Estimating Deep Flux at a Humid Site in South Carolina Using Deterministic and Monte Carlo Modeling
NASA Astrophysics Data System (ADS)
Young, M. H.; Pohlmann, K. F.; Nichols, R. L.; Dixon, K. L.; Holmes-Burns, H.
2002-05-01
Estimates of deep flux of precipitation were needed for performance assessment calculations for a disposal site at the Savannah River Site, SC. The overall goal of the project was to estimate deep flux using laboratory analysis of soil texture and hydraulic properties, and field data from cone penetrometer tests and a vadose zone monitoring system installed at the site. The approach involved the following tasks: converting laboratory soil hydraulic property data into functional relationships; assigning these functional relationships to soil layers identified using CPT data; calibrating the models using observed meteorological conditions and subsurface instrument responses; and conducting deterministic and Monte Carlo modeling to estimate the range of potential flux values for short-term (207 day) and long-term (10 yr) simulations. Short-term Monte Carlo results indicate a median water flux rate of between 23 and 31 cm/yr, depending on how layer properties in the model were assigned; flux rates were highly sensitive to the hydraulic conductivity. Deterministic results for 10-yr simulations showed that fluxes were approximately 23 cm and 25 cm for the 1977-87 and 1987-97 simulations, respectively. Monte Carlo results (10-yr) indicated annualized flux rates between 21-25 cm/yr at the 90 percent confidence level for the 1987-1997 period. Modeling results were consistent with field observations. The results can be useful for guiding further site monitoring and modeling efforts as part of the SRS performance assessment.
NASA Astrophysics Data System (ADS)
Urano, Ryo; Okamoto, Yuko
Two new methods of replica-exchange method (REM) are tested for a two-dimensional Ising spin model. The first method is the deterministic replica-exchange method (DETREM) which uses a differential equation based on Gibbs sampling method instead of Metropolis criteria. The other is the designed-walk replica-exchange method (DEWREM) which determines the trajectory of replica in temperature space without random walk. This method gives more number of tunneling events than conventional REM, where the tunneling event is a round-trip of temperature from the lowest to the highest back to the lowest. We examined physical quantities such as magnetization and susceptibility. Our new methods reproduced the results of the conventional random-walk REM.
Grace, Matthew; Lowry, Thomas Stephen; Arnold, Bill Walter; James, Scott Carlton; Gray, Genetha Anne; Ahlmann, Michael
2008-08-01
Uncertainty in site characterization arises from a lack of data and knowledge about a site and includes uncertainty in the boundary conditions, uncertainty in the characteristics, location, and behavior of major features within an investigation area (e.g., major faults as barriers or conduits), uncertainty in the geologic structure, as well as differences in numerical implementation (e.g., 2-D versus 3-D, finite difference versus finite element, grid resolution, deterministic versus stochastic, etc.). Since the true condition at a site can never be known, selection of the best conceptual model is very difficult. In addition, limiting the understanding to a single conceptualization too early in the process, or before data can support that conceptualization, may lead to confidence in a characterization that is unwarranted as well as to data collection efforts and field investigations that are misdirected and/or redundant. Using a series of numerical modeling experiments, this project examined the application and use of information criteria within the site characterization process. The numerical experiments are based on models of varying complexity that were developed to represent one of two synthetically developed groundwater sites; (1) a fully hypothetical site that represented a complex, multi-layer, multi-faulted site, and (2) a site that was based on the Horonobe site in northern Japan. Each of the synthetic sites were modeled in detail to provide increasingly informative 'field' data over successive iterations to the representing numerical models. The representing numerical models were calibrated to the synthetic site data and then ranked and compared using several different information criteria approaches. Results show, that for the early phases of site characterization, low-parameterized models ranked highest while more complex models generally ranked lowest. In addition, predictive capabilities were also better with the low-parameterized models. For the
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer
NASA Astrophysics Data System (ADS)
Agrinier, Pierre; Javoy, Marc
2016-09-01
Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration ACTION: Notice... . SUPPLEMENTARY INFORMATION: Title of Information Collection: Exchange Programs Alumni Web site Registration. OMB... available for public review. Abstract of proposed collection: The International Exchange Alumni Web...
Youngs, R.R.; Coppersmith, K.J. ); Stephenson, D.E. ); Silva, W. )
1991-01-01
Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources are identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring in Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US.
Youngs, R.R.; Coppersmith, K.J.; Stephenson, D.E.; Silva, W.
1991-12-31
Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources are identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring in Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US.
Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo
1999-04-19
Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh
Mansoor, K; Maley, M; Demir, Z; Hoffman, F
2001-08-08
Lawrence Livermore National Laboratory (LLNL) is a large Superfund site in California that is implementing an extensive ground water remediation program. The site is underlain by a thick sequence of heterogeneous alluvial sediments. Defining ground-water flow pathways in this complex geologic setting is difficult. To better evaluate these pathways, a deterministic approach was applied to define hydrostratigraphic units (HSUS) on the basis of identifiable hydraulic behavior and contaminant migration trends. The conceptual model based on this approach indicates that groundwater flow and contaminant transport occurs within packages of sediments bounded by thin, low-permeability confining layers. To aid in the development of the remediation program, a three-dimensional finite-element model was developed for two of the HSUS at LLNL. The primary objectives of this model are to test the conceptual model with a numerical model, and provide well field management support for the large ground-water remediation system. The model was successfully calibrated to 12 years of ground water flow and contaminant transport data. These results confirm that the thin, low-permeability confining layers within the heterogeneous alluvial sediments are the dominant hydraulic control to flow and transport. This calibrated model is currently being applied to better manage the large site-wide ground water extraction system by optimizing the location of new extraction wells, managing pumping rates for extraction wells, and providing performance estimates for long-term planning and budgeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration, DS-7006 ACTION... Collection: Exchange Programs Alumni Web site Registration. OMB Control Number: None. Type of Request... collection: The State Alumni Web site requires information to process users' voluntary request...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-28
... Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration, DS-7006 ACTION... burden on those who are to respond. Abstract of Proposed Collection The Exchange Programs Alumni Web site requires information to process users' voluntary requests for participation in the Web site. Other...
NASA Astrophysics Data System (ADS)
Lindquist, Bruno; Riklund, Rolf
1999-10-01
With the fundamental work of Hofstadter on the combined effects of band structure and magnetic field on the electronic states in two dimensions (2D) as a starting point, we numerically study the effects on the Hofstadter butterfly of including a binary distribution of on-site potentials on a 2D lattice in the tight-binding picture. The effects of the external magnetic field are included through the so-called Peierls substitution. The problem is reduced to a one-dimensional set of difference equations when the binary distribution is constrained to be in one direction only. Besides a periodic structure, a number of aperiodically ordered distributions like the Fibonacci, Thue-Morse, and the Rudin-Shapiro sequences are considered, and the band structures presented and discussed. Also, 2D chessboard and Sierpinski carpet distributions are dealt with in some detail.
NASA Astrophysics Data System (ADS)
Ritzi, Robert W.; Soltanian, Mohamad Reza
2015-12-01
In the method of deterministic geostatistics (sensu Isaaks and Srivastava, 1988), highly-resolved data sets are used to compute sample spatial-bivariate statistics within a deterministic framework. The general goal is to observe what real, highly resolved, sample spatial-bivariate correlation looks like when it is well-quantified in naturally-occurring sedimentary aquifers. Furthermore, it is to understand how this correlation structure, (i.e. shape and correlation range) is related to independent and physically quantifiable attributes of the sedimentary architecture. The approach has evolved among work by Rubin (1995, 2003), Barrash and Clemo (2002), Ritzi et al. (2004, 2007, 2013), Dai et al. (2005), and Ramanathan et al. (2010). In this evolution, equations for sample statistics have been developed which allow tracking the facies types at the heads and tails of lag vectors. The goal is to observe and thereby understand how aspects of the sedimentary architecture affect the well-supported sample statistics. The approach has been used to study heterogeneity at a number of sites, representing a variety of depositional environments, with highly resolved data sets. What have we learned? We offer and support an opinion that the single most important insight derived from these studies is that the structure of spatial-bivariate correlation is essentially the cross-transition probability structure, determined by the sedimentary architecture. More than one scale of hierarchical sedimentary architecture has been represented in these studies, and a hierarchy of cross-transition probability structures was found to define the correlation structure in all cases. This insight allows decomposing contributions from different scales of the sedimentary architecture, and has led to a more fundamental understanding of mass transport processes including mechanical dispersion of solutes within aquifers, and the time-dependent retardation of reactive solutes. These processes can now be
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration ACTION: Notice.... ADDRESSES: You may submit comments by any of the following methods: Web: Persons with access to the Internet... of Information Collection: Exchange Programs Alumni Web site Registration OMB Control Number:...
Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange.
Walsby, Anthony E
2007-08-01
In many filamentous cyanobacteria, oxygenic photosynthesis is restricted to vegetative cells, whereas N(2) fixation is confined to microoxic heterocysts. The heterocyst has an envelope that provides a barrier to gas exchange: N(2) and O(2) diffuse into heterocysts at similar rates, which ensures that concentrations of N(2) are high enough to saturate N(2) fixation while respiration maintains O(2) at concentrations low enough to prevent nitrogenase inactivation. I propose that the main gas-diffusion pathway is through the terminal pores that connect heterocysts with vegetative cells. Transmembrane proteins would make the narrow pores permeable enough and they might provide a means of regulating the rate of gas exchange, increasing it by day, when N(2) fixation is most active, and decreasing it at night, minimizing O(2) entry. Comparisons are made with stomata, which regulate gas exchange in plants.
Deterministic Walks with Choice
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites
NASA Astrophysics Data System (ADS)
Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil
2015-04-01
Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point
Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger
Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; Huang, Yihe; Faraldo-Gomez, Jose D.; Jiang, Youxing
2016-05-16
Na^{+}/Ca^{2+} exchangers utilize the Na^{+} electrochemical gradient across the plasma membrane to extrude intracellular Ca^{2+}, and play a central role in Ca^{2+} homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na^{+}, Ca^{2+} or Sr^{2+} in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na^{+}/Ca^{2+} exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na^{+}/Ca^{2+} antiport.
Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger
Lee, ChangKeun; Huang, Yihe; Faraldo-Gómez, José D.; Jiang, Youxing
2016-01-01
Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. PMID:27183196
Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger
Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; ...
2016-05-16
Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na+/Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamicsmore » and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport.« less
Adherence to hepatitis B virus vaccination at syringe exchange sites.
Altice, Frederick L; Bruce, Robert D; Walton, Mary R; Buitrago, Marta I
2005-03-01
Injection drug users (IDUs) are at high risk for hepatitis B virus (HBV); however, they often do not receive preventive vaccination. IDUs who use mobile health care services linked to a syringe exchange program in New Haven were routinely screened for HBV, hepatitis C virus, and syphilis. Individuals without prior exposure to HBV were offered three-part vaccination series. Of the 212 IDUs screened for HBV infection, 134 (63%) were eligible (negative for HBV surface and core anti-bodies) for vaccination and 10 (4.7%) had evidence of chronic HBV infection. Compared to those with previous exposure to HBV, vaccine-eligible patients were significantly more likely to be younger and use heroin and less likely to be black, home-less, daily injectors, and cocaine users. Of the 134 vaccine-eligible subjects, 103 (77%) and 89 (66%) completed two and three vaccinations, respectively. Correlates of completing all three vaccinations included older age (OR = 1.06, 95% CI = 1.04-1.07), injecting daily (OR = 2.12, 95% CI = 1.36-6.73), and being homeless (OR = 1.98, 95% CI = 1.14-12.27). These results suggest that IDUs remain at high risk for acquiring HBV infection. Programs that link health care to a syringe exchange program are effective ways to provide preventive health care services to IDUs, particularly HBV vaccination. Trust engendered by and mutual respect afforded by such programs result in repeated encounters by active IDUs over time.
Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions.
Becker, Maike; De Cola, Luisa; Studer, Armido
2011-03-28
Site-selective immobilization of dyes and different protein recognizing entities at the surface of zeolite L crystals using mild radical nitroxide exchange reactions is reported. Exposure of these crystals to aqueous protein solutions leads to site-selective immobilization of proteins onto the crystals.
Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site
Stachura, Monika; Chakraborty, Saumen; Gottberg, Alexander; Ruckthong, Leela; Pecoraro, Vincent L.; Hemmingsen, Lars
2017-01-01
Nanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd2+ binding site within two de novo designed metalloprotein constructs using 111mCd perturbed angular correlation (PAC) of γ-rays and 113Cd NMR spectroscopy. The residence time of the Cd2+-bound water molecule is tens of nanoseconds at 20 °C in both proteins. This constitutes the first direct experimental observation of the residence time of Cd2+ coordinated water in any system, including the simple aqua ion. A Leu to Ala amino acid substitution ~10 Å from the Cd2+ site affects both the equilibrium constant and the residence time of water, while, surprisingly, the metal site structure, as probed by PAC spectroscopy, remains essentially unaltered. This implies that remote mutations may affect metal site dynamics, even when structure is conserved. PMID:27973778
"Actually, I Wanted to Learn": Study-Related Knowledge Exchange on Social Networking Sites
ERIC Educational Resources Information Center
Wodzicki, Katrin; Schwammlein, Eva; Moskaliuk, Johannes
2012-01-01
Social media open up multiple options to add a new dimension to learning and knowledge processes. Particularly, social networking sites allow students to connect formal and informal learning settings. Students can find like-minded people and organize informal knowledge exchange for educational purposes. However, little is known about in which way…
The Structure and Density of Mo and Acid Sites in Mo-ExchangedH-ZSMZ Catalysts
Borry III, Richard W.; Kim, Young Ho; Huffsmith, Anne; Reimer,Jeffrey A.; Iglesia, Enrique
1999-03-01
Mo/H-ZSM5 (1.0-6.3 wt percent Mo; Mo/Al = 0.11-0.68) catalysts for CH4 aromatization were prepared from physical mixtures of MoO3 and H-ZSM5 (Si/Al= 14.3). X-ray diffraction and elemental analysis of physical mixtures treated in air indicate that MoOx species migrate onto the external ZSM5 surface at about 623 K. Between 773 and 973 K, MoOx species migrate inside zeolite channels via surface and gas phase transport, exchange at acid sites, and react to form H2O. The amount of H2O evolved during exchange and the amount of residual OH groups detected by isotopic equilibration with D2 showed that each Mo atom replaces one H+ during exchange. This stoichiometry and the requirement for charge compensation suggest that exchanged species consist of (Mo2O5)2+ditetrahedral structures interacting with two cation exchange sites. The proposed mechanism may provide a general framework to describe the exchange of multivalent cations onto Al sites in zeolites. As the Mo concentration exceeds that required to form a MoOx monolayer on the external zeolite surface ({approx}4 wt percent Mo for the H-ZSM5 used), Mo species sublime as (MoO3)n oligomers or extract Al from the zeolite framework to form inactive Al2(MoO4)3 domains detectable by 27Al NMR. These (Mo2O5)2+ species reduce to form the active MoCx species during the initial stages of CH4 conversion reactions. Optimum CH4 aromatization rates were obtained on catalysts with intermediate Mo contents ({approx}0.4Mo/Al), because both MoCx and acid sites are required to activate CH4 and to convert the initial C2H4 products into C6+ aromatics favored by thermodynamics.
NASA Astrophysics Data System (ADS)
Beyer, C.; Höper, H.
2015-04-01
During the last decades an increasing area of drained peatlands has been rewetted. Especially in Germany, rewetting is the principal treatment on cutover sites when peat extraction is finished. The objectives are bog restoration and the reduction of greenhouse gas (GHG) emissions. The first sites were rewetted in the 1980s. Thus, there is a good opportunity to study long-term effects of rewetting on greenhouse gas exchange, which has not been done so far on temperate cutover peatlands. Moreover, Sphagnum cultivating may become a new way to use cutover peatlands and agriculturally used peatlands as it permits the economical use of bogs under wet conditions. The climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over the course of more than 2 years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled at a high temporal resolution. Measured and modelled values fit very well together. Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from -201.7 ± 126.8 to 29.7± 112.7g CO2-C m-2 a-1) due to differing weather conditions, water levels and vegetation. The Sphagnum cultivation site was a sink of CO2 (-118.8 ± 48.1 and -78.6 ± 39.8 g CO2-C m-2 a-1). The annual CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0g CH4-C m-2 a-1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to 0. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB was between -185.5 ± 126.9 and 49
Deterministic geologic processes and stochastic modeling
Rautman, C.A.; Flint, A.L.
1991-12-31
Recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. Consideration of the spatial distribution of measured values and geostatistical measures of spatial variability indicates that there are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. These deterministic features have their origin in the complex, yet logical, interplay of a number of deterministic geologic processes, including magmatic evolution; volcanic eruption, transport, and emplacement; post-emplacement cooling and alteration; and late-stage (diagenetic) alteration. Because of geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly, using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling. It is unlikely that any single representation of physical properties at the site will be suitable for all modeling purposes. Instead, the same underlying physical reality will need to be described many times, each in a manner conducive to assessing specific performance issues.
Deterministic Entangled Nanosource
2008-08-01
currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE...Final Report 3. DATES COVERED (From - To) Sep 2005 – Sep 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455...Deterministic Entangled Nanosource 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Khitrova, Galina 5e. TASK
Creutz, M.
1986-03-01
A deterministic cellular automation rule is presented which simulates the Ising model. On each cell in addition to an Ising spin is a space-time parity bit and a variable playing the role of a momentum conjugate to the spin. The procedure permits study of nonequilibrium phenomena, heat flow, mixing, and time correlations. The algorithm can make full use of multispin coding, thus permitting fast programs involving parallel processing on serial machines.
Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange
Quon, Evan; Beh, Christopher T.
2015-01-01
Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334
Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
Chao, Fa-An; Byrd, R Andrew
2017-02-04
The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C(α), H(α), etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain.
Application of geometric approximation to the CPMG experiment: Two- and three-site exchange
NASA Astrophysics Data System (ADS)
Chao, Fa-An; Byrd, R. Andrew
2017-04-01
The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C‧, Cα, Hα, etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain.
Generalized Deterministic Traffic Rules
NASA Astrophysics Data System (ADS)
Fuks, Henryk; Boccara, Nino
We study a family of deterministic models for highway traffic flow which generalize cellular automaton rule 184. This family is parameterized by the speed limit m and another parameter k that represents a "degree of aggressiveness" in driving, strictly related to the distance between two consecutive cars. We compare two driving strategies with identical maximum throughput: "conservative" driving with high speed limit and "aggressive" driving with low speed limit. Those two strategies are evaluated in terms of accident probability. We also discuss fundamental diagrams of generalized traffic rules and examine limitations of maximum achievable throughput. Possible modifications of the model are considered.
Deterministic Entangled Nanosource
2008-08-01
control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE Final Report 3...DATES COVERED (From - To) Sep 2005 - Sep 200? 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455 5b. GRANT NUMBER Deterministic...Entangled Nanosource 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER Khitrova, Galina 5f. WORK UNIT NUMBER 7. PERFORMING
Chengjiang Mao
1996-12-31
In typical AI systems, we employ so-called non-deterministic reasoning (NDR), which resorts to some systematic search with backtracking in the search spaces defined by knowledge bases (KBs). An eminent property of NDR is that it facilitates programming, especially programming for those difficult AI problems such as natural language processing for which it is difficult to find algorithms to tell computers what to do at every step. However, poor efficiency of NDR is still an open problem. Our work aims at overcoming this efficiency problem.
Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites
Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; Nørskov, Jens K.; Studt, Felix
2016-08-17
Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidation reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu^{II}OH]^{+} species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu^{II}OH]^{+} active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]^{2+} and Cu_{3}O_{3} motifs.
Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites
Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...
2016-08-17
Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [CuIIOH]+ species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [CuIIOH]+ active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu]2+ and Cu3O3 motifs.« less
NASA Astrophysics Data System (ADS)
Mahan, H. R.; Wagle, P.; Bajgain, R.; Zhou, Y.; Basara, J. B.; Xiao, X.; Duckles, J. M.; Steiner, J. L.; Starks, P. J.; Northup, B. K.
2014-12-01
Quantifying methane (CH4), carbon dioxide (CO2), and water vapor fluxes between land surface and boundary layer using the eddy covariance method have many applicable uses across several disciplines. Three eddy flux towers have been established over no-till winter wheat (Triticum aestivum L.), and native and improved pastures at the USDA ARS Grazinglands Research Laboratory, El Reno, OK. An additional tower will be established in fall 2014 over till winter wheat. Each flux site is equipped with an eddy covariance system, PhenoCam, COSMOS, and in-situ observations of soil and atmospheric state variables. The objective of this research is to measure, compare, and model the land-atmosphere exchange of CO2, water vapor, and CH4 in different land cover types and management practices (till vs no-till, grazing vs no-grazing, native vs improved pasture). Models that focus on net ecosystem CO2 exchange (NEE), gross primary production (GPP), evapotranspiration (ET), and CH4 fluxes can be improved by the cross verification of these measurements. Another application will be to link the in-situ measurements with satellite remote sensing in order to scale-up flux measurements from small spatial scales to local and regional scales. Preliminary data analysis from the native grassland site revealed that CH4 concentration was negligible (~ 0), and it increased significantly when cattle were introduced into the site. In summer 2014, daily ET magnitude was about 4-5 mm day-1 and the NEE magnitude was 4-5 g C day-1 at the native grassland site. Further analysis of data for all the sites for longer temporal periods will enhance understanding of biotic and abiotic factors that govern carbon, water, and energy exchanges between the land surface and atmosphere under different land cover and management systems. The research findings will help predict the responses of these ecosystems to management practices and global environmental change in the future.
Uniform Deterministic Discrete Method for three dimensional systems
NASA Astrophysics Data System (ADS)
Li, Ben-Wen; Tao, Wen-Quan; Nie, Yu-Hong
1997-06-01
For radiative direct exchange areas in three dimensional system, the Uniform Deterministic Discrete Method (UDDM) was adopted. The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs. The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numerical accuracy.
Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.
Porter, William Ruger; Witmer, Lawrence M
2015-01-01
Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body) as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange). Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana) was investigated using a differential-contrast, dual-vascular injection (DCDVI) technique and high-resolution X-ray microcomputed tomography (μCT). Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory tissue temperature
Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange
Porter, William Ruger; Witmer, Lawrence M.
2015-01-01
Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body) as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange). Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana) was investigated using a differential-contrast, dual-vascular injection (DCDVI) technique and high-resolution X-ray microcomputed tomography (μCT). Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory tissue temperature
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Boltz, J.C.
1992-09-01
EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.
2016-01-01
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms
NASA Astrophysics Data System (ADS)
Chen, Peng; Solomon, Edward I.
2004-09-01
Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.
Cafiso, David S
2014-10-21
Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein-protein and protein-ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, BtuB, the energy
2015-01-01
Conspectus Protein structures are not static but sample different conformations over a range of amplitudes and time scales. These fluctuations may involve relatively small changes in bond angles or quite large rearrangements in secondary structure and tertiary fold. The equilibrium between discrete structural substates on the microsecond to millisecond time scale is sometimes termed conformational exchange. Protein dynamics and conformational exchange are believed to provide the basis for many important activities, such as protein–protein and protein–ligand interactions, enzymatic activity and protein allostery; however, for many proteins, the dynamics and conformational exchange that lead to function are poorly defined. Spectroscopic methods, such as NMR, are among the most important methods to explore protein dynamics and conformational exchange; however, they are difficult to implement in some systems and with some types of exchange events. Site-directed spin labeling (SDSL) is an EPR based approach that is particularly well-suited to high molecular-weight systems such as membrane proteins. Because of the relatively fast time scale for EPR spectroscopy, it is an excellent method to examine exchange. Conformations that are in exchange are captured as distinct populations in the EPR spectrum, and this feature when combined with the use of methods that can shift the free energy of conformational substates allows one to identify regions of proteins that are in dynamic exchange. In addition, modern pulse EPR methods have the ability to examine conformational heterogeneity, resolve discrete protein states, and identify the substates in exchange. Protein crystallography has provided high-resolution models for a number of membrane proteins; but because of conformational exchange, these models do not always reflect the structures that are present when the protein is in a native bilayer environment. In the case of the Escherichia coli vitamin B12 transporter, Btu
Sulfate-chloride exchange by lobster hepatopancreas is regulated by pH-sensitive modifier sites
Cattey, M.A.; Ahearn, G.A.; Gerencser, G.A. Univ. of Florida, Gainesville )
1991-03-15
{sup 35}SO{sub 4}{sup 2{minus}} uptake by Atlantic lobster (Homarus americanus) hepatopancreatic epithelial brush border membrane vesicles (BBMV) was stimulated by internal Cl{sup {minus}}, but not internal HCO{sub 3}{sup {minus}}, or external Na{sup +}. Sulfate-chloride exchange was stimulated by inside positive, and inhibited by inside negative, trans-membrane K diffusion potentials. {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange was strongly inhibited by 4,4{prime} diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS), 4-acetamido-4{prime}-isotheocynaostilbene-2,2{prime}-disulfonic acid, (SITS), and thiosulfate. Chloride, bicarbonate, furosamide, and bumetanide slightly, yet significantly, cis-inhibited {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange. Altering bilateral pH from 8.0 to 5.4 stimulated {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange when vesicles were loaded with Cl{sup {minus}}, but reduced bilateral pH alone or the presence of pH gradients did not affect {sup 35}SO{sub 4}{sup 2{minus}} transport in the absence of internal Cl{sup {minus}}. {sup 36}Cl uptake into SO{sub 4}{sup 2{minus}}-loaded BBMV was stimulated by an internal negative membrane potential and inhibited when the interior was electrically positive. A model is proposed which suggests that SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange is regulated by internal and external pH-sensitive modifier sites on the anion antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter on the same membrane.
Sturm, H.F. Jr.; Hottel, R.E.; Christoper, N.
1994-06-01
The Savannah River Site conducted its first Supplier Information Exchange in September 1993. The intent of the conference was to inform potential suppliers of the Savannah River Sites mission and research and development program objectives in the areas of environmental restoration and waste management, and to solicit proposals for innovative research in those areas. Major areas addressed were Solid Waste, Environmental Restoration, Environmental Monitoring, Transition/Decontamination and Decommissioning, and the Savannah River Technology Center. A total of 1062 proposals were received addressing the 89 abstracts presented. This paper will describe the forum the process for solicitation, the process for proposal review and selection, and review the overall results and benefits to Savannah River.
