartments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is to propose an improved SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) mathematical model to simulate computer worm propagation. It is a continuous model whose dynamic is ruled by means of a system of ordinary differential equations. It considers more realistic parameters related to the propagation; in fact, a modified incidence rate has been used. Moreover, the equilibrium points are computed and their local and global stability analyses are studied. From the explicit expression of the basic reproductive number, efficient control measures are also obtained.
On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination
NASA Astrophysics Data System (ADS)
Alonso-Quesada, S.; De la Sen, M.; Ibeas, A.
2017-01-01
This paper deals with the discretization and control of an SEIR epidemic model. Such a model describes the transmission of an infectious disease among a time-varying host population. The model assumes mortality from causes related to the disease. Our study proposes a discretization method including a free-design parameter to be adjusted for guaranteeing the positivity of the resulting discrete-time model. Such a method provides a discrete-time model close to the continuous-time one without the need for the sampling period to be as small as other commonly used discretization methods require. This fact makes possible the design of impulsive vaccination control strategies with less burden of measurements and related computations if one uses the proposed instead of other discretization methods. The proposed discretization method and the impulsive vaccination strategy designed on the resulting discretized model are the main novelties of the paper. The paper includes (i) the analysis of the positivity of the obtained discrete-time SEIR model, (ii) the study of stability of the disease-free equilibrium point of a normalized version of such a discrete-time model and (iii) the existence and the attractivity of a globally asymptotically stable disease-free periodic solution under a periodic impulsive vaccination. Concretely, the exposed and infectious subpopulations asymptotically converge to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization individuals oscillate in the context of such a solution. Finally, a numerical example illustrates the theoretic results.
Smirnova, Alexandra; deCamp, Linda; Chowell, Gerardo
2017-05-02
Deterministic and stochastic methods relying on early case incidence data for forecasting epidemic outbreaks have received increasing attention during the last few years. In mathematical terms, epidemic forecasting is an ill-posed problem due to instability of parameter identification and limited available data. While previous studies have largely estimated the time-dependent transmission rate by assuming specific functional forms (e.g., exponential decay) that depend on a few parameters, here we introduce a novel approach for the reconstruction of nonparametric time-dependent transmission rates by projecting onto a finite subspace spanned by Legendre polynomials. This approach enables us to effectively forecast future incidence cases, the clear advantage over recovering the transmission rate at finitely many grid points within the interval where the data are currently available. In our approach, we compare three regularization algorithms: variational (Tikhonov's) regularization, truncated singular value decomposition (TSVD), and modified TSVD in order to determine the stabilizing strategy that is most effective in terms of reliability of forecasting from limited data. We illustrate our methodology using simulated data as well as case incidence data for various epidemics including the 1918 influenza pandemic in San Francisco and the 2014-2015 Ebola epidemic in West Africa.
Discretization and control of an SEIR epidemic model under equilibrium Wiener noise disturbances
NASA Astrophysics Data System (ADS)
Alonso, Santiago; De la Sen, Manuel; Nistal, Raul; Ibeas, Asier
2017-11-01
A discretized SEIR epidemic model, subject to Wiener noise disturbances of the equilibrium points, is studied. The discrete-time model is got from a general discretization technique applied to its continuous-time counterpart so that its behaviour be close to its continuous-time counterpart irrespective of the size of the discretization period. The positivity and stability of a normalized version of such a discrete-time model are emphasized. The paper also proposes the design of a periodic impulsive vaccination which is periodically injected to the susceptible subpopulation in order to eradicate the propagation of the disease or, at least, to reduce its unsuitable infective effects within the potentially susceptible subpopulation. The existence and asymptotic stability of a disease-free periodic solution are proved. In particular, both the exposed and infectious subpopulations converge asymptotically to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization oscillate.
SEIIrR: Drug abuse model with rehabilitation
NASA Astrophysics Data System (ADS)
Sutanto, Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari
2017-05-01
Drug abuse in the world quite astonish and tend to increase. The increase and decrease on the number of drug abusers showed a pattern of spread that had the same characteristics with patterns of spread of infectious disease. The susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR) epidemic models for infectious disease was developed to study social epidemic. In this paper, SEIR model for disease epidemic was developed to study drug abuse epidemic with rehabilitation treatment. The aims of this paper were to analogize susceptible exposed infected isolated recovered (SEIIrR) model on the drug abusers, to determine solutions of the model, to determine equilibrium point, and to do simulation on β. The solutions of SEIIrR model was determined by using fourth order of Runge-Kutta algorithm, equilibrium point obtained was free-drug equilibrium point. Solutions of SEIIrR showed that the model was able to suppress the spread of drug abuse. The increasing value of contact rate was not affect the number of infected individuals due to rehabilitation treatment.
Periodic array-based substrates for surface-enhanced infrared spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-01-01
At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.
NASA Astrophysics Data System (ADS)
De la Sen, M.; Nistal, R.; Alonso-Quesada, S.; Garrido, A. J.
2016-08-01
This paper studies the non-negativity and stability properties of the solutions of a newly proposed SEIADR model which incorporates asymptomatic and dead-infective subpopulations to those defining the standard SEIR model and, in parallel, it incorporates feedback vaccination and antiviral treatment controls.
Savini, L; Candeloro, L; Conte, A; De Massis, F; Giovannini, A
2017-01-01
Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality) model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered) model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time.
Candeloro, L.; Conte, A.; De Massis, F.; Giovannini, A.
2017-01-01
Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality) model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered) model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time. PMID:28654703
Megersa, Bekele; Biffa, Demelash; Abunna, Fufa; Regassa, Alemayehu; Bohlin, Jon; Skjerve, Eystein
2012-10-01
A highly acute and contagious camel disease, an epidemic wave of unknown etiology, referred to here as camel sudden death syndrome, has plagued camel population in countries in the Horn of Africa. To better understand its epidemic patterns and transmission dynamics, we used epidemiologic parameters and differential equation deterministic modeling (SEIR/D-model) to predict the outcome likelihood following an exposure of susceptible camel population. Our results showed 45.7, 17.6, and 38.6 % overall morbidity, mortality, and case fatality rates of the epidemic, respectively. Pregnant camels had the highest mortality and case fatality rates, followed by breeding males, and lactating females, implying serious socioeconomic consequences. Disease dynamics appeared to be linked to livestock trade route and animal movements. The epidemic exhibited a strong basic reproductive number (R (0)) with an average of 16 camels infected by one infectious case during the entire infectious period. The epidemic curve suggested that the critical moment of the disease development is approximately between 30 and 40 days, where both infected/exposed and infectious camels are at their highest numbers. The lag between infected/infectious curves indicates a time-shift of approximately 3-5 days from when a camel is infected and until it becomes infectious. According to this predictive model, of all animals exposed to the infection, 66.8 % (n = 868) and 33.2 % (n = 431) had recovered and died, respectively, at the end of epidemic period. Hence, if early measures are not taken, such an epidemic could cause a much more devastative effect, within short period of time than the anticipated proportion.
Thorrington, Dominic; Jit, Mark; Eames, Ken
2015-10-05
The UK commenced an extension to the seasonal influenza vaccination policy in autumn 2014 that will eventually see all healthy children between the ages of 2-16 years offered annual influenza vaccination. Models suggest that the new policy will be both highly effective at reducing the burden of influenza as well as cost-effective. We explore whether targeting vaccination at either primary or secondary schools would be more effective and/or cost-effective than the current strategy. An age-structured deterministic transmission dynamic SEIR-type mathematical model was used to simulate a national influenza outbreak in England. Costs including GP consultations, hospitalisations due to influenza and vaccinations were compared to potential gains in quality-adjusted life years achieved through vaccinating healthy children. Costs and benefits of the new JCVI vaccination policy were estimated over a single season, and compared to the hypothesised new policies of targeted and heterogeneous vaccination. All potential vaccination policies were highly cost-effective. Influenza transmission can be eliminated for a particular season by vaccinating both primary and secondary school children, but not by vaccinating only one group. The most cost-effective policy overall is heterogeneous vaccination coverage with 48% uptake in primary schools and 34% in secondary schools. The Joint Committee on Vaccination and Immunisation can consider a modification to their policy of offering seasonal influenza vaccinations to all healthy children of ages 2-16 years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling the transmission dynamics and control of rabies in China.
Ruan, Shigui
2017-04-01
Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction-diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7. Copyright © 2017 Elsevier Inc. All rights reserved.
Was mandatory quarantine necessary in China for controlling the 2009 H1N1 pandemic?
Li, Xinhai; Geng, Wenjun; Tian, Huidong; Lai, Dejian
2013-09-30
The Chinese government enforced mandatory quarantine for 60 days (from 10 May to 8 July 2009) as a preventative strategy to control the spread of the 2009 H1N1 pandemic. Such a prevention strategy was stricter than other non-pharmaceutical interventions that were carried out in many other countries. We evaluated the effectiveness of the mandatory quarantine and provide suggestions for interventions against possible future influenza pandemics. We selected one city, Beijing, as the analysis target. We reviewed the epidemiologic dynamics of the 2009 H1N1 pandemic and the implementation of quarantine measures in Beijing. The infectious population was simulated under two scenarios (quarantined and not quarantined) using a deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) model. The basic reproduction number R0 was adjusted to match the epidemic wave in Beijing. We found that mandatory quarantine served to postpone the spread of the 2009 H1N1 pandemic in Beijing by one and a half months. If mandatory quarantine was not enforced in Beijing, the infectious population could have reached 1,553 by 21 October, i.e., 5.6 times higher than the observed number. When the cost of quarantine is taken into account, mandatory quarantine was not an economically effective intervention approach against the 2009 H1N1 pandemic. We suggest adopting mitigation methods for an influenza pandemic with low mortality and morbidity.
Was Mandatory Quarantine Necessary in China for Controlling the 2009 H1N1 Pandemic?
Li, Xinhai; Geng, Wenjun; Tian, Huidong; Lai, Dejian
2013-01-01
The Chinese government enforced mandatory quarantine for 60 days (from 10 May to 8 July 2009) as a preventative strategy to control the spread of the 2009 H1N1 pandemic. Such a prevention strategy was stricter than other non-pharmaceutical interventions that were carried out in many other countries. We evaluated the effectiveness of the mandatory quarantine and provide suggestions for interventions against possible future influenza pandemics. We selected one city, Beijing, as the analysis target. We reviewed the epidemiologic dynamics of the 2009 H1N1 pandemic and the implementation of quarantine measures in Beijing. The infectious population was simulated under two scenarios (quarantined and not quarantined) using a deterministic Susceptible-Exposed-Infectious-Recovered (SEIR) model. The basic reproduction number R0 was adjusted to match the epidemic wave in Beijing. We found that mandatory quarantine served to postpone the spread of the 2009 H1N1 pandemic in Beijing by one and a half months. If mandatory quarantine was not enforced in Beijing, the infectious population could have reached 1,553 by 21 October, i.e., 5.6 times higher than the observed number. When the cost of quarantine is taken into account, mandatory quarantine was not an economically effective intervention approach against the 2009 H1N1 pandemic. We suggest adopting mitigation methods for an influenza pandemic with low mortality and morbidity. PMID:24084677
Transitions in axial morphology along the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Ma, Ying; Cochran, James R.
1996-07-01
Shipboard bathymetric and magnetic profiles across the Southeast Indian Ridge (SEIR) were analyzed in order to examine the nature of along-axis variations in axial morphology at this intermediate spreading rate ridge. Three types of axial morphology are observed along the SEIR: an axial high, a shallow (200-700 m deep) axial valley and a deep (>1000 m deep) axial valley. An axial high is found to the east of the Australian-Antarctic Discordance (AAD) (east of 128°E) and between 82°E and 104°E. A shallow rift valley is found from 104°E to 114°E and from 82°E westward past the Amerstdam/St. Paul hotspot (ASP) to about 30°S, 75°E. Deep rift valleys are found from 114°E to 128°E in the vicinity of the AAD and from the Indian Ocean Triple Junction (IOTJ) at 25°S, 70°E to about 30°S, 75°E. The transition near 30°S occurs in an area of constant zero-age depth and does not appear to result from an increase in mantle temperature. It could be the result of the rapid increase in spreading rate along that portion of the SEIR. The most likely cause of the other transitions in axial morphology is variations in mantle temperature. The transitions between the different types of axial morphology are well defined and occur over a limited distance. Transitions in axial morphology are accompanied by significant changes in ridge flank topographic roughness. The transitions from axial valleys to axial highs are also accompanied by changes in the amplitude of the seafloor magnetic anomalies. Our observations suggest that there are distinct modes rather than a continuum of axial morphology on the SEIR and that there appears to be a "threshold" mechanism for a rapid change between different states of axial morphology. The ASP has only a limited influence on the SEIR. The ridge axis is marked by an axial valley for the entire distance from the IOTJ up to and past the ASP. The ridge axis becomes shallower as the ASP is approached from the northwest but only by about 300 m over a distance of 800 km. In addition, the ridge continues to become shallower away from Amsterdam Island toward the transition to an axial high at 82°E, 350 km to the east of the ASP. The Kerguelen hotspot appears to exert a major influence on the morphology of the SEIR by feeding asthenospheric material to the ridge axis. A long, narrow finger-like gravity high extends ENE away from the Kerguelen Plateau for a distance of 500 km. Shipboard data show that the gravity high results from a large volcanic ridge. The ridge appears analogous to the Rodriguez Ridge extending from the Reunion hotspot toward the Central Indian Ridge. A series of lower and broader lineated gravity highs extend from the volcanic ridge toward the SEIR in the ridge segment between the 81°E and 85°E transforms, which is the westernmost segment with an axial high. The only region of significant off-ridge seismicity on the Antarctic flank of the SEIR is a diffuse band of epicenters extending from Kerguelen to the SEIR within the segment between the 81°E and 85°E fracture zones. The along-axis gradient in depth from 86°E to the AAD and the transitions in axial morphology at 104°E and 114°E most likely reflect along-axis variations in mantle temperature and melt production rate due to distance from the Kerguelen hotspot and the influence of the AAD.
NASA Astrophysics Data System (ADS)
Briais, Anne; Barrère, Fabienne; Boulart, Cédric; Ceuleneer, Georges; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès; Merkuryev, Sergey; Park, Sung-Hyun; Révillon, Sidonie; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok
2016-04-01
We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, are not associated to off-axis deformation of the ocean floor, and are often located near the traces of ridge axis discontinuities. We also observe a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. Our new data allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis.
Santermans, Eva; Robesyn, Emmanuel; Ganyani, Tapiwa; Sudre, Bertrand; Faes, Christel; Quinten, Chantal; Van Bortel, Wim; Haber, Tom; Kovac, Thomas; Van Reeth, Frank; Testa, Marco; Hens, Niel; Plachouras, Diamantis
2016-01-01
The Ebola outbreak in West Africa has infected at least 27,443 individuals and killed 11,207, based on data until 24 June, 2015, released by the World Health Organization (WHO). This outbreak has been characterised by extensive geographic spread across the affected countries Guinea, Liberia and Sierra Leone, and by localized hotspots within these countries. The rapid recognition and quantitative assessment of localised areas of higher transmission can inform the optimal deployment of public health resources. A variety of mathematical models have been used to estimate the evolution of this epidemic, and some have pointed out the importance of the spatial heterogeneity apparent from incidence maps. However, little is known about the district-level transmission. Given that many response decisions are taken at sub-national level, the current study aimed to investigate the spatial heterogeneity by using a different modelling framework, built on publicly available data at district level. Furthermore, we assessed whether this model could quantify the effect of intervention measures and provide predictions at a local level to guide public health action. We used a two-stage modelling approach: a) a flexible spatiotemporal growth model across all affected districts and b) a deterministic SEIR compartmental model per district whenever deemed appropriate. Our estimates show substantial differences in the evolution of the outbreak in the various regions of Guinea, Liberia and Sierra Leone, illustrating the importance of monitoring the outbreak at district level. We also provide an estimate of the time-dependent district-specific effective reproduction number, as a quantitative measure to compare transmission between different districts and give input for informed decisions on control measures and resource allocation. Prediction and assessing the impact of control measures proved to be difficult without more accurate data. In conclusion, this study provides us a useful tool at district level for public health, and illustrates the importance of collecting and sharing data.
The Dynamics of a SEIR-SIRC Antigenic Drift Influenza Model.
Adi-Kusumo, Fajar
2017-06-01
We consider the dynamics of an influenza model with antigenic drift mechanism. Antigenic drift is an antigen mutation on the skin surface of the influenza virus that do not produce a new virus strain. The mutation produces the same virus but with slightly different antigens that cannot be recognized by the immune receptors formed by the previous infection. There are some type of influenza that involve the interaction between two populations such as human and animal. In this paper, we construct an influenza model with antigenic drift mechanism on the human population that has interaction with the animal population. The animal population is assumed to follow the SEIR epidemic model. Our model is motivated by the fact that some of the influenza cases in human come from the animal such as the swine and the avian. The transmission parameter that shows number of contact between the susceptible human and the infectious animals are important to study. The parameter plays an important role to detect the cycle of infection of the disease. The other important parameters are the seasonality degree, which shows the pathogen appearance and disappearance via annual migration, and the infection rate on the human population. We employ the bifurcation theory to analyze the behavior of the system and to detect the cycle of infection types when the parameters values are varied.
Frasso, Gianluca; Lambert, Philippe
2016-10-01
SummaryThe 2014 Ebola outbreak in Sierra Leone is analyzed using a susceptible-exposed-infectious-removed (SEIR) epidemic compartmental model. The discrete time-stochastic model for the epidemic evolution is coupled to a set of ordinary differential equations describing the dynamics of the expected proportions of subjects in each epidemic state. The unknown parameters are estimated in a Bayesian framework by combining data on the number of new (laboratory confirmed) Ebola cases reported by the Ministry of Health and prior distributions for the transition rates elicited using information collected by the WHO during the follow-up of specific Ebola cases. The time-varying disease transmission rate is modeled in a flexible way using penalized B-splines. Our framework represents a valuable stochastic tool for the study of an epidemic dynamic even when only irregularly observed and possibly aggregated data are available. Simulations and the analysis of the 2014 Sierra Leone Ebola data highlight the merits of the proposed methodology. In particular, the flexible modeling of the disease transmission rate makes the estimation of the effective reproduction number robust to the misspecification of the initial epidemic states and to underreporting of the infectious cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ren, Shanjing
In this paper, an SEIR epidemic model for an imperfect treatment disease with age-dependent latency and relapse is proposed. The model is well-suited to model tuberculosis. The basic reproduction number R0 is calculated. We obtain the global behavior of the model in terms of R0. If R0< 1, the disease-free equilibrium is globally asymptotically stable, whereas if R0>1, a Lyapunov functional is used to show that the endemic equilibrium is globally stable amongst solutions for which the disease is present.
A theoretical model for Zika virus transmission
Khan, Muhammad Altaf; Okosun, K. O.; Islam, Saeed
2017-01-01
In this paper, we present and analyze an SEIR Zika epidemic model. Firstly, we investigate the model with constant controls. The steady states of the model is found to be locally and globally asymptotically stable. Thereafter, we incorporate time dependent controls into the model in order to investigate the optimal effects of bednets, treatments of infective and spray of insecticides on the disease spread. Furthermore, we used Pontryagin’s Maximum Principle to determine the necessary conditions for effective control of the disease. Also, the numerical results were presented. PMID:28977007
NASA Astrophysics Data System (ADS)
Maia, M.; Briais, A.; Barrere, F.; Boulart, C.; Ceuleneer, G.; Ferreira, N.; Hanan, B. B.; Hemond, C.; MacLeod, S.; Maillard, A. L.; Merkuryev, S. A.; Park, S. H.; Revillon, S.; Ruellan, E.; Schohn, A.; Watson, S. J.; Yang, Y. S.
2015-12-01
We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, and are not associated to off-axis deformation of the ocean floor. They show a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. They allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis. STORM cruise scientific party: F. Barrere, C. Boulart, G. Ceuleneer, N. Ferreira, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang.
A resolved mantle anomaly as the cause of the Australian-Antarctic Discordance
NASA Astrophysics Data System (ADS)
Ritzwoller, M. H.; Shapiro, N. M.; Leahy, G. M.
2003-12-01
We present evidence for the existence of an Australian-Antarctic Mantle Anomaly (AAMA), which trends northwest-southeast (NW-SE) through the Australian-Antarctic Discordance (AAD) on the Southeast Indian Ridge (SEIR), is confined to the upper 120 km of the mantle beneath the AAD, and dips shallowly to the west so that it extends to a depth of about 150 km west of the AAD. Average temperatures within the AAMA are depressed about 100°C relative to surrounding lithosphere and suggest very rapid cooling of newly formed lithosphere at the AAD to an effective thermal age between 20 and 30 Ma. A convective down welling beneath the AAD is not consistent with the confinement of the AAMA in the uppermost mantle. In substantial agreement with the model of [1998], we argue that the AAMA is the suspended remnant of a slab that subducted at the Gondwanaland-Pacific convergent margin more than 100 Myr ago, foundered in the deeper mantle, and then ascended into the shallow mantle within the past 30 Myr, cutting any ties to deeper roots. The stability of the AAMA and its poor correlation with residual topography and gravity imply that it is approximately neutrally buoyant. The thermally induced density anomaly can be balanced by bulk iron depletion of less than 0.8%, consistent with the warmer conditions of formation for the Pacific than Indian lithosphere. We hypothesize that the low temperatures in the AAMA inhibit crustal formation and the AAD depth anomaly is formed at the intersection of the SEIR and the AAMA. The northward migration of the SEIR overriding the cold NW-SE trending AAMA therefore presents a simple kinematic explanation for both the V-shaped residual depth anomaly in the southeast Indian Ocean and the western migration of the AAD along the SEIR. Neither explanation requires the Pacific asthenospheric mantle to push westward and displace Indian asthenosphere. The AAMA may also act as a barrier to large-scale flows in the shallow asthenosphere and may therefore define a boundary for mantle convection and between the Indian and Pacific isotopic provinces. The westward dip of the AAMA would also favor along-axis flow from the Indian Ocean asthenosphere to the AAD that may contribute to the penetration of Indian Ocean mid-ocean ridge basalts into the AAD.
Pan, Jin-ren; Huang, Zheng-qiang; Chen, Kun
2012-04-01
forecast the epidemic trend and to evaluate the effect of outbreak control measures by investigation of a varicella outbreak event with a discrete time delay SEIR model. A discrete time delay model was formulated by discretization method based on a continuous SEIR model with the consideration of the time delay effect on latent period and communicable period. The epidemic trend forecast was carried out based on the number of expected cases. The theoretical effect evaluation was assessed by comparing the results from different emergency control measures. Without any control measures, the theoretical attack rate was 30.16% (504/1671). The course of the epidemic lasted for 4 months and the peak epidemic time was 78 days after the onset of the first case. 'Generation' phenomenon had been observed in the course of the epidemic with the interval of two weeks. The actual number of cases was decreased by 89.48% (451/504) compared with the number of expected cases under no control measure scenario. With the rigorous quarantine measure for all cases on their onset day, when the measure was conducted on 0, 14, 28, 42 days after the onset of the first case, the total numbers of expected cases were 22, 59, 127 and 220 respectively. With the quarantine measure conducted on 14 days after the onset of the first case, when the proportion of quarantine was 30%, 50%, 70%, 90%, the total number of expected cases were 485, 457, 386 and 169, respectively. With the emergent vaccination for all persons, when the measure was conducted on 0, 14, 28, 42 days after the onset of the first case, the total numbers of expected cases were 7, 26, 81 and 202 respectively. With the emergent vaccination conducted on 14 days after the onset of the first case, when the immunization coverage rate was 30%, 50%, 70%, 90%, the total numbers of expected cases were 354, 246, 127 and 40, respectively. The number of expected cases can be regarded as the reference to evaluate the effect of control measures. The simulation results suggest that it will get more benefits to conduct control measures earlier in varicella outbreak events, and the effect of emergent vaccination is better than that of quarantine measure under the same conditions.
NASA Astrophysics Data System (ADS)
Brenner, F.; Hoffmann, P.; Marwan, N.
2016-12-01
Infectious diseases are a major threat to human health. The spreading of airborne diseases has become fast and hard to predict. Global air travelling created a network which allows a pathogen to migrate worldwide in only a few days. Pandemics of SARS (2002/03) and H1N1 (2009) have impressively shown the epidemiological danger in a strongly connected world. In this study we simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. We use a regular Susceptible-Infected-Recovered (SIR) model and a modified Susceptible-Exposed-Infected-Recovered (SEIR) compartmental approach with the basis of a complex network built by global air traffic data (from openflights.org). Local Disease propagation is modeled with a global population dataset (from SEDAC and MaxMind) and parameterizations of human behavior regarding mobility, contacts and awareness. As a final component we combine the worldwide outbreak simulation with daily averaged climate data from WATCH-Forcing-Data-ERA-Interim (WFDEI) and Coupled Model Intercomparison Project Phase 5 (CMIP5). Here we focus on Influenza-like illnesses (ILI), whose transmission rate has a dependency on relative humidity and temperature. Even small changes in relative humidity are sufficient to trigger significant differences in the global outbreak behavior. Apart from the direct effect of climate change on the transmission of airborne diseases, there are indirect ramifications that alter spreading patterns. For example seasonal changing human mobility is influenced by climate settings.
An Epidemiological Approach to Terrorism
2006-03-01
poliomyelitis. Joyner and Rogers (2001) and Aylward et al. (1999) discuss this effort and the particular characteristics of the poliovirus that render it a...R0, σ, and R Within an epidemic or endemic SIR (MSEIR, or SEIR) model, R0, the basic reproduction number, is the first threshold number to consider...R/N) R0 Basic reproduction number (or rate) σ Contact number R Replacement number t Time, an independent variable β Average number of adequate
Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.
Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang
2016-01-01
To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.
Efficient Vaccine Distribution Based on a Hybrid Compartmental Model
Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang
2016-01-01
To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible—exposed—infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009–2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics. PMID:27233015
Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination.