Controlling factors of biosphere-atmosphere ammonia exchange at a semi-natural peatland site
NASA Astrophysics Data System (ADS)
Brummer, C.; Richter, U.; Smith, J. J.; Delorme, J. P.; Kutsch, W. L.
2014-12-01
Recent advancements in laser spectrometry offer new opportunities to investigate net biosphere-atmosphere exchange of ammonia. During a three month field campaign from February to May 2014, we tested the performance of a quantum cascade laser within an eddy-covariance setup. The laser was operated at a semi-natural peatland site that is surrounded by highly fertilized agricultural land and intensive livestock production (~1 km distance). Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 15 ppb. Different concentration patterns could be identified. The variability was closely linked to the timing of management practices and the prevailing local climate, particularly wind direction, temperature and surface wetness with the latter indicating higher non-stomatal uptake under wet conditions leading to decreased concentrations. Average ammonia fluxes were around -15 ng N m-2 s-1 at the beginning of the campaign in February and shifted towards a neutral average exchange regime of -1 to 0 ng N m-2 s-1 in April and May. Intriguingly, during the time of decreasing ammonia uptake, concentrations were considerably rising, which clearly indicated N saturation in the predominant vegetation such as bog heather, purple moor-grass, and cotton grass. The cumulative net uptake for the period of investigation was ~300 g N ha-1. This stresses the importance of a thorough method inter-comparison, e.g. with denuder systems in combination with dry deposition modeling. As previous results from the latter methods showed an annual uptake of ~9 kg N ha-1 for the same site, the implementation of adequate ammonia compensation point parameterizations become crucial in surface-atmosphere exchange schemes for bog vegetation. Through their high temporal resolution, robustness and continuous measurement mode, quantum cascade lasers will help assessing the effects of atmospheric N loads to vulnerable N-limited ecosystems such as peatlands.
Changing trends in carbon dioxide exchange components in three Arctic tundra sites
NASA Astrophysics Data System (ADS)
Mbufong, Herbert; Lund, Magnus; Christensen, Torben; Jackowicz-Korczynski, Marcin; Parmentier, Frans-Jan; Dolman, Han; van der Molen, Michiel; Tamstorf, Mikkel
2014-05-01
This paper aims to investigate the interannual variability in carbon flux components in a High, Low and Sub Arctic tundra site. By identifying trends in different tundra types, we can better understand the possible future response of Arctic tundra under climatic change. The timing and length of seasons, alongside environmental controls, have been examined to assess their effect on the seasonal carbon budgets of these sites. Data was collected using the micrometeorological eddy covariance technique from three Arctic tundra sites in Greenland (74.47 °N), Siberia (70.82 °N) and Sweden (68.33 °N). We have hypothesized that the interannual trends in net ecosystem exchange (NEE) components will vary between the different tundra types in this study and will most likely be driven by temperature, vegetation characteristics (NDVI) and season phenology (start and length of seasons). Our results will present the evolution of the seasonal budgets (Thaw, pre-green, green, post-green seasons) of NEE components; and the drivers of these trends over 6 years (2003 - 2008) in these three sites. These and more will be presented at the conference.
Observation of atmosphere-forest exchange processes at the new TERENO site Wüstebach
NASA Astrophysics Data System (ADS)
Graf, A.; Drüe, C.; Ney, P.; Heinemann, G.; Pütz, T.
2012-12-01
The Wüstebach site is located in a spruce forest covering the catchment of a small creek called 'Wüstebach' in the German National Park Eifel. It is part of the 'Eifel/Lower Rhine Valley' Observatory within the German Terrestrial Environmental Observatories (TERENO) network. The site hosts a 36-m tower with instrumentation to yield long-term monitoring of the atmosphere-canopy exchange processes of a typical mid-latitude forest. To characterize the entire exchange process, quantities are measured above, within and below the vegetation: Flux measurements, i.e. eddy-covariance (EC) measurements of heat, momentum, CO2 and water-vapor fluxes, are taken above the canopy. Profile measurements of mean quantities are taken from the ground to 1.2 times canopy height; CO2 and N2O concentration profiles are planned. Surface and soil property measurements are performed around the tower base. Cosmic ray probes deployed in the area and 150 soil measurement stations with 900 soil moisture and 300 temperature sensors allow insight into temporal dynamics of soil moisture patterns. Both enable investigations of the coherence of footprint and spatio-temporal moisture patterns. The tower is planned to become integrated into the ICOS (Integrated Carbon Observation System) program as a secondary site. Additionally, it will serve as a reference for a nearby clear cut intended to accelerate succession from the current spruce plantation (picea abies) to natural vegetation dominated by beech. Results are shown for the first two years of eddy-covariance data. In addition, an evaluation for different quality control schemes is presented.
Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
Hatefi, Y; Hanstein, W G; Galante, Y; Stiggall, D L
1975-07-01
Five enzyme complexes, which are concerned with electron transport and oxidative phosphorylation, have been isolated from beef heart mitochondria. Enzyme complexes I, II, III and IV are the electron transfer complexes discovered in 1961. Complex V is an energy-conserving complex. It catalyzes ATP-Pi exchange and ATP hydrolysis. The exchange reaction is sensitive to uncouplers, rutamycin, valinomycin plus K-+, dicyclorexylcarboditmide, arsenate, azide, and adenylyl imidodiphosphate. It is also specific for ATP; ITP, GTP and UTP are essentially ineffective. Studies with the photoaffinity labeling uncoupler, 2-azido-4-nitrophenol (NPA), have shown that the mitochondrial uncoupler-binding sites are located exclusively in complex V. Complexes I, III and IV, which carry the three coupling sites of the respiratory chain, had negligible capacity for the binding of NPA, whereas the uncoupler-binding capacity of complex V appeared to be increased two- to threefold as compared to mitochondria. Complexes I, II, III, IV and V are obtained from the same batch of mitochondria by a simple fractionation procedure, which employs cholate, deoxycholate, ammonium acetate and ammonium sulfate. Studies with NPA have shown that mitochondria contain per milligram protein about 0.6 nmole of uniformly reacting uncoupler binding site. All of the uncouplers tested appeared to interact competitively with this site. Photoaffinity labeling with tritiated NPA has shown that a major portion of NPA binds to a polypeptide of molecular weight between 26,000 and 30,000. Other studies on the mechanism of uncoupling have shown that picrate is a membrane-impermeable uncoupler. It cannot uncouple mitochondria. However, it is an effective uncoupler of ATP synthesis and ATP-induced transhydrogenation or reverse electron transfer when used in conjunction with sonicated submitochondrial particles, which have an inside-out orientation of the inner membrane with respect to the medium. In these particles, picrate
Self-stabilizing Deterministic Gathering
NASA Astrophysics Data System (ADS)
Dieudonné, Yoann; Petit, Franck
In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, oblivious, deaf, and dumb). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd.
Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G
2017-02-22
Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.
Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke
2015-01-01
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287
Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials.
Armstrong, Eric N; Duncan, Keith L; Wachsman, Eric D
2013-02-21
A novel approach, called isothermal isotope exchange (IIE), was applied to varying A- and B-site lanthanum manganites, ferrites, and cobaltites in the perovskite crystal structure in order to extract accurate surface exchange coefficients (k*). Pure electronic conductors revealed temperature dependent isotope exchange, while for mixed ionic and electronic conductors (MIEC) the extent of exchange was independent of temperature. MIEC materials have higher k* values than pure electronic conductors in the temperature range from 500-850 °C, demonstrating the importance of both electronic species and oxygen vacancies being present for surface exchange. Strontium doped perovskites exhibited opposite temperature dependencies to parent materials. Some perovskites exhibited an apparent negative activation energy for k*, the behavior of which is explained by a precursor-mediated mechanism for dissociative adsorption. The results have significant implications for the improvement of the oxygen reduction reaction for fuel cells, metal-air batteries, and numerous other energy technologies.
Characterization of the Cation Binding Sites in the NCKX2 Na(+)/Ca(2+)-K(+) Exchanger.
Zhekova, Hristina; Zhao, Chunfeng; Schnetkamp, Paul P M; Noskov, Sergei Yu
2016-11-22
NCKX1-5 are proteins involved in K(+)-dependent Na(+)/Ca(2+) exchange in various signal tissues. Here we present a homology model of NCKX2 based on the crystal structure of the NCX_Mj transporter found in Methanoccocus jannaschii. Molecular dynamics simulations were performed on the resultant wild-type NCKX2 model and two mutants (D548N and D575N) loaded with either four Na(+) ions or one Ca(2+) ion and one K(+) ion, in line with the experimentally observed transport stoichiometry. The selectivity of the active site in wild-type NCKX2 for Na(+), K(+), and Li(+) and the electrostatic interactions of the positive Na(+) ions in the negatively charged active site of wild-type NCKX2 and the two mutants were evaluated from free energy perturbation calculations. For validation of the homology model, our computational results were compared to available experimental data obtained from numerous prior functional studies. The NCKX2 homology model is in good agreement with the discussed experimental data and provides valuable insights into the structure of the active site, which is lined with acidic and polar residues. The binding of the potassium and calcium ions is accomplished via Asp 575 and 548, respectively. Mutation of these residues to Asn alters the functionality of NCKX2 because of the elimination of the favorable carboxylate-cation interactions. The knowledge obtained from the NCKX2 model can be transferred to other isoforms of the NCKX family: newly discovered pathological mutations in NCKX4 and NCKX5 affect residues that are involved in ion binding and/or transport according to our homology model.
Deterministic teleportation of electrons in a quantum dot nanostructure.
de Visser, R L; Blaauboer, M
2006-06-23
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this Letter is how to design and implement the most efficient--in terms of the required number of single and two-qubit operations--deterministic teleportation protocol for this system. Using a group-theoretical analysis, we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (square root SWAP) operations. These can be implemented for spin qubits in quantum dots using electron-spin resonance (for single-spin rotations) and exchange interaction (for square root SWAP operations).
Mixed deterministic and probabilistic networks.
Mateescu, Robert; Dechter, Rina
2008-11-01
The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model.
Mixed deterministic and probabilistic networks
Dechter, Rina
2010-01-01
The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model. PMID:20981243
Fluid turbulence - Deterministic or statistical
NASA Astrophysics Data System (ADS)
Cheng, Sin-I.
The deterministic view of turbulence suggests that the classical theory of fluid turbulence may be treating the wrong entity. The paper explores the physical implications of such an abstract mathematical result, and provides a constructive computational demonstration of the deterministic and the wave nature of fluid turbulence. The associated pressure disturbance for restoring solenoidal velocity is the primary agent, and its reflection from solid surface(s) the dominant mechanism of turbulence production. Statistical properties and their modeling must address to the statistics of the uncertainties of initial boundary data of the ensemble.
Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong
2016-02-01
Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence.
Deterministic models for traffic jams
NASA Astrophysics Data System (ADS)
Nagel, Kai; Herrmann, Hans J.
1993-10-01
We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.
Michaely, P; Bennett, V
1995-12-29
Ankyrins are a family of spectrin-binding proteins that associate with at least seven distinct membrane proteins, including ion transporters and cell adhesion molecules. The membrane-binding domain of ankyrin is comprised of a tandem array of 24 ANK repeats organized into four 6-repeat folding domains. Tandem arrays of ANK repeats have been proposed to mediate protein interactions in a variety of proteins including factors involved in the regulation of transcription and the cell cycle. This report provides several new insights into the versatility of ANK repeats of ankyrin in protein recognition, using neurofascin and the Cl-/HCO3- anion exchanger as model ligands and ankyrinR as the prototypic ankyrin. Different combinations of ANK repeat domains from this ankyrin form two distinct, high affinity binding sites for neurofascin. One site requires both repeat domains 3 and 4. The other site involves both repeat domains 2 and 3, although domain 2 has significant activity alone. The sites appear to be independent with Kd values of 3 and 14 nM, respectively. Both the Cl-/HCO3- anion exchanger and neurofascin can interact simultaneously with repeat domains 3 and 4, because neurofascin is unable to displace binding of the anion exchanger cytoplasmic domain to domains 3 and 4, despite having a 3-5-fold higher affinity. These results demonstrate two levels of diversity in the binding sites on ankyrin: one resulting from different combinations of ANK repeat domains and another from different determinants within the same combination of repeat domains. One consequence of this diversity is that ankyrin can accommodate two neurofascin molecules as well as the anion exchanger through interactions mediated by ANK repeats. The ability of ankyrin to simultaneously associate with multiple types of membrane proteins is an unanticipated finding with implications for the assembly of integral membrane proteins into specialized regions of the plasma membrane.
Leclerc, Monique Y.
2014-11-17
This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.
Water-air and soil-air exchange rate of total gaseous mercury measured at background sites
NASA Astrophysics Data System (ADS)
Poissant, Laurier; Casimir, Alain
In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.
Duignan, M.; Nash, C.
2010-03-31
A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.
NASA Astrophysics Data System (ADS)
Koss, Hans; Rance, Mark; Palmer, Arthur G.