Ahmad, Muhammad Dure; Usman, Muhammad; Khan, Adnan; Imran, Mudassar
2016-07-13
The 2014 Ebola epidemic is the largest in history, affecting multiple countries in West Africa. Some isolated cases were also observed in other regions of the world. In this paper, we introduce a deterministic SEIR type model with additional hospitalization, quarantine and vaccination components in order to understand the disease dynamics. Optimal control strategies, both in the case of hospitalization (with and without quarantine) and vaccination are used to predict the possible future outcome in terms of resource utilization for disease control and the effectiveness of vaccination on sick populations. Further, with the help of uncertainty and sensitivity analysis we also have identified the most sensitive parameters which effectively contribute to change the disease dynamics. We have performed mathematical analysis with numerical simulations and optimal control strategies on Ebola virus models. We used dynamical system tools with numerical simulations and optimal control strategies on our Ebola virus models. The original model, which allowed transmission of Ebola virus via human contact, was extended to include imperfect vaccination and quarantine. After the qualitative analysis of all three forms of Ebola model, numerical techniques, using MATLAB as a platform, were formulated and analyzed in detail. Our simulation results support the claims made in the qualitative section. Our model incorporates an important component of individuals with high risk level with exposure to disease, such as front line health care workers, family members of EVD patients and Individuals involved in burial of deceased EVD patients, rather than the general population in the affected areas. Our analysis suggests that in order for R 0 (i.e., the basic reproduction number) to be less than one, which is the basic requirement for the disease elimination, the transmission rate of isolated individuals should be less than one-fourth of that for non-isolated ones. Our analysis also predicts, we need high levels of medication and hospitalization at the beginning of an epidemic. Further, optimal control analysis of the model suggests the control strategies that may be adopted by public health authorities in order to reduce the impact of epidemics like Ebola.
NASA Astrophysics Data System (ADS)
Boulart, C.; Chavagnac, V.; Briais, A.; Revillon, S.; Donval, J. P.; Guyader, V.
2015-12-01
We report on the first evidence for hydrothermal activity along the intermediate-spreading South-East Indian Ridge (SEIR) between Australia and Antarctica (128°E-140°E), discovered during the STORM cruise of R/V L'Atalante. This section of the SEIR is located east of the low-magma Australian-Antarctic Discordance (AAD), where the ridge has the morphology of a slow-spreading mid-ocean ridge despite its intermediate spreading rate of 75 mm/yr. The axial depth decreases eastward, reflecting an eastward increase in magma budget.Using in-situ geochemical tracers based on optical backscatter, temperature, redox potential sensor and in situ mass spectrometer (ISMS) anomalies, we establish the existence of several distinct hydrothermal plumes within the water column along the 500 nautical miles ridge section. At one site, the combination of near-bottom temperature anomalies of 0.1°C together with strong dissolved methane and dissolved carbon dioxide anomalies revealed by the ISMS provides the precise location of an active vent in the Deep Southern Indian Ocean off Tasmania. Hydrothermal venting along the 128°E-140°E section of the SEIR appears to be significant, an observation consistent with the global link between spreading rate and plume occurrence (Baker and German, 2004). Moreover, the plume incidence increases westward and, in the eastern part, hydrothermal venting seems to be less significant, suggesting a possible influence of the high magma budget, as observed in mid-ocean ridge sections affected by hotspots. Future investigation will focus on the direct identification of venting sources and the study of hydrothermal circulation within the specific settings of the AAD. The observation of new venting sites at the frontier between Pacific and Indian Oceans may also provide new insights on the biogeography (diversity and distribution) of hydrothermal fauna. Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges: Hydrothermal Interactions
The past, present and future of cyber-physical systems: a focus on models.
Lee, Edward A
2015-02-26
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Lee, Edward A.
2015-01-01
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486
2011-01-01
Background The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. Methods We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. Results We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. Conclusions These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88 PMID:21771290
Deterministic and stochastic CTMC models from Zika disease transmission
NASA Astrophysics Data System (ADS)
Zevika, Mona; Soewono, Edy
2018-03-01
Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model
Nené, Nuno R.; Dunham, Alistair S.; Illingworth, Christopher J. R.
2018-01-01
A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. PMID:29500183
Guymon, Gary L.; Yen, Chung-Cheng
1990-01-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
NASA Astrophysics Data System (ADS)
Guymon, Gary L.; Yen, Chung-Cheng
1990-07-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
Expansion or extinction: deterministic and stochastic two-patch models with Allee effects.
Kang, Yun; Lanchier, Nicolas
2011-06-01
We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.
3D free-air gravity anomaly modeling for the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina
2016-04-01
In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering the relation between the density and the seismic P-wave velocity VP. We choose the velocity data from the scientific literature. We found that the "layer-cake" model does not explain the measured anomalies satisfyingly and lateral density changes have to be considered for the area beneath the ridge axis. Accordingly we reduced the density values of the lower crust and the upper mantle beneath the axial ridge introducing in the model two additional bodies called partial melted crust and anomalous mantle. Finally we present isobaths maps of the anomalous mantle which highlight the lateral heterogeneity of the oceanic crust beneath the ridge axis. In particular there are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion of the mantle which can lead to the exposure of OCCs.
The relationship between stochastic and deterministic quasi-steady state approximations.
Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R
2015-11-23
The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.
Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.
Nené, Nuno R; Dunham, Alistair S; Illingworth, Christopher J R
2018-05-01
A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. Copyright © 2018 Nené et al.
Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
van den Driessche, P; Yakubu, Abdul-Aziz
2018-04-12
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].
Stochasticity and determinism in models of hematopoiesis.
Kimmel, Marek
2014-01-01
This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.
Stochastic Petri Net extension of a yeast cell cycle model.
Mura, Ivan; Csikász-Nagy, Attila
2008-10-21
This paper presents the definition, solution and validation of a stochastic model of the budding yeast cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a stochastic version of a well-established deterministic model. We describe the procedure followed in defining the SPN model from the deterministic ODE model, a procedure that can be largely automated. The validation of the SPN model is conducted with respect to both the results provided by the deterministic one and the experimental results available from literature. The SPN model catches the behavior of the wild type budding yeast cells and a variety of mutants. We show that the stochastic model matches some characteristics of budding yeast cells that cannot be found with the deterministic model. The SPN model fine-tunes the simulation results, enriching the breadth and the quality of its outcome.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less
The epidemic of Tuberculosis on vaccinated population
NASA Astrophysics Data System (ADS)
Syahrini, Intan; Sriwahyuni; Halfiani, Vera; Meurah Yuni, Syarifah; Iskandar, Taufiq; Rasudin; Ramli, Marwan
2017-09-01
Tuberculosis is an infectious disease which has caused a large number of mortality in Indonesia. This disease is caused by Mycrobacterium tuberculosis. Besides affecting lung, this disease also affects other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. This article discusses the epidemic of tuberculosis through employing the SEIR model. Here, the population is divided into four compartments which are susceptible, exposed, infected and recovered. The susceptible population is further grouped into two which are vaccinated group and unvaccinated group. The behavior of the epidemic is investigated through analysing the equilibrium of the model. The result shows that administering vaccine to the susceptible population contributes to the reduction of the tuberculosis epidemic rate.
NASA Astrophysics Data System (ADS)
Mathieu, L.; Byrne, P. K.; van Wyk de Vries, B.; Moine, B.
2009-12-01
Little work has been done on the tectonics of the emergent areas of the Kerguelen Archipelago, even though the extensive outcrop renders the islands especially good for structural work. The results of two field campaigns and remote sensing analysis carried out in the central part of the archipelago around the Val Travers valley and the Mt Ross volcano are presented. The Archipelago is part of the Kerguelen Plateau, a Large Igneous Province that has developed in the Indian Ocean from the early Cretaceous. It spread along the newly formed SE Indian mid-oceanic ridge (SEIR) during the early Tertiary. The rifting event produced NW-SE, N-S and E-W striking grabens in the plateau that are respectively, parallel to the SEIR, related to sinistral strike-slip movements along the SEIR, and of unknown origin. The Kerguelen Archipelago formed after the rifting event over the plateau but nevertheless, it contains the bulk of structural directions mentioned above. The lavas (Plateau Basalts) that make up most of the area are densely fractured, crossed by many veins and some small faults as well as dykes. The rare faults identified are either normal or affected by sinistral transtensional movements. The fractures have mainly a NW-SE orientation that is consistent with extension related to the SEIR. Dykes, veins and normal faults strike E-W and are related to a dominant N-S directed regional extension. The scarcity of discrete faults contrasts with the density of fractures and other lineaments that appear to cover the bulk of land exposed to remote sensing observations. Such structures were formed by regional deformation too small to produce large discrete faults. We also have found a 20 km-wide polygonal fracture pattern encircling Mt Ross Volcano. This structure could be linked to repeated deflation and inflation of the ground related to a buried intrusive complex. Again, the movements are too small to produce discrete faults. Instead, they produce a polygon of deformation whose edges are parallel to buried rifting faults re-activated by the vertical movements. This work outlines the structure of the central part of the Kerguelen Archipelago that is affected by regional stresses and is imprinted by local tectonic structures related to intrusive activity. Kerguelen provides a structural situation that can be compared with Iceland and also with volcano-tectonic structures on other planets.
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Cognitive Diagnostic Analysis Using Hierarchically Structured Skills
ERIC Educational Resources Information Center
Su, Yu-Lan
2013-01-01
This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M
2016-12-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.
Detecting nonlinearity and chaos in epidemic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellner, S.; Gallant, A.R.; Theiler, J.
1993-08-01
Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude ofmore » epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.« less
Liu, Tao; Zhu, Guanghu; He, Jianfeng; Song, Tie; Zhang, Meng; Lin, Hualiang; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Li, Zhihao; Xie, Runsheng; Zhong, Haojie; Wu, Xiaocheng; Hu, Wenbiao; Zhang, Yonghui; Ma, Wenjun
2017-08-02
Dengue fever is a severe public heath challenge in south China. A dengue outbreak was reported in Chaozhou city, China in 2015. Intensified interventions were implemented by the government to control the epidemic. However, it is still unknown the degree to which intensified control measures reduced the size of the epidemics, and when should such measures be initiated to reduce the risk of large dengue outbreaks developing? We selected Xiangqiao district as study setting because the majority of the indigenous cases (90.6%) in Chaozhou city were from this district. The numbers of daily indigenous dengue cases in 2015 were collected through the national infectious diseases and vectors surveillance system, and daily Breteau Index (BI) data were reported by local public health department. We used a compartmental dynamic SEIR (Susceptible, Exposed, Infected and Removed) model to assess the effectiveness of control interventions, and evaluate the control effect of intervention timing on dengue epidemic. A total of 1250 indigenous dengue cases was reported from Xiangqiao district. The results of SEIR modeling using BI as an indicator of actual control interventions showed a total of 1255 dengue cases, which is close to the reported number (n = 1250). The size and duration of the outbreak were highly sensitive to the intensity and timing of interventions. The more rigorous and earlier the control interventions implemented, the more effective it yielded. Even if the interventions were initiated several weeks after the onset of the dengue outbreak, the interventions were shown to greatly impact the prevalence and duration of dengue outbreak. This study suggests that early implementation of rigorous dengue interventions can effectively reduce the epidemic size and shorten the epidemic duration.
Weinberg, Seth H.; Smith, Gregory D.
2012-01-01
Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597
NASA Astrophysics Data System (ADS)
Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok
2017-07-01
Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
ERIC Educational Resources Information Center
Richey, Nancy, Ed.; Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Guerrero, Jeanne, Ed.; Thrift, Beth, Ed.; Holton, Brook, Ed.
2001-01-01
This document contains five issues of "NewsWire," a newsletter created for the SouthEast and Islands Regional Technology in Education Consortium (SEIR-TEC). Topics addressed in these issues include: leadership and educational technology; technology program development; resources for teaching and learning with technology; U.S. Department of…
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Deterministic models for traffic jams
NASA Astrophysics Data System (ADS)
Nagel, Kai; Herrmann, Hans J.
1993-10-01
We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.
Modelling fast spreading patterns of airborne infectious diseases using complex networks
NASA Astrophysics Data System (ADS)
Brenner, Frank; Marwan, Norbert; Hoffmann, Peter
2017-04-01
The pandemics of SARS (2002/2003) and H1N1 (2009) have impressively shown the potential of epidemic outbreaks of infectious diseases in a world that is strongly connected. Global air travelling established an easy and fast opportunity for pathogens to migrate globally in only a few days. This made epidemiological prediction harder. By understanding this complex development and its link to climate change we can suggest actions to control a part of global human health affairs. In this study we combine the following data components to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human: em{Global Air Traffic Network (from openflights.org) with information on airports, airport location, direct flight connection, airplane type} em{Global population dataset (from SEDAC, NASA)} em{Susceptible-Infected-Recovered (SIR) compartmental model to simulate disease spreading in the vicinity of airports. A modified Susceptible-Exposed-Infected-Recovered (SEIR) model to analyze the impact of the incubation period.} em{WATCH-Forcing-Data-ERA-Interim (WFDEI) climate data: temperature, specific humidity, surface air pressure, and water vapor pressure} These elements are implemented into a complex network. Nodes inside the network represent airports. Each single node is equipped with its own SIR/SEIR compartmental model with node specific attributes. Edges between those nodes represent direct flight connections that allow infected individuals to move between linked nodes. Therefore the interaction of the set of unique SIR models creates the model dynamics we will analyze. To better figure out the influence on climate change on disease spreading patterns, we focus on Influenza-like-Illnesses (ILI). The transmission rate of ILI has a dependency on climate parameters like humidity and temperature. Even small changes of environmental variables can trigger significant differences in the global outbreak behavior. Apart from the direct effect of climate change on the transmission of airborne diseases, there are indirect ramifications that alter spreading patterns. An example is seasonal human mobility behavior which will change with varied climate conditions. The direct and indirect effects of climate change on disease spreading patterns will be discussed in this study.
On the origin of the super-spreading events in the SARS epidemic
NASA Astrophysics Data System (ADS)
Fang, Haiping; Chen, Jixiu; Hu, Jun; Xu, Lisa X.
2004-10-01
"Super-spread events" (SSEs), which have been observed in Singapore, Hong Kong in China and many cities all over the world, usually have a large influence on the early course of the epidemics. The understanding of these SSEs is critical to the containment of SARS. In this letter it is shown that the possibility of SSEs is still high enough even when the virulences are equal for all the infective individuals, based on a simple spatial-relevant Monte Carlo model (SEIR). The long latent periods play a critical role in the appearance of SSEs. The heterogeneity of the activities of infective cases can also increase the possibility.
Realistic Simulation for Body Area and Body-To-Body Networks
Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D’Errico, Raffaele
2016-01-01
In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices. PMID:27104537
Realistic Simulation for Body Area and Body-To-Body Networks.
Alam, Muhammad Mahtab; Ben Hamida, Elyes; Ben Arbia, Dhafer; Maman, Mickael; Mani, Francesco; Denis, Benoit; D'Errico, Raffaele
2016-04-20
In this paper, we present an accurate and realistic simulation for body area networks (BAN) and body-to-body networks (BBN) using deterministic and semi-deterministic approaches. First, in the semi-deterministic approach, a real-time measurement campaign is performed, which is further characterized through statistical analysis. It is able to generate link-correlated and time-varying realistic traces (i.e., with consistent mobility patterns) for on-body and body-to-body shadowing and fading, including body orientations and rotations, by means of stochastic channel models. The full deterministic approach is particularly targeted to enhance IEEE 802.15.6 proposed channel models by introducing space and time variations (i.e., dynamic distances) through biomechanical modeling. In addition, it helps to accurately model the radio link by identifying the link types and corresponding path loss factors for line of sight (LOS) and non-line of sight (NLOS). This approach is particularly important for links that vary over time due to mobility. It is also important to add that the communication and protocol stack, including the physical (PHY), medium access control (MAC) and networking models, is developed for BAN and BBN, and the IEEE 802.15.6 compliance standard is provided as a benchmark for future research works of the community. Finally, the two approaches are compared in terms of the successful packet delivery ratio, packet delay and energy efficiency. The results show that the semi-deterministic approach is the best option; however, for the diversity of the mobility patterns and scenarios applicable, biomechanical modeling and the deterministic approach are better choices.
The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...
This talk supports the NGAM workshop and webinar seires and prepares for NGAM 2 The Next Generation Air Monitoring (NGAM) webinar and workshop series captures the revolution in air pollution measurement science enabled by rapid advances in sensors, communication...
Using stochastic models to incorporate spatial and temporal variability [Exercise 14
Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke
2003-01-01
To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...
Stochastic and deterministic models for agricultural production networks.
Bai, P; Banks, H T; Dediu, S; Govan, A Y; Last, M; Lloyd, A L; Nguyen, H K; Olufsen, M S; Rempala, G; Slenning, B D
2007-07-01
An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.
Characterizing Uncertainty and Variability in PBPK Models ...
Mode-of-action based risk and safety assessments can rely upon tissue dosimetry estimates in animals and humans obtained from physiologically-based pharmacokinetic (PBPK) modeling. However, risk assessment also increasingly requires characterization of uncertainty and variability; such characterization for PBPK model predictions represents a continuing challenge to both modelers and users. Current practices show significant progress in specifying deterministic biological models and the non-deterministic (often statistical) models, estimating their parameters using diverse data sets from multiple sources, and using them to make predictions and characterize uncertainty and variability. The International Workshop on Uncertainty and Variability in PBPK Models, held Oct 31-Nov 2, 2006, sought to identify the state-of-the-science in this area and recommend priorities for research and changes in practice and implementation. For the short term, these include: (1) multidisciplinary teams to integrate deterministic and non-deterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through more complete documentation of the model structure(s) and parameter values, the results of sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include: (1) theoretic and practical methodological impro
Estimating the epidemic threshold on networks by deterministic connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu; Fu, Xinchu
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect thanmore » those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.« less
NASA Astrophysics Data System (ADS)
Dutkiewicz, Adriana; Müller, Dietmar; Hogg, Andrew; Spence, Paul
2017-04-01
Understanding the transport of modern deep-sea sediment is critical for accurate models of climate-ocean history and the widespread use of the sedimentological record as a proxy for productivity where the connection between biogenic seafloor lithologies and sea-surface is tenuous. The Southern Ocean, where diatoms contribute the bulk of pelagic material to the seafloor forming an extensive belt of diatom ooze, is an exemplar. However, most of the key studies on large-scale sediment reworking in the Southern Ocean were conducted in the 1970s when relatively little was known about the oceanography of this region. At this time even our knowledge of the bathymetry and tectonic fabric, which underpin the distribution of deep-sea currents, were fairly general. The record of widespread regional disconformities in the abyssal plains of the Southern Ocean is well-established and indicates extensive erosion of deep-sea sediments throughout the Quaternary. Here we combine a high-resolution numerical model of bottom currents with sedimentological data to constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges in the Southern Ocean. We use the global ocean-sea ice model (GFDL-MOM01) to simulate ocean circulation at a resolution that results in realistic velocities throughout the water column, and is ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry. 230Th-normalized vertical sediment rain rates for 63 sites in the Southeast Indian Ocean, combined with satellite data-derived surface productivity, demonstrate that a wide belt of fast sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our ocean circulation model illustrates that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These currents transport sediment towards and along the SEIR and through leaky fracture zones to regions where bottom currents speeds drop to < 0.03 m/s and fine particles settle out of suspension. We suggest that the anomalously high sedimentation rates along an 8,000 km-long segment of the SEIR represent a giant Pliocene-Holocene succession of contourite drifts. It is a major extension of the much smaller contourite east of Kerguelen and has accumulated since 3-5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean. Understanding and quantifying the link between bottom current activity and sediment transport is critical for paleooceanographic and palaeoclimatic reconstructions and for understanding the history of current flow. Dutkiewicz, A., Müller, R.D., Hogg, A. McC., and Spence, P., 2016, Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean, Geology, 44, 663-666, DOI: 10.1130/G38143.1
Effect of sample volume on metastable zone width and induction time
NASA Astrophysics Data System (ADS)
Kubota, Noriaki
2012-04-01
The metastable zone width (MSZW) and the induction time, measured for a large sample (say>0.1 L) are reproducible and deterministic, while, for a small sample (say<1 mL), these values are irreproducible and stochastic. Such behaviors of MSZW and induction time were theoretically discussed both with stochastic and deterministic models. Equations for the distribution of stochastic MSZW and induction time were derived. The average values of stochastic MSZW and induction time both decreased with an increase in sample volume, while, the deterministic MSZW and induction time remained unchanged. Such different behaviors with variation in sample volume were explained in terms of detection sensitivity of crystallization events. The average values of MSZW and induction time in the stochastic model were compared with the deterministic MSZW and induction time, respectively. Literature data reported for paracetamol aqueous solution were explained theoretically with the presented models.
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Lucas-Borja, M E; Ahrazem, O; Candel-Pérez, D; Moya, D; Fonseca, T; Hernández Tecles, E; De Las Heras, J; Gómez-Gómez, L
2016-12-01
The management of maritime pine in fire-prone habitats is a challenging task and fine-scale population genetic analyses are necessary to check if different fire recurrences affect genetic variability. The objective of this study was to assess the effect of fire recurrence on maritime pine genetic diversity using inter-simple sequence repeat markers (ISSR). Three maritime pine (Pinus pinaster Ait.) populations from Northern Portugal were chosen to characterize the genetic variability among populations. In relation to fire recurrence, Seirós population was affected by fire both in 1990 and 2005 whereas Vila Seca-2 population was affected by fire just in 2005. The Vila Seca-1 population has been never affected by fire. Our results showed the highest Nei's genetic diversity (He=0.320), Shannon information index (I=0.474) and polymorphic loci (PPL=87.79%) among samples from twice burned populations (Seirós site). Thus, fire regime plays an important role affecting genetic diversity in the short-term, although not generating maritime pine genetic erosion. Copyright © 2016 Elsevier B.V. All rights reserved.
Deterministic and stochastic models for middle east respiratory syndrome (MERS)
NASA Astrophysics Data System (ADS)
Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning
2018-03-01
World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.
Aspen succession in the Intermountain West: A deterministic model
Dale L. Bartos; Frederick R. Ward; George S. Innis
1983-01-01
A deterministic model of succession in aspen forests was developed using existing data and intuition. The degree of uncertainty, which was determined by allowing the parameter values to vary at random within limits, was larger than desired. This report presents results of an analysis of model sensitivity to changes in parameter values. These results have indicated...
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
NASA Astrophysics Data System (ADS)
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
NASA Astrophysics Data System (ADS)
Hanan, B. B.; Graham, D. W.; Hemond, C.; Dufour, F.; Briais, A.; Ceuleneer, G.; Maia, M.; Park, S. H.; Revillon, S.; Yang, Y. S.
2017-12-01
We present data for glassy basalts from 37 localities along the spreading axis of the Southeast Indian Ridge (SEIR) between 126°-140°E, eastward of the Australian-Antarctic Discordance (AAD). Each of the five ridge segments (A1 to A5, west to east) show well-defined major element trends. An isotopic and negative axial depth anomaly is present, centered on the overlapping tips of segments A3 and A4 at 135°E. Segment A4 basalts have distinct radiogenic Pb and He isotopes plus enriched MORB-like ɛHf, relative to segments to the west and east. Crystal fractionation is more extensive at the A3 and A5 overlapping segment tips adjacent to A4, and decreases both to the west and east. The along axis pattern suggests a mantle heterogeneity located beneath the A3-A4 segments. Pb-Pb isotopic co-variations for the 5 segments define two linear arrays, with a western trend (A1-A3) and an eastern trend (A4-A5) that intersects it at the composition of the anomalous A4 segment, at a 206Pb/204Pb 19. The western trend has higher 208Pb/204Pb for a given 206Pb/204Pb, revealing a gradient in the asthenosphere, with Δ208Pb/204Pb decreasing to the east away from the AAD. Overall, 206,207,208Pb/204Pb and 4He/3He of the A4 anomaly define trends that vector toward the fields for Cenozoic lavas from west Antarctica (Marie Byrd Land and Balleny Islands). West Antarctica has a history of mantle plume underplating and lithosphere modification by subduction [1,2], and there is a broad seismic anomaly below 250 km underlying the West Antarctic Rift system [3]. Our data supports a model in which flow of underplated material plus lithosphere may be guided by the underside topography of the lithosphere beneath the Transantarctic mountains. This flow emerges from beneath east Antarctica, where it leads to volcanism in the Balleny Islands [4]. The material apparently continues to flow northward to the SEIR at 135°E. The geochemical anomaly beneath Zone A is potentially explained by the presence of this residual plume/mobilized lithospheric material in the subridge mantle of the SEIR. [1] Hart et al., 1997, Chem Geol 139; [2] Aviado et al. 2015, G3 16; [3] Moelli and Danesi, 2004, GPC 42; [4] Sleep, 2006, ESR 77.
Price-Dynamics of Shares and Bohmian Mechanics: Deterministic or Stochastic Model?
NASA Astrophysics Data System (ADS)
Choustova, Olga
2007-02-01
We apply the mathematical formalism of Bohmian mechanics to describe dynamics of shares. The main distinguishing feature of the financial Bohmian model is the possibility to take into account market psychology by describing expectations of traders by the pilot wave. We also discuss some objections (coming from conventional financial mathematics of stochastic processes) against the deterministic Bohmian model. In particular, the objection that such a model contradicts to the efficient market hypothesis which is the cornerstone of the modern market ideology. Another objection is of pure mathematical nature: it is related to the quadratic variation of price trajectories. One possibility to reply to this critique is to consider the stochastic Bohm-Vigier model, instead of the deterministic one. We do this in the present note.
Oceanic magmatic evolution during ocean opening under influence of mantle plume
NASA Astrophysics Data System (ADS)
Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya
2015-04-01
Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume influence on the SEIR formation occurred 70-50 mln years ago, when the process of primary magma generation happened at high degrees of melting (up to 30%), which is not typical for spreading ridges of the Atlantic and Pacific Oceans. According to geochemical characteristics of the Kerguelen Plateau and SEIR magma sources close to each other, and have an enriched source of more typical for Kerguelen plume magmas and diluted by depleted substance for SEIR melts. Appearance of magmatism on the Antarctic margin about 56 thousand years ago, in the form of a stratovolcano Gaussberg indicates sublithospheric Kerguelen plume distribution in the south-west direction. The source of primary magmas (lamproite composition) is an ancient Gondwana lithosphere, has undergone repeated changes in the early stages of evolution during which it was significantly enriched in volatile and lithophile elements, and radiogenic Sr and Pb.
Tularosa Basin Play Fairway Analysis Data and Models
Nash, Greg
2017-07-11
This submission includes raster datasets for each layer of evidence used for weights of evidence analysis as well as the deterministic play fairway analysis (PFA). Data representative of heat, permeability and groundwater comprises some of the raster datasets. Additionally, the final deterministic PFA model is provided along with a certainty model. All of these datasets are best used with an ArcGIS software package, specifically Spatial Data Modeler.
A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.
Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S
2017-09-01
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.