2017-01-01
Exploration of dynamic processes in proteins and nucleic acids by spin-locking NMR experiments has been facilitated by the development of theoretical expressions for the R1ρ relaxation rate constant covering a variety of kinetic situations. Herein, we present a generalized approximation to the chemical exchange, Rex, component of R1ρ for arbitrary kinetic schemes, assuming the presence of a dominant major site population, derived from the negative reciprocal trace of the inverse Bloch-McConnell evolution matrix. This approximation is equivalent to first-order truncation of the characteristic polynomial derived from the Bloch-McConnell evolution matrix. For three- and four-site chemical exchange, the first-order approximations are sufficient to distinguish different kinetic schemes. We also introduce an approach to calculate R1ρ for linear N-site schemes, using the matrix determinant lemma to reduce the corresponding 3N × 3N Bloch-McConnell evolution matrix to a 3 × 3 matrix. The first- and second order-expansions of the determinant of this 3 × 3 matrix are closely related to previously derived equations for two-site exchange. The second-order approximations for linear N-site schemes can be used to obtain more accurate approximations for non-linear N-site schemes, such as triangular three-site or star four-site topologies. The expressions presented herein provide powerful means for the estimation of Rex contributions for both low (CEST-limit) and high (R1ρ-limit) radiofrequency field strengths, provided that the population of one state is dominant. The general nature of the new expressions allows for consideration of complex kinetic situations in the analysis of NMR spin relaxation data.
Trafficking of Na+/Ca2+ Exchanger to the Site of Persistent Inflammation in Nociceptive Afferents
Scheff, Nicole N.
2015-01-01
Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca2+ transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca2+ currents and recruitment of Ca2+-induced Ca2+ release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca2+ transient required a relatively large and long-lasting increase in the concentration of intracellular Ca2+ implicating the Na+/Ca2+ exchanger (NCX), a major Ca2+ extrusion mechanism activated with high intracellular Ca2+ loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca2+ transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911
Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.
Scheff, Nicole N; Gold, Michael S
2015-06-03
Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation.
Analysis of FBC deterministic chaos
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci K; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C; Landes, Christy F
2014-05-23
The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins.
Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.
2014-01-01
The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins. PMID:24751557
Sunayama, Hirobumi; Takeuchi, Toshifumi
2014-11-26
Protein-imprinted cavities bearing exchangeable domains to be used for postimprinting fluorophore introduction to transform binding events into fluorescence changes were constructed in molecularly imprinted polymer (MIPs) matrixes prepared on glass substrates. Copolymerization was performed with acrylamide, N,N'-methylenebisaclylamide, and a newly designed functional group-exchangeable monomer, ({[2-(2-methacrylamido)ethyldithio]ethylcarbamoyl}methoxy)acetic acid (MDTA), in the presence of a model basic protein, lysozyme (Lyso); MDTA can interact with Lyso and assemble close to Lyso in the resulting polymer. After removal of Lyso, followed by a disulfide reduction to cleave the (ethylcarbamoylmethoxy)acetic acid moiety from the MDTA residues, the exposed thiol groups within the imprinted cavities were modified by aminoethylpyridyldisulfide to be transformed into aminoethyl groups that function as active sites for amine-reactive fluorophores. Fluorescein isothiocyanate (FITC) was then coupled with the aminoethyl groups, yielding site specifically FITC-modified signaling imprinted cavities for Lyso binding. Because the in-cavity fluorescent labeling was achieved via a disulfide linkage, it was easy to remove, exchange, and/or replace amine-reactive fluorophores. This facilitated the screening of fluorophores to select the highest readout for binding events, replace fluorophores when photobleaching occurred, and introduce other functions. The proposed molecular imprinting process, combined with postimprinting modifications, is expected to provide an affordable route to develop multifunctional MIPs for specific detection of protein binding events.
Knauf, P A; Raha, N M; Spinelli, L J
2000-02-01
WW781 binds reversibly to red blood cell AE1 and inhibits anion exchange by a two-step mechanism, in which an initial complex (complex 1) is rapidly formed, and then there is a slower equilibration to form a second complex (complex 2) with a lower free energy. According to the ping-pong kinetic model, AE1 can exist in forms with the anion transport site facing either inward or outward, and the transition between these forms is greatly facilitated by binding of a transportable substrate such as Cl(-). Both the rapid initial binding of WW781 and the formation of complex 2 are strongly affected by the conformation of AE1, such that the forms with the transport site facing outward have higher affinity than those with the transport site facing inward. In addition, binding of Cl(-) seems to raise the free energy of complex 2 relative to complex 1, thereby reducing the equilibrium binding affinity, but Cl(-) does not compete directly with WW781. The WW781 binding site, therefore, reveals a part of the AE1 structure that is sensitive to Cl(-) binding and to transport site orientation, in addition to the disulfonic stilbene binding site. The relationship of the inhibitory potency of WW781 under different conditions to the affinities for the different forms of AE1 provides information on the possible asymmetric distributions of unloaded and Cl(-)-loaded transport sites that are consistent with the ping-pong model, and supports the conclusion from flux and nuclear magnetic resonance data that both the unloaded and Cl(-)-loaded sites are very asymmetrically distributed, with far more sites facing the cytoplasm than the outside medium. This asymmetry, together with the ability of WW781 to recruit toward the forms with outward-facing sites, implies that WW781 may be useful for changing the conformation of AE1 in studies of structure-function relationships.
Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto
2015-04-01
Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions
An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange
Baldwin, Andrew J.
2014-01-01
The Carr–Purcell–Meiboom–Gill (CPMG) experiment is widely used to quantitatively analyse the effects of chemical exchange on NMR spectra. In a CPMG experiment, the effective transverse relaxation rate, R2,eff, is typically measured as a function of the pulse frequency, νCPMG. Here, an exact expression for how R2,eff varies with νCPMG is derived for the commonly encountered scenario of two-site chemical exchange of in-phase magnetisation. This result, summarised in Appendix A, generalises a frequently used equation derived by Carver and Richards, published in 1972. The expression enables more rapid analysis of CPMG data by both speeding up calculation of R2,eff over numerical methods by a factor of ca. 130, and yields exact derivatives for use in data analysis. Moreover, the derivation provides insight into the physical principles behind the experiment. PMID:24852115
Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy
2015-02-11
The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.
Air-water exchange of PAHs and OPAHs at a superfund mega-site.
Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A
2017-03-31
Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source.
Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites
Robertson, N.L. . Almaden Research Center); Michaels, J.N. . Dept. of Chemical Engineering)
1990-01-01
Oxygen exchange kinetics on porous platinum electrodes in a zirconia electrochemical cell were measured at 600{degrees}--800{degrees}C in 10{sup {minus} 5}-0.21 atmospheres oxygen. Steady-state polarization and potential-step chronoamperometric experiments were performed. Steady-state current-voltage characteristics exhibited near-exponential behavior at intermediate potentials and approached anodic and cathodic limiting currents at higher overpotentials. At and below 600{degrees}C, the initial decay of the current following anodic and cathodic potential steps was inversely proportional to the square root of time. This Cottrell-type behavior indicates that the charge-transfer step in the mechanism of oxygen exchange occurs at the three-phase boundary where the electrode, electrolyte, and gas-phase intersect.
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Häcker, Irina; Harrell II, Robert A.; Eichner, Gerrit; Pilitt, Kristina L.; O’Brochta, David A.; Handler, Alfred M.; Schetelig, Marc F.
2017-01-01
Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting. PMID:28266580
Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F
2017-03-07
Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.
Deterministic weak localization in periodic structures.
Tian, C; Larkin, A
2005-12-09
In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.
Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Donohoe, Gregory C; Valentine, Stephen J
2016-03-01
Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H](2-) ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H](3-) ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H](2-) ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H](3-) ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.
NASA Astrophysics Data System (ADS)
Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.
2016-03-01
Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.
NASA Astrophysics Data System (ADS)
Burke, Roger A.; Zepp, Richard G.; Tarr, Matthew A.; Miller, William L.; Stocks, Brian J.
1997-12-01
During the spring and summer of 1994 we monitored soil-atmosphere exchanges of methane and carbon dioxide at upland sites in the Canadian boreal forest near the northern study area (NSA) of the Boreal Ecosystem-Atmosphere Study (BOREAS). The effects of fire on methane and carbon dioxide exchange in black spruce stands developed on clay soils were evaluated by measuring fluxes with dark chambers in unburned stands and stands burned in 1994, 1992, and 1987. Similar measurements were made in jack pine stands developed on sandy soils, one unburned and the other burned in 1989. All of the sites were net sinks of atmospheric methane with median fluxes ranging from -0.3 to -1.4 mg CH4-C m-2 d-1. Median fluxes of carbon dioxide from the forest floor to the atmosphere ranged between 1 and 2 g C m-2 d-1. Both ecosystem characteristics (e.g., soil and vegetation type) and burning history (time since burn and fire intensity) appear to have some effect on atmospheric methane consumption and carbon dioxide emission by these forest soils. In general, the jack pine sites were stronger methane sinks and had lower carbon dioxide emissions than the black spruce sites. After a few years of recovery, the burned sites tended to be slightly stronger methane sinks than unburned controls. Our results suggest that soil CO2 effluxes from upland black spruce stands may not be immediately impacted by fire, possibly maintained at preburn levels by microbial decomposition of labile compounds released as a result of the fire. By 2 years postfire there appears to be a significant reduction in soil CO2 flux, due to the loss of tree root and moss respiration and possibly to the depletion of fire-related labile compounds. The observed recovery of soil respiration rates to preburn levels by 7 years postburn is probably due to the respiration of regrowing vegetation and the combined effects of elevated soil temperatures (about 4° to 5°C warmer than unburned sites) and improved litter quality on soil
NASA Astrophysics Data System (ADS)
Osenbrück, K.; Lemke, D.; Schwientek, M.; Callisto Alvarez, M. C.; Wöhling, Th.; Cirpka, O. A.
2012-04-01
Hyporheic exchange is believed to significantly contribute to the retention and degradation of pollutants during downstream transport in surface waters. A better understanding of the relevant hydraulic drivers of stream water infiltration into the hyporheic zone in conjunction with the associated biogeochemical processes is needed in order to quantify the self-cleaning potential of rivers and to predict water quality changes. Key parameters include the spatial and temporal variation of stream water infiltration (i.e. hyporheic exchange) and the distribution of hyporheic travel times. In this study we present the setup, performance and first results of a multi-disciplinary hyporheic monitoring program at the newly established Steinlach Test Site (STS) near Tübingen in Southern Germany. The STS covers an area of about 0.6 ha and consists of a river loop located within a sub-catchment of the Neckar river. The main objective is the quantification and interrelation of hyporheic processes including hyporheic exchange, travel-time distributions, microbial community dynamics and biochemical pollutant turnover at the groundwater-surface water interface. Here we will focus on the extent and time scale of hyporheic exchange fluxes at the STS derived from time series of temperature (T), specific electrical conductivity (EC), and δ18O of water. The STS is equipped with more than 30 piezometers, most of them containing automatic water level, T and EC probes. Additional water samples for major ions, stable isotopes and other water quality parameters were taken in the course of flood events in summer 2011. The sand and gravel aquifer in the subsurface of the STS is characterised by a complex geometry with heterogeneous hydraulic conductivity. Low residence times in the southern part are confirmed by a small to negligible response in EC and T at the respective piezometers compared to the large variation of EC in the stream water. Using deconvolution techniques, a mean travel time
Deterministic quantum teleportation with atoms.
Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R
2004-06-17
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
Deterministic patterns in cell motility
NASA Astrophysics Data System (ADS)
Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.
2016-12-01
Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.
Thermodynamic binding and site occupancy in the light of the Schellman exchange concept.
Timasheff, Serge N
2002-12-10
An analysis of Schellman's treatment of preferential interactions is presented, as viewed by a laboratory practitioner of the art. Starting with an intuitive description of what binding is in terms of the distribution of molecules of water and of a weakly interacting ligand (co-solvent), Schellman proceeded to a rigorous thermodynamic definition in which he showed that classical, dialysis equilibrium, binding is a purely thermodynamic quantity. Putting water and the co-solvent on an equivalent footing, he showed that the classical binding treatment is inadequate for weakly interacting systems, in which the replacement of water by ligand and exclusion of co-solvent are symmetrical concepts. Analyzing specifically the simple model of a single independent site, Schellman demonstrated how a positive binding constant can give rise to a measured negative binding stoichiometry. He showed that the origin of the complicated binding isotherms is the non-idealities of water and co-solvent, and went further to analyze critically the effect of site heterogeneity on the ligand concentration dependencies of site occupancy, preferential binding and the thermodynamic quantities, enthalpy, entropy and Gibbs free energy. This exposition of the Schellman treatment is accompanied by illustrations drawn from the experimental results obtained in this author's laboratory.
Ryu, Kyoung-Seok; Tugarinov, Vitali; Clore, G Marius
2014-10-15
The kinetics of translocation of the homeodomain transcription factor HoxD9 between specific sites of the same or opposite polarities on the same DNA molecule have been studied by (15)Nz-exchange NMR spectroscopy. We show that exchange occurs by two facilitated diffusion mechanisms: a second-order intermolecular exchange reaction between specific sites located on different DNA molecules without the protein dissociating into free solution that predominates at high concentrations of free DNA, and a first-order intramolecular process involving direct transfer between specific sites located on the same DNA molecule. Control experiments using a mixture of two DNA molecules, each possessing only a single specific site, indicate that transfer between specific sites by full dissociation of HoxD9 into solution followed by reassociation is too slow to measure by z-exchange spectroscopy. Intramolecular transfer with comparable rate constants occurs between sites of the same and opposing polarity, indicating that both rotation-coupled sliding and hopping/flipping (analogous to geminate recombination) occur. The half-life for intramolecular transfer (0.5-1 s) is many orders of magnitude larger than the calculated transfer time (1-100 μs) by sliding, leading us to conclude that the intramolecular transfer rates measured by z-exchange spectroscopy represent the rate-limiting step for a one-base-pair shift from the specific site to the immediately adjacent nonspecific site. At zero concentration of added salt, the intramolecular transfer rate constants between sites of opposing polarity are smaller than those between sites of the same polarity, suggesting that hopping/flipping may become rate-limiting at very low salt concentrations.
Universality classes for deterministic surface growth
NASA Technical Reports Server (NTRS)
Krug, J.; Spohn, H.
1988-01-01
A scaling theory for the generalized deterministic Kardar-Parisi-Zhang (1986) equation with beta greater than 1, is developed to study the growth of a surface through deterministic local rules. A one-dimensional surface model corresponding to beta = 1 is presented and solved exactly. The model can be studied as a limiting case of ballistic deposition, or as the deterministic limit of the Eden (1961) model. The scaling exponents, the correlation functions, and the skewness of the surface are determined. The results are compared with those of Burgers' (1974) equation for the case of beta = 2.
Connecting deterministic and stochastic metapopulation models.
Barbour, A D; McVinish, R; Pollett, P K
2015-12-01
In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given.
Deterministic Quantum Key Distribution Using Two Non-orthogonal Entangled States
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua
2007-03-01
A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.
Zhao, Xiang; Mao, Chengyu; Luong, Karen Tu; Lin, Qipu; Zhai, Quan-Guo; Feng, Pingyun; Bu, Xianhui
2016-02-18
Cationic frameworks can selectively trap anions through ion exchange, and have applications in ion chromatography and drug delivery. However, cationic frameworks are much rarer than anionic or neutral ones. Herein, we propose a concept, preemptive coordination (PC), for targeting positively charged metal-organic frameworks (P-MOFs). PC refers to proactive blocking of metal coordination sites to preclude their occupation by neutralizing ligands such as OH(-) . We use 20 MOFs to show that this PC concept is an effective approach for developing P-MOFs whose high stability, porosity, and anion-exchange capability allow immobilization of anionic nucleotides and coenzymes, in addition to charge- and size-selective capture or separation of organic dyes. The CO2 and C2 H2 uptake capacity of 117.9 cm(3) g(-1) and 148.5 cm(3) g(-1) , respectively, at 273 K and 1 atm, is exceptionally high among cationic framework materials.
On the Question of Site-Selective Ligand Exchange in Carboxylate-Substituted Metal Oxo Clusters
Kreutzer, Johannes; Czakler, Matthias; Puchberger, Michael; Pittenauer, Ernst; Schubert, Ulrich
2015-01-01
Reaction of [Ti4Zr4O6(OBu)4(OMc)16] (OMc = methacrylate) with acetylacetone (acacH) resulted in dissection of the cluster and formation of [Ti(OBu)2(acac)2] and the smaller cluster [Ti2Zr4O4(OMc)16]. In contrast, the same reaction with [Zr6O4(OH)4(OOCR)12]2·6RCOOH (R = Et, CH2CH=CH2) led to site-selective substitution of two carboxylate ligands and formation of isostructural [Zr6O4(OH)4(OOCR)12–x(acac)x]2·6RCOOH (x ≤ 1). PMID:26300687
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Two-site fluctuations and multipolar intersite exchange interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Pourovskii, L. V.
2016-09-01
An approach is proposed for evaluating dipolar and multipolar intersite interactions in strongly correlated materials. This approach is based on the single-site dynamical mean-field theory (DMFT) in conjunction with the atomic approximation for the local self-energy. Starting from the local-moment paramagnetic state described by DMFT, we derive intersite interactions by considering the response of the DMFT grand potential to small fluctuations of atomic configurations on two neighboring sites. The present method is validated by applying it to one-band and two-band eg Hubbard models on the simple-cubic 3 d lattice. It is also applied to study the spin-orbital order in the parent cubic structure of ternary chromium fluoride KCrF3. We obtain the onset of a G-type antiferro-orbital order at a significantly lower temperature compared to that in real distorted KCrF3. In contrast, its layered A-type antiferromagnetic order and Néel temperature are rather well reproduced. The calculated full Kugel-Khomskii Hamiltonian contains spin-orbital coupling terms inducing a misalignment in the antiferro-orbital order upon the onset of antiferromagnetism.
King, A.W.
1986-01-01
Ecological models of the seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. Two methods of extrapolation were tested. The first approach was a simple extrapolation that assumed relative within-biome homogeneity, and generated CO/sub 2/ source functions that differed dramatically from published estimates of CO/sub 2/ exchange. The differences were so great that the simple extrapolation was rejected as a means of incorporating site-specific models in a global CO/sub 2/ source function. The second extrapolation explicitly incorporated within-biome variability in the abiotic variables that drive seasonal biosphere-atmosphere CO/sub 2/ exchange. Simulated site-specific CO/sub 2/ dynamics were treated as a function of multiple random variables. The predicated regional CO/sub 2/ exchange is the computed expected value of simulated site-specific exchanges for that region times the area of the region. The test involved the regional extrapolation of tundra and a coniferous forest carbon exchange model. Comparisons between the CO/sub 2/ exchange estimated by extrapolation and published estimates of regional exchange for the latitude belt support the appropriateness of extrapolation by expected value.
Xie, Xiulan; Bönisch, Friedrich
2015-10-01
Nuclear magnetic resonance spectroscopy has proven to be powerful for the study of dynamic processes. A new pulse sequence, SirX, is designed to provide boundary conditions that simplify the McConnell equations. Both an initial rate approximation and a whole curve fitting to the time course of magnetization can be used to calculate the exchange rate. These methods were used to study the exchange kinetics of N,N-dimethylacetamide. As compared with the well-established exchange spectroscopy suitable to studies of slow exchange, SirX has the advantage of being less time consuming and capable of providing more reliable kinetic data. Furthermore, by setting the observation on X-nuclei with larger chemical shift dispersion as compared with an observation on (1)H resonance, SirX extends the upper limit of a reliable determination of exchange rates.
Deterministic noiseless amplification of coherent states
NASA Astrophysics Data System (ADS)
Hu, Meng-Jun; Zhang, Yong-Sheng
2015-08-01
A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification as quantum state transformation, we show that deterministic noiseless amplification of coherent states chosen from a proper set is attainable. The relation between input coherent states and gain of amplification for deterministic noiseless amplification is thus derived. Furthermore, we extend our result to more general situation and show that deterministic noiseless amplification of Gaussian states is also possible. As an example of application, we find that our amplification model can obtain better performance in homodyne detection to measure the phase of state selected from a certain set. Besides, other possible applications are also discussed.
Ligand binding and proton exchange dynamics in site-specific mutants of human myoglobin
Lambright, D.G.
1992-01-01
Site specific mutagenesis was used to make substitutions of four residues in the distal heme pocket of human myoglobin: Val68, His64, Lys45, and Asp60. Strongly diffracting crystals of the conservative mutation K45R in the met aquo form were grown in the trigonal space group P3[sub 2]21 and the X-ray crystal structure determined at 1.6 [angstrom] resolution. The overall structure is similar to that of sperm whale met aquo myoglobin. Several of the mutant proteins were characterized by 2-D NMR spectroscopy. The NMR data suggest the structural changes are localized to the region of the mutation. The dynamics of ligand binding to myoglobin mutants were studied by transient absorption spectroscopy following photolysis of the CO complexes. Transient absorption kinetics and spectra on the ns to ms timescale were measured in aqueous solution from 280 K to 310 K and in 75% glycerol: water from 250 K to 310 K. Two significant basis spectra were obtained from singular value decomposition of the matrix of time dependent spectra. The information was used to obtain approximations for the extent of ligand rebinding and the kinetics of conformational relaxation. Except for K45R, substitutions at Lys45 or Asp60 produce changes in the kinetics for ligand rebinding. Replacement of Lys45 with Arg increases the rate of ligand rebinding from the protein matrix by a factor of 2, but does not alter the rates for ligand escape or entry into the protein or the dynamics of the conformational relaxation. Substitutions at His64 and Val68 influence the kinetics of ligand rebinding and the dynamics of conformational relaxation. The results do not support the hypothesis that ligand migration between the heme pocket and solvent is determined solely by fluctuations of Arg45 and His64 between open and closed conformations of the heme pocket but can be rationalized if ligand diffusion through the protein matrix involves multiple competing pathways.
Recent Achievements of the Neo-Deterministic Seismic Hazard Assessment in the CEI Region
Panza, G. F.; Kouteva, M.; Vaccari, F.; Peresan, A.; Romanelli, F.; Cioflan, C. O.; Radulian, M.; Marmureanu, G.; Paskaleva, I.; Gribovszki, K.; Varga, P.; Herak, M.; Zaichenco, A.; Zivcic, M.
2008-07-08
A review of the recent achievements of the innovative neo-deterministic approach for seismic hazard assessment through realistic earthquake scenarios has been performed. The procedure provides strong ground motion parameters for the purpose of earthquake engineering, based on the deterministic seismic wave propagation modelling at different scales--regional, national and metropolitan. The main advantage of this neo-deterministic procedure is the simultaneous treatment of the contribution of the earthquake source and seismic wave propagation media to the strong motion at the target site/region, as required by basic physical principles. The neo-deterministic seismic microzonation procedure has been successfully applied to numerous metropolitan areas all over the world in the framework of several international projects. In this study some examples focused on CEI region concerning both regional seismic hazard assessment and seismic microzonation of the selected metropolitan areas are shown.
Hernández, Griselda; Anderson, Janet S; LeMaster, David M
2008-03-25
The nucleophilic Cys36 thiol of the human protein disulfide isomerase a domain is positioned over the N terminus of the alpha(2) helix. Amides in the active site exhibit diffusion-limited, hydroxide-catalyzed exchange, indicating that the local positive electrostatic potential decreases the pK value for peptide anion formation by at least 2 units so as to equal or exceed the acidity of water. In stark contrast to the pH dependence of exchange for simple peptides, the His38 amide in the reduced enzyme exhibits a maximum rate of exchange at pH 5 due to efficient general base catalysis by the neutral imidazole of its own side chain and suppression of its exchange by the ionization of the Cys36 thiol. Ionization of this thiol and deprotonation of the His38 side chain suppress the Cys39 amide hydroxide-catalyzed exchange by a million-fold. The electrostatic potential within the active site monitored by these exchange experiments provides a means of stabilizing the two distinct transition states that lead to substrate reduction and oxidation. Molecular modeling offers a role for the conserved Arg103 in coordinating the oxidative transition-state complex, thus providing further support for mechanisms of disulfide isomerization that utilize enzymatic catalysis at each step of the overall reaction.
Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi
2011-05-30
Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex.
King, John T.; Arthur, Evan J.; Brooks, Charles L.; Kubarych, Kevin J.
2012-01-01
The thermodynamic driving forces for protein folding, association and function are often determined by protein-water interactions. With a novel covalently bound labeling approach, we have used sensitive vibrational probes, site-selectively conjugated to two lysozyme variants–in conjunction with ultrafast two-dimensional infrared (2D-IR) spectroscopy–to investigate directly the protein-water interface. By probing alternatively a topologically flat, rigid domain and a flexible domain, we find direct experimental evidence for spatially heterogeneous hydration dynamics. The hydration environment around globular proteins can vary from exhibiting bulk-like hydration dynamics to dynamically constrained water, which results from stifled hydrogen bond switching dynamics near extended hydrophobic surfaces. Furthermore, we leverage preferential solvation exchange to demonstrate that the liberation of dynamically constrained water is a sufficient driving force for protein-surface association reactions. These results provide an intuitive picture of the dynamic aspects of hydrophobic hydration of proteins, illustrating an essential function of water in biological processes. PMID:22530969
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Optimal partial deterministic quantum teleportation of qubits
Mista, Ladislav Jr.; Filip, Radim
2005-02-01
We propose a protocol implementing optimal partial deterministic quantum teleportation for qubits. This is a teleportation scheme realizing deterministically an optimal 1{yields}2 asymmetric universal cloning where one imperfect copy of the input state emerges at the sender's station while the other copy emerges at receiver's possibly distant station. The optimality means that the fidelities of the copies saturate the asymmetric cloning inequality. The performance of the protocol relies on the partial deterministic nondemolition Bell measurement that allows us to continuously control the flow of information among the outgoing qubits. We also demonstrate that the measurement is optimal two-qubit operation in the sense of the trade-off between the state disturbance and the information gain.
Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley
2005-05-01
The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.
Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui
2013-10-01
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms.
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P; Zhao, Hui Jun; Yang, Hua Gui
2013-10-31
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
A deterministic discrete ordinates transport proxy application
2014-06-03
Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.
Deterministic Quantization by Dynamical Boundary Conditions
Dolce, Donatello
2010-06-15
We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.
Fisher-Wright model with deterministic seed bank and selection.
Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel
2017-04-01
Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached.
Schwalm, Christopher R.; Williams, Christopher A.; Schaefer, Kevin; Anderson, Ryan; Arain, A.; Baker, Ian; Lokupitiya, Erandathie; Barr, Alan; Black, T. A.; Gu, Lianhong; Riciutto, Dan M.