Combining Deterministic structures and stochastic heterogeneity for transport modeling
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg
2017-04-01
Contaminant transport in highly heterogeneous aquifers is extremely challenging and subject of current scientific debate. Tracer plumes often show non-symmetric but highly skewed plume shapes. Predicting such transport behavior using the classical advection-dispersion-equation (ADE) in combination with a stochastic description of aquifer properties requires a dense measurement network. This is in contrast to the available information for most aquifers. A new conceptual aquifer structure model is presented which combines large-scale deterministic information and the stochastic approach for incorporating sub-scale heterogeneity. The conceptual model is designed to allow for a goal-oriented, site specific transport analysis making use of as few data as possible. Thereby the basic idea is to reproduce highly skewed tracer plumes in heterogeneous media by incorporating deterministic contrasts and effects of connectivity instead of using unimodal heterogeneous models with high variances. The conceptual model consists of deterministic blocks of mean hydraulic conductivity which might be measured by pumping tests indicating values differing in orders of magnitudes. A sub-scale heterogeneity is introduced within every block. This heterogeneity can be modeled as bimodal or log-normal distributed. The impact of input parameters, structure and conductivity contrasts is investigated in a systematic manor. Furthermore, some first successful implementation of the model was achieved for the well known MADE site.
Modeling the within-host dynamics of cholera: bacterial-viral interaction.
Wang, Xueying; Wang, Jin
2017-08-01
Novel deterministic and stochastic models are proposed in this paper for the within-host dynamics of cholera, with a focus on the bacterial-viral interaction. The deterministic model is a system of differential equations describing the interaction among the two types of vibrios and the viruses. The stochastic model is a system of Markov jump processes that is derived based on the dynamics of the deterministic model. The multitype branching process approximation is applied to estimate the extinction probability of bacteria and viruses within a human host during the early stage of the bacterial-viral infection. Accordingly, a closed-form expression is derived for the disease extinction probability, and analytic estimates are validated with numerical simulations. The local and global dynamics of the bacterial-viral interaction are analysed using the deterministic model, and the result indicates that there is a sharp disease threshold characterized by the basic reproduction number [Formula: see text]: if [Formula: see text], vibrios ingested from the environment into human body will not cause cholera infection; if [Formula: see text], vibrios will grow with increased toxicity and persist within the host, leading to human cholera. In contrast, the stochastic model indicates, more realistically, that there is always a positive probability of disease extinction within the human host.
Parallel Stochastic discrete event simulation of calcium dynamics in neuron.
Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W
2017-09-26
The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.
Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model
NASA Astrophysics Data System (ADS)
Azizah, Afina; Widyaningsih, Purnami; Retno Sari Saputro, Dewi
2017-06-01
Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEIIhR) model has been derived. The aims of this research are to derive SEIIhR model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEIIhR model on Ebola epidemic in Sierra Leone in 2014. The SEIIhR model is a differential equation system. Pattern of ebola disease spread with SEIIhR model is solution of the differential equation system. The equilibrium point of SEIIhR model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point (Se; Ee; Ie; Ihe; Re )=(5743865, 0, 0, 0, 0) is stable.
Parameter Estimation in Epidemiology: from Simple to Complex Dynamics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico
2011-09-01
We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.
The Diffusion Model Is Not a Deterministic Growth Model: Comment on Jones and Dzhafarov (2014)
Smith, Philip L.; Ratcliff, Roger; McKoon, Gail
2015-01-01
Jones and Dzhafarov (2014) claim that several current models of speeded decision making in cognitive tasks, including the diffusion model, can be viewed as special cases of other general models or model classes. The general models can be made to match any set of response time (RT) distribution and accuracy data exactly by a suitable choice of parameters and so are unfalsifiable. The implication of their claim is that models like the diffusion model are empirically testable only by artificially restricting them to exclude unfalsifiable instances of the general model. We show that Jones and Dzhafarov’s argument depends on enlarging the class of “diffusion” models to include models in which there is little or no diffusion. The unfalsifiable models are deterministic or near-deterministic growth models, from which the effects of within-trial variability have been removed or in which they are constrained to be negligible. These models attribute most or all of the variability in RT and accuracy to across-trial variability in the rate of evidence growth, which is permitted to be distributed arbitrarily and to vary freely across experimental conditions. In contrast, in the standard diffusion model, within-trial variability in evidence is the primary determinant of variability in RT. Across-trial variability, which determines the relative speed of correct responses and errors, is theoretically and empirically constrained. Jones and Dzhafarov’s attempt to include the diffusion model in a class of models that also includes deterministic growth models misrepresents and trivializes it and conveys a misleading picture of cognitive decision-making research. PMID:25347314
On the usage of ultrasound computational models for decision making under ambiguity
NASA Astrophysics Data System (ADS)
Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron
2018-04-01
Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.
IDA Publications on Irregular Warfare: A Bibliography 2000 - Fall 2008
2008-12-01
Affairs Insurgency Quds Force Civil Military Insurrection Radical Islam Civil Services Interagency Reconciliation Coalition Intifada Reconstruction...decision-making. While the reports have not been formally released, the database has been shared on a regular basis with other agencies and Services ...ACT ID A PUBLICATION NO. & L IMITATIONS PUBLICATION YEAR individuals. The objective SEIR curves characterize health care and mortuary service
({The) Solar System Large Planets influence on a new Maunder Miniμm}
NASA Astrophysics Data System (ADS)
Yndestad, Harald; Solheim, Jan-Erik
2016-04-01
In 1890´s G. Spörer and E. W. Maunder (1890) reported that the solar activity stopped in a period of 70 years from 1645 to 1715. Later a reconstruction of the solar activity confirms the grand minima Maunder (1640-1720), Spörer (1390-1550), Wolf (1270-1340), and the minima Oort (1010-1070) and Dalton (1785-1810) since the year 1000 A.D. (Usoskin et al. 2007). These minimum periods have been associated with less irradiation from the Sun and cold climate periods on Earth. An identification of a three grand Maunder type periods and two Dalton type periods in a period thousand years, indicates that sooner or later there will be a colder climate on Earth from a new Maunder- or Dalton- type period. The cause of these minimum periods, are not well understood. An expected new Maunder-type period is based on the properties of solar variability. If the solar variability has a deterministic element, we can estimate better a new Maunder grand minimum. A random solar variability can only explain the past. This investigation is based on the simple idea that if the solar variability has a deterministic property, it must have a deterministic source, as a first cause. If this deterministic source is known, we can compute better estimates the next expected Maunder grand minimum period. The study is based on a TSI ACRIM data series from 1700, a TSI ACRIM data series from 1000 A.D., sunspot data series from 1611 and a Solar Barycenter orbit data series from 1000. The analysis method is based on a wavelet spectrum analysis, to identify stationary periods, coincidence periods and their phase relations. The result shows that the TSI variability and the sunspots variability have deterministic oscillations, controlled by the large planets Jupiter, Uranus and Neptune, as the first cause. A deterministic model of TSI variability and sunspot variability confirms the known minimum and grand minimum periods since 1000. From this deterministic model we may expect a new Maunder type sunspot minimum period from about 2018 to 2055. The deterministic model of a TSI ACRIM data series from 1700 computes a new Maunder type grand minimum period from 2015 to 2071. A model of the longer TSI ACRIM data series from 1000 computes a new Dalton to Maunder type minimum irradiation period from 2047 to 2068.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Li, Qingze; Pan, Jianxin
2018-06-01
Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.
Impacts of Considering Climate Variability on Investment Decisions in Ethiopia
NASA Astrophysics Data System (ADS)
Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.
2005-12-01
In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.
NASA Astrophysics Data System (ADS)
Ramos, José A.; Mercère, Guillaume
2016-12-01
In this paper, we present an algorithm for identifying two-dimensional (2D) causal, recursive and separable-in-denominator (CRSD) state-space models in the Roesser form with deterministic-stochastic inputs. The algorithm implements the N4SID, PO-MOESP and CCA methods, which are well known in the literature on 1D system identification, but here we do so for the 2D CRSD Roesser model. The algorithm solves the 2D system identification problem by maintaining the constraint structure imposed by the problem (i.e. Toeplitz and Hankel) and computes the horizontal and vertical system orders, system parameter matrices and covariance matrices of a 2D CRSD Roesser model. From a computational point of view, the algorithm has been presented in a unified framework, where the user can select which of the three methods to use. Furthermore, the identification task is divided into three main parts: (1) computing the deterministic horizontal model parameters, (2) computing the deterministic vertical model parameters and (3) computing the stochastic components. Specific attention has been paid to the computation of a stabilised Kalman gain matrix and a positive real solution when required. The efficiency and robustness of the unified algorithm have been demonstrated via a thorough simulation example.
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Lecoq, N.
2018-02-01
In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.
Tectonics at the Southeast Indian Ridge 79 to 99 E. Results from the GEISEIR cruises
NASA Astrophysics Data System (ADS)
Briais, A.; Hemond, C.; Maia, M. A.; Hanan, B. B.; Graham, D. W.; Geiseir Scientific Team; Geiseir2 Scientific Team
2011-12-01
During the GEISEIR (Géochimie Isotopique de la SEIR) and GEISEIR2 cruises on N/O Marion Dufresne in 2009 and 2010, we collected geophysical data, high-density wax-core or dredge basalt samples, and water column profiles along the Southeast Indian Ridge (SEIR) between 79E and 99E. This section of the intermediate-spreading SEIR is located between the St Paul-Amsterdam hotspot plateau and the Australia-Antarctic Discordance. We completed the multibeam bathymetry mapping of the axis and transform faults of the 79-88E and the 96-99E sections, and mapped the axial zone and discontinuities of the 88-96E section up to 800 kyr. These ridge sections were sampled at 20 km, 5 km and 10 km spacing, respectively. This presentation focusses on the results of a structural and geophysical analysis of the axial domain and the off-axis area up to 800 kyr. We merged the bathymetry data collected during the GEISEIR and GEISEIR2 cruises with those of the previous (Westward 9 and 10 and Boomerang 6) cruises. We also compiled the shipborne gravity data and estimated mantle Bouguer anomalies (MBA). The ridge displays large variations in axial depth and morphology, from a rifted axial high to an axial valley, at the scale of ridge segments. Ridge offsets vary in morphology from overlapping-spreading centers, to propagating rifts, to transform faults. Shalllow segments have pronounced axial MBA lows, probably resulting from a thicker ocean crust, and the presence of hotter mantle beneath the ridge axis. Water-column profiling at each wax-core sampling site reveals numerous moderate to strong signals of hydrothermal activity. The distribution of the hydrothermal vent signals does not always coincide with the magmatic robustness of the ridge axis, suggesting that tectonic activity also controls the vent setting. The recent evolution of the ridge discontinuities is marked by southeastward propagators at 92E and 95E, and by the eastward migration of the 96E transform fault. These areas correspond to relatively high MBA suggestive of thin crust. Some transform faults also appear to have changed orientation, and show intra-transform ridges suggestive of compressive deformation. The ridge flanks show large off-axis seamounts and seamount chains, clearly observed in the satellite-derived gravity maps. We mapped and sampled some of these seamounts. The ridge sections showing the most robust morphology are sometimes associated with off-axis seamounts, but some seamounts also occur close to relatively starved axial areas. These structural and geophysical observations of the SEIR suggest a much larger variety of ridge processes and discontinuity evolution than predicted from the intermediate-spreading rate quasi-constant along the surveyed axis. GEISEIR cruise scientific team: Claire Bassoulet, Dass Bissessur, Erwan Cambrai, Mathieu Clog, Céline Dantas, Ludovic Menjot, Emanuele Paganelli, Fabienne de Parseval, Marc Ulrich. GEISEIR2 cruise scientific team: Erwan Cambrai, Romain Chateau, Cédric Hamelin, Jabrane Labidi, Maximilliano Melchiorre, Ludovic Menjot, Emanuele Paganelli.
Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain.
Guinat, C; Gubbins, S; Vergne, T; Gonzales, J L; Dixon, L; Pfeiffer, D U
2016-01-01
African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R 0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R 0 is 2·8 [95% confidence interval (CI) 1·3-4·8] within a pen and 1·4 (95% CI 0·6-2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.
Stochastic simulations on a model of circadian rhythm generation.
Miura, Shigehiro; Shimokawa, Tetsuya; Nomura, Taishin
2008-01-01
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.
NASA Astrophysics Data System (ADS)
Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann
2012-11-01
We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.
Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.
Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar
2016-01-01
We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.
The threshold of a stochastic delayed SIR epidemic model with temporary immunity
NASA Astrophysics Data System (ADS)
Liu, Qun; Chen, Qingmei; Jiang, Daqing
2016-05-01
This paper is concerned with the asymptotic properties of a stochastic delayed SIR epidemic model with temporary immunity. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. The threshold between persistence in the mean and extinction of the epidemic is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.
A queuing model for road traffic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.
We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.
Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.
Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M
2012-01-01
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.
Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.
2012-04-23
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less
Preliminary Results from an Hydroacoustic Experiment in the Indian Ocean
NASA Astrophysics Data System (ADS)
Royer, J.; Dziak, R. P.; Delatre, M.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstiehl, D. R.; Guinet, C.; Samaran, F.
2008-12-01
We report initial results from a 14-month hydroacoustic experiment in the Indian Ocean conducted by CNRS/University of Brest and NOAA/Oregon State University. The objective was to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones, moored in the SOFAR channel, were deployed in October 2006 and recovered early 2008 by R/V Marion Dufresne, in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. Our temporary network detected more than 2000 events. Inside the array, we located 592 events (compared to 49 in the NEIC earthquake catalog) with location errors less than 5 km and time error less than 2s. The hydrophone array detected on average 5 to 40 times more events per month than land-based networks. First-order observations indicate that hydroacoustic seismicity along the Southeast Indian ridge (SEIR) occurs predominantly along the transform faults. The Southwest Indian Ridge exhibits some periodicity in earthquake activity between adjacent ridge segments. Two large tectonic/volcanic earthquake swarms are observed along the Central Indian Ridge (near the triple junction) in September and December 2007. Moreover, many off ridge-axis events are also observed both south and north of the SEIR axis. Improved localization using the CTBTO records will help refine these preliminary results and further investigate extended volcanic sequences along the SEIR east of 80°E and other events outside of the temporary array. The records also display numerous vocalizations of baleen whales in the 20-40Hz bandwidth. The calls are attributed to fin whales, Antarctic blue whales and pygmy blue whales of Madagascar and Australian type. Their vocal activity is found to be highly seasonal, occurring mainly from April to October with subspecies variations. This array thus provides a unique data set to improve our understanding of the seismic activity in this region and to establish the occurrence and migration pattern of critically endangered whale species.
Hahl, Sayuri K; Kremling, Andreas
2016-01-01
In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still expected to provide relevant indications on the underlying dynamics.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Yin, Shen; Gao, Huijun; Qiu, Jianbin; Kaynak, Okyay
2017-11-01
Data-driven fault detection plays an important role in industrial systems due to its applicability in case of unknown physical models. In fault detection, disturbances must be taken into account as an inherent characteristic of processes. Nevertheless, fault detection for nonlinear processes with deterministic disturbances still receive little attention, especially in data-driven field. To solve this problem, a just-in-time learning-based data-driven (JITL-DD) fault detection method for nonlinear processes with deterministic disturbances is proposed in this paper. JITL-DD employs JITL scheme for process description with local model structures to cope with processes dynamics and nonlinearity. The proposed method provides a data-driven fault detection solution for nonlinear processes with deterministic disturbances, and owns inherent online adaptation and high accuracy of fault detection. Two nonlinear systems, i.e., a numerical example and a sewage treatment process benchmark, are employed to show the effectiveness of the proposed method.
Deterministic Mean-Field Ensemble Kalman Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.
A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments
NASA Astrophysics Data System (ADS)
Gokhale, Sharad; Khare, Mukesh
Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).
Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-03-17
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-01-01
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885
Influence of Population Immunosuppression and Past Vaccination on Smallpox Reemergence
MacIntyre, C. Raina; Chen, Xin; Segelov, Eva; Chughtai, Abrar Ahmad; Kelleher, Anthony; Kunasekaran, Mohana; Lane, John Michael
2018-01-01
We built a SEIR (susceptible, exposed, infected, recovered) model of smallpox transmission for New York, New York, USA, and Sydney, New South Wales, Australia, that accounted for age-specific population immunosuppression and residual vaccine immunity and conducted sensitivity analyses to estimate the effect these parameters might have on smallpox reemergence. At least 19% of New York’s and 17% of Sydney’s population are immunosuppressed. The highest smallpox infection rates were in persons 0–19 years of age, but the highest death rates were in those >45 years of age. Because of the low level of residual vaccine immunity, immunosuppression was more influential than vaccination on death and infection rates in our model. Despite widespread smallpox vaccination until 1980 in New York, smallpox outbreak severity appeared worse in New York than in Sydney. Immunosuppression is highly prevalent and should be considered in future smallpox outbreak models because excluding this factor probably underestimates death and infection rates. PMID:29553311
A multi-scale problem arising in a model of avian flu virus in a seabird colony
NASA Astrophysics Data System (ADS)
Clancy, C. F.; O'Callaghan, M. J. A.; Kelly, T. C.
2006-12-01
Understanding the dynamics of epidemics of novel pathogens such as the H5N1 strain of avian influenza is of crucial importance to public and veterinary health as well as wildlife ecology. We model the effect of a new virus on a seabird colony, where no pre-existing Herd Immunity exists. The seabirds in question are so-called K-strategists, i.e. they have a relatively long life expectancy and very low reproductive output. They live in isolated colonies which typically contain tens of thousands of birds. These densely populated colonies, with so many birds competing for nesting space, would seem to provide perfect conditions for the entry and spread of an infection. Yet there are relatively few reported cases of epidemics among these seabirds. We develop a SEIR model which incorporates some of the unusual features of seabird population biology and examine the effects of introducing a pathogen into the colony.
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.
Gomez, Christophe; Hartung, Niklas
2018-01-01
Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.
Robust Sensitivity Analysis for Multi-Attribute Deterministic Hierarchical Value Models
2002-03-01
such as weighted sum method, weighted 5 product method, and the Analytic Hierarchy Process ( AHP ). This research focuses on only weighted sum...different groups. They can be termed as deterministic, stochastic, or fuzzy multi-objective decision methods if they are classified according to the...weighted product model (WPM), and analytic hierarchy process ( AHP ). His method attempts to identify the most important criteria weight and the most
Dynamic analysis of a stochastic rumor propagation model
NASA Astrophysics Data System (ADS)
Jia, Fangju; Lv, Guangying
2018-01-01
The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. In this paper, we are concerned with a stochastic rumor propagation model. Sufficient conditions for extinction and persistence in the mean of the rumor are established. The threshold between persistence in the mean and extinction of the rumor is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.
NASA Astrophysics Data System (ADS)
Sinner, K.; Teasley, R. L.
2016-12-01
Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling
Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato
2014-01-01
The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework. PMID:26713449
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.
Role of demographic stochasticity in a speciation model with sexual reproduction
NASA Astrophysics Data System (ADS)
Lafuerza, Luis F.; McKane, Alan J.
2016-03-01
Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.
Robust planning of dynamic wireless charging infrastructure for battery electric buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaocai; Song, Ziqi
Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less
Robust planning of dynamic wireless charging infrastructure for battery electric buses
Liu, Zhaocai; Song, Ziqi
2017-10-01
Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less
Multi-parametric variational data assimilation for hydrological forecasting
NASA Astrophysics Data System (ADS)
Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.
2017-12-01
Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.
Martinez, Alexander S.; Faist, Akasha M.
2016-01-01
Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333
NASA Astrophysics Data System (ADS)
Wang, Fengyu
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
Study on the evaluation method for fault displacement based on characterized source model
NASA Astrophysics Data System (ADS)
Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.
2016-12-01
In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.
Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio
2010-03-26
Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.
Shao, Quan; Jia, Meng
2015-03-18
Since the outbreak of pandemics, influenza has caused extensive attention in the field of public health. It is actually hard to distinguish what is the most effective method to control the influenza transmission within airport terminal. The purpose of this study was to quantitatively evaluate the influences of passenger source, immunity difference and social relation structure on the influenza transmission in terminal. A method combining hierarchical structure of personal contact network with agent-based SEIR model was proposed to analyze the characteristics of influenza diffusion within terminal. Based on the spatial distance between individuals, the hierarchical structure of personal contact network was defined to construct a complex relationship of passengers in the real world. Moreover, the agent-based SEIR model was improved by considering the individual level of influenza spread characteristics. To evaluate the method, this process was fused in simulation based on the constructed personal contact network. In the terminal we investigated, personal contact network was defined by following four layers: social relation structure, procedure partition, procedure area, and the whole terminal. With the growing of layer, the degree distribution curves move right. The value of degree distribution p(k) reached a peak at a specific value, and then back down. Besides, with the increase of layer α, the clustering coefficients presented a tendency to exponential decay. Based on the influenza transmission experiments, the main infected areas were concluded when considering different factors. Moreover, partition of passenger sources was found to impact a lot in departure, while social relation structure imposed a great influence in arrival. Besides, immunity difference exerted no obvious effect on the spread of influenza in the transmission process both in departure and arrival. The proposed method is efficient to reproduce the evolution process of influenza transmission, and exhibits various roles of each factor in different processes, also better reflects the effect of passenger topological character on influenza spread. It contributes to proposing effective influenza measures by airport relevant department and improving the efficiency and ability of epidemic prevention on the public health.
Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James
2014-08-01
The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.
Observations, theoretical ideas and modeling of turbulent flows: Past, present and future
NASA Technical Reports Server (NTRS)
Chapman, G. T.; Tobak, M.
1985-01-01
Turbulence was analyzed in a historical context featuring the interactions between observations, theoretical ideas, and modeling within three successive movements. These are identified as predominantly statistical, structural and deterministic. The statistical movement is criticized for its failure to deal with the structural elements observed in turbulent flows. The structural movement is criticized for its failure to embody observed structural elements within a formal theory. The deterministic movement is described as having the potential of overcoming these deficiencies by allowing structural elements to exhibit chaotic behavior that is nevertheless embodied within a theory. Four major ideas of this movement are described: bifurcation theory, strange attractors, fractals, and the renormalization group. A framework for the future study of turbulent flows is proposed, based on the premises of the deterministic movement.
Two Strain Dengue Model with Temporary Cross Immunity and Seasonality
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Ballesteros, Sebastien; Stollenwerk, Nico
2010-09-01
Models on dengue fever epidemiology have previously shown critical fluctuations with power law distributions and also deterministic chaos in some parameter regions due to the multi-strain structure of the disease pathogen. In our first model including well known biological features, we found a rich dynamical structure including limit cycles, symmetry breaking bifurcations, torus bifurcations, coexisting attractors including isola solutions and deterministic chaos (as indicated by positive Lyapunov exponents) in a much larger parameter region, which is also biologically more plausible than the previous results of other researches. Based on these findings we will investigate the model structures further including seasonality.
Two Strain Dengue Model with Temporary Cross Immunity and Seasonality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Maira; Ballesteros, Sebastien; Stollenwerk, Nico
Models on dengue fever epidemiology have previously shown critical fluctuations with power law distributions and also deterministic chaos in some parameter regions due to the multi-strain structure of the disease pathogen. In our first model including well known biological features, we found a rich dynamical structure including limit cycles, symmetry breaking bifurcations, torus bifurcations, coexisting attractors including isola solutions and deterministic chaos (as indicated by positive Lyapunov exponents) in a much larger parameter region, which is also biologically more plausible than the previous results of other researches. Based on these findings we will investigate the model structures further including seasonality.
The threshold of a stochastic delayed SIR epidemic model with vaccination
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing
2016-11-01
In this paper, we study the threshold dynamics of a stochastic delayed SIR epidemic model with vaccination. We obtain sufficient conditions for extinction and persistence in the mean of the epidemic. The threshold between persistence in the mean and extinction of the stochastic system is also obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number Rbar0 of the deterministic system. Results show that time delay has important effects on the persistence and extinction of the epidemic.
Modelling the dynamics of scarlet fever epidemics in the 19th century.
Duncan, S R; Scott, S; Duncan, C J
2000-01-01
Annual deaths from scarlet fever in Liverpool, UK during 1848-1900 have been used as a model system for studying the historical dynamics of the epidemics. Mathematical models are developed which include the growth of the population and the death rate from scarlet fever. Time-series analysis of the results shows that there were two distinct phases to the disease (i) 1848-1880: regular epidemics (wavelength = 3.7 years) consistent with the system being driven by an oscillation in the transmission coefficient (deltabeta) at its resonant frequency, probably associated with dry conditions in winter (ii) 1880-1900: an undriven SEIR system with a falling endemic level and decaying epidemics. This period was associated with improved nutritive levels. There is also evidence from time-series analysis that raised wheat prices in pregnancy caused increased susceptibility in the subsequent children. The pattern of epidemics and the demographic characteristics of the population can be replicated in the modelling which provides insights into the detailed epidemiology of scarlet fever in this community in the 19th century.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Theory and applications of a deterministic approximation to the coalescent model
Jewett, Ethan M.; Rosenberg, Noah A.
2014-01-01
Under the coalescent model, the random number nt of lineages ancestral to a sample is nearly deterministic as a function of time when nt is moderate to large in value, and it is well approximated by its expectation E[nt]. In turn, this expectation is well approximated by simple deterministic functions that are easy to compute. Such deterministic functions have been applied to estimate allele age, effective population size, and genetic diversity, and they have been used to study properties of models of infectious disease dynamics. Although a number of simple approximations of E[nt] have been derived and applied to problems of population-genetic inference, the theoretical accuracy of the formulas and the inferences obtained using these approximations is not known, and the range of problems to which they can be applied is not well understood. Here, we demonstrate general procedures by which the approximation nt ≈ E[nt] can be used to reduce the computational complexity of coalescent formulas, and we show that the resulting approximations converge to their true values under simple assumptions. Such approximations provide alternatives to exact formulas that are computationally intractable or numerically unstable when the number of sampled lineages is moderate or large. We also extend an existing class of approximations of E[nt] to the case of multiple populations of time-varying size with migration among them. Our results facilitate the use of the deterministic approximation nt ≈ E[nt] for deriving functionally simple, computationally efficient, and numerically stable approximations of coalescent formulas under complicated demographic scenarios. PMID:24412419
Ordinal optimization and its application to complex deterministic problems
NASA Astrophysics Data System (ADS)
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Palmer, Tim N.; O’Shea, Michael
2015-01-01
How is the brain configured for creativity? What is the computational substrate for ‘eureka’ moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173
Heart rate variability as determinism with jump stochastic parameters.
Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M
2013-08-01
We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.
Tag-mediated cooperation with non-deterministic genotype-phenotype mapping
NASA Astrophysics Data System (ADS)
Zhang, Hong; Chen, Shu
2016-01-01
Tag-mediated cooperation provides a helpful framework for resolving evolutionary social dilemmas. However, most of the previous studies have not taken into account genotype-phenotype distinction in tags, which may play an important role in the process of evolution. To take this into consideration, we introduce non-deterministic genotype-phenotype mapping into a tag-based model with spatial prisoner's dilemma. By our definition, the similarity between genotypic tags does not directly imply the similarity between phenotypic tags. We find that the non-deterministic mapping from genotypic tag to phenotypic tag has non-trivial effects on tag-mediated cooperation. Although we observe that high levels of cooperation can be established under a wide variety of conditions especially when the decisiveness is moderate, the uncertainty in the determination of phenotypic tags may have a detrimental effect on the tag mechanism by disturbing the homophilic interaction structure which can explain the promotion of cooperation in tag systems. Furthermore, the non-deterministic mapping may undermine the robustness of the tag mechanism with respect to various factors such as the structure of the tag space and the tag flexibility. This observation warns us about the danger of applying the classical tag-based models to the analysis of empirical phenomena if genotype-phenotype distinction is significant in real world. Non-deterministic genotype-phenotype mapping thus provides a new perspective to the understanding of tag-mediated cooperation.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2017-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2018-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801
Dual Roles for Spike Signaling in Cortical Neural Populations
Ballard, Dana H.; Jehee, Janneke F. M.
2011-01-01
A prominent feature of signaling in cortical neurons is that of randomness in the action potential. The output of a typical pyramidal cell can be well fit with a Poisson model, and variations in the Poisson rate repeatedly have been shown to be correlated with stimuli. However while the rate provides a very useful characterization of neural spike data, it may not be the most fundamental description of the signaling code. Recent data showing γ frequency range multi-cell action potential correlations, together with spike timing dependent plasticity, are spurring a re-examination of the classical model, since precise timing codes imply that the generation of spikes is essentially deterministic. Could the observed Poisson randomness and timing determinism reflect two separate modes of communication, or do they somehow derive from a single process? We investigate in a timing-based model whether the apparent incompatibility between these probabilistic and deterministic observations may be resolved by examining how spikes could be used in the underlying neural circuits. The crucial component of this model draws on dual roles for spike signaling. In learning receptive fields from ensembles of inputs, spikes need to behave probabilistically, whereas for fast signaling of individual stimuli, the spikes need to behave deterministically. Our simulations show that this combination is possible if deterministic signals using γ latency coding are probabilistically routed through different members of a cortical cell population at different times. This model exhibits standard features characteristic of Poisson models such as orientation tuning and exponential interval histograms. In addition, it makes testable predictions that follow from the γ latency coding. PMID:21687798
Guidelines 13 and 14—Prediction uncertainty
Hill, Mary C.; Tiedeman, Claire
2005-01-01
An advantage of using optimization for model development and calibration is that optimization provides methods for evaluating and quantifying prediction uncertainty. Both deterministic and statistical methods can be used. Guideline 13 discusses using regression and post-audits, which we classify as deterministic methods. Guideline 14 discusses inferential statistics and Monte Carlo methods, which we classify as statistical methods.
Optimal Vaccination in a Stochastic Epidemic Model of Two Non-Interacting Populations
2015-02-17
of diminishing returns from vacci- nation will generally take place at smaller vaccine allocations V compared to the deterministic model. Optimal...take place and small r0 values where it does not is illustrat- ed in Fig. 4C. As r0 is decreased, the region between the two instances of switching...approximately distribute vaccine in proportion to population size. For large r0 (r0 ≳ 2.9), two switches take place . In the deterministic optimal solution, a
Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity
NASA Astrophysics Data System (ADS)
Szolgayová, Elena Peksová; Danačová, Michaela; Komorniková, Magda; Szolgay, Ján
2017-06-01
It is widely acknowledged that in the hydrological and meteorological communities, there is a continuing need to improve the quality of quantitative rainfall and river flow forecasts. A hybrid (combined deterministic-stochastic) modelling approach is proposed here that combines the advantages offered by modelling the system dynamics with a deterministic model and a deterministic forecasting error series with a data-driven model in parallel. Since the processes to be modelled are generally nonlinear and the model error series may exhibit nonstationarity and heteroscedasticity, GARCH-type nonlinear time series models are considered here. The fitting, forecasting and simulation performance of such models have to be explored on a case-by-case basis. The goal of this paper is to test and develop an appropriate methodology for model fitting and forecasting applicable for daily river discharge forecast error data from the GARCH family of time series models. We concentrated on verifying whether the use of a GARCH-type model is suitable for modelling and forecasting a hydrological model error time series on the Hron and Morava Rivers in Slovakia. For this purpose we verified the presence of heteroscedasticity in the simulation error series of the KLN multilinear flow routing model; then we fitted the GARCH-type models to the data and compared their fit with that of an ARMA - type model. We produced one-stepahead forecasts from the fitted models and again provided comparisons of the model's performance.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
From Weakly Chaotic Dynamics to Deterministic Subdiffusion via Copula Modeling
NASA Astrophysics Data System (ADS)
Nazé, Pierre
2018-03-01
Copula modeling consists in finding a probabilistic distribution, called copula, whereby its coupling with the marginal distributions of a set of random variables produces their joint distribution. The present work aims to use this technique to connect the statistical distributions of weakly chaotic dynamics and deterministic subdiffusion. More precisely, we decompose the jumps distribution of Geisel-Thomae map into a bivariate one and determine the marginal and copula distributions respectively by infinite ergodic theory and statistical inference techniques. We verify therefore that the characteristic tail distribution of subdiffusion is an extreme value copula coupling Mittag-Leffler distributions. We also present a method to calculate the exact copula and joint distributions in the case where weakly chaotic dynamics and deterministic subdiffusion statistical distributions are already known. Numerical simulations and consistency with the dynamical aspects of the map support our results.
Modeling the spread of tuberculosis in semiclosed communities.
Herrera, Mauricio; Bosch, Paul; Nájera, Manuel; Aguilera, Ximena
2013-01-01
We address the problem of long-term dynamics of tuberculosis (TB) and latent tuberculosis (LTB) in semiclosed communities. These communities are congregate settings with the potential for sustained daily contact for weeks, months, and even years between their members. Basic examples of these communities are prisons, but certain urban/rural communities, some schools, among others could possibly fit well into this definition. These communities present a sort of ideal conditions for TB spread. In order to describe key relevant dynamics of the disease in these communities, we consider a five compartments SEIR model with five possible routes toward TB infection: primary infection after a contact with infected and infectious individuals (fast TB), endogenous reactivation after a period of latency (slow TB), relapse by natural causes after a cure, exogenous reinfection of latently infected, and exogenous reinfection of recovered individuals. We discuss the possible existence of multiple endemic equilibrium states and the role that the two types of exogenous reinfections in the long-term dynamics of the disease could play.
Sumi, Ayako; Kobayashi, Nobumichi
2017-01-01
In this report, we present a short review of applications of time series analysis, which consists of spectral analysis based on the maximum entropy method in the frequency domain and the least squares method in the time domain, to the incidence data of infectious diseases. This report consists of three parts. First, we present our results obtained by collaborative research on infectious disease epidemics with Chinese, Indian, Filipino and North European research organizations. Second, we present the results obtained with the Japanese infectious disease surveillance data and the time series numerically generated from a mathematical model, called the susceptible/exposed/infectious/recovered (SEIR) model. Third, we present an application of the time series analysis to pathologic tissues to examine the usefulness of time series analysis for investigating the spatial pattern of pathologic tissue. It is anticipated that time series analysis will become a useful tool for investigating not only infectious disease surveillance data but also immunological and genetic tests.
Modeling the Spread of Tuberculosis in Semiclosed Communities
Herrera, Mauricio; Bosch, Paul; Nájera, Manuel; Aguilera, Ximena
2013-01-01
We address the problem of long-term dynamics of tuberculosis (TB) and latent tuberculosis (LTB) in semiclosed communities. These communities are congregate settings with the potential for sustained daily contact for weeks, months, and even years between their members. Basic examples of these communities are prisons, but certain urban/rural communities, some schools, among others could possibly fit well into this definition. These communities present a sort of ideal conditions for TB spread. In order to describe key relevant dynamics of the disease in these communities, we consider a five compartments SEIR model with five possible routes toward TB infection: primary infection after a contact with infected and infectious individuals (fast TB), endogenous reactivation after a period of latency (slow TB), relapse by natural causes after a cure, exogenous reinfection of latently infected, and exogenous reinfection of recovered individuals. We discuss the possible existence of multiple endemic equilibrium states and the role that the two types of exogenous reinfections in the long-term dynamics of the disease could play. PMID:23762194
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
Modeling disease transmission near eradication: An equation free approach
NASA Astrophysics Data System (ADS)
Williams, Matthew O.; Proctor, Joshua L.; Kutz, J. Nathan
2015-01-01
Although disease transmission in the near eradication regime is inherently stochastic, deterministic quantities such as the probability of eradication are of interest to policy makers and researchers. Rather than running large ensembles of discrete stochastic simulations over long intervals in time to compute these deterministic quantities, we create a data-driven and deterministic "coarse" model for them using the Equation Free (EF) framework. In lieu of deriving an explicit coarse model, the EF framework approximates any needed information, such as coarse time derivatives, by running short computational experiments. However, the choice of the coarse variables (i.e., the state of the coarse system) is critical if the resulting model is to be accurate. In this manuscript, we propose a set of coarse variables that result in an accurate model in the endemic and near eradication regimes, and demonstrate this on a compartmental model representing the spread of Poliomyelitis. When combined with adaptive time-stepping coarse projective integrators, this approach can yield over a factor of two speedup compared to direct simulation, and due to its lower dimensionality, could be beneficial when conducting systems level tasks such as designing eradication or monitoring campaigns.
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
NASA Astrophysics Data System (ADS)
Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Sukhovich, Alexey; Perrot, Julie
2014-05-01
Arrays of autonomous hydrophones (AUHs) proved to be a very valuable tool for monitoring the seismic activity of mid-ocean ridges. AUHs take advantage of the ocean acoustic properties to detect many low-magnitude underwater earthquakes undetected by land-based stations. This allows for a significant improvement in the magnitude completeness level of seismic catalogs in remote oceanic areas. This study presents some results from the deployment of the OHASISBIO array comprising 7 AUHs deployed in the southern Indian Ocean. The source of acoustic events, i.e. site where - conversion from seismic to acoustic waves occur and proxy to epicenters for shallow earthquakes - can be precisely located within few km, inside the AUH array. The distribution of the uncertainties in the locations and time-origins shows that the OHASISBIO array reliably covers a wide region encompassing the Indian Ocean triple junction and large extent of the three mid-oceanic Indian spreading ridges, from 52°E to 80°E and from 25°S to 40°S. During its one year long deployment in 2012 and in this area the AUH array recorded 1670 events, while, for the same period, land-based networks only detected 470 events. A comparison of the background seismicity along the South-east (SEIR) and South-west (SWIR) Indian ridges suggests that the microseismicity, even over a year period, could be representative of the steady-state of stress along the SEIR and SWIR; this conclusion is based on very high Spearman's correlations between our one-year long AUH catalog and teleseismic catalogs over nearly 40 years. Seismicity along the ultra-slow spreading SWIR is regularly distributed in space and time, along spreading segments and transform faults, whereas the intermediate spreading SEIR diplays clusters of events in the vicinity of some transform faults or near specific geological structures such as the St-Paul and Amsterdam hotspot. A majority of these clusters seem to be related to magmatic processes, such as dyke intrusion or propagation. The analysis of mainshock-aftershock sequences reveals that flew clusters fit a modified Omori law, non-withstanding of their location (on transform faults or not), reflecting complex rupture mechanisms along both spreading ridges.
NASA Astrophysics Data System (ADS)
Soltanzadeh, I.; Azadi, M.; Vakili, G. A.
2011-07-01
Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.
NASA Astrophysics Data System (ADS)
Yan, Y.; Barth, A.; Beckers, J. M.; Candille, G.; Brankart, J. M.; Brasseur, P.
2015-07-01
Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. An incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semiindependent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analyzed jointly. The consistency and complementarity between both validations are highlighted.
A Random Variable Approach to Nuclear Targeting and Survivability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Undem, Halvor A.
We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less
Classification and unification of the microscopic deterministic traffic models.
Yang, Bo; Monterola, Christopher
2015-10-01
We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.
A stochastic model for correlated protein motions
NASA Astrophysics Data System (ADS)
Karain, Wael I.; Qaraeen, Nael I.; Ajarmah, Basem
2006-06-01
A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvector directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors contributing significantly to the collective protein motion.
The distribution of near-axis seamounts at intermediate spreading ridges
NASA Astrophysics Data System (ADS)
Howell, J. K.; Bohnenstiehl, D. R.; White, S. M.; Supak, S. K.
2008-12-01
The ridge axes along the intermediate-spreading rate Galapagos Spreading Center (GSC, 46-56 mm/yr) and South East Indian Ridge (SEIR, 72-76 mm/yr) vary from rifted axial valleys to inflated axial highs independent of spreading rate. The delivery and storage of melt is believed to control axial morphology, with axial highs typically observed in areas underlain by a shallow melt lens and axial valleys in areas without a significant melt lens [e.g., Baran et al., 2005 G-cubed; Detrick et al. 2002 G-cubed]. To investigate a possible correlation between the style of seafloor volcanism and axial morphology, a closed contour algorithm is used to identify near axis (2.5km off axis) semi-circular seamounts of heights greater than 20m from shipboard multibeam bathymetry. In areas characterized by an axial high, more seamounts are formed at the ends of the segments than in the center. This is consistent with observations at fast-spreading ridges and suggests a tendency of lavas to erupt at lower effusion rates near second-order segment boundaries. Segments with a rift valley along the GSC show the opposite trend, with more seamounts at the center of second-order segments. Both patterns however are observed along SEIR segments with rift valleys where magma supply may be reflected in size and not their abundance.
Probabilistic Finite Element Analysis & Design Optimization for Structural Designs
NASA Astrophysics Data System (ADS)
Deivanayagam, Arumugam
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
NASA Astrophysics Data System (ADS)
Brenner, Frank; Marwan, Norbert; Hoffmann, Peter
2017-06-01
In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.
NASA Astrophysics Data System (ADS)
Reynders, Edwin P. B.; Langley, Robin S.
2018-08-01
The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.
Hybrid stochastic and deterministic simulations of calcium blips.
Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M
2007-09-15
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Detecting and disentangling nonlinear structure from solar flux time series
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1992-01-01
Interest in solar activity has grown in the past two decades for many reasons. Most importantly for flight dynamics, solar activity changes the atmospheric density, which has important implications for spacecraft trajectory and lifetime prediction. Building upon the previously developed Rayleigh-Benard nonlinear dynamic solar model, which exhibits many dynamic behaviors observed in the Sun, this work introduces new chaotic solar forecasting techniques. Our attempt to use recently developed nonlinear chaotic techniques to model and forecast solar activity has uncovered highly entangled dynamics. Numerical techniques for decoupling additive and multiplicative white noise from deterministic dynamics and examines falloff of the power spectra at high frequencies as a possible means of distinguishing deterministic chaos from noise than spectrally white or colored are presented. The power spectral techniques presented are less cumbersome than current methods for identifying deterministic chaos, which require more computationally intensive calculations, such as those involving Lyapunov exponents and attractor dimension.
Stochastic Analysis and Probabilistic Downscaling of Soil Moisture
NASA Astrophysics Data System (ADS)
Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.
2017-12-01
Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.
Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M
2016-11-17
A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.
A deterministic width function model
NASA Astrophysics Data System (ADS)
Puente, C. E.; Sivakumar, B.
Use of a deterministic fractal-multifractal (FM) geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States), that the FM approach may also be used to closely approximate existing width functions.
Probabilistic Modeling of the Renal Stone Formation Module
NASA Technical Reports Server (NTRS)
Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.
2013-01-01
The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously randomly sampling the probability distributions of the electrolyte concentrations and system parameters that are inputs into the deterministic model. The total urine chemistry concentrations are used to determine the urine chemistry activity using the Joint Expert Speciation System (JESS), a biochemistry model. Information used from JESS is then fed into the deterministic growth model. Outputs from JESS and the deterministic model are passed back to the probabilistic model where a multivariate regression is used to assess the likelihood of a stone forming and the likelihood of a stone requiring clinical intervention. The parameters used to determine to quantify these risks include: relative supersaturation (RS) of calcium oxalate, citrate/calcium ratio, crystal number density, total urine volume, pH, magnesium excretion, maximum stone width, and ureteral location. Methods and Validation: The RSFM is designed to perform a Monte Carlo simulation to generate probability distributions of clinically significant renal stones, as well as provide an associated uncertainty in the estimate. Initially, early versions will be used to test integration of the components and assess component validation and verification (V&V), with later versions used to address questions regarding design reference mission scenarios. Once integrated with the deterministic component, the credibility assessment of the integrated model will follow NASA STD 7009 requirements.
Stochastic Processes in Physics: Deterministic Origins and Control
NASA Astrophysics Data System (ADS)
Demers, Jeffery
Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.
Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.
Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C
2015-05-21
In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.
NASA Astrophysics Data System (ADS)
Contreras, Arturo Javier
This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.
The Stochastic Multi-strain Dengue Model: Analysis of the Dynamics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Stollenwerk, Nico; Kooi, Bob W.
2011-09-01
Dengue dynamics is well known to be particularly complex with large fluctuations of disease incidences. An epidemic multi-strain model motivated by dengue fever epidemiology shows deterministic chaos in wide parameter regions. The addition of seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of infectious diseases epidemics show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. The addition of noise can explain the fluctuations observed in the empirical data and for large enough population size, the stochastic system can be well described by the deterministic skeleton.
Identification of gene regulation models from single-cell data
NASA Astrophysics Data System (ADS)
Weber, Lisa; Raymond, William; Munsky, Brian
2018-09-01
In quantitative analyses of biological processes, one may use many different scales of models (e.g. spatial or non-spatial, deterministic or stochastic, time-varying or at steady-state) or many different approaches to match models to experimental data (e.g. model fitting or parameter uncertainty/sloppiness quantification with different experiment designs). These different analyses can lead to surprisingly different results, even when applied to the same data and the same model. We use a simplified gene regulation model to illustrate many of these concerns, especially for ODE analyses of deterministic processes, chemical master equation and finite state projection analyses of heterogeneous processes, and stochastic simulations. For each analysis, we employ MATLAB and PYTHON software to consider a time-dependent input signal (e.g. a kinase nuclear translocation) and several model hypotheses, along with simulated single-cell data. We illustrate different approaches (e.g. deterministic and stochastic) to identify the mechanisms and parameters of the same model from the same simulated data. For each approach, we explore how uncertainty in parameter space varies with respect to the chosen analysis approach or specific experiment design. We conclude with a discussion of how our simulated results relate to the integration of experimental and computational investigations to explore signal-activated gene expression models in yeast (Neuert et al 2013 Science 339 584–7) and human cells (Senecal et al 2014 Cell Rep. 8 75–83)5.
NASA Astrophysics Data System (ADS)
Wei, Y.; Thomas, S.; Zhou, H.; Arcas, D.; Titov, V. V.
2017-12-01
The increasing potential tsunami hazards pose great challenges for infrastructures along the coastlines of the U.S. Pacific Northwest. Tsunami impact at a coastal site is usually assessed from deterministic scenarios based on 10,000 years of geological records in the Cascadia Subduction Zone (CSZ). Aside from these deterministic methods, the new ASCE 7-16 tsunami provisions provide engineering design criteria of tsunami loads on buildings based on a probabilistic approach. This work develops a site-specific model near Newport, OR using high-resolution grids, and compute tsunami inundation depth and velocities at the study site resulted from credible probabilistic and deterministic earthquake sources in the Cascadia Subduction Zone. Three Cascadia scenarios, two deterministic scenarios, XXL1 and L1, and a 2,500-yr probabilistic scenario compliant with the new ASCE 7-16 standard, are simulated using combination of a depth-averaged shallow water model for offshore propagation and a Boussinesq-type model for onshore inundation. We speculate on the methods and procedure to obtain the 2,500-year probabilistic scenario for Newport that is compliant with the ASCE 7-16 tsunami provisions. We provide details of model results, particularly the inundation depth and flow speed for a new building, which will also be designated as a tsunami vertical evacuation shelter, at Newport, Oregon. We show that the ASCE 7-16 consistent hazards are between those obtained from deterministic L1 and XXL1 scenarios, and the greatest impact on the building may come from later waves. As a further step, we utilize the inundation model results to numerically compute tracks of large vessels in the vicinity of the building site and estimate if these vessels will impact on the building site during the extreme XXL1 and ASCE 7-16 hazard-consistent scenarios. Two-step study is carried out first to study tracks of massless particles and then large vessels with assigned mass considering drag force, inertial force, ship grounding and mooring. The simulation results show that none of the large vessels will impact on the building site in all tested scenarios.
The Stochastic Modelling of Endemic Diseases
NASA Astrophysics Data System (ADS)
Susvitasari, Kurnia; Siswantining, Titin
2017-01-01
A study about epidemic has been conducted since a long time ago, but genuine progress was hardly forthcoming until the end of the 19th century (Bailey, 1975). Both deterministic and stochastic models were used to describe these. Then, from 1927 to 1939 Kermack and McKendrick introduced a generality of this model, including some variables to consider such as rate of infection and recovery. The purpose of this project is to investigate the behaviour of the models when we set the basic reproduction number, R0. This quantity is defined as the expected number of contacts made by a typical infective to susceptibles in the population. According to the epidemic threshold theory, when R0 ≤ 1, minor epidemic occurs with probability one in both approaches, but when R0 > 1, the deterministic and stochastic models have different interpretation. In the deterministic approach, major epidemic occurs with probability one when R0 > 1 and predicts that the disease will settle down to an endemic equilibrium. Stochastic models, on the other hand, identify that the minor epidemic can possibly occur. If it does, then the epidemic will die out quickly. Moreover, if we let the population size be large and the major epidemic occurs, then it will take off and then reach the endemic level and move randomly around the deterministic’s equilibrium.
Economic analysis of interventions to improve village chicken production in Myanmar.
Henning, J; Morton, J; Pym, R; Hla, T; Sunn, K; Meers, J
2013-07-01
A cost-benefit analysis using deterministic and stochastic modelling was conducted to identify the net benefits for households that adopt (1) vaccination of individual birds against Newcastle disease (ND) or (2) improved management of chick rearing by providing coops for the protection of chicks from predation and chick starter feed inside a creep feeder to support chicks' nutrition in village chicken flocks in Myanmar. Partial budgeting was used to assess the additional costs and benefits associated with each of the two interventions tested relative to neither strategy. In the deterministic model, over the first 3 years after the introduction of the interventions, the cumulative sum of the net differences from neither strategy was 13,189Kyat for ND vaccination and 77,645Kyat for improved chick management (effective exchange rate in 2005: 1000Kyat=1$US). Both interventions were also profitable after discounting over a 10-year period; Net Present Values for ND vaccination and improved chick management were 30,791 and 167,825Kyat, respectively. The Benefit-Cost Ratio for ND vaccination was very high (28.8). This was lower for improved chick management, due to greater costs of the intervention, but still favourable at 4.7. Using both interventions concurrently yielded a Net Present Value of 470,543Kyat and a Benefit-Cost Ratio of 11.2 over the 10-year period in the deterministic model. Using the stochastic model, for the first 3 years following the introduction of the interventions, the mean cumulative sums of the net difference were similar to those values obtained from the deterministic model. Sensitivity analysis indicated that the cumulative net differences were strongly influenced by grower bird sale income, particularly under improved chick management. The effects of the strategies on odds of households selling and consuming birds after 7 months, and numbers of birds being sold or consumed after this period also influenced profitability. Cost variations for equipment used under improved chick management were not markedly associated with profitability. Net Present Values and Benefit-Cost Ratios discounted over a 10-year period were also similar to the deterministic model when mean values obtained through stochastic modelling were used. In summary, the study showed that ND vaccination and improved chick management can improve the viability and profitability of village chicken production in Myanmar. Copyright © 2013 Elsevier B.V. All rights reserved.
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Michael
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less
Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...
2015-02-18
Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less
Global and local threshold in a metapopulational SEIR model with quarantine
NASA Astrophysics Data System (ADS)
Gomes, Marcelo F. C.; Rossi, Luca; Pastore Y Piontti, Ana; Vespignani, Alessandro
2013-03-01
Diseases which have the possibility of transmission before the onset of symptoms pose a challenging threat to healthcare since it is hard to track spreaders and implement quarantine measures. More precisely, one main concerns regarding pandemic spreading of diseases is the prediction-and eventually control-of local outbreaks that will trigger a global invasion of a particular disease. We present a metapopulation disease spreading model with transmission from both symptomatic and asymptomatic agents and analyze the role of quarantine measures and mobility processes between subpopulations. We show that, depending on the disease parameters, it is possible to separate in the parameter space the local and global thresholds and study the system behavior as a function of the fraction of asymptomatic transmissions. This means that it is possible to have a range of parameters values where although we do not achieve local control of the outbreak it is possible to control the global spread of the disease. We validate the analytic picture in data-driven model that integrates commuting, air traffic flow and detailed information about population size and structure worldwide. Laboratory for the Modeling of Biological and Socio-Technical Systems (MoBS)
Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents.
Bürger, Raimund; Chowell, Gerardo; Gavilán, Elvis; Mulet, Pep; Villada, Luis M
2018-02-01
In this article we describe the transmission dynamics of hantavirus in rodents using a spatio-temporal susceptible-exposed-infective-recovered (SEIR) compartmental model that distinguishes between male and female subpopulations [L.J.S. Allen, R.K. McCormack and C.B. Jonsson, Bull. Math. Biol. 68 (2006), 511--524]. Both subpopulations are assumed to differ in their movement with respect to local variations in the densities of their own and the opposite gender group. Three alternative models for the movement of the male individuals are examined. In some cases the movement is not only directed by the gradient of a density (as in the standard diffusive case), but also by a non-local convolution of density values as proposed, in another context, in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369--400]. An efficient numerical method for the resulting convection-diffusion-reaction system of partial differential equations is proposed. This method involves techniques of weighted essentially non-oscillatory (WENO) reconstructions in combination with implicit-explicit Runge-Kutta (IMEX-RK) methods for time stepping. The numerical results demonstrate significant differences in the spatio-temporal behavior predicted by the different models, which suggest future research directions.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.