2010-12-01
Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans 220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was 10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
Master equation analysis of deterministic chemical chaos
NASA Astrophysics Data System (ADS)
Wang, Hongli; Li, Qianshu
1998-05-01
The underlying microscopic dynamics of deterministic chemical chaos was investigated in this paper. We analyzed the master equation for the Williamowski-Rössler model by direct stochastic simulation as well as in the generating function representation. Simulation within an ensemble revealed that in the chaotic regime the deterministic mass action kinetics is related neither to the ensemble mean nor to the most probable value within the ensemble. Cumulant expansion analysis of the master equation also showed that the molecular fluctuations do not admit bounded values but increase linearly in time infinitely, indicating the meaninglessness of the chaotic trajectories predicted by the phenomenological equations. These results proposed that the macroscopic description is no longer useful in the chaotic regime and a more microscopic description is necessary in this circumstance.
Deterministic nanoassembly: Neutral or plasma route?
NASA Astrophysics Data System (ADS)
Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S.
2006-07-01
It is shown that, owing to selective delivery of ionic and neutral building blocks directly from the ionized gas phase and via surface migration, plasma environments offer a better deal of deterministic synthesis of ordered nanoassemblies compared to thermal chemical vapor deposition. The results of hybrid Monte Carlo (gas phase) and adatom self-organization (surface) simulation suggest that higher aspect ratios and better size and pattern uniformity of carbon nanotip microemitters can be achieved via the plasma route.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d < 2κ. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. Lastly, this is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Markaverich, B.M.; Williams, M.; Upchurch, S.; Clark, J.H.
1981-07-01
Estrogen administration to mature-ovariectomized rats causes the activation or stimulation of secondary nuclear estrogen-binding sites (type II) in the uterus which can interfere with estrogen receptor (type I) measurement. Earlier reports from our laboratory have shown that quantitation of type I sites in the presence of the type II site is very difficult and can only be achieved by graphic analysis of saturation curves which employ a wide range (0.4-40 NM) of (/sup 3/H)estradiol concentrations in nuclear exchange assay. The studies presented in this manuscript describe simple methods which can be used to separately quantitate both nuclear estrogen-binding sites using a single concentration of (/sup 3/H)estradiol. Since the nuclear type II site does not bind (/sup 3/H)estradiol in the presence of reducing agent, type I sites can be easily quantitated by incubating nuclei (37 C for 30 min) in Tris-EDTA buffer containing 0.1-1.00 mM dithiothreitol using a single saturating concentration of (/sup 3/H)estradiol. Conversely, a single concentration of (/sup 3/H)estradiol (40-80 nM) can be used to quantitate the nuclear type II site by incubating nuclei in Tris-EDTA buffer under conditions (4 C for 60 min) which do not measure occupied nuclear estrogen receptor. Therefore, by using the appropriate buffer system, type I and type II sites can be easily separated in mixed binding systems. In addition, we also demonstrate that Nafoxidine does not bind to the nuclear type II site. Therefore, it can be used as a competitive inhibitor of (/sup 3/H)estradiol binding to type I sites and permit the measurement of type II sites without interference from type I sites. These techniques should be applicable to autoradiographic or fluorescence studies which cannot discriminate between steroid binding to these two classes of nuclear estrogen-binding sites.
King, A.W.
1986-01-01
Ecological models of the seasonal exchange of carbon dioxide (CO/sub 2/) between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. The primary disadvantage of this approach is the problem of extrapolating the site-specific models across large regions having considerable biotic, climatic, and edaphic heterogeneity. Two methods of extrapolation were tested. The first approach was a simple extrapolation that assumed relative within-biome homogeneity, and generated CO/sub 2/ source functions that differed dramatically from published estimates of CO/sub 2/ exchange. The second extrapolation explicitly incorporated within-biome variability in the abiotic variables that drive seasonal biosphere-atmosphere CO/sub 2/ exchange.
Pizzanelli, Silvia; Forte, Claudia; Pinzino, Calogero; Magrì, Antonio; La Mendola, Diego
2016-02-07
Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods. The histidine imidazole nitrogen is the anchoring site for the metal ion binding. Thermodynamic and spectroscopic evidence is given that the side chain oxygen donor atom of glutamyl residue in Ac-PHSEN-NH2 is also involved in the binding up to physiological pH. To determine ligand exchange kinetic parameters after the imidazole nitrogen anchoring, proton relaxation enhancement NMR data have been collected for the two hydrogen atoms of the imidazole ring in the temperature range 293-315 K at pH 5.2 and globally treated within different kinetic models for ligand exchange. The best fitting model involves two steps. In the first one, which is slow, a water molecule disengages a carbonyl or a carboxylate group coordinated to the metal ion in the complex formed by PHSFN or PHSEN, respectively. This stage is one order of magnitude slower for PHSEN, due to entropic effects. In the second step, which is fast, the complex just formed exchanges with the ligand. In this step, no appreciable differences are found for the two cases examined.
Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim
2013-10-01
Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible
NASA Astrophysics Data System (ADS)
Zhang, Xin; Ewing, Nigel P.; Cassady, Carolyn J.
1998-05-01
The effects of basic site proximity on gas-phase deprotonation and hydrogen/deuterium (H/D) exchange reactions were investigated for three model dodecapeptide ions in a Fourier transform ion cyclotron resonance mass spectrometer. Each peptide contained four high basicity lysine (K) residues and eight low basicity glycine (G) residues; however, the ordering of the residues differed. In the deprotonation studies, `fully protonated' peptide ions, [M + 4H]4+, where M = (KGG)4, (K2G4)2, and K4G8, were reacted with reference compounds of known basicities. Reaction efficiencies were in the order: [K4G8 + 4H]4+ > [(K2G4)2 + 4H]4+ ~ [(KGG)4 + 4H]4+. The facile reaction of [K4G8 + 4H]4+ is consistent with this ion having the highest Coulomb energy. For gas-phase H/D exchange reactions with d4-methanol, [K4G8 + 4H]4+ has the fastest exchange rate and undergoes the largest number of exchanges; 22 of the 26 labile hydrogens exchanged within the timescale studied. In contrast, [(KGG)4 + 4H]4+ and [(K2G4)2 + 4H]4+ reacted more slowly, but at similar rates, with a maximum of 14 observed exchanges for both ions. Molecular dynamics calculations were conducted to gain insights into conformations. In the lowest energy structures for [(KGG)4 + 4H]4+ and [(K2G4)2 + 4H]4+, the lysine n-butylamino chains stretch out to minimize Coulomb energy; there is little or no intramolecular hydrogen bonding involving the protonated amino groups. In contrast, for [K4G8 + 4H]4+, the proximity of the basicity residues makes minimization of the Coulomb energy difficult; instead, the structure becomes more compact with stabilization of the protonated amino groups by extensive intramolecular hydrogen bonding to heteroatoms in the peptide backbone. The calculated structures suggest that, in the H/D exchange reactions, the compact conformation of [K4G8 + 4H]4+ allows stabilization of the methanolpeptide intermediate by hydrogen bonding, thus lowering the barrier to proton transfer within the complex. The
Atmospheric N deposition and feedbacks on net ecosystem CO2 exchange at a semi-natural peatland site
NASA Astrophysics Data System (ADS)
Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.
2013-04-01
Large areas of Northern Germany have been converted from natural peat bogs to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. This is the case at our study site - a semi-natural raised bog - which although located in a natural park, is surrounded by highly fertilized agricultural land and highly emitting animal husbandry farms. In this study, we use a combined approach of two independent methods to quantify atmospheric N deposition. We further investigate possible feedbacks of seasonal variation in N deposition on net ecosystem CO2 exchange (NEE). Fluxes of ammonia (NH3) and its atmospheric reactants are measured by a KAPS-denuder system. Additionally, total N input from the atmosphere into a soil-plant model ecosystem is investigated by a 15N dilution method called 'Integrated Total Nitrogen Input' (ITNI). With this approach, we allocate atmospheric N after its uptake by the ecosystem into its different fractions and investigate both plant-species effects (Lolium multiflorum, Eriophorum vaginatum) and influences of the plant biomass production induced by different amounts of fertilizer addition. Continuous eddy-covariance measurements are carried out to measure NEE. Maximum NH3 depositions of 0.41 ± 0.04 kg ha-1 week-1 were found in spring 2012. The proportion of fluxes of other N compounds such as HNO3, aerosol NH4 and NO3 was usually around 20 % of total dry N measured by KAPS denuders. In total, dry N deposition was 11.2 ± 0.9 kg N ha-1 yr-1 over the first year of experiments. Complemented with wet N measurements using bulk samplers, total N depositions of about 25.0 kg ha-1 yr-1 were found. The mean atmospheric N uptake determined with the ITNI system was 3.99 ± 0.82 mg N g-1 dry weight from July to October 2011. About two third of total deposited airborne N was allocated in above-ground plant biomass and roots. Upscaling of data based on pot
Knauf, P.A.; Law, F.Y.; Tarshis, T.; Furuya, W.
1984-05-01
External N-(4-azido (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (E/sub o/ or ECl/sub o/) form. Since NAP-taurine prevents the conformational change from ECl/sub o/ to ECl/sub i/, it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H/sub 2/DIDS (4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H/sub 2/DIDS reveals that the transport system is intrinsically asymmetric, such that when Cl/sub i/ = Cl/sub o/, most of the unloaded transport sites face the cytoplasmic side of the membrane. 30 references, 7 figures, 3 tables.
Deterministic processes vary during community assembly for ecologically dissimilar taxa
Powell, Jeff R.; Karunaratne, Senani; Campbell, Colin D.; Yao, Huaiying; Robinson, Lucinda; Singh, Brajesh K.
2015-01-01
The continuum hypothesis states that both deterministic and stochastic processes contribute to the assembly of ecological communities. However, the contextual dependency of these processes remains an open question that imposes strong limitations on predictions of community responses to environmental change. Here we measure community and habitat turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and fungi, both dominant and functionally vital components of all soils but which differ substantially in their growth habit and dispersal capability. We find that habitat turnover is the primary driver of bacterial community turnover in general, although its importance decreases with increasing isolation and disturbance. Fungal communities, however, exhibit a highly stochastic assembly process, both neutral and non-neutral in nature, largely independent of disturbance. These findings suggest that increased focus on dispersal limitation and biotic interactions are necessary to manage and conserve the key ecosystem services provided by these assemblages. PMID:26436640
Deterministic and stochastic modeling of aquifer stratigraphy, South Carolina
Miller, R.B.; Castle, J.W.; Temples, T.J.
2000-04-01
Deterministic and stochastic methods of three-dimensional hydrogeologic modeling are applied to characterization of contaminated Eocene aquifers at the Savannah River Site, South Carolina. The results address several important issues, including the use of multiple types of data in creating high-resolution aquifer models and the application of sequence-stratigraphic constraints. Specific procedures used include defining grid architecture stratigraphically, upscaling, modeling lithologic properties, and creating multiple equiprobable realizations of aquifer stratigraphy. An important question answered by the study is how to incorporate gamma-ray borehole-geophysical data in areas of anomalous log response, which occurs commonly in aquifers and confining units of the Atlantic Coastal Plain and other areas. To overcome this problem, gamma-ray models were conditioned to grain-size and lithofacies realizations. The investigation contributes to identifying potential pathways for downward migration of contaminants, which have been detected in confined aquifers at the modeling site. The approach followed in this investigation produces quantitative, stratigraphically constrained, geocellular models that incorporate multiple types of data from borehole-geophysical logs and continuous cores. The use of core-based stochastic realizations in conditioning deterministic models provides the advantage of incorporating lithologic information based on direct observations of cores rather than using only indirect measurements from geophysical logs. The high resolution of the models is demonstrated by the representation of thin, discontinuous clay beds that act as local barriers to flow. The models are effective in depicting the contrasts in geometry and heterogeneity between sheet-like nearshore-transgressive sands and laterally discontinuous sands of complex shoreline environments.
Ngo, Sam; Chiang, Vicky; Guo, Zhefeng
2012-11-01
Amyloid formation is associated with a range of debilitating human disorders including Alzheimer's and prion diseases. The amyloid structure is essential for understanding the role of amyloids in these diseases. Amyloid formation of Ure2 protein underlies the yeast prion [URE3]. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structure of amyloid fibrils formed by the Ure2 prion domain. The Ure2 prion domain under study contains a Sup35M domain at C-terminus as a solubilization element. We introduced spin labels at every residue from positions 2-15, and every 5th residue from positions 20-80 in Ure2 prion domain. EPR spectra at most labeling sites show strong spin exchange interactions, suggesting a parallel in-register β structure. With quantitative analysis of spin exchange interactions, we show that residues 8-12 form the first β strand, followed by a turn at residues 13-14, and then the second β strand from residue 15 to at least residue 20. Comparison of the spin exchange frequency for the fibrils formed under quiescent and agitated conditions also revealed differences in the fibril structures. Currently there is a lack of techniques for in-depth structural studies of amyloid fibrils. Detailed structural information is obtained almost exclusively from solid-state NMR. The identification of β-strand and turn regions in this work suggests that quantitative analysis of spin exchange interactions in spin-labeled amyloid fibrils is a powerful approach for identifying the β-strand and turn/loop residues and for studying structural differences of different fibril polymorphs.
Deterministic Folding in Stiff Elastic Membranes
NASA Astrophysics Data System (ADS)
Tallinen, T.; Åström, J. A.; Timonen, J.