1987-04-01
The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less
Demographic noise can reverse the direction of deterministic selection
Constable, George W. A.; Rogers, Tim; McKane, Alan J.; Tarnita, Corina E.
2016-01-01
Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to r−K theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085
Stochastic oscillations in models of epidemics on a network of cities
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.; McKane, A. J.
2011-11-01
We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.
From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities
NASA Astrophysics Data System (ADS)
Kunjwal, Ravi; Spekkens, Robert W.
2018-05-01
The Kochen-Specker theorem rules out models of quantum theory wherein projective measurements are assigned outcomes deterministically and independently of context. This notion of noncontextuality is not applicable to experimental measurements because these are never free of noise and thus never truly projective. For nonprojective measurements, therefore, one must drop the requirement that an outcome be assigned deterministically in the model and merely require that it be assigned a distribution over outcomes in a manner that is context-independent. By demanding context independence in the representation of preparations as well, one obtains a generalized principle of noncontextuality that also supports a quantum no-go theorem. Several recent works have shown how to derive inequalities on experimental data which, if violated, demonstrate the impossibility of finding a generalized-noncontextual model of this data. That is, these inequalities do not presume quantum theory and, in particular, they make sense without requiring an operational analog of the quantum notion of projectiveness. We here describe a technique for deriving such inequalities starting from arbitrary proofs of the Kochen-Specker theorem. It extends significantly previous techniques that worked only for logical proofs, which are based on sets of projective measurements that fail to admit of any deterministic noncontextual assignment, to the case of statistical proofs, which are based on sets of projective measurements that d o admit of some deterministic noncontextual assignments, but not enough to explain the quantum statistics.
Convergence studies of deterministic methods for LWR explicit reflector methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, S.; Hursin, M.; Ferroukhi, H.
2013-07-01
The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on verymore » different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)« less
Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand
2007-07-01
This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.
Rare event computation in deterministic chaotic systems using genealogical particle analysis
NASA Astrophysics Data System (ADS)
Wouters, J.; Bouchet, F.
2016-09-01
In this paper we address the use of rare event computation techniques to estimate small over-threshold probabilities of observables in deterministic dynamical systems. We demonstrate that genealogical particle analysis algorithms can be successfully applied to a toy model of atmospheric dynamics, the Lorenz ’96 model. We furthermore use the Ornstein-Uhlenbeck system to illustrate a number of implementation issues. We also show how a time-dependent objective function based on the fluctuation path to a high threshold can greatly improve the performance of the estimator compared to a fixed-in-time objective function.
Pyrotechnic modeling for the NSI and pin puller
NASA Technical Reports Server (NTRS)
Powers, Joseph M.; Gonthier, Keith A.
1993-01-01
A discussion concerning the modeling of pyrotechnically driven actuators is presented in viewgraph format. The following topics are discussed: literature search, constitutive data for full-scale model, simple deterministic model, observed phenomena, and results from simple model.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael
1991-01-01
The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data
NASA Astrophysics Data System (ADS)
Larkin, Steven Paul
Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical PmP energy. Possibly related, inconsistencies in published velocity models are rectified by hypothesizing the existence of large, elongate, high-velocity bodies at the base of the crust oriented to and of similar scale as the basins and ranges at the surface. This structure would result in an anisotropic lower crust.
Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente
2009-12-20
This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.
NASA Astrophysics Data System (ADS)
Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra
2016-02-01
In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
Deterministic SLIR model for tuberculosis disease mapping
NASA Astrophysics Data System (ADS)
Aziz, Nazrina; Diah, Ijlal Mohd; Ahmad, Nazihah; Kasim, Maznah Mat
2017-11-01
Tuberculosis (TB) occurs worldwide. It can be transmitted to others directly through air when active TB persons sneeze, cough or spit. In Malaysia, it was reported that TB cases had been recognized as one of the most infectious disease that lead to death. Disease mapping is one of the methods that can be used as the prevention strategies since it can displays clear picture for the high-low risk areas. Important thing that need to be considered when studying the disease occurrence is relative risk estimation. The transmission of TB disease is studied through mathematical model. Therefore, in this study, deterministic SLIR models are used to estimate relative risk for TB disease transmission.
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Interactive Reliability Model for Whisker-toughened Ceramics
NASA Technical Reports Server (NTRS)
Palko, Joseph L.
1993-01-01
Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.
Nonclassical point of view of the Brownian motion generation via fractional deterministic model
NASA Astrophysics Data System (ADS)
Gilardi-Velázquez, H. E.; Campos-Cantón, E.
In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.
Murakami, Masayoshi; Shteingart, Hanan; Loewenstein, Yonatan; Mainen, Zachary F
2017-05-17
The selection and timing of actions are subject to determinate influences such as sensory cues and internal state as well as to effectively stochastic variability. Although stochastic choice mechanisms are assumed by many theoretical models, their origin and mechanisms remain poorly understood. Here we investigated this issue by studying how neural circuits in the frontal cortex determine action timing in rats performing a waiting task. Electrophysiological recordings from two regions necessary for this behavior, medial prefrontal cortex (mPFC) and secondary motor cortex (M2), revealed an unexpected functional dissociation. Both areas encoded deterministic biases in action timing, but only M2 neurons reflected stochastic trial-by-trial fluctuations. This differential coding was reflected in distinct timescales of neural dynamics in the two frontal cortical areas. These results suggest a two-stage model in which stochastic components of action timing decisions are injected by circuits downstream of those carrying deterministic bias signals. Copyright © 2017 Elsevier Inc. All rights reserved.
Developing deterioration models for Wyoming bridges.
DOT National Transportation Integrated Search
2016-05-01
Deterioration models for the Wyoming Bridge Inventory were developed using both stochastic and deterministic models. : The selection of explanatory variables is investigated and a new method using LASSO regression to eliminate human bias : in explana...
Short-range solar radiation forecasts over Sweden
NASA Astrophysics Data System (ADS)
Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra
2018-04-01
In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2015-04-01
Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Draxl, Caroline; Hopson, Thomas
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less
Terçariol, César Augusto Sangaletti; Martinez, Alexandre Souto
2005-08-01
Consider a medium characterized by N points whose coordinates are randomly generated by a uniform distribution along the edges of a unitary d-dimensional hypercube. A walker leaves from each point of this disordered medium and moves according to the deterministic rule to go to the nearest point which has not been visited in the preceding mu steps (deterministic tourist walk). Each trajectory generated by this dynamics has an initial nonperiodic part of t steps (transient) and a final periodic part of p steps (attractor). The neighborhood rank probabilities are parametrized by the normalized incomplete beta function Id= I1/4 [1/2, (d+1) /2] . The joint distribution S(N) (mu,d) (t,p) is relevant, and the marginal distributions previously studied are particular cases. We show that, for the memory-less deterministic tourist walk in the euclidean space, this distribution is Sinfinity(1,d) (t,p) = [Gamma (1+ I(-1)(d)) (t+ I(-1)(d) ) /Gamma(t+p+ I(-1)(d)) ] delta(p,2), where t=0, 1,2, ... infinity, Gamma(z) is the gamma function and delta(i,j) is the Kronecker delta. The mean-field models are the random link models, which correspond to d-->infinity, and the random map model which, even for mu=0 , presents nontrivial cycle distribution [ S(N)(0,rm) (p) proportional to p(-1) ] : S(N)(0,rm) (t,p) =Gamma(N)/ {Gamma[N+1- (t+p) ] N( t+p)}. The fundamental quantities are the number of explored points n(e)=t+p and Id. Although the obtained distributions are simple, they do not follow straightforwardly and they have been validated by numerical experiments.
Modelling ecosystem service flows under uncertainty with stochiastic SPAN
Johnson, Gary W.; Snapp, Robert R.; Villa, Ferdinando; Bagstad, Kenneth J.
2012-01-01
Ecosystem service models are increasingly in demand for decision making. However, the data required to run these models are often patchy, missing, outdated, or untrustworthy. Further, communication of data and model uncertainty to decision makers is often either absent or unintuitive. In this work, we introduce a systematic approach to addressing both the data gap and the difficulty in communicating uncertainty through a stochastic adaptation of the Service Path Attribution Networks (SPAN) framework. The SPAN formalism assesses ecosystem services through a set of up to 16 maps, which characterize the services in a study area in terms of flow pathways between ecosystems and human beneficiaries. Although the SPAN algorithms were originally defined deterministically, we present them here in a stochastic framework which combines probabilistic input data with a stochastic transport model in order to generate probabilistic spatial outputs. This enables a novel feature among ecosystem service models: the ability to spatially visualize uncertainty in the model results. The stochastic SPAN model can analyze areas where data limitations are prohibitive for deterministic models. Greater uncertainty in the model inputs (including missing data) should lead to greater uncertainty expressed in the model’s output distributions. By using Bayesian belief networks to fill data gaps and expert-provided trust assignments to augment untrustworthy or outdated information, we can account for uncertainty in input data, producing a model that is still able to run and provide information where strictly deterministic models could not. Taken together, these attributes enable more robust and intuitive modelling of ecosystem services under uncertainty.
Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew
2016-07-01
Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The model of microblog message diffusion based on complex social network
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bai, Shu-Ying; Jin, Rui
2014-05-01
Microblog is a micromessage communication network in which users are the nodes and the followship between users are the edges. Sina Weibo is a typical case of these microblog service websites. As the enormous scale of nodes and complex links in the network, we choose a sample network crawled in Sina Weibo as the base of empirical analysis. The study starts with the analysis of its topological features, and brings in epidemiological SEIR model to explore the mode of message spreading throughout the microblog network. It is found that the network is obvious small-world and scale-free, which made it succeed in transferring messages and failed in resisting negative influence. In addition, the paper focuses on the rich nodes as they constitute a typical feature of Sina Weibo. It is also found that whether the message starts with a rich node will not account for its final coverage. Actually, the rich nodes always play the role of pivotal intermediaries who speed up the spreading and make the message known by much more people.
Effect of modelling slum populations on influenza spread in Delhi
Chen, Jiangzhuo; Chu, Shuyu; Chungbaek, Youngyun; Khan, Maleq; Kuhlman, Christopher; Marathe, Achla; Mortveit, Henning; Vullikanti, Anil; Xie, Dawen
2016-01-01
Objectives This research studies the impact of influenza epidemic in the slum and non-slum areas of Delhi, the National Capital Territory of India, by taking proper account of slum demographics and residents’ activities, using a highly resolved social contact network of the 13.8 million residents of Delhi. Methods An SEIR model is used to simulate the spread of influenza on two different synthetic social contact networks of Delhi, one where slums and non-slums are treated the same in terms of their demographics and daily sets of activities and the other, where slum and non-slum regions have different attributes. Results Differences between the epidemic outcomes on the two networks are large. Time-to-peak infection is overestimated by several weeks, and the cumulative infection rate and peak infection rate are underestimated by 10–50%, when slum attributes are ignored. Conclusions Slum populations have a significant effect on influenza transmission in urban areas. Improper specification of slums in large urban regions results in underestimation of infections in the entire population and hence will lead to misguided interventions by policy planners. PMID:27687898
Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.
2009-01-01
Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.
Fuzzy linear model for production optimization of mining systems with multiple entities
NASA Astrophysics Data System (ADS)
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
Spatio-temporal modelling of rainfall in the Murray-Darling Basin
NASA Astrophysics Data System (ADS)
Nowak, Gen; Welsh, A. H.; O'Neill, T. J.; Feng, Lingbing
2018-02-01
The Murray-Darling Basin (MDB) is a large geographical region in southeastern Australia that contains many rivers and creeks, including Australia's three longest rivers, the Murray, the Murrumbidgee and the Darling. Understanding rainfall patterns in the MDB is very important due to the significant impact major events such as droughts and floods have on agricultural and resource productivity. We propose a model for modelling a set of monthly rainfall data obtained from stations in the MDB and for producing predictions in both the spatial and temporal dimensions. The model is a hierarchical spatio-temporal model fitted to geographical data that utilises both deterministic and data-derived components. Specifically, rainfall data at a given location are modelled as a linear combination of these deterministic and data-derived components. A key advantage of the model is that it is fitted in a step-by-step fashion, enabling appropriate empirical choices to be made at each step.
Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W
2008-08-01
We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
Deciphering Dynamics of Recent Epidemic Spread and Outbreak in West Africa: The Case of Ebola Virus
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
Recently, the 2014 Ebola virus (EBOV) outbreak in West Africa was the largest outbreak to date. In this paper, an attempt has been made for modeling the virus dynamics using an SEIR model to better understand and characterize the transmission trajectories of the Ebola outbreak. We compare the simulated results with the most recent reported data of Ebola infected cases in the three most affected countries Guinea, Liberia and Sierra Leone. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. Existence and local stability of these equilibria are explored. Using central manifold theory, it is established that the transcritical bifurcation occurs when basic reproduction number passes through unity. The proposed Ebola epidemic model provides an estimate to the potential number of future cases. The model indicates that the disease will decline after peaking if multisectorial and multinational efforts to control the spread of infection are maintained. Possible implication of the results for disease eradication and its control are discussed which suggests that proper control strategies like: (i) transmission precautions, (ii) isolation and care of infectious Ebola patients, (iii) safe burial, (iv) contact tracing with follow-up and quarantine, and (v) early diagnosis are needed to stop the recurrent outbreak.
An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks.
Getz, Wayne M; Carlson, Colin; Dougherty, Eric; Porco Francis, Travis C; Salter, Richard
2016-04-01
The winter 2014-15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R 0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a 'send unvaccinated students home' policy in low coverage counties is extremely effective at shutting down outbreaks of measles.
An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks
Getz, Wayne M.; Carlson, Colin; Dougherty, Eric; Porco, Travis C.; Salter, Richard
2016-01-01
The winter 2014–15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a ‘send unvaccinated students home’ policy in low coverage counties is extremely effective at shutting down outbreaks of measles. PMID:27668297
Sensitivity analysis in a Lassa fever deterministic mathematical model
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman
2015-05-01
Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.
A stochastic chemostat model with an inhibitor and noise independent of population sizes
NASA Astrophysics Data System (ADS)
Sun, Shulin; Zhang, Xiaolu
2018-02-01
In this paper, a stochastic chemostat model with an inhibitor is considered, here the inhibitor is input from an external source and two organisms in chemostat compete for a nutrient. Firstly, we show that the system has a unique global positive solution. Secondly, by constructing some suitable Lyapunov functions, we investigate that the average in time of the second moment of the solutions of the stochastic model is bounded for a relatively small noise. That is, the asymptotic behaviors of the stochastic system around the equilibrium points of the deterministic system are studied. However, the sufficient large noise can make the microorganisms become extinct with probability one, although the solutions to the original deterministic model may be persistent. Finally, the obtained analytical results are illustrated by computer simulations.
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.
Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge
NASA Astrophysics Data System (ADS)
Michard, A.; Montigny, R.; Schlich, R.
1986-05-01
Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.
Population density equations for stochastic processes with memory kernels
NASA Astrophysics Data System (ADS)
Lai, Yi Ming; de Kamps, Marc
2017-06-01
We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.
Mai, Tam V-T; Duong, Minh V; Nguyen, Hieu T; Lin, Kuang C; Huynh, Lam K
2017-04-27
An integrated deterministic and stochastic model within the master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) framework was first used to characterize temperature- and pressure-dependent behaviors of thermal decomposition of acetic anhydride in a wide range of conditions (i.e., 300-1500 K and 0.001-100 atm). Particularly, using potential energy surface and molecular properties obtained from high-level electronic structure calculations at CCSD(T)/CBS, macroscopic thermodynamic properties and rate coefficients of the title reaction were derived with corrections for hindered internal rotation and tunneling treatments. Being in excellent agreement with the scattered experimental data, the results from deterministic and stochastic frameworks confirmed and complemented each other to reveal that the main decomposition pathway proceeds via a 6-membered-ring transition state with the 0 K barrier of 35.2 kcal·mol -1 . This observation was further understood and confirmed by the sensitivity analysis on the time-resolved species profiles and the derived rate coefficients with respect to the ab initio barriers. Such an agreement suggests the integrated model can be confidently used for a wide range of conditions as a powerful postfacto and predictive tool in detailed chemical kinetic modeling and simulation for the title reaction and thus can be extended to complex chemical reactions.
Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
Marino, Dale J; Starr, Thomas B
2007-12-01
A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations. Four separate PBPK cases were examined based on the exposure regimen of the NTP DCM bioassay. These were (a) Same Mouse (single draw of all PBPK inputs for both treatment groups); (b) Correlated BW-Same Inputs (single draw of all PBPK inputs for both treatment groups except for bodyweights (BWs), which were entered as correlated variables); (c) Correlated BW-Different Inputs (separate draws of all PBPK inputs for both treatment groups except that BWs were entered as correlated variables); and (d) Different Mouse (separate draws of all PBPK inputs for both treatment groups). Monte Carlo PBPK inputs reflect posterior distributions from Bayesian calibration in the mouse that had been previously reported. A minimum of 12,500 PBPK iterations were undertaken, in which dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day for lung and liver were determined. For dose-response modeling, these metrics were combined with NTP tumor incidence data that were randomly selected from binomial distributions. Resultant potency factors (0.1/ED(10)) were coupled with probabilistic PBPK modeling in humans that incorporated genetic polymorphisms to derive URFs. Results show that there was relatively little difference, i.e., <10% in central tendency and upper percentile URFs, regardless of the case evaluated. Independent draws of PBPK inputs resulted in the slightly higher URFs. Results were also comparable to corresponding values from the previously reported deterministic mouse PBPK and dose-response modeling approach that used LED(10)s to derive potency factors. This finding indicated that the adjustment from ED(10) to LED(10) in the deterministic approach for DCM compensated for variability resulting from probabilistic PBPK and dose-response modeling in the mouse. Finally, results show a similar degree of variability in DCM risk estimates from a number of different sources including the current effort even though these estimates were developed using very different techniques. Given the variety of different approaches involved, 95th percentile-to-mean risk estimate ratios of 2.1-4.1 represent reasonable bounds on variability estimates regarding probabilistic assessments of DCM.
Chaotic sources of noise in machine acoustics
NASA Astrophysics Data System (ADS)
Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.
1994-05-01
In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
Nonlinear unitary quantum collapse model with self-generated noise
NASA Astrophysics Data System (ADS)
Geszti, Tamás
2018-04-01
Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.
DIETARY EXPOSURES OF YOUNG CHILDREN, PART 3: MODELLING
A deterministic model was used to model dietary exposure of young children. Parameters included pesticide residue on food before handling, surface pesticide loading, transfer efficiencies and children's activity patterns. Three components of dietary pesticide exposure were includ...
Mesoscopic and continuum modelling of angiogenesis
Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.
2016-01-01
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007
NASA Astrophysics Data System (ADS)
Castaneda-Lopez, Homero
A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and efforts to develop it for field conditions should continue.
Hidden order in crackling noise during peeling of an adhesive tape.
Kumar, Jagadish; Ciccotti, M; Ananthakrishna, G
2008-04-01
We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.
The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...
A variational method for analyzing limit cycle oscillations in stochastic hybrid systems
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; MacLaurin, James
2018-06-01
Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .
Effects of Noise on Ecological Invasion Processes: Bacteriophage-mediated Competition in Bacteria
NASA Astrophysics Data System (ADS)
Joo, Jaewook; Eric, Harvill; Albert, Reka
2007-03-01
Pathogen-mediated competition, through which an invasive species carrying and transmitting a pathogen can be a superior competitor to a more vulnerable resident species, is one of the principle driving forces influencing biodiversity in nature. Using an experimental system of bacteriophage-mediated competition in bacterial populations and a deterministic model, we have shown in [Joo et al 2005] that the competitive advantage conferred by the phage depends only on the relative phage pathology and is independent of the initial phage concentration and other phage and host parameters such as the infection-causing contact rate, the spontaneous and infection-induced lysis rates, and the phage burst size. Here we investigate the effects of stochastic fluctuations on bacterial invasion facilitated by bacteriophage, and examine the validity of the deterministic approach. We use both numerical and analytical methods of stochastic processes to identify the source of noise and assess its magnitude. We show that the conclusions obtained from the deterministic model are robust against stochastic fluctuations, yet deviations become prominently large when the phage are more pathological to the invading bacterial strain.
Analysis of stochastic model for non-linear volcanic dynamics
NASA Astrophysics Data System (ADS)
Alexandrov, D.; Bashkirtseva, I.; Ryashko, L.
2014-12-01
Motivated by important geophysical applications we consider a dynamic model of the magma-plug system previously derived by Iverson et al. (2006) under the influence of stochastic forcing. Due to strong nonlinearity of the friction force for solid plug along its margins, the initial deterministic system exhibits impulsive oscillations. Two types of dynamic behavior of the system under the influence of the parametric stochastic forcing have been found: random trajectories are scattered on both sides of the deterministic cycle or grouped on its internal side only. It is shown that dispersions are highly inhomogeneous along cycles in the presence of noises. The effects of noise-induced shifts, pressure stabilization and localization of random trajectories have been revealed with increasing the noise intensity. The plug velocity, pressure and displacement are highly dependent of noise intensity as well. These new stochastic phenomena are related with the nonlinear peculiarities of the deterministic phase portrait. It is demonstrated that the repetitive stick-slip motions of the magma-plug system in the case of stochastic forcing can be connected with drumbeat earthquakes.
Modelling the interaction between flooding events and economic growth
NASA Astrophysics Data System (ADS)
Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.
2015-06-01
Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.
Automated Calibration For Numerical Models Of Riverflow
NASA Astrophysics Data System (ADS)
Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey
2017-04-01
Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.
Salgia, Ravi; Mambetsariev, Isa; Hewelt, Blake; Achuthan, Srisairam; Li, Haiqing; Poroyko, Valeriy; Wang, Yingyu; Sattler, Martin
2018-05-25
Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.
MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.
Lok, Judith J
2017-04-01
In observational studies, treatment may be adapted to covariates at several times without a fixed protocol, in continuous time. Treatment influences covariates, which influence treatment, which influences covariates, and so on. Then even time-dependent Cox-models cannot be used to estimate the net treatment effect. Structural nested models have been applied in this setting. Structural nested models are based on counterfactuals: the outcome a person would have had had treatment been withheld after a certain time. Previous work on continuous-time structural nested models assumes that counterfactuals depend deterministically on observed data, while conjecturing that this assumption can be relaxed. This article proves that one can mimic counterfactuals by constructing random variables, solutions to a differential equation, that have the same distribution as the counterfactuals, even given past observed data. These "mimicking" variables can be used to estimate the parameters of structural nested models without assuming the treatment effect to be deterministic.
NASA Astrophysics Data System (ADS)
Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang
2016-06-01
The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.
NASA Astrophysics Data System (ADS)
Choi, Hakkyum; Kim, Seung-Sep; Dyment, Jérôme; Granot, Roi; Park, Sung-Hyun; Hong, Jong Kuk
2017-11-01
The tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading.
Amplification of intrinsic fluctuations by the Lorenz equations
NASA Astrophysics Data System (ADS)
Fox, Ronald F.; Elston, T. C.
1993-07-01
Macroscopic systems (e.g., hydrodynamics, chemical reactions, electrical circuits, etc.) manifest intrinsic fluctuations of molecular and thermal origin. When the macroscopic dynamics is deterministically chaotic, the intrinsic fluctuations may become amplified by several orders of magnitude. Numerical studies of this phenomenon are presented in detail for the Lorenz model. Amplification to macroscopic scales is exhibited, and quantitative methods (binning and a difference-norm) are presented for measuring macroscopically subliminal amplification effects. In order to test the quality of the numerical results, noise induced chaos is studied around a deterministically nonchaotic state, where the scaling law relating the Lyapunov exponent to noise strength obtained for maps is confirmed for the Lorenz model, a system of ordinary differential equations.
Uniqueness of Nash equilibrium in vaccination games.
Bai, Fan
2016-12-01
One crucial condition for the uniqueness of Nash equilibrium set in vaccination games is that the attack ratio monotonically decreases as the vaccine coverage level increasing. We consider several deterministic vaccination models in homogeneous mixing population and in heterogeneous mixing population. Based on the final size relations obtained from the deterministic epidemic models, we prove that the attack ratios can be expressed in terms of the vaccine coverage levels, and also prove that the attack ratios are decreasing functions of vaccine coverage levels. Some thresholds are presented, which depend on the vaccine efficacy. It is proved that for vaccination games in homogeneous mixing population, there is a unique Nash equilibrium for each game.
Automated Assume-Guarantee Reasoning by Abstraction Refinement
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra
2008-01-01
Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.
Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions
NASA Astrophysics Data System (ADS)
Valentine, John S.
2013-09-01
By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
INTEGRATED PLANNING MODEL - EPA APPLICATIONS
The Integrated Planning Model (IPM) is a multi-regional, dynamic, deterministic linear programming (LP) model of the electric power sector in the continental lower 48 states and the District of Columbia. It provides forecasts up to year 2050 of least-cost capacity expansion, elec...
NASA Astrophysics Data System (ADS)
Mannattil, Manu; Pandey, Ambrish; Verma, Mahendra K.; Chakraborty, Sagar
2017-12-01
Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional behavior in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110
NASA Astrophysics Data System (ADS)
Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng
2015-10-01
The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.
An analytical framework to assist decision makers in the use of forest ecosystem model predictions
USDA-ARS?s Scientific Manuscript database
The predictions of most terrestrial ecosystem models originate from deterministic simulations. Relatively few uncertainty evaluation exercises in model outputs are performed by either model developers or users. This issue has important consequences for decision makers who rely on models to develop n...
A random walk on water (Henry Darcy Medal Lecture)
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2009-04-01
Randomness and uncertainty had been well appreciated in hydrology and water resources engineering in their initial steps as scientific disciplines. However, this changed through the years and, following other geosciences, hydrology adopted a naïve view of randomness in natural processes. Such a view separates natural phenomena into two mutually exclusive types, random or stochastic, and deterministic. When a classification of a specific process into one of these two types fails, then a separation of the process into two different, usually additive, parts is typically devised, each of which may be further subdivided into subparts (e.g., deterministic subparts such as periodic and aperiodic or trends). This dichotomous logic is typically combined with a manichean perception, in which the deterministic part supposedly represents cause-effect relationships and thus is physics and science (the "good"), whereas randomness has little relationship with science and no relationship with understanding (the "evil"). Probability theory and statistics, which traditionally provided the tools for dealing with randomness and uncertainty, have been regarded by some as the "necessary evil" but not as an essential part of hydrology and geophysics. Some took a step further to banish them from hydrology, replacing them with deterministic sensitivity analysis and fuzzy-logic representations. Others attempted to demonstrate that irregular fluctuations observed in natural processes are au fond manifestations of underlying chaotic deterministic dynamics with low dimensionality, thus attempting to render probabilistic descriptions unnecessary. Some of the above recent developments are simply flawed because they make erroneous use of probability and statistics (which, remarkably, provide the tools for such analyses), whereas the entire underlying logic is just a false dichotomy. To see this, it suffices to recall that Pierre Simon Laplace, perhaps the most famous proponent of determinism in the history of philosophy of science (cf. Laplace's demon), is, at the same time, one of the founders of probability theory, which he regarded as "nothing but common sense reduced to calculation". This harmonizes with James Clerk Maxwell's view that "the true logic for this world is the calculus of Probabilities" and was more recently and epigrammatically formulated in the title of Edwin Thompson Jaynes's book "Probability Theory: The Logic of Science" (2003). Abandoning dichotomous logic, either on ontological or epistemic grounds, we can identify randomness or stochasticity with unpredictability. Admitting that (a) uncertainty is an intrinsic property of nature; (b) causality implies dependence of natural processes in time and thus suggests predictability; but, (c) even the tiniest uncertainty (e.g., in initial conditions) may result in unpredictability after a certain time horizon, we may shape a stochastic representation of natural processes that is consistent with Karl Popper's indeterministic world view. In this representation, probability quantifies uncertainty according to the Kolmogorov system, in which probability is a normalized measure, i.e., a function that maps sets (areas where the initial conditions or the parameter values lie) to real numbers (in the interval [0, 1]). In such a representation, predictability (suggested by deterministic laws) and unpredictability (randomness) coexist, are not separable or additive components, and it is a matter of specifying the time horizon of prediction to decide which of the two dominates. An elementary numerical example has been devised to illustrate the above ideas and demonstrate that they offer a pragmatic and useful guide for practice, rather than just pertaining to philosophical discussions. A chaotic model, with fully and a priori known deterministic dynamics and deterministic inputs (without any random agent), is assumed to represent the hydrological balance in an area partly covered by vegetation. Experimentation with this toy model demonstrates, inter alia, that: (1) for short time horizons the deterministic dynamics is able to give good predictions; but (2) these predictions become extremely inaccurate and useless for long time horizons; (3) for such horizons a naïve statistical prediction (average of past data) which fully neglects the deterministic dynamics is more skilful; and (4) if this statistical prediction, in addition to past data, is combined with the probability theory (the principle of maximum entropy, in particular), it can provide a more informative prediction. Also, the toy model shows that the trajectories of the system state (and derivative properties thereof) do not resemble a regular (e.g., periodic) deterministic process nor a purely random process, but exhibit patterns indicating anti-persistence and persistence (where the latter statistically complies with a Hurst-Kolmogorov behaviour). If the process is averaged over long time scales, the anti-persistent behaviour improves predictability, whereas the persistent behaviour substantially deteriorates it. A stochastic representation of this deterministic system, which incorporates dynamics, is not only possible, but also powerful as it provides good predictions for both short and long horizons and helps to decide on when the deterministic dynamics should be considered or neglected. Obviously, a natural system is extremely more complex than this simple toy model and hence unpredictability is naturally even more prominent in the former. In addition, in a complex natural system, we can never know the exact dynamics and we must infer it from past data, which implies additional uncertainty and an additional role of stochastics in the process of formulating the system equations and estimating the involved parameters. Data also offer the only solid grounds to test any hypothesis about the dynamics, and failure of performing such testing against evidence from data renders the hypothesised dynamics worthless. If this perception of natural phenomena is adequately plausible, then it may help in studying interesting fundamental questions regarding the current state and the trends of hydrological and water resources research and their promising future paths. For instance: (i) Will it ever be possible to achieve a fully "physically based" modelling of hydrological systems that will not depend on data or stochastic representations? (ii) To what extent can hydrological uncertainty be reduced and what are the effective means for such reduction? (iii) Are current stochastic methods in hydrology consistent with observed natural behaviours? What paths should we explore for their advancement? (iv) Can deterministic methods provide solid scientific grounds for water resources engineering and management? In particular, can there be risk-free hydraulic engineering and water management? (v) Is the current (particularly important) interface between hydrology and climate satisfactory?. In particular, should hydrology rely on climate models that are not properly validated (i.e., for periods and scales not used in calibration)? In effect, is the evolution of climate and its impacts on water resources deterministically predictable?
NASA Astrophysics Data System (ADS)
Wong, B.; Kilthau, W.; Knopf, D. A.
2017-12-01
Immersion freezing is recognized as the most important ice crystal formation process in mixed-phase cloud environments. It is well established that mineral dust species can act as efficient ice nucleating particles. Previous research has focused on determination of the ice nucleation propensity of individual mineral dust species. In this study, the focus is placed on how different mineral dust species such as illite, kaolinite and feldspar, initiate freezing of water droplets when present in internal and external mixtures. The frozen fraction data for single and multicomponent mineral dust droplet mixtures are recorded under identical cooling rates. Additionally, the time dependence of freezing is explored. Externally and internally mixed mineral dust droplet samples are exposed to constant temperatures (isothermal freezing experiments) and frozen fraction data is recorded based on time intervals. Analyses of single and multicomponent mineral dust droplet samples include different stochastic and deterministic models such as the derivation of the heterogeneous ice nucleation rate coefficient (Jhet), the single contact angle (α) description, the α-PDF model, active sites representation, and the deterministic model. Parameter sets derived from freezing data of single component mineral dust samples are evaluated for prediction of cooling rate dependent and isothermal freezing of multicomponent externally or internally mixed mineral dust samples. The atmospheric implications of our findings are discussed.
Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.
2008-01-01
Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.
NASA Astrophysics Data System (ADS)
Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman
2017-06-01
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.
Robust Planning for Effects-Based Operations
2006-06-01
Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models
Application of Wavelet Filters in an Evaluation of Photochemical Model Performance
Air quality model evaluation can be enhanced with time-scale specific comparisons of outputs and observations. For example, high-frequency (hours to one day) time scale information in observed ozone is not well captured by deterministic models and its incorporation into model pe...
FACTORS INFLUENCING TOTAL DIETARY EXPOSURES OF YOUNG CHILDREN
A deterministic model was developed to identify the critical input parameters needed to assess dietary intakes of young children. The model was used as a framework for understanding the important factors in data collection and data analysis. Factors incorporated into the model i...
Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T
2017-05-03
One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell
NASA Astrophysics Data System (ADS)
Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.
2016-08-01
The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation
Pasta, D J; Taylor, J L; Henning, J M
1999-01-01
Decision-analytic models are frequently used to evaluate the relative costs and benefits of alternative therapeutic strategies for health care. Various types of sensitivity analysis are used to evaluate the uncertainty inherent in the models. Although probabilistic sensitivity analysis is more difficult theoretically and computationally, the results can be much more powerful and useful than deterministic sensitivity analysis. The authors show how a Monte Carlo simulation can be implemented using standard software to perform a probabilistic sensitivity analysis incorporating the bootstrap. The method is applied to a decision-analytic model evaluating the cost-effectiveness of Helicobacter pylori eradication. The necessary steps are straightforward and are described in detail. The use of the bootstrap avoids certain difficulties encountered with theoretical distributions. The probabilistic sensitivity analysis provided insights into the decision-analytic model beyond the traditional base-case and deterministic sensitivity analyses and should become the standard method for assessing sensitivity.
Romps, David M.
2016-03-01
Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less
Spatial scaling patterns and functional redundancies in a changing boreal lake landscape
Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.
2015-01-01
Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.
Production scheduling and rescheduling with genetic algorithms.
Bierwirth, C; Mattfeld, D C
1999-01-01
A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.
NASA Astrophysics Data System (ADS)
Lemarchand, A.; Lesne, A.; Mareschal, M.
1995-05-01
The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.
NASA Astrophysics Data System (ADS)
Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang
2018-04-01
A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.
Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...
Identifiability Of Systems With Modeling Errors
NASA Technical Reports Server (NTRS)
Hadaegh, Yadolah " fred"
1988-01-01
Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
Understanding Rasch Measurement: Rasch Models Overview.
ERIC Educational Resources Information Center
Wright, Benjamin D.; Mok, Magdalena
2000-01-01
Presents an overview of Rasch measurement models that begins with a conceptualization of continuous experiences often captured as discrete observations. Discusses the mathematical properties of the Rasch family of models that allow the transformation of discrete deterministic counts into continuous probabilistic abstractions. Also discusses six of…
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.
2009-01-01
An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.
2016-12-01
Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.
Wu, Fei; Sioshansi, Ramteen
2017-05-04
Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less
Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)
NASA Astrophysics Data System (ADS)
Kędra, Mariola
2014-02-01
Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.
Takeuchi, Shouhei; Kuroda, Yoshiki
2010-01-01
On April 24th, 2009, a new swine-origin influenza A (H1N1) was first reported in Mexico. Japan confirmed cases of the flu on May 9th, and the pandemic in Japan has become full-scale. The Ministry of Health, Labor and Welfare of Japan announced that the first peak of this pandemic was predicted to occur in October, 2009. Therefore, it is most important to predict the progress of this pandemic to be able to use medical resources effectively in Japan. We used a modified susceptible-exposed-infected-recovered (SEIR) model to calculate the number of infected people and hospital bed shortage during this pandemic. In this model, available medical resources were investigated on the basis of four vaccination scenarios. Our model showed that it would take a further six months for the pandemic to peak than was predicted by the Ministry of Health, Labor and Welfare of Japan. Without vaccination, at the peak of the pandemic 23,689 out of 400,000 people would be infected and the hospital bed shortage would reach 7,349 in total. We suggest that mathematical models are strong tools to predict the spread of infectious diseases. According to our model, it is possible to prevent hospital bed shortage by vaccination.
Epidemics in small world networks
NASA Astrophysics Data System (ADS)
Telo da Gama, M. M.; Nunes, A.
2006-03-01
For many infectious diseases, a small-world network on an underlying regular lattice is a suitable simplified model for the contact structure of the host population. It is well known that the contact network, described in this setting by a single parameter, the small-world parameter p, plays an important role both in the short term and in the long term dynamics of epidemic spread. We have studied the effect of the network structure on models of immune for life diseases and found that in addition to the reduction of the effective transmission rate, through the screening of infectives, spatial correlations may strongly enhance the stochastic fluctuations. As a consequence, time series of unforced Susceptible-Exposed-Infected-Recovered (SEIR) models provide patterns of recurrent epidemics with realistic amplitudes, suggesting that these models together with complex networks of contacts are the key ingredients to describe the prevaccination dynamical patterns of diseases such as measles and pertussis. We have also studied the role of the host contact strucuture in pathogen antigenic variation, through its effect on the final outcome of an invasion by a viral strain of a population where a very similar virus is endemic. Similar viral strains are modelled by the same infection and reinfection parameters, and by a given degree of cross immunity that represents the antigenic distance between the competing strains. We have found, somewhat surprisingly, that clustering on the network decreases the potential to sustain pathogen diversity.
Characterizing and Discovering Spatiotemporal Social Contact Patterns for Healthcare.
Yang, Bo; Pei, Hongbin; Chen, Hechang; Liu, Jiming; Xia, Shang
2017-08-01
During an epidemic, the spatial, temporal and demographic patterns of disease transmission are determined by multiple factors. In addition to the physiological properties of the pathogens and hosts, the social contact of the host population, which characterizes the reciprocal exposures of individuals to infection according to their demographic structure and various social activities, are also pivotal to understanding and predicting the prevalence of infectious diseases. How social contact is measured will affect the extent to which we can forecast the dynamics of infections in the real world. Most current work focuses on modeling the spatial patterns of static social contact. In this work, we use a novel perspective to address the problem of how to characterize and measure dynamic social contact during an epidemic. We propose an epidemic-model-based tensor deconvolution framework in which the spatiotemporal patterns of social contact are represented by the factors of the tensors. These factors can be discovered using a tensor deconvolution procedure with the integration of epidemic models based on rich types of data, mainly heterogeneous outbreak surveillance data, socio-demographic census data and physiological data from medical reports. Using reproduction models that include SIR/SIS/SEIR/SEIS models as case studies, the efficacy and applications of the proposed framework are theoretically analyzed, empirically validated and demonstrated through a set of rigorous experiments using both synthetic and real-world data.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
Simulation of anaerobic digestion processes using stochastic algorithm.
Palanichamy, Jegathambal; Palani, Sundarambal
2014-01-01
The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
Kim, Sung-Cheol; Wunsch, Benjamin H; Hu, Huan; Smith, Joshua T; Austin, Robert H; Stolovitzky, Gustavo
2017-06-27
Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.
Developing Stochastic Models as Inputs for High-Frequency Ground Motion Simulations
NASA Astrophysics Data System (ADS)
Savran, William Harvey
High-frequency ( 10 Hz) deterministic ground motion simulations are challenged by our understanding of the small-scale structure of the earth's crust and the rupture process during an earthquake. We will likely never obtain deterministic models that can accurately describe these processes down to the meter scale length required for broadband wave propagation. Instead, we can attempt to explain the behavior, in a statistical sense, by including stochastic models defined by correlations observed in the natural earth and through physics based simulations of the earthquake rupture process. Toward this goal, we develop stochastic models to address both of the primary considerations for deterministic ground motion simulations: namely, the description of the material properties in the crust, and broadband earthquake source descriptions. Using borehole sonic log data recorded in Los Angeles basin, we estimate the spatial correlation structure of the small-scale fluctuations in P-wave velocities by determining the best-fitting parameters of a von Karman correlation function. We find that Hurst exponents, nu, between 0.0-0.2, vertical correlation lengths, az, of 15-150m, an standard deviation, sigma of about 5% characterize the variability in the borehole data. Usin these parameters, we generated a stochastic model of velocity and density perturbations and combined with leading seismic velocity models to perform a validation exercise for the 2008, Chino Hills, CA using heterogeneous media. We find that models of velocity and density perturbations can have significant effects on the wavefield at frequencies as low as 0.3 Hz, with ensemble median values of various ground motion metrics varying up to +/-50%, at certain stations, compared to those computed solely from the CVM. Finally, we develop a kinematic rupture generator based on dynamic rupture simulations on geometrically complex faults. We analyze 100 dynamic rupture simulations on strike-slip faults ranging from Mw 6.4-7.2. We find that our dynamic simulations follow empirical scaling relationships for inter-plate strike-slip events, and provide source spectra comparable with an o -2 model. Our rupture generator reproduces GMPE medians and intra-event standard deviations spectral accelerations for an ensemble of 10 Hz fully-deterministic ground motion simulations, as compared to NGA West2 GMPE relationships up to 0.2 seconds.
Stochastic and deterministic causes of streamer branching in liquid dielectrics
NASA Astrophysics Data System (ADS)
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-08-01
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.
Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander
2012-12-07
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Burbrink, Frank T.; Chen, Xin; Myers, Edward A.; Brandley, Matthew C.; Pyron, R. Alexander
2012-01-01
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification. PMID:23034709
Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill
2012-01-01
In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226
The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...
Gulf of Mexico dissolved oxygen model (GoMDOM) research and quality assurance project plan
An integrated high resolution mathematical modeling framework is being developed that will link hydrodynamic, atmospheric, and water quality models for the northern Gulf of Mexico. This Research and Quality Assurance Project Plan primarily focuses on the deterministic Gulf of Me...
A combinatorial model of malware diffusion via bluetooth connections.
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Chaotic Lagrangian models for turbulent relative dispersion
NASA Astrophysics Data System (ADS)
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Baker, Edward; Christophe Hémond,; Anne Briais,; Marcia Maia,; Scheirer, Daniel S.; Sharon L. Walker,; Tingting Wang,; Yongshun John Chen,
2014-01-01
Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65–71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ∼350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.
NASA Astrophysics Data System (ADS)
Baker, Edward T.; Hémond, Christophe; Briais, Anne; Maia, Marcia; Scheirer, Daniel S.; Walker, Sharon L.; Wang, Tingting; Chen, Yongshun John
2014-08-01
Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65-71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ˜350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.
An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 1. Theory
Yen, Chung-Cheng; Guymon, Gary L.
1990-01-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
An Efficient Deterministic-Probabilistic Approach to Modeling Regional Groundwater Flow: 1. Theory
NASA Astrophysics Data System (ADS)
Yen, Chung-Cheng; Guymon, Gary L.
1990-07-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcini, Alessandro; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino; Barland, Stephane
2006-12-15
The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realisticmore » values of the linewidth enhancement factor {alpha}, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high {alpha} values.« less
NASA Astrophysics Data System (ADS)
Rodríguez, Clara Rojas; Fernández Calvo, Gabriel; Ramis-Conde, Ignacio; Belmonte-Beitia, Juan
2017-08-01
Tumor-normal cell interplay defines the course of a neoplastic malignancy. The outcome of this dual relation is the ultimate prevailing of one of the cells and the death or retreat of the other. In this paper we study the mathematical principles that underlay one important scenario: that of slow-progressing cancers. For this, we develop, within a stochastic framework, a mathematical model to account for tumor-normal cell interaction in such a clinically relevant situation and derive a number of deterministic approximations from the stochastic model. We consider in detail the existence and uniqueness of the solutions of the deterministic model and study the stability analysis. We then focus our model to the specific case of low grade gliomas, where we introduce an optimal control problem for different objective functionals under the administration of chemotherapy. We derive the conditions for which singular and bang-bang control exist and calculate the optimal control and states.
FACTORS INFLUENCING TOTAL DIETARY EXPOSURE OF YOUNG CHILDREN
A deterministic model was developed to identify critical input parameters to assess dietary intake of young children. The model was used as a framework for understanding important factors in data collection and analysis. Factors incorporated included transfer efficiencies of pest...
Field Evaluation of an Avian Risk Assessment Model
We conducted two laboratory subacute dietary toxicity tests and one outdoor subacute dietary toxicity test to determine the effectiveness of the U.S. Environmental Protection Agency's deterministic risk assessment model for evaluating the potential of adverse effects to birds in ...
Optimization Testbed Cometboards Extended into Stochastic Domain
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.
2010-01-01
COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.
NASA Astrophysics Data System (ADS)
Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.
2017-09-01
Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.
The Simplest Complete Model of Choice Response Time: Linear Ballistic Accumulation
ERIC Educational Resources Information Center
Brown, Scott D.; Heathcote, Andrew
2008-01-01
We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. The LBA is simpler than other models of choice response time, with independent accumulators that race towards a common response threshold. Activity in the accumulators increases in a linear and deterministic manner. The simplicity of the model allows…
Identifying influences on model uncertainty: an application using a forest carbon budget model
James E. Smith; Linda S. Heath
2001-01-01
Uncertainty is an important consideration for both developers and users of environmental simulation models. Establishing quantitative estimates of uncertainty for deterministic models can be difficult when the underlying bases for such information are scarce. We demonstrate an application of probabilistic uncertainty analysis that provides for refinements in...
Application of Game Theory to Improve the Defense of the Smart Grid
2012-03-01
Computer Systems and Networks ...............................................22 2.4.2 Trust Models ...systems. In this environment, developers assumed deterministic communications mediums rather than the “best effort” models provided in most modern... models or computational models to validate the SPSs design. Finally, the study reveals concerns about the performance of load rejection schemes
Scaling in the Donangelo-Sneppen model for evolution of money
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich; P. Radomski, Jan
2001-03-01
The evolution of money from unsuccessful barter attempts, as modeled by Donangelo and Sneppen, is modified by a deterministic instead of a probabilistic selection of the most desired product as money. We check in particular the characteristic times of the model as a function of system size.
A Combinatorial Model of Malware Diffusion via Bluetooth Connections
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677
Bayesian Estimation of the DINA Model with Gibbs Sampling
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
A General Cognitive Diagnosis Model for Expert-Defined Polytomous Attributes
ERIC Educational Resources Information Center
Chen, Jinsong; de la Torre, Jimmy
2013-01-01
Polytomous attributes, particularly those defined as part of the test development process, can provide additional diagnostic information. The present research proposes the polytomous generalized deterministic inputs, noisy, "and" gate (pG-DINA) model to accommodate such attributes. The pG-DINA model allows input from substantive experts…
Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the f...
Modeling the spreading of large-scale wildland fires
Mohamed Drissi
2015-01-01
The objective of the present study is twofold. First, the last developments and validation results of a hybrid model designed to simulate fire patterns in heterogeneous landscapes are presented. The model combines the features of a stochastic small-world network model with those of a deterministic semi-physical model of the interaction between burning and non-burning...
Dung Tuan Nguyen
2012-01-01
Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministicmore » viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.« less
Delgado, James E.; Wolt, Jeffrey D.
2011-01-01
In this study, we investigate the long-term exposure (20 weeks) to fumonisin B1 (FB1) in grower-finisher pigs by conducting a quantitative exposure assessment (QEA). Our analytical approach involved both deterministic and semi-stochastic modeling for dietary comparative analyses of FB1 exposures originating from genetically engineered Bacillus thuringiensis (Bt)-corn, conventional non-Bt corn and distiller’s dried grains with solubles (DDGS) derived from Bt and/or non-Bt corn. Results from both deterministic and semi-stochastic demonstrated a distinct difference of FB1 toxicity in feed between Bt corn and non-Bt corn. Semi-stochastic results predicted the lowest FB1 exposure for Bt grain with a mean of 1.5 mg FB1/kg diet and the highest FB1 exposure for a diet consisting of non-Bt grain and non-Bt DDGS with a mean of 7.87 mg FB1/kg diet; the chronic toxicological incipient level of concern is 1.0 mg of FB1/kg of diet. Deterministic results closely mirrored but tended to slightly under predict the mean result for the semi-stochastic analysis. This novel comparative QEA model reveals that diet scenarios where the source of grain is derived from Bt corn presents less potential to induce FB1 toxicity than diets containing non-Bt corn. PMID:21909298
Multielevation calibration of frequency-domain electromagnetic data
Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.
2014-01-01
Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Crump, Alex R.; Resch, Charles T.
2017-03-28
Subsurface zones of groundwater and surface water mixing (hyporheic zones) are regions of enhanced rates of biogeochemical cycling, yet ecological processes governing hyporheic microbiome composition and function through space and time remain unknown. We sampled attached and planktonic microbiomes in the Columbia River hyporheic zone across seasonal hydrologic change, and employed statistical null models to infer mechanisms generating temporal changes in microbiomes within three hydrologically-connected, physicochemically-distinct geographic zones (inland, nearshore, river). We reveal that microbiomes remain dissimilar through time across all zones and habitat types (attached vs. planktonic) and that deterministic assembly processes regulate microbiome composition in all data subsets.more » The consistent presence of heterotrophic taxa and members of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum nonetheless suggests common selective pressures for physiologies represented in these groups. Further, co-occurrence networks were used to provide insight into taxa most affected by deterministic assembly processes. We identified network clusters to represent groups of organisms that correlated with seasonal and physicochemical change. Extended network analyses identified keystone taxa within each cluster that we propose are central in microbiome composition and function. Finally, the abundance of one network cluster of nearshore organisms exhibited a seasonal shift from heterotrophic to autotrophic metabolisms and correlated with microbial metabolism, possibly indicating an ecological role for these organisms as foundational species in driving biogeochemical reactions within the hyporheic zone. Taken together, our research demonstrates a predominant role for deterministic assembly across highly-connected environments and provides insight into niche dynamics associated with seasonal changes in hyporheic microbiome composition and metabolism.« less
NASA Astrophysics Data System (ADS)
Kostrzewa, Daniel; Josiński, Henryk
2016-06-01
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
How synapses can enhance sensibility of a neural network
NASA Astrophysics Data System (ADS)
Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.
2018-02-01
In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Fournier, A.; Hulot, G.
2014-12-01
We investigate the geophysical relevance of low-dimensional models of the geomagnetic dipole fieldby comparing these models to the signed relative paleomagnetic intensity over the past 2 Myr.The comparison is done via Bayesian statistics, implemented numerically by Monte Carlo (MC) sampling.We consider several MC schemes, as well as two data sets to show the robustness of our approach with respect to its numerical implementation and to the details of how the data are collected.The data we consider are the Sint-2000 [1] and PADM2M [2] data sets.We consider three stochastic differential equation (SDE) models and one deterministic model. Experiments with synthetic data show that it is feasible that a low dimensional modelcan learn the geophysical state from data of only the dipole field,and reveal the limitations of the low-dimensional models.For example, the G12 model [3] (a deterministic model that generates dipole reversals by crisis induced intermittency)can only match either one of the two important time scales we find in the data. The MC sampling approach also allows usto use the models to make predictions of the dipole field.We assess how reliably dipole reversals can be predictedwith our approach by hind-casting five reversals documented over the past 2 Myr. We find that, besides its limitations, G12 can be used to predict reversals reliably,however only with short lead times and over short horizons. The scalar SDE models on the other hand are not useful for prediction of dipole reversals.References Valet, J.P., Maynadier,L and Guyodo, Y., 2005, Geomagnetic field strength and reversal rate over the past 2 Million years, Nature, 435, 802-805. Ziegler, L.B., Constable, C.G., Johnson, C.L. and Tauxe, L., 2011, PADM2M: a penalized maximum likelihood model of the 0-2 Ma paleomagnetic axial dipole moment, Geophysical Journal International, 184, 1069-1089. Gissinger, C., 2012, A new deterministic model for chaotic reversals, European Physical Journal B, 85:137.
Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; ...
2018-04-12
Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a nullmore » model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. As a result, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.« less
NASA Astrophysics Data System (ADS)
de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode
2017-01-01
Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.
Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; Veach, Allison; Ialonardi, Florencia; Iribarne, Oscar; Silliman, Brian
2018-06-01
Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daleo, Pedro; Alberti, Juan; Jumpponen, Ari
Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a nullmore » model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. As a result, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.« less
A deterministic model of nettle caterpillar life cycle
NASA Astrophysics Data System (ADS)
Syukriyah, Y.; Nuraini, N.; Handayani, D.
2018-03-01
Palm oil is an excellent product in the plantation sector in Indonesia. The level of palm oil productivity is very potential to increase every year. However, the level of palm oil productivity is lower than its potential. Pests and diseases are the main factors that can reduce production levels by up to 40%. The existence of pests in plants can be caused by various factors, so the anticipation in controlling pest attacks should be prepared as early as possible. Caterpillars are the main pests in oil palm. The nettle caterpillars are leaf eaters that can significantly decrease palm productivity. We construct a deterministic model that describes the life cycle of the caterpillar and its mitigation by using a caterpillar predator. The equilibrium points of the model are analyzed. The numerical simulations are constructed to give a representation how the predator as the natural enemies affects the nettle caterpillar life cycle.
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
Converting differential-equation models of biological systems to membrane computing.
Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W
2013-12-01
This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Enhanced Estimation of Terrestrial Loadings for TMDLs: Normalization Approach
USDA-ARS?s Scientific Manuscript database
TMDL implementation plans to remediate pathogen-impaired streams are usually based on deterministic terrestrial fate and transport (DTFT) models. A novel protocol is proposed that can effectively, efficiently, and explicitly capture the predictive uncertainty of DTFT models used to establish terres...
NASA Astrophysics Data System (ADS)
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
Hong, Hyunsuk; O'Keeffe, Kevin P; Strogatz, Steven H
2016-10-01
We consider a mean-field model of coupled phase oscillators with quenched disorder in the natural frequencies and coupling strengths. A fraction p of oscillators are positively coupled, attracting all others, while the remaining fraction 1-p are negatively coupled, repelling all others. The frequencies and couplings are deterministically chosen in a manner which correlates them, thereby correlating the two types of disorder in the model. We first explore the effect of this correlation on the system's phase coherence. We find that there is a critical width γ c in the frequency distribution below which the system spontaneously synchronizes. Moreover, this γ c is independent of p. Hence, our model and the traditional Kuramoto model (recovered when p = 1) have the same critical width γ c . We next explore the critical behavior of the system by examining the finite-size scaling and the dynamic fluctuation of the traditional order parameter. We find that the model belongs to the same universality class as the Kuramoto model with deterministically (not randomly) chosen natural frequencies for the case of p < 1.
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
NASA Technical Reports Server (NTRS)
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
NASA Astrophysics Data System (ADS)
Burgos, C.; Cortés, J.-C.; Shaikhet, L.; Villanueva, R.-J.
2018-11-01
First, we propose a deterministic age-structured epidemiological model to study the diffusion of e-commerce in Spain. Afterwards, we determine the parameters (death, birth and growth rates) of the underlying demographic model as well as the parameters (transmission of the use of e-commerce rates) of the proposed epidemiological model that best fit real data retrieved from the Spanish National Statistical Institute. Motivated by the two following facts: first the dynamics of acquiring the use of a new technology as e-commerce is mainly driven by the feedback after interacting with our peers (family, friends, mates, mass media, etc.), hence having a certain delay, and second the inherent uncertainty of sampled real data and the social complexity of the phenomena under analysis, we introduce aftereffect and stochastic perturbations in the initial deterministic model. This leads to a delayed stochastic model for e-commerce. We then investigate sufficient conditions in order to guarantee the stability in probability of the equilibrium point of the dynamic e-commerce delayed stochastic model. Our theoretical findings are numerically illustrated using real data.
NASA Astrophysics Data System (ADS)
Saldarriaga Vargas, Clarita
When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Estimation of the transmission dynamics of African swine fever virus within a swine house.
Nielsen, J P; Larsen, T S; Halasa, T; Christiansen, L E
2017-10-01
The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans. This creates a need for estimation of parameters. This study presents a new analysis of a previously published study. A full likelihood framework is presented including the impact of model assumptions on the estimated transmission parameters. As animals were only tested every other day, an interpretation was introduced to cover the weighted infectiousness on unobserved days for the individual animals (WIU). Based on our model and the set of assumptions, the within- and between-pen transmission parameters were estimated to β w = 1·05 (95% CI 0·62-1·72), β b = 0·46 (95% CI 0·17-1·00), respectively, and the WIU = 1·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would be detected 13-19 days after introduction.
Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis.
Goyens, J; Reijniers, J; Borremans, B; Leirs, H
2013-01-21
Well-established theoretical models predict host density thresholds for invasion and persistence of parasites with a density-dependent transmission. Studying such thresholds in reality, however, is not obvious because it requires long-term data for several fluctuating populations of different size. We developed a spatially explicit and individual-based SEIR model of Mopeia virus in multimammate mice Mastomys natalensis. This is an interesting model system for studying abundance thresholds because the host is the most common African rodent, populations fluctuate considerably and the virus is closely related to Lassa virus but non-pathogenic to humans so can be studied safely in the field. The simulations show that, while host density clearly is important, sharp thresholds are only to be expected for persistence (and not for invasion), since at short time-spans (as during invasion), stochasticity is determining. Besides host density, also the spatial extent of the host population is important. We observe the repeated local occurrence of herd immunity, leading to a decrease in transmission of the virus, while even a limited amount of dispersal can have a strong influence in spreading and re-igniting the transmission. The model is most sensitive to the duration of the infectious stage, the size of the home range and the transmission coefficient, so these are important factors to determine experimentally in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wiemuth, M; Junger, D; Leitritz, M A; Neumann, J; Neumuth, T; Burgert, O
2017-08-01
Medical processes can be modeled using different methods and notations. Currently used modeling systems like Business Process Model and Notation (BPMN) are not capable of describing the highly flexible and variable medical processes in sufficient detail. We combined two modeling systems, Business Process Management (BPM) and Adaptive Case Management (ACM), to be able to model non-deterministic medical processes. We used the new Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN). First, we explain how CMMN, DMN and BPMN could be used to model non-deterministic medical processes. We applied this methodology to model 79 cataract operations provided by University Hospital Leipzig, Germany, and four cataract operations provided by University Eye Hospital Tuebingen, Germany. Our model consists of 85 tasks and about 20 decisions in BPMN. We were able to expand the system with more complex situations that might appear during an intervention. An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
Kim, Sung-Cheol; Wunsch, Benjamin H.; Hu, Huan; Smith, Joshua T.; Stolovitzky, Gustavo
2017-01-01
Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input. PMID:28607075
Stochastic Stability of Sampled Data Systems with a Jump Linear Controller
NASA Technical Reports Server (NTRS)
Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven
2004-01-01
In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.
Cairoli, Andrea; Piovani, Duccio; Jensen, Henrik Jeldtoft
2014-12-31
We propose a new procedure to monitor and forecast the onset of transitions in high-dimensional complex systems. We describe our procedure by an application to the tangled nature model of evolutionary ecology. The quasistable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean-field equations. Numerical analysis of the high-dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with a positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean-field approximation is found to be a good early warning of the transitions occurring intermittently.
Modeling stochastic noise in gene regulatory systems
Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung
2014-01-01
The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368
Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Pei, Yezhe
This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.
Determining Methane Budgets with Eddy Covariance Data ascertained in a heterogeneous Footprint
NASA Astrophysics Data System (ADS)
Rößger, N.; Wille, C.; Kutzbach, L.
2016-12-01
Amplified climate change in the Arctic may cause methane emissions to increase considerably due to more suitable production conditions. With a focus on methane, we studied the carbon turnover on the modern flood plain of Samoylov Island situated in the Lena River Delta (72°22'N, 126°28'E) using the eddy covariance data. In contrast to the ice-wedge polygonal tundra on the delta's river terraces, the flood plains have to date received little attention. During the warm season in 2014 and 2015, the mean methane flux amounted to 0.012 μmol m-2 s-1. This average is the result of a large variability in methane fluxes which is attributed to the complexity of the footprint where methane sources are unevenly distributed. Explaining this variability is based on three modelling approaches: a deterministic model using exponential relationships for flux drivers, a multilinear model created through stepwise regression and a neural network which relies on machine learning techniques. A substantial boost in model performance was achieved through inputting footprint information in the form of the contribution of vegetation classes; this indicates the vegetation is serving as an integrated proxy for potential methane flux drivers. The neural network performed best; however, a robust validation revealed that the deterministic model best captured ecosystem-intrinsic features. Furthermore, the deterministic model allowed a downscaling of the net flux by allocating fractions to three vegetation classes which in turn form the basis for upscaling methane fluxes in order to obtain the budget for the entire flood plain. Arctic methane emissions occur in a spatio-temporally complex pattern and employing fine-scale information is crucial to understanding the flux dynamics.
Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan
2017-01-01
This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.
Hartmann, Christoph; Lazar, Andreea; Nessler, Bernhard; Triesch, Jochen
2015-01-01
Even in the absence of sensory stimulation the brain is spontaneously active. This background “noise” seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN), which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network’s spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network’s behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural responses can be accounted for by a simple deterministic recurrent neural network which learns a predictive model of its sensory environment via a combination of generic neural plasticity mechanisms. PMID:26714277
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Stochastic population dynamic models as probability networks
M.E. and D.C. Lee Borsuk
2009-01-01
The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…
An Estimation Procedure for the Structural Parameters of the Unified Cognitive/IRT Model.
ERIC Educational Resources Information Center
Jiang, Hai; And Others
L. V. DiBello, W. F. Stout, and L. A. Roussos (1993) have developed a new item response model, the Unified Model, which brings together the discrete, deterministic aspects of cognition favored by cognitive scientists, and the continuous, stochastic aspects of test response behavior that underlie item response theory (IRT). The Unified Model blends…
Arctic Sea Ice: Trends, Stability and Variability
NASA Astrophysics Data System (ADS)
Moon, Woosok
A stochastic Arctic sea-ice model is derived and analyzed in detail to interpret the recent decay and associated variability of Arctic sea-ice under changes in greenhouse gas forcing widely referred to as global warming. The approach begins from a deterministic model of the heat flux balance through the air/sea/ice system, which uses observed monthly-averaged heat fluxes to drive a time evolution of sea-ice thickness. This model reproduces the observed seasonal cycle of the ice cover and it is to this that stochastic noise---representing high frequency variability---is introduced. The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. Following an introductory chapter, the two that follow focus principally on the properties of the deterministic model in order to identify the main properties governing the stability of the ice cover. In chapter 2 the underlying time-dependent solutions to the deterministic model are analyzed for their stability. It is found that the response time-scale of the system to perturbations is dominated by the destabilizing sea-ice albedo feedback, which is operative in the summer, and the stabilizing long wave radiative cooling of the ice surface, which is operative in the winter. This basic competition is found throughout the thesis to define the governing dynamics of the system. In particular, as greenhouse gas forcing increases, the sea-ice albedo feedback becomes more effective at destabilizing the system. Thus, any projections of the future state of Arctic sea-ice will depend sensitively on the treatment of the ice-albedo feedback. This in turn implies that the treatment a fractional ice cover as the ice areal extent changes rapidly, must be handled with the utmost care. In chapter 3, the idea of a two-season model, with just winter and summer, is revisited. By breaking the seasonal cycle up in this manner one can simplify the interpretation of the basic dynamics. Whereas in the fully time-dependent seasonal model one finds stable seasonal ice cover (vanishing in the summer but reappearing in the winter), in previous two-season models such a state could not be found. In this chapter the sufficient conditions are found for a stable seasonal ice cover, which reside in including a time variation in the shortwave radiance during summer. This provides a qualitative interpretation of the continuous and reversible shift from perennial to seasonally-varying states in the more complex deterministic model. In order to put the stochastic model into a realistic observational framework, in chapter 4, the analysis of daily satellite retrievals of ice albedo and ice extent is described. Both the basic statistics are examined and a new method, called multi-fractal temporally weighted detrended fluctuation analysis, is applied. Because the basic data are taken on daily time scales, the full fidelity of the retrieved data is accessed and we find time scales from days and weeks to seasonal and decadal. Importantly, the data show a white-noise structure on annual to biannual time scales and this provides the basis for using a Wiener process for the noise in the stochastic Arctic sea-ice model. In chapter 5 a generalized perturbation analysis of a non-autonomous stochastic differential equation is developed and then applied to interpreting the variability of Arctic sea-ice as greenhouse gas forcing increases. The resulting analytic expressions of the statistical moments provide insight into the transient and memory-delay effects associated with the basic competition in the system: the ice-albedo feedback and long wave radiative stabilization along with the asymmetry in the nonlinearity of the deterministic contributions to the model and the magnitude and structure of the stochastic noise. A systematic study of the impact of the noise structure, from additive to multiplicative, is undertaken in chapters 6 and 7. Finally, in chapter 8 the matter of including a fractional ice cover into a deterministic model is addressed. It is found that a simple but crucial mistake is made in one of the most widely used model schemes and this has a major impact given the important role of areal fraction in the ice-albedo feedback in such a model. The thesis is summarized in chapter 9.
Jitter and phase noise of ADPLL due to PSN with deterministic frequency
NASA Astrophysics Data System (ADS)
Deng, Xiaoying; Yang, Jun; Wu, Jianhui
2011-09-01
In this article, jitter and phase noise of all-digital phase-locked loop due to power supply noise (PSN) with deterministic frequency are analysed. It leads to the conclusion that jitter and phase noise heavily depend on the noise frequency. Compared with jitter, phase noise is much less affected by the deterministic PSN. Our method is utilised to study a CMOS ADPLL designed and simulated in SMIC 0.13 µm standard CMOS process. A comparison between the results obtained by our method and those obtained by simulation and measurement proves the accuracy of the predicted model. When the digital controlled oscillator was corrupted by PSN with 100 mVpk-pk, the measured jitters were 33.9 ps at the rate of fG = 192 MHz and 148.5 ps at the rate of fG = 40 MHz. However, the measured phase noise was exactly the same except for two impulses appearing at 192 and 40 MHz, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okladnikova, N.; Pesternikova, V.; Sumina, M.
1998-12-01
Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects;more » creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.« less
How the growth rate of host cells affects cancer risk in a deterministic way
NASA Astrophysics Data System (ADS)
Draghi, Clément; Viger, Louise; Denis, Fabrice; Letellier, Christophe
2017-09-01
It is well known that cancers are significantly more often encountered in some tissues than in other ones. In this paper, by using a deterministic model describing the interactions between host, effector immune and tumor cells at the tissue level, we show that this can be explained by the dependency of tumor growth on parameter values characterizing the type as well as the state of the tissue considered due to the "way of life" (environmental factors, food consumption, drinking or smoking habits, etc.). Our approach is purely deterministic and, consequently, the strong correlation (r = 0.99) between the number of detectable growing tumors and the growth rate of cells from the nesting tissue can be explained without evoking random mutation arising during DNA replications in nonmalignant cells or "bad luck". Strategies to limit the mortality induced by cancer could therefore be well based on improving the way of life, that is, by better preserving the tissue where mutant cells randomly arise.
NASA Astrophysics Data System (ADS)
Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.
2017-10-01
We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.
NASA Astrophysics Data System (ADS)
Dixon, Kenneth
A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Space Radiation Transport Methods Development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2002-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.
NASA Astrophysics Data System (ADS)
Boyer, D.; Miramontes, O.; Larralde, H.
2009-10-01
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work, we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power law, p(k) ~ k-β, in some range of the exponent β, the foraging medium induces movements that are similar to Lévy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.
NASA Astrophysics Data System (ADS)
Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.
2017-02-01
This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.
Diagnostic Models as Partially Ordered Sets
ERIC Educational Resources Information Center
Tatsuoka, Curtis
2009-01-01
In this commentary, the author addresses what is referred to as the deterministic input, noisy "and" gate (DINA) model. The author mentions concerns with how this model has been formulated and presented. In particular, the author points out that there is a lack of recognition of the confounding of profiles that generally arises and then discusses…
A three-volume report was developed relative to the modelling of investment strategies for regional water supply planning. Volume 1 is the study of capacity expansion over time. Models to aid decision making for the deterministic case are presented, and a planning process under u...
ERIC Educational Resources Information Center
von Davier, Matthias
2011-01-01
This report shows that the deterministic-input noisy-AND (DINA) model is a special case of more general compensatory diagnostic models by means of a reparameterization of the skill space and the design (Q-) matrix of item by skills associations. This reparameterization produces a compensatory model that is equivalent to the (conjunctive) DINA…
NASA Technical Reports Server (NTRS)
Jones, D. H.
1985-01-01
A new flexible model of pilot instrument scanning behavior is presented which assumes that the pilot uses a set of deterministic scanning patterns on the pilot's perception of error in the state of the aircraft, and the pilot's knowledge of the interactive nature of the aircraft's systems. Statistical analyses revealed that a three stage Markov process composed of the pilot's three predicted lookpoints (LP), occurring 1/30, 2/30, and 3/30 of a second prior to each LP, accurately modelled the scanning behavior of 14 commercial airline pilots while flying steep turn maneuvers in a Boeing 737 flight simulator. The modelled scanning data for each pilot were not statistically different from the observed scanning data in comparisons of mean dwell time, entropy, and entropy rate. These findings represent the first direct evidence that pilots are using deterministic scanning patterns during instrument flight. The results are interpreted as direct support for the error dependent model and suggestions are made for further research that could allow for identification of the specific scanning patterns suggested by the model.
Rixen, M.; Ferreira-Coelho, E.; Signell, R.
2008-01-01
Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).
Predicting the Stochastic Properties of the Shallow Subsurface for Improved Geophysical Modeling
NASA Astrophysics Data System (ADS)
Stroujkova, A.; Vynne, J.; Bonner, J.; Lewkowicz, J.
2005-12-01
Strong ground motion data from numerous explosive field experiments and from moderate to large earthquakes show significant variations in amplitude and waveform shape with respect to both azimuth and range. Attempts to model these variations using deterministic models have often been unsuccessful. It has been hypothesized that a stochastic description of the geological medium is a more realistic approach. To estimate the stochastic properties of the shallow subsurface, we use Measurement While Drilling (MWD) data, which are routinely collected by mines in order to facilitate design of blast patterns. The parameters, such as rotation speed of the drill, torque, and penetration rate, are used to compute the rock's Specific Energy (SE), which is then related to a blastability index. We use values of SE measured at two different mines and calibrated to laboratory measurements of rock properties to determine correlation lengths of the subsurface rocks in 2D, needed to obtain 2D and 3D stochastic models. The stochastic models are then combined with the deterministic models and used to compute synthetic seismic waveforms.
Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick
2007-01-01
The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.
Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise
NASA Astrophysics Data System (ADS)
Chen, Can; Kang, Yanmei
2017-01-01
A stochastic multi-strain SIS epidemic model is formulated by introducing Lévy noise into the disease transmission rate of each strain. First, we prove that the stochastic model admits a unique global positive solution, and, by the comparison theorem, we show that the solution remains within a positively invariant set almost surely. Next we investigate stochastic stability of the disease-free equilibrium, including stability in probability and pth moment asymptotic stability. Then sufficient conditions for persistence in the mean of the disease are established. Finally, based on an Euler scheme for Lévy-driven stochastic differential equations, numerical simulations for a stochastic two-strain model are carried out to verify the theoretical results. Moreover, numerical comparison results of the stochastic two-strain model and the deterministic version are also given. Lévy noise can cause the two strains to become extinct almost surely, even though there is a dominant strain that persists in the deterministic model. It can be concluded that the introduction of Lévy noise reduces the disease extinction threshold, which indicates that Lévy noise may suppress the disease outbreak.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Health safety nets can break cycles of poverty and disease: a stochastic ecological model.
Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H
2011-12-07
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.
Structural Deterministic Safety Factors Selection Criteria and Verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C
2013-01-01
Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706
Development of TIF based figuring algorithm for deterministic pitch tool polishing
NASA Astrophysics Data System (ADS)
Yi, Hyun-Su; Kim, Sug-Whan; Yang, Ho-Soon; Lee, Yun-Woo
2007-12-01
Pitch is perhaps the oldest material used for optical polishing, leaving superior surface texture, and has been used widely in the optics shop floor. However, for its unpredictable controllability of removal characteristics, the pitch tool polishing has been rarely analysed quantitatively and many optics shops rely heavily on optician's "feel" even today. In order to bring a degree of process controllability to the pitch tool polishing, we added motorized tool motions to the conventional Draper type polishing machine and modelled the tool path in the absolute machine coordinate. We then produced a number of Tool Influence Function (TIF) both from an analytical model and a series of experimental polishing runs using the pitch tool. The theoretical TIFs agreed well with the experimental TIFs to the profile accuracy of 79 % in terms of its shape. The surface figuring algorithm was then developed in-house utilizing both theoretical and experimental TIFs. We are currently undertaking a series of trial figuring experiments to prove the performance of the polishing algorithm, and the early results indicate that the highly deterministic material removal control with the pitch tool can be achieved to a certain level of form error. The machine renovation, TIF theory and experimental confirmation, figuring simulation results are reported together with implications to deterministic polishing.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae
Dar, R. D.; Karig, D. K.; Cooke, J. F.; ...
2010-09-01
Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less
A family of small-world network models built by complete graph and iteration-function
NASA Astrophysics Data System (ADS)
Ma, Fei; Yao, Bing
2018-02-01
Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also obtained.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
A MODEL OF ESTUARY RESPONSE TO NITROGEN LOADING AND FRESHWATER RESIDENCE TIME
We have developed a deterministic model that relates average annual nitrogen loading rate and water residence time in an estuary to in-estuary nitrogen concentrations and loss rates (e.g. denitrification and incorporation in sediments), and to rates of nitrogen export across the ...
SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)
A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...
Modeling heterogeneous responsiveness of intrinsic apoptosis pathway
2013-01-01
Background Apoptosis is a cell suicide mechanism that enables multicellular organisms to maintain homeostasis and to eliminate individual cells that threaten the organism’s survival. Dependent on the type of stimulus, apoptosis can be propagated by extrinsic pathway or intrinsic pathway. The comprehensive understanding of the molecular mechanism of apoptotic signaling allows for development of mathematical models, aiming to elucidate dynamical and systems properties of apoptotic signaling networks. There have been extensive efforts in modeling deterministic apoptosis network accounting for average behavior of a population of cells. Cellular networks, however, are inherently stochastic and significant cell-to-cell variability in apoptosis response has been observed at single cell level. Results To address the inevitable randomness in the intrinsic apoptosis mechanism, we develop a theoretical and computational modeling framework of intrinsic apoptosis pathway at single-cell level, accounting for both deterministic and stochastic behavior. Our deterministic model, adapted from the well-accepted Fussenegger model, shows that an additional positive feedback between the executioner caspase and the initiator caspase plays a fundamental role in yielding the desired property of bistability. We then examine the impact of intrinsic fluctuations of biochemical reactions, viewed as intrinsic noise, and natural variation of protein concentrations, viewed as extrinsic noise, on behavior of the intrinsic apoptosis network. Histograms of the steady-state output at varying input levels show that the intrinsic noise could elicit a wider region of bistability over that of the deterministic model. However, the system stochasticity due to intrinsic fluctuations, such as the noise of steady-state response and the randomness of response delay, shows that the intrinsic noise in general is insufficient to produce significant cell-to-cell variations at physiologically relevant level of molecular numbers. Furthermore, the extrinsic noise represented by random variations of two key apoptotic proteins, namely Cytochrome C and inhibitor of apoptosis proteins (IAP), is modeled separately or in combination with intrinsic noise. The resultant stochasticity in the timing of intrinsic apoptosis response shows that the fluctuating protein variations can induce cell-to-cell stochastic variability at a quantitative level agreeing with experiments. Finally, simulations illustrate that the mean abundance of fluctuating IAP protein is positively correlated with the degree of cellular stochasticity of the intrinsic apoptosis pathway. Conclusions Our theoretical and computational study shows that the pronounced non-genetic heterogeneity in intrinsic apoptosis responses among individual cells plausibly arises from extrinsic rather than intrinsic origin of fluctuations. In addition, it predicts that the IAP protein could serve as a potential therapeutic target for suppression of the cell-to-cell variation in the intrinsic apoptosis responsiveness. PMID:23875784
Motion Between the Indian, African and Antarctic Plates in the Early Cenozoic
NASA Astrophysics Data System (ADS)
Cande, S. C.; Patriat, P.; Dyment, J.
2009-12-01
We used a three-plate, best-fit algorithm to calculate four sets of Euler rotations for India (Capricorn) - Africa (Somali), India (Capricorn)-Antarctic, and Africa (Somali)-Antarctic motion for twelve time intervals between Chrons 20 and 29 in the early Cenozoic. Each set of rotations had a different combination of data constraints. The first set of rotations used a basic set of magnetic anomaly picks on the Central Indian Ridge (CIR), Southeast Indian Ridge (SEIR) and Southwest Indian Ridge (SWIR), but did not incorporate data from the Carlsberg ridge and did not use fracture zones on the SWIR. The second set added fracture zone constraints from the region west of the Bain FZ on the SWIR and also included corrections for Nubia-Somalia and Lwandle-Somalia motion on the western and central SWIR, respectively. The third set of rotations used the basic constraints from the first rotation set and added data from the Carlsberg ridge. The fourth set of rotations combined both the additional SWIR constraints of the second data set and the Carlsberg ridge constraints of the third data set. Data on the Indian plate side of the Carlsberg ridge (Arabian Basin) were rotated to the Capricorn plate before being included in the constraints. We found that the rotations constrained by the Carlsberg ridge data set diverged from the other two sets of rotations prior to anomaly 22o. We concluded that, relative to the rest of the CIR, there is a progressively larger separation of anomalies on the Carlsberg ridge, starting at anomaly 22o and increasing to over 100 km for anomaly 26. These observations support two alternative interpretations. First, they are consistent with a distinct Seychelles microplate in the early Cenozoic. The sense of the misfit on the Carlsberg ridge is consistent with roughly 100 to 150 km of convergence across a boundary between the Seychelles microplate and Somali plate between Chrons 26 and 22 running from the Amirante Trench and extending north to the Carlsberg ridge axis. Alternatively, the misfit is consistent with convergent motion of the same magnitude between the Indian and a proto-Capricorn plate east of the CIR between Chrons 26 and 22. Our work also sharpens the dating of the two major Eocene events that Patriat and Achache (1984) recognized in the Indian Ocean: a large but gradual slowdown on the CIR and SEIR starting shortly after Chron 23o (51.9 Ma) and continuing until Chron 21y (45.3 Ma), a period of 6.6 Ma, followed two or three million years later by an abrupt change in spreading azimuth on the CIR and SEIR which occurred around Chron 20o (42.8) Ma and which was completed by Chron 20y (41.5 Ma). No change in spreading rate accompanied the change in spreading direction.
NASA Astrophysics Data System (ADS)
Sumi, Ayako; Olsen, Lars Folke; Ohtomo, Norio; Tanaka, Yukio; Sawamura, Sadashi
2003-02-01
We have carried out spectral analysis of measles notifications in several communities in Denmark, UK and USA. The results confirm that each power spectral density (PSD) shows exponential characteristics, which are universally observed in the PSD for time series generated from nonlinear dynamical system. The exponential gradient increases with the population size. For almost all communities, many spectral lines observed in each PSD can be fully assigned to linear combinations of several fundamental periods, suggesting that the measles data are substantially noise-free. The optimum least squares fitting curve calculated using these fundamental periods essentially reproduces an underlying variation of the measles data, and an extension of the curve can be used to predict measles epidemics. For the communities with large population sizes, some PSD patterns obtained from segment time series analysis show a close resemblance to the PSD patterns at the initial stages of a period-doubling bifurcation process for the so-called susceptible/exposed/infectious/recovered (SEIR) model with seasonal forcing. The meaning of the relationship between the exponential gradient and the population size is discussed.