2008-09-01
Crumpled membranes have been found to be characterized by complex patterns of spatially seemingly random facets separated by narrow ridges of high elastic energy. We demonstrate by numerical simulations that compression of stiff elastic membranes with small randomness in their initial configurations leads to either random ridge configurations (high entropy) or nearly deterministic folds (low elastic energy). For folding with symmetric ridge configurations to appear in part of the crumpling processes, the crumpling rate must be slow enough. Folding stops when the thickness of the folded structure becomes important, and crumpling continues thereafter as a random process.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Black, T.A.; Chen, G.; Ciais, P.; Davis, K. J.; Desai, A. R.; Dietze, M.; Dragoni, D.; Fischer, M.L.; Flanagan, L.B.; Grant, R.F.; Gu, L.; Hollinger, D.; Izaurralde, R.C.; Kucharik, C.; Lafleur, P.M.; Law, B.E.; Li, L.; Li, Z.; Liu, S.; Lokupitiya, E.; Luo, Y.; Ma, S.; Margolis, H.; Matamala, R.; McCaughey, H.; Monson, R. K.; Oechel, W. C.; Peng, C.; Poulter, B.; Price, D.T.; Riciutto, D.M.; Riley, W.J.; Sahoo, A.K.; Sprintsin, M.; Sun, J.; Tian, H.; Tonitto, C.; Verbeeck, H.; Verma, S.B.
2011-06-01
Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO{sub 2} exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO{sub 2} exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans {approx}220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO{sub 2} exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was {approx}10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Deterministic prediction of surface wind speed variations
NASA Astrophysics Data System (ADS)
Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.
2014-11-01
Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.
Deterministic Creation of Macroscopic Cat States
Lombardo, Daniel; Twamley, Jason
2015-01-01
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane’s opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane’s position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved. PMID:26345157
Deterministic forward scatter from surface gravity waves.
Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale
2012-12-01
Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.
King, A.W.; DeAngelis, D.L.; Post, W.M.
1987-12-01
Ecological models of the seasonal exchange of carbon dioxide (CO/sub 2/) between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. The primary disadvantage of this approach is the problem of extrapolating the site-specific models across large regions having considerable biotic, climatic, and edaphic heterogeneity. Two methods of extrapolation were tested. 142 refs., 59 figs., 47 tabs
Schwalm, Christopher R; Williams, Christopher A; Schaefer, Kevin; Anderson, Ryan; Arain, M A; Baker, Ian; Barr, Alan; Black, T Andrew; Chen, Guangsheng; Chen, Jing Ming; Ciais, Philippe; Davis, Kenneth J; Desai, Ankur R; Dietze, Michael; Dragoni, Danilo; Fischer, Marc; Flanagan, Lawrence; Grant, Robert; Gu, Lianghong; Hollinger, D; Izaurralde, Roberto C; Kucharik, Chris; Lafleur, Peter; Law, Beverly E; Li, Longhui; Li, Zhengpeng; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Ma, Siyan; Margolis, Hank; Matamala, R; McCaughey, Harry; Monson, Russell K; Oechel, Walter C; Peng, Changhui; Poulter, Benjamin; Price, David T; Riciutto, Dan M; Riley, William; Sahoo, Alok Kumar; Sprintsin, Michael; Sun, Jianfeng; Tian, Hanqin; Tonitto, Christine; Verbeeck, Hans; Verma, Shashi B
2010-12-09
There is a continued need for models to improve consistency and agreement with observations [Friedlingstein et al., 2006], both overall and under more frequent extreme climatic events related to global environmental change such as drought [Trenberth et al., 2007]. Past validation studies of terrestrial biosphere models have focused only on few models and sites, typically in close proximity and primarily in forested biomes [e.g., Amthor et al., 2001; Delpierre et al., 2009; Grant et al., 2005; Hanson et al., 2004; Granier et al., 2007; Ichii et al., 2009; Ito, 2008; Siqueira et al., 2006; Zhou et al., 2008]. Furthermore, assessing model-data agreement relative to drought requires, in addition to high-quality observedCO2 exchange data, a reliable drought metric as well as a natural experiment across sites and drought conditions.
Beitia, Anton Oscar; Kuperman, Gilad; Delman, Bradley N; Shapiro, Jason S
2013-01-01
We evaluated the performance of LOINC® and RadLex standard terminologies for covering CT test names from three sites in a health information exchange (HIE) with the eventual goal of building an HIE-based clinical decision support system to alert providers of prior duplicate CTs. Given the goal, the most important parameter to assess was coverage for high frequency exams that were most likely to be repeated. We showed that both LOINC® and RadLex provided sufficient coverage for our use case through calculations of (a) high coverage of 90% and 94%, respectively for the subset of CTs accounting for 99% of exams performed and (b) high concept token coverage (total percentage of exams performed that map to terminologies) of 92% and 95%, respectively. With trends toward greater interoperability, this work may provide a framework for those wishing to map radiology site codes to a standard nomenclature for purposes of tracking resource utilization.
Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms
Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui
2013-01-01
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future. PMID:24173503
Hans Peter Schmid; Craig Wayson
2009-05-05
The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.
Cetin, Banu; Odabasi, Mustafa
2007-02-01
The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.
NASA Astrophysics Data System (ADS)
Wortmann, Ulrich G.; Chernyavsky, Boris; Bernasconi, Stefano M.; Brunner, Benjamin; Böttcher, Michael E.; Swart, Peter K.
2007-09-01
Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the δ18O composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report δ18O values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our δ18O data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m 3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed δ18O data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.
González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto
2012-03-02
In chromatographic separations, the most general problem in small biomolecule isolation and purification is that such biomolecules are usually found in extremely low concentrations together with high concentrations of large molecular weight proteins. In the first part of this work, adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide Immobilized Metal Affinity Chromatography (IMAC) matrix was synthesized and used to develop chromatographic adsorbents that preferentially adsorb and separate low molecular weight biomolecules while rejecting large molecular weight proteins. In this second part, we expand the concept of controlled access polymer permeation adsorption (CAPPA) media by grafting polyethylene glycol (PEG) on a high capacity polysaccharide ion exchange (IEX) chromatographic resin where PEG acts as a semi-permeable barrier that preferentially allows the permeation of small molecules while rejecting large ones. The IEX resin bearing quaternary ammonium groups binds permeated biomolecules according to their ion exchange affinity while excluding large biomolecules by the PEG barrier and thus cannot compete for the binding sites. This new AdSEC media was used to study the retention of peptides and proteins covering a wide range of molecular weights from 1 to 150 kDa. The effect of protein molecular weight towards retention by ion exchange was performed using pure protein solutions. Recovery of insulin from insulin-spiked human serum and insulin-spiked human urine was evaluated under polymer controlled permeation conditions. The CAPPA media consisted of agarose beads modified with amino-PEG-methoxy and with trimethyl ammonium groups, having chloride capacities between 20 and 40 μeq/mL and were effective in rejecting high molecular weight proteins while allowing the preferential adsorption of small proteins and peptides.
Deterministic polishing from theory to practice
NASA Astrophysics Data System (ADS)
Hooper, Abigail R.; Hoffmann, Nathan N.; Sarkas, Harry W.; Escolas, John; Hobbs, Zachary
2015-10-01
Improving predictability in optical fabrication can go a long way towards increasing profit margins and maintaining a competitive edge in an economic environment where pressure is mounting for optical manufacturers to cut costs. A major source of hidden cost is rework - the share of production that does not meet specification in the first pass through the polishing equipment. Rework substantially adds to the part's processing and labor costs as well as bottlenecks in production lines and frustration for managers, operators and customers. The polishing process consists of several interacting variables including: glass type, polishing pads, machine type, RPM, downforce, slurry type, baume level and even the operators themselves. Adjusting the process to get every variable under control while operating in a robust space can not only provide a deterministic polishing process which improves profitability but also produces a higher quality optic.
Inertia and scaling in deterministic lateral displacement.
Bowman, Timothy J; Drazer, German; Frechette, Joelle
2013-01-01
The ability to separate and analyze chemical species with high resolution, sensitivity, and throughput is central to the development of microfluidics systems. Deterministic lateral displacement (DLD) is a continuous separation method based on the transport of species through an array of obstacles. In the case of force-driven DLD (f-DLD), size-based separation can be modelled effectively using a simple particle-obstacle collision model. We use a macroscopic model to study f-DLD and demonstrate, via a simple scaling, that the method is indeed predominantly a size-based phenomenon at low Reynolds numbers. More importantly, we demonstrate that inertia effects provide the additional capability to separate same size particles but of different densities and could enhance separation at high throughput conditions. We also show that a direct conversion of macroscopic results to microfluidic settings is possible with a simple scaling based on the size of the obstacles that results in a universal curve.
Deterministic phase slips in mesoscopic superconducting rings
NASA Astrophysics Data System (ADS)
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-11-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
Deterministic multi-zone ice accretion modeling
NASA Technical Reports Server (NTRS)
Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael
1991-01-01
The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.
Deterministic remote preparation via the Brown state
NASA Astrophysics Data System (ADS)
Ma, Song-Ya; Gao, Cong; Zhang, Pei; Qu, Zhi-Guo
2017-04-01
We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.
Block variables for deterministic aperiodic sequences
NASA Astrophysics Data System (ADS)
Hörnquist, Michael
1997-10-01
We use the concept of block variables to obtain a measure of order/disorder for some one-dimensional deterministic aperiodic sequences. For the Thue - Morse sequence, the Rudin - Shapiro sequence and the period-doubling sequence it is possible to obtain analytical expressions in the limit of infinite sequences. For the Fibonacci sequence, we present some analytical results which can be supported by numerical arguments. It turns out that the block variables show a wide range of different behaviour, some of them indicating that some of the considered sequences are more `random' than other. However, the method does not give any definite answer to the question of which sequence is more disordered than the other and, in this sense, the results obtained are negative. We compare this with some other ways of measuring the amount of order/disorder in such systems, and there seems to be no direct correspondence between the measures.
Deterministic approaches to coherent diffractive imaging
NASA Astrophysics Data System (ADS)
Allen, L. J.; D'Alfonso, A. J.; Martin, A. V.; Morgan, A. J.; Quiney, H. M.
2016-01-01
In this review we will consider the retrieval of the wave at the exit surface of an object illuminated by a coherent probe from one or more measured diffraction patterns. These patterns may be taken in the near-field (often referred to as images) or in the far field (the Fraunhofer diffraction pattern, where the wave is the Fourier transform of that at the exit surface). The retrieval of the exit surface wave from such data is an inverse scattering problem. This inverse problem has historically been solved using nonlinear iterative methods, which suffer from convergence and uniqueness issues. Here we review deterministic approaches to obtaining the exit surface wave which ameliorate those problems.
Deterministic phase slips in mesoscopic superconducting rings
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-01-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable
Technology Transfer Automated Retrieval System (TEKTRAN)
Site-specific genome modification is an important tool for mosquito functional genomics studies that help to uncover gene functions, identify gene regulatory elements, and perform comparative gene expression studies, all of which contribute to a better understanding of mosquito biology and are thus ...
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.
Non-Deterministic Context and Aspect Choice in Russian.
ERIC Educational Resources Information Center
Koubourlis, Demetrius J.
In any given context, a Russian verb form may be either perfective or imperfective. Perfective aspect signals the completion or result of an action, whereas imperfective does not. Aspect choice is a function of context, and two types of context are distinguished: deterministic and non-deterministic. This paper is part of a larger study whose aim…
Use of deterministic models in sports and exercise biomechanics research.
Chow, John W; Knudson, Duane V
2011-09-01
A deterministic model is a modeling paradigm that determines the relationships between a movement outcome measure and the biomechanical factors that produce such a measure. This review provides an overview of the use of deterministic models in biomechanics research, a historical summary of this research, and an analysis of the advantages and disadvantages of using deterministic models. The deterministic model approach has been utilized in technique analysis over the last three decades, especially in swimming, athletics field events, and gymnastics. In addition to their applications in sports and exercise biomechanics, deterministic models have been applied successfully in research on selected motor skills. The advantage of the deterministic model approach is that it helps to avoid selecting performance or injury variables arbitrarily and to provide the necessary theoretical basis for examining the relative importance of various factors that influence the outcome of a movement task. Several disadvantages of deterministic models, such as the use of subjective measures for the performance outcome, were discussed. It is recommended that exercise and sports biomechanics scholars should consider using deterministic models to help identify meaningful dependent variables in their studies.
Magnetism and site exchange in CuFeAs and CuFeSb: A microscopic and theoretical investigation
NASA Astrophysics Data System (ADS)
Kamusella, Sirko; Klauss, Hans-Henning; Thakur, Gohil S.; Haque, Zeba; Gupta, Laxmi C.; Ganguli, Ashok K.; Kraft, Inga; Burkhardt, Ulrich; Rosner, Helge; Luetkens, Hubertus; Lynn, Jeffrey W.; Zhao, Yang
2017-03-01
We have investigated the magnetic ground state of CuFeAs and CuFeSb by means of 57Fe-Mössbauer spectroscopy, muon spin rotation/relaxation (μ SR ), neutron diffraction, and electronic structure calculations. Both materials share the 111-LiFeAs crystal structure and are closely related to the class of iron-based superconductors. In both materials there is a considerable occupancy of the Cu site by Fe, which leads to ferromagnetic moments, which are magnetically strongly coupled to the regular Fe site magnetism. Our study shows that CuFeAs is close to an antiferromagnetic instability, whereas a ferromagnetic ground state is observed in CuFeSb, supporting theoretical models of anion height driven magnetism.
Optimal Deterministic Ring Exploration with Oblivious Asynchronous Robots
NASA Astrophysics Data System (ADS)
Lamani, Anissa; Potop-Butucaru, Maria Gradinariu; Tixeuil, Sébastien
We consider the problem of exploring an anonymous unoriented ring of size n by k identical, oblivious, asynchronous mobile robots, that are unable to communicate, yet have the ability to sense their environment and take decisions based on their local view. Previous works in this weak scenario prove that k must not divide n for a deterministic solution to exist. Also, it is known that the minimum number of robots (either deterministic or probabilistic) to explore a ring of size n is 4. An upper bound of 17 robots holds in the deterministic case while 4 probabilistic robots are sufficient. In this paper, we close the complexity gap in the deterministic setting, by proving that no deterministic exploration is feasible with less than five robots, and that five robots are sufficient for any n that is coprime with five. Our protocol completes exploration in O(n) robot moves, which is also optimal.
Reschke, Stefan; Niks, Dimitri; Wilson, Heather; Sigfridsson, Kajsa G V; Haumann, Michael; Rajagopalan, K V; Hille, Russ; Leimkühler, Silke
2013-11-19
Sulfite oxidase (SO) is an essential molybdoenzyme for humans, catalyzing the final step in the degradation of sulfur-containing amino acids and lipids, which is the oxidation of sulfite to sulfate. The catalytic site of SO consists of a molybdenum ion bound to the dithiolene sulfurs of one molybdopterin (MPT) molecule, carrying two oxygen ligands, and is further coordinated by the thiol sulfur of a conserved cysteine residue. We have exchanged four non-active site cysteines in the molybdenum cofactor (Moco) binding domain of human SO (SOMD) with serine using site-directed mutagenesis. This facilitated the specific replacement of the active site Cys207 with selenocysteine during protein expression in Escherichia coli. The sulfite oxidizing activity (kcat/KM) of SeSOMD4Ser was increased at least 1.5-fold, and the pH optimum was shifted to a more acidic value compared to those of SOMD4Ser and SOMD4Cys(wt). X-ray absorption spectroscopy revealed a Mo(VI)-Se bond length of 2.51 Å, likely caused by the specific binding of Sec207 to the molybdenum, and otherwise rather similar square-pyramidal S/Se(Cys)O2Mo(VI)S2(MPT) site structures in the three constructs. The low-pH form of the Mo(V) electron paramagnetic resonance (EPR) signal of SeSOMD4Ser was altered compared to those of SOMD4Ser and SOMD4Cys(wt), with g1 in particular shifted to a lower magnetic field, due to the Se ligation at the molybdenum. In contrast, the Mo(V) EPR signal of the high-pH form was unchanged. The substantially stronger effect of substituting selenocysteine for cysteine at low pH as compared to high pH is most likely due to the decreased covalency of the Mo-Se bond.
Morawski, Markus; Reinert, Tilo; Meyer-Klaucke, Wolfram; Wagner, Friedrich E.; Tröger, Wolfgang; Reinert, Anja; Jäger, Carsten; Brückner, Gert; Arendt, Thomas
2015-01-01
Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4–0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components. PMID:26621052
Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E.; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick
2015-01-01
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future. PMID:26485278
Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick
2015-01-01
Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.
NASA Astrophysics Data System (ADS)
Tieman, Catherine; Rousseau, Valery
Highly frustrated quantum systems on lattices can exhibit a wide variety of phases. In addition to the usual Mott insulating and superfluid phases, these systems can also produce some so-called ``exotic phases'', such as super-solid and valence-bond-solid phases. An example of particularly frustrated lattice is the pyrochlore structure, which is formed by corner-sharing tetrahedrons. Many real materials adopt this structure, for instance the crystal Cd2 Re2O7 , which exhibits superconducting properties. However, the complex structure of these materials combined with the complexity of the dominant interactions that describe them makes their analytical study difficult. Also, approximate methods, such as mean-field theory, fail to give a correct description of these systems. In this work, we report on the first exact quantum Monte Carlo study of a model of hard-core bosons in a pyrochlore lattice with six-site ring-exchange interactions, using the Stochastic Green Function (SGF) algorithm. We analyze the superfluid density and the structure factor as functions of the filling and ring-exchange interaction strength, and we map out the ground state phase diagram.
Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei
2016-07-25
We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.
Rulten, Stuart L; Grundy, Gabrielle J
2017-03-01
Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.
Analysis of pinching in deterministic particle separation
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German
2011-11-01
We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.
3D deterministic lateral displacement separation systems
NASA Astrophysics Data System (ADS)
Du, Siqi; Drazer, German
2016-11-01
We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems and the observed trajectories can be predicted based on a model developed in the 2D case. More importantly, we analyze the particles out-of-plane motion and observe significant differences in the net displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams. We also discuss other modifications to the obstacle array and driving forces that could enhance separation in microfluidic devices.
Deterministically Driven Avalanche Models of Solar Flares
NASA Astrophysics Data System (ADS)
Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian
2014-08-01
We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.
Deterministic transfer function for transionospheric propagation
NASA Astrophysics Data System (ADS)
Roussel-Dupre, R.; Argo, P.
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25 - 175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = omega(sub pe)(exp 2)/(omega)(exp 2) where X is assumed to be small compared to one, (omega)(sub pe) is the peak plasma frequency of the ionosphere, and omega is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to, venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
NASA Astrophysics Data System (ADS)
Grant, J. D.; Soulsby, C.; Malcolm, I. A.; Gibbins, C.
2007-12-01
The Atlantic salmon's (Salmo salar L.,) native Scottish, headwater spawning grounds, can be viewed as dynamic hot spots of biological productivity set within a hierarchical landscape sculpted by complex physico-chemical processes. Traditionally controls on female spawning site selection, have mainly been attributed to the sedimentary and hydraulic characteristics of available spawning habitat. In the UK, the influence of physico-chemical landscape hierarchies on spawning site selection is poorly understood. This study aims to provide a preliminary insight into the importance stream hydrochemistry has at different hierarchical scales, on spawning site selection by Atlantic salmon in a Scottish braided river system. During the 2005 and 2006 spawning seasons, intensive surveys of dissolved oxygen, alkalinity, trace metals and continuous temperature monitoring were undertaken under high and low flow conditions, in the surface water network of the floodplain reaches. Using GPS data within a GIS framework, these data were related to the locations utilised by spawning fish surveyed on a daily basis in each year. Results indicated that patterns of groundwater - surface water exchange were spatially and temporally dynamic, occurring at a range of scales across the channel floodplain system. A hierarchy of channel types could be differentiated on the basis of contrasting surface water quality and source water characteristics. These included channels dominated by soures such as groundwater, hillslope drainage and main-stem river water. Although most channels contained good hydraulic and sedimentary conditions, spawning was concentrated in those locations which displayed strong chemical groundwater signatures. In 2005: 64 % and 2006: 44 % spawning occurred in groundwater channel types. This study suggests that GW-SW interaction hierarchies may play an important role in determining site selection by spawning Atlantic salmon and sea trout.
Kaper, Thijs; van Heusden, Hester H; van Loo, Bert; Vasella, Andrea; van der Oost, John; de Vos, Willem M
2002-03-26
A beta-mannosidase gene (PH0501) was identified in the Pyrococcus horikoshii genome and cloned and expressed in E. coli. The purified enzyme (BglB) was most specific for the hydrolysis of p-nitrophenyl-beta-D-mannopyranoside (pNP-Man) (Km: 0.44 mM) with a low turnover rate (kcat: 4.3 s(-1)). The beta-mannosidase has been classified as a member of family 1 of glycoside hydrolases. Sequence alignments and homology modeling showed an apparent conservation of its active site region with, remarkably, two unique active site residues, Gln77 and Asp206. These residues are an arginine and asparagine residue in all other known family 1 enzymes, which interact with the catalytic nucleophile and equatorial C2-hydroxyl group of substrates, respectively. The unique residues of P. horikoshii BglB were introduced in the highly active beta-glucosidase CelB of Pyrococcus furiosus and vice versa, yielding two single and one double mutant for each enzyme. In CelB, both substitutions R77Q and N206D increased the specificity for mannosides and reduced hydrolysis rates 10-fold. In contrast, BglB D206N showed 10-fold increased hydrolysis rates and 35-fold increased affinity for the hydrolysis of glucosides. In combination with inhibitor studies, it was concluded that the substituted residues participate in the ground-state binding of substrates with an equatorial C2-hydroxyl group, but contribute most to transition-state stabilization. The unique activity profile of BglB seems to be caused by an altered interaction between the enzyme and C2-hydroxyl of the substrate and a specifically increased affinity for mannose that results from Asp206.
Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities
Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.
2012-03-29
A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
Fukui, Y.; Doskey, P. V.; Environmental Research
1998-06-20
Emissions of nonmethane organic compounds (NMOCs) were measured by a static enclosure technique at a grassland site in the Midwestern United States during the growing seasons over a 2-year period. A mixture of nonmethane hydrocarbons (NMHCs) and oxygenated hydrocarbons (OxHCs) was emitted from the surface at rates exhibiting large seasonal and year-to-year variations. The average emission rate (and standard error) of the total NMOCs around noontime on sunny days during the growing seasons for the 2-year period was 1,300 {+-} 170 {micro}g m-2 h-1 (mass of the total NMOCs per area of enclosed soil surface per hour) or 5.5 {+-} 0.9 {micro}g g-1 h-1 (mass of the total NMOCs per mass of dry plant biomass in an enclosure per hour), with about 10% and 70% of the emissions being composed of tentatively identified NMHCs and OxHCs, respectively. Methanol was apparently derived from both the soil and vegetation and exhibited an average emission rate of 460 {+-} 73 {micro}g m-2 h-1 (1.4 {+-} 0.2 {micro}g g-1 h-1), which was the largest emission among the NMOCs. The year-to-year variation in the precipitation pattern greatly affected the NMOC emission rates. Emission rates normalized to biomass density exhibited a linear decrease as the growing season progressed. The emission rates of some NMOCs, particularly the OxHCs, from vegetation subjected to hypoxia, frost, and physical stresses were significantly greater than the average values observed at the site. Emissions of monoterpenes (a- and {beta}-pinene, limonene, and myrcene) and cis-3-hexen-1-ol were accelerated during the flowering of the plants and were much greater than those predicted by algorithms that correlated emission rates with temperature. Herbaceous vegetation is estimated to contribute about 40% and 50% of the total NMOC and monoterpene emissions, respectively, in grasslands; the remaining contributions are from woody species within grasslands. Contributions of isoprene emissions from herbaceous vegetation in
NASA Astrophysics Data System (ADS)
Fukui, Yoshiko; Doskey, Paul V.
1998-06-01
Emissions of nonmethane organic compounds (NMOCs) were measured by a static enclosure technique at a grassland site in the midwestern United States during the growing seasons over a 2-year period. A mixture of nonmethane hydrocarbons (NMHCs) and oxygenated hydrocarbons (OxHCs) was emitted from the surface at rates exhibiting large seasonal and year-to-year variations. The average emission rate (and standard error) of the total NMOCs around noontime on sunny days during the growing seasons for the 2-year period was 1,300±170 μg m-2 h-1 (mass of the total NMOCs per area of enclosed soil surface per hour) or 5.5±0.9 μg g-1 h-1 (mass of the total NMOCs per mass of dry plant biomass in an enclosure per hour), with about 10% and 70% of the emissions being composed of tentatively identified NMHCs and OxHCs, respectively. Methanol was apparently derived from both the soil and vegetation and exhibited an average emission rate of 460±73 μg m-2 h-1 (1.4±0.2 μg g-1 h-1), which was the largest emission among the NMOCs. The year-to-year variation in the precipitation pattern greatly affected the NMOC emission rates. Emission rates normalized to biomass density exhibited a linear decrease as the growing season progressed. The emission rates of some NMOCs, particularly the OxHCs, from vegetation subjected to hypoxia, frost, and physical stresses were significantly greater than the average values observed at the site. Emissions of monoterpenes (α- and β-pinene, limonene, and myrcene) and cis-3-hexen-l-ol were accelerated during the flowering of the plants and were much greater than those predicted by algorithms that correlated emission rates with temperature. Herbaceous vegetation is estimated to contribute about 40% and 50% of the total NMOC and monoterpene emissions, respectively, in grasslands; the remaining contributions are from woody species within grasslands. Contributions of isoprene emissions from herbaceous vegetation in grasslands are negligible. Grasslands are
Nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V.; McKnight, Timothy E. , Guillorn, Michael A.; Ilic, Bojan; Merkulov, Vladimir I.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2011-05-17
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
Surface plasmon field enhancements in deterministic aperiodic structures.
Shugayev, Roman
2010-11-22
In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.
Equivalence of deterministic walks on regular lattices on the plane
NASA Astrophysics Data System (ADS)
Rechtman, Ana; Rechtman, Raúl
2017-01-01
We consider deterministic walks on square, triangular and hexagonal two dimensional lattices. In each case, there is a scatterer at every lattice site that can be in one of two states that forces the walker to turn either to his/her immediate right or left. After the walker is scattered, the scatterer changes state. A lattice with an arrangement of scatterers is an environment. We show that there are only two environments for which the scattering rules are injective, mirrors or rotators, on the three lattices. On hexagonal lattices Webb and Cohen (2014), proved that if a walker with a given initial position and velocity moves through an environment of mirrors (rotators) then there is an environment of rotators (mirrors) through which the walker would move with the same trajectory. We refer to these trajectories on mirror and rotator environments as equivalent walks. We prove the equivalence of walks on square and triangular lattices and include a proof of