The effects of strain heterology on the epidemiology of equine influenza in a vaccinated population.
Park, A. W.; Wood, J. L. N.; Daly, J. M.; Newton, J. R.; Glass, K.; Henley, W.; Mumford, J. A.; Grenfell, B. T.
2004-01-01
We assess the effects of strain heterology (strains that are immunologically similar but not identical) on equine influenza in a vaccinated population. Using data relating to individual animals, for both homologous and heterologous vaccinees, we estimate distributions for the latent and infectious periods, quantify the risk of becoming infected in terms of the quantity of cross-reactive antibodies to a key surface protein of the virus (haemagglutinin) and estimate the probability of excreting virus (i.e. becoming infectious) given that infection has occurred. The data suggest that the infectious period, the risk of becoming infected (for a given vaccine-induced level of cross-reactive antibodies) and the probability of excreting virus are increased for heterologously vaccinated animals when compared with homologously vaccinated animals. The data are used to parameterize a modified susceptible, exposed, infectious and recovered/resistant (SEIR) model, which shows that these relatively small differences combine to have a large effect at the population level, where populations of heterologous vaccinees face a significantly increased risk of an epidemic occurring. PMID:15306299
An application of ensemble/multi model approach for wind power production forecast.
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.
2010-09-01
The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic model) seems to reach similar level of accuracy of those of the mesocale models (LAMI and RAMS). Finally we have focused on the possibility of using the ensemble model (ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first day ahead period. In fact low spreads often correspond to low forecast error. For longer forecast horizon the correlation between RMSE and ensemble spread decrease becoming too low to be used for this purpose.
Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.
Pavlovic, Dragana M; Vértes, Petra E; Bullmore, Edward T; Schafer, William R; Nichols, Thomas E
2014-01-01
Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4-5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the "core-in-modules" decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.
Pendall, Elise; Betancourt, Julio L.; Leavitt, Steven W.
1999-01-01
We compared two approaches to interpreting δD of cellulose nitrate in piñon pine needles (Pinus edulis) preserved in packrat middens from central New Mexico, USA. One approach was based on linear regression between modern δD values and climate parameters, and the other on a deterministic isotope model, modified from Craig and Gordon's terminal lake evaporation model that assumes steady-state conditions and constant isotope effects. One such effect, the net biochemical fractionation factor, was determined for a new species, piñon pine. Regressions showed that δD values in cellulose nitrate from annual cohorts of needles (1989–1996) were strongly correlated with growing season (May–August) precipitation amount, and δ13C values in the same samples were correlated with June relative humidity. The deterministic model reconstructed δD values of meteoric water used by plants after constraining relative humidity effects with δ13C values; growing season temperatures were estimated via modern correlations with δD values of meteoric water. Variations of this modeling approach have been applied to tree-ring cellulose before, but not to macrofossil cellulose, and comparisons to empirical relationships have not been provided. Results from fossil piñon needles spanning the last ∼40,000 years showed no significant trend in δD values of cellulose nitrate, suggesting either no change in the amount of summer precipitation (based on the transfer function) or δD values of meteoric water or temperature (based on the deterministic model). However, there were significant differences in δ13C values, and therefore relative humidity, between Pleistocene and Holocene.
NASA Astrophysics Data System (ADS)
Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.
2016-12-01
Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.
Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2017-06-22
A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.
Detecting determinism from point processes.
Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas
2014-12-01
The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.
Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M
2017-06-01
This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Soil erosion assessment - Mind the gap
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone
2016-12-01
Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.
Current fluctuations in periodically driven systems
NASA Astrophysics Data System (ADS)
Barato, Andre C.; Chetrite, Raphael
2018-05-01
Small nonequelibrium systems driven by an external periodic protocol can be described by Markov processes with time-periodic transition rates. In general, current fluctuations in such small systems are large and may play a crucial role. We develop a theoretical formalism to evaluate the rate of such large deviations in periodically driven systems. We show that the scaled cumulant generating function that characterizes current fluctuations is given by a maximal Floquet exponent. Comparing deterministic protocols with stochastic protocols, we show that, with respect to large deviations, systems driven by a stochastic protocol with an infinitely large number of jumps are equivalent to systems driven by deterministic protocols. Our results are illustrated with three case studies: a two-state model for a heat engine, a three-state model for a molecular pump, and a biased random walk with a time-periodic affinity.
Influence of the hypercycle on the error threshold: a stochastic approach.
García-Tejedor, A; Sanz-Nuño, J C; Olarrea, J; Javier de la Rubia, F; Montero, F
1988-10-21
The role of fluctuations on the error threshold of the hypercycle has been studied by a stochastic approach on a very simplified model. For this model, the master equation was derived and its unique steady state calculated. This state implies the extinction of the system. But the actual time necessary to reach the steady state may be astronomically long whereas for times of experimental interest the system could be near some quasi-stationary states. In order to explore this possibility a Gillespie simulation of the stochastic process has been carried out. These quasi-stationary states correspond to the deterministic steady states of the system. The error threshold shifts towards higher values of the quality factor Q. Moreover, information about the fluctuations around the quasi-stationary states is obtained. The results are discussed in relation to the deterministic states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel
2016-10-01
A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simple Deterministically Constructed Recurrent Neural Networks
NASA Astrophysics Data System (ADS)
Rodan, Ali; Tiňo, Peter
A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.
Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model
NASA Astrophysics Data System (ADS)
Anderson, K. R.
2016-12-01
Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.
Exploring Reading Comprehension Skill Relationships through the G-DINA Model
ERIC Educational Resources Information Center
Chen, Huilin; Chen, Jinsong
2016-01-01
By analysing the test data of 1029 British secondary school students' performance on 20 Programme for International Student Assessment English reading items through the generalised deterministic input, noisy "and" gate (G-DINA) model, the study conducted two investigations on exploring the relationships among the five reading…
Hybrid quantum teleportation: A theoretical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
The "Chaos" Pattern in Piaget's Theory of Cognitive Development.
ERIC Educational Resources Information Center
Lindsay, Jean S.
Piaget's theory of the cognitive development of the child is related to the recently developed non-linear "chaos" model. The term "chaos" refers to the tendency of dynamical, non-linear systems toward irregular, sometimes unpredictable, deterministic behavior. Piaget identified this same pattern in his model of cognitive…
Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...
Exposure to contaminants originating in the domestic water supply is influenced by a number of factors, including human activities, water use behavior, and physical and chemical processes. The key role of human activities is very apparent in exposure related to volatile water-...
Stable cycling in discrete-time genetic models.
Hastings, A
1981-11-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Two deterministic models (US EPA’s Office of Pesticide Programs Residential Standard Operating Procedures (OPP Residential SOPs) and Draft Protocol for Measuring Children’s Non-Occupational Exposure to Pesticides by all Relevant Pathways (Draft Protocol)) and four probabilistic mo...
An Equilibrium Flow Model of a University Campus.
ERIC Educational Resources Information Center
Oliver, Robert M.; Hopkins, David S. P.
This paper develops a simple deterministic model that relates student admissions and enrollments to the final demand for educated students. It includes the effects of dropout rates and student-teacher ratios on student enrollments and faculty staffing levels. Certain technological requirements are assumed known and given. These, as well as the…
Neural nets with terminal chaos for simulation of non-deterministic patterns
NASA Technical Reports Server (NTRS)
Zak, Michail
1993-01-01
Models for simulating some aspects of neural intelligence are presented and discussed. Special attention is given to terminal neurodynamics as a particular architecture of terminal dynamics suitable for modeling information flows. Applications of terminal chaos to information fusion as well as to planning and modeling coordination among neurons in biological systems are disussed.
Creating a stage-based deterministic PVA model - the western prairie fringed orchid [Exercise 12
Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke
2003-01-01
Contemporary efforts to conserve populations and species often employ population viability analysis (PVA), a specific application of population modeling that estimates the effects of environmental and demographic processes on population growth rates. These models can also be used to estimate probabilities that a population will fall below a certain level. This...
Refinement of the Arc-Habcap model to predict habitat effectiveness for elk
Lakhdar Benkobi; Mark A. Rumble; Gary C. Brundige; Joshua J. Millspaugh
2004-01-01
Wildlife habitat modeling is increasingly important for managers who need to assess the effects of land management activities. We evaluated the performance of a spatially explicit deterministic habitat model (Arc-Habcap) that predicts habitat effectiveness for elk. We used five years of radio-telemetry locations of elk from Custer State Park (CSP), South Dakota, to...
Fast-slow asymptotics for a Markov chain model of fast sodium current
NASA Astrophysics Data System (ADS)
Starý, Tomáš; Biktashev, Vadim N.
2017-09-01
We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.
Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence
1998-01-01
Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...
Application of a Cognitive Diagnostic Model to a High-Stakes Reading Comprehension Test
ERIC Educational Resources Information Center
Ravand, Hamdollah
2016-01-01
General cognitive diagnostic models (CDM) such as the generalized deterministic input, noisy, "and" gate (G-DINA) model are flexible in that they allow for both compensatory and noncompensatory relationships among the subskills within the same test. Most of the previous CDM applications in the literature have been add-ons to simulation…
A Hybrid Method of Moment Equations and Rate Equations to Modeling Gas-Grain Chemistry
NASA Astrophysics Data System (ADS)
Pei, Y.; Herbst, E.
2011-05-01
Grain surfaces play a crucial role in catalyzing many important chemical reactions in the interstellar medium (ISM). The deterministic rate equation (RE) method has often been used to simulate the surface chemistry. But this method becomes inaccurate when the number of reacting particles per grain is typically less than one, which can occur in the ISM. In this condition, stochastic approaches such as the master equations are adopted. However, these methods have mostly been constrained to small chemical networks due to the large amounts of processor time and computer power required. In this study, we present a hybrid method consisting of the moment equation approximation to the stochastic master equation approach and deterministic rate equations to treat a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In this model, we use the standard OSU gas phase network (version OSU2006V3) which involves 458 gas phase species and more than 4000 reactions, and treat it by deterministic rate equations. A medium-sized surface reaction network which consists of 21 species and 19 reactions accounts for the productions of stable molecules such as H_2O, CO, CO_2, H_2CO, CH_3OH, NH_3 and CH_4. These surface reactions are treated by a hybrid method of moment equations (Barzel & Biham 2007) and rate equations: when the abundance of a surface species is lower than a specific threshold, say one per grain, we use the ``stochastic" moment equations to simulate the evolution; when its abundance goes above this threshold, we use the rate equations. A continuity technique is utilized to secure a smooth transition between these two methods. We have run chemical simulations for a time up to 10^8 yr at three temperatures: 10 K, 15 K, and 20 K. The results will be compared with those generated from (1) a completely deterministic model that uses rate equations for both gas phase and grain surface chemistry, (2) the method of modified rate equations (Garrod 2008), which partially takes into account the stochastic effect for surface reactions, and (3) the master equation approach solved using a Monte Carlo technique. At 10 K and standard grain sizes, our model results agree well with the above three methods, while discrepancies appear at higher temperatures and smaller grain sizes.
Non-Deterministic Modelling of Food-Web Dynamics
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null models of food-webs’ as originally advocated. PMID:25299245
Enhancing Flood Prediction Reliability Using Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Liu, Z.; Merwade, V.
2017-12-01
Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.
A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics.
Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2017-01-01
In many important cellular processes, including mRNA translation, gene transcription, phosphotransfer, and intracellular transport, biological "particles" move along some kind of "tracks". The motion of these particles can be modeled as a one-dimensional movement along an ordered sequence of sites. The biological particles (e.g., ribosomes or RNAPs) have volume and cannot surpass one another. In some cases, there is a preferred direction of movement along the track, but in general the movement may be bidirectional, and furthermore the particles may attach or detach from various regions along the tracks. We derive a new deterministic mathematical model for such transport phenomena that may be interpreted as a dynamic mean-field approximation of an important model from mechanical statistics called the asymmetric simple exclusion process (ASEP) with Langmuir kinetics. Using tools from the theory of monotone dynamical systems and contraction theory we show that the model admits a unique steady-state, and that every solution converges to this steady-state. Furthermore, we show that the model entrains (or phase locks) to periodic excitations in any of its forward, backward, attachment, or detachment rates. We demonstrate an application of this phenomenological transport model for analyzing ribosome drop off in mRNA translation.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
Christen, Alejandra; Maulén-Yañez, M Angélica; González-Olivares, Eduardo; Curé, Michel
2018-03-01
In this paper a stochastic susceptible-infectious (SI) epidemic model is analysed, which is based on the model proposed by Roberts and Saha (Appl Math Lett 12: 37-41, 1999), considering a hyperbolic type nonlinear incidence rate. Assuming the proportion of infected population varies with time, our new model is described by an ordinary differential equation, which is analogous to the equation that describes the double Allee effect. The limit of the solution of this equation (deterministic model) is found when time tends to infinity. Then, the asymptotic behaviour of a stochastic fluctuation due to the environmental variation in the coefficient of disease transmission is studied. Thus a stochastic differential equation (SDE) is obtained and the existence of a unique solution is proved. Moreover, the SDE is analysed through the associated Fokker-Planck equation to obtain the invariant measure when the proportion of the infected population reaches steady state. An explicit expression for invariant measure is found and we study some of its properties. The long time behaviour of deterministic and stochastic models are compared by simulations. According to our knowledge this incidence rate has not been previously used for this type of epidemic models.
Deterministic quantum dense coding networks
NASA Astrophysics Data System (ADS)
Roy, Saptarshi; Chanda, Titas; Das, Tamoghna; Sen(De), Aditi; Sen, Ujjwal
2018-07-01
We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state - an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.
Automated Guideway Network Traffic Modeling
DOT National Transportation Integrated Search
1972-02-01
In the literature concerning automated guideway transportation systems, such as dual mode, a great deal of effort has been expended on the use of deterministic reservation schemes and the problem of merging streams of vehicles. However, little attent...
Inferring a District-Based Hierarchical Structure of Social Contacts from Census Data
Yu, Zhiwen; Liu, Jiming; Zhu, Xianjun
2015-01-01
Researchers have recently paid attention to social contact patterns among individuals due to their useful applications in such areas as epidemic evaluation and control, public health decisions, chronic disease research and social network research. Although some studies have estimated social contact patterns from social networks and surveys, few have considered how to infer the hierarchical structure of social contacts directly from census data. In this paper, we focus on inferring an individual’s social contact patterns from detailed census data, and generate various types of social contact patterns such as hierarchical-district-structure-based, cross-district and age-district-based patterns. We evaluate newly generated contact patterns derived from detailed 2011 Hong Kong census data by incorporating them into a model and simulation of the 2009 Hong Kong H1N1 epidemic. We then compare the newly generated social contact patterns with the mixing patterns that are often used in the literature, and draw the following conclusions. First, the generation of social contact patterns based on a hierarchical district structure allows for simulations at different district levels. Second, the newly generated social contact patterns reflect individuals social contacts. Third, the newly generated social contact patterns improve the accuracy of the SEIR-based epidemic model. PMID:25679787
Integrated Risk-Informed Decision-Making for an ALMR PRISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, Michael David; Belles, Randy; Denning, Richard S.
Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less
Chiu, Chia-Yi; Köhn, Hans-Friedrich
2016-09-01
The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.
Gérard, Claude; Gonze, Didier; Lemaigre, Frédéric; Novák, Béla
2014-01-01
Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncoprotein Src, activates NF-κB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-κB. In turn, IL6 can promote NF-κB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors) or activators (oncogenes) of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src) needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability) are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor suppressors respectively decrease/increase the robustness of the non-transformed state of the cell towards random fluctuations. Finally, the model accounts for the potential effect of competing endogenous RNAs, ceRNAs, on the dynamics of the epigenetic switch. Depending on their microRNA targets, the model predicts that ceRNAs could act as oncogenes or tumor suppressors by regulating the occurrence of cell transformation. PMID:24499937
Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja
2014-01-01
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100
Bossew, Peter; Dubois, Grégoire; Tollefsen, Tore
2008-01-01
Geological classes are used to model the deterministic (drift or trend) component of the Radon potential (Friedmann's RP) in Austria. It is shown that the RP can be grouped according to geological classes, but also according to individual geological units belonging to the same class. Geological classes can thus serve as predictors for mean RP within the classes. Variability of the RP within classes or units is interpreted as the stochastic part of the regionalized variable RP; however, there does not seem to exist a smallest unit which would naturally divide the RP into a deterministic and a stochastic part. Rather, this depends on the scale of the geological maps used, down to which size of geological units is used for modelling the trend. In practice, there must be a sufficient number of data points (measurements) distributed as uniformly as possible within one unit to allow reasonable determination of the trend component.
Stochastic Optimization for Unit Commitment-A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Qipeng P.; Wang, Jianhui; Liu, Andrew L.
2015-07-01
Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave ismore » focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications.« less
Fisher-Wright model with deterministic seed bank and selection.
Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel
2017-04-01
Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.
Network-level reproduction number and extinction threshold for vector-borne diseases.
Xue, Ling; Scoglio, Caterina
2015-06-01
The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.
2011-01-01
Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
A space radiation transport method development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2004-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.
Integrated Arrival and Departure Schedule Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon
2014-01-01
In terminal airspace, integrating arrivals and departures with shared waypoints provides the potential of improving operational efficiency by allowing direct routes when possible. Incorporating stochastic evaluation as a post-analysis process of deterministic optimization, and imposing a safety buffer in deterministic optimization, are two ways to learn and alleviate the impact of uncertainty and to avoid unexpected outcomes. This work presents a third and direct way to take uncertainty into consideration during the optimization. The impact of uncertainty was incorporated into cost evaluations when searching for the optimal solutions. The controller intervention count was computed using a heuristic model and served as another stochastic cost besides total delay. Costs under uncertainty were evaluated using Monte Carlo simulations. The Pareto fronts that contain a set of solutions were identified and the trade-off between delays and controller intervention count was shown. Solutions that shared similar delays but had different intervention counts were investigated. The results showed that optimization under uncertainty could identify compromise solutions on Pareto fonts, which is better than deterministic optimization with extra safety buffers. It helps decision-makers reduce controller intervention while achieving low delays.
Louis R. Iverson; Anantha Prasad; Mark W. Schwartz; Mark W. Schwartz
1999-01-01
We are using a deterministic regression tree analysis model (DISTRIB) and a stochastic migration model (SHIFT) to examine potential distributions of ~66 individual species of eastern US trees under a 2 x CO2 climate change scenario. This process is demonstrated for Virginia pine (Pinus virginiana).
Multi-Year Revenue and Expenditure Forecasting for Small Municipal Governments.
1981-03-01
Management Audit Econometric Revenue Forecast Gap and Impact Analysis Deterministic Expenditure Forecast Municipal Forecasting Municipal Budget Formlto...together with a multi-year revenue and expenditure forecasting model for the City of Monterey, California. The Monterey model includes an econometric ...65 5 D. FORECAST BASED ON THE ECONOMETRIC MODEL ------- 67 E. FORECAST BASED ON EXPERT JUDGMENT AND TREND ANALYSIS
Stochastic mixed-mode oscillations in a three-species predator-prey model
NASA Astrophysics Data System (ADS)
Sadhu, Susmita; Kuehn, Christian
2018-03-01
The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.
Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús
2012-10-07
In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. Copyright © 2012 Elsevier Ltd. All rights reserved.
Health safety nets can break cycles of poverty and disease: a stochastic ecological model
Pluciński, Mateusz M.; Ngonghala, Calistus N.; Bonds, Matthew H.
2011-01-01
The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a ‘safety net’, defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium. PMID:21593026
Thermostatted kinetic equations as models for complex systems in physics and life sciences.
Bianca, Carlo
2012-12-01
Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager-Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics. Copyright © 2012 Elsevier B.V. All rights reserved.
Predictability of short-range forecasting: a multimodel approach
NASA Astrophysics Data System (ADS)
García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan
2011-05-01
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).
Neo-deterministic seismic hazard scenarios for India—a preventive tool for disaster mitigation
NASA Astrophysics Data System (ADS)
Parvez, Imtiyaz A.; Magrin, Andrea; Vaccari, Franco; Ashish; Mir, Ramees R.; Peresan, Antonella; Panza, Giuliano Francesco
2017-11-01
Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489-508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93-165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489-508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.
NASA Astrophysics Data System (ADS)
Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.
2012-04-01
The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on deterministic (COSMO-7) and probabilistic (COSMO-LEPS) atmospheric forecasts, which are used to force a semi-distributed hydrological model (PREVAH) coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which we assessed the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added value conveyed by the probability information, a 31-month reforecast was produced for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain is of up to 2 days lead time for the catchment considered. Brier skill scores show that probabilistic hydrological forecasts outperform their deterministic counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. We finally highlight challenges for making decisions on the basis of hydrological predictions, and discuss the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.
Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.
Güler, Marifi
2008-10-01
Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.
Stochastic inference with spiking neurons in the high-conductance state
NASA Astrophysics Data System (ADS)
Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz
2016-10-01
The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.
Detection of "noisy" chaos in a time series
NASA Technical Reports Server (NTRS)
Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.
1997-01-01
Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both the internal dynamics of the systems, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.
2017-01-01
Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Philosophical Models of Man: With Special Reference to the Teaching of ESN Children.
ERIC Educational Resources Information Center
Burnwood, Les. R. V.; Brady, Carol A.
1981-01-01
Two opposing models of man: deterministic and libertarian are outlined and contrasted, and certain selected practical and ethical consequences for the teaching of children are drawn out. Reasons are given for suggesting that the problems are especially acute for the teacher of educationally sub-normal children. (Author)
The Signal Importance of Noise
ERIC Educational Resources Information Center
Macy, Michael; Tsvetkova, Milena
2015-01-01
Noise is widely regarded as a residual category--the unexplained variance in a linear model or the random disturbance of a predictable pattern. Accordingly, formal models often impose the simplifying assumption that the world is noise-free and social dynamics are deterministic. Where noise is assigned causal importance, it is often assumed to be a…
Epidemic Models for SARS and Measles
ERIC Educational Resources Information Center
Rozema, Edward
2007-01-01
Recent events have led to an increased interest in emerging infectious diseases. This article applies various deterministic models to the SARS epidemic of 2003 and a measles outbreak in the Netherlands in 1999-2000. We take a historical approach beginning with the well-known logistic curve and a lesser-known extension popularized by Pearl and Reed…
MICRO-U 70.1: Training Model of an Instructional Institution, Users Manual.
ERIC Educational Resources Information Center
Springer, Colby H.
MICRO-U is a student demand driven deterministic model. Student enrollment, by degree program, is used to develop an Instructional Work Load Matrix. Linear equations using Weekly Student Contact Hours (WSCH), Full Time Equivalent (FTE) students, FTE faculty, and number of disciplines determine library, central administration, and physical plant…
A Probabilistic Model for Diagnosing Misconceptions by a Pattern Classification Approach.
ERIC Educational Resources Information Center
Tatsuoka, Kikumi K.
A probabilistic approach is introduced to classify and diagnose erroneous rules of operation resulting from a variety of misconceptions ("bugs") in a procedural domain of arithmetic. The model is contrasted with the deterministic approach which has commonly been used in the field of artificial intelligence, and the advantage of treating the…
Examining Errors in Simple Spreadsheet Modeling from Different Research Perspectives
ERIC Educational Resources Information Center
Kadijevich, Djordje M.
2012-01-01
By using a sample of 1st-year undergraduate business students, this study dealt with the development of simple (deterministic and non-optimization) spreadsheet models of income statements within an introductory course on business informatics. The study examined students' errors in doing this for business situations of their choice and found three…
El-Kadi, A. I.; Torikai, J.D.
2001-01-01
The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.
Yan, Qinling; Tang, Sanyi; Gabriele, Sandra; Wu, Jianhong
2016-02-07
News reporting has the potential to modify a community's knowledge of emerging infectious diseases and affect peoples' attitudes and behavior. Here we developed a quantitative approach to evaluate the effects of media on such behavior. Statistically significant correlations between the number of new hospital notifications, during the 2009 A/H1N1 influenza epidemic in the Shaanxi province of China, and the number of daily news items added to eight major websites were found from Pearson correlation and cross-correlation analyses. We also proposed a novel model to examine the implication for transmission dynamics of these correlations. The model incorporated the media impact function into the intensity of infection, and enhanced the traditional epidemic SEIR model with the addition of media dynamics. We used a nonlinear least squares estimation to identify the best-fit parameter values in the model from the observed data. We also carried out the uncertainty and sensitivity analyses to determine key parameters during early phase of the disease outbreak for the final outcome of the outbreak with media impact. The findings confirm the importance of responses by individuals to the media reports, with behavior changes having important consequence for the emerging infectious disease control. Therefore, for mitigating emerging infectious diseases, media reports should be focused on how to guide people's behavioral changes, which are critical for limiting the spread of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Long, Fei; Zhu, Jia-Pei
2018-07-01
A Brownian particle optically trapped in an asymmetric double potential surrounded by a thermal bath was simulated. Under the cooperative action of the resultant deterministic optical force and the stochastic fluctuations of the thermal bath, the confined particle undergoes Kramers transition, and oscillates between the two traps with a probability of trap occupancy that is asymmetrically distributed about the midpoint. The simulation results obtained at different temperatures indicate that the oscillation behavior of the particle can be treated as the result of a tug-of-war game played between the resultant deterministic force and the random force. We also employ a bistable model to explain the observed phenomena.
A summary of wind power prediction methods
NASA Astrophysics Data System (ADS)
Wang, Yuqi
2018-06-01
The deterministic prediction of wind power, the probability prediction and the prediction of wind power ramp events are introduced in this paper. Deterministic prediction includes the prediction of statistical learning based on histor ical data and the prediction of physical models based on NWP data. Due to the great impact of wind power ramp events on the power system, this paper also introduces the prediction of wind power ramp events. At last, the evaluation indicators of all kinds of prediction are given. The prediction of wind power can be a good solution to the adverse effects of wind power on the power system due to the abrupt, intermittent and undulation of wind power.
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
Chaos–order transition in foraging behavior of ants
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-01-01
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159
NASA Astrophysics Data System (ADS)
Tang, J.; Riley, W. J.
2017-12-01
Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.
Mathematical model of tuberculosis epidemic with recovery time delay
NASA Astrophysics Data System (ADS)
Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan
2017-12-01
Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco
2015-04-01
Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and total amounts at the catchment scale, thus impacting heavily the deterministic QDFs. In contrast, early warnings would have been possible within a HEPS context for the Milano area, proving the suitability of such system for civil protection purposes.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
NASA Astrophysics Data System (ADS)
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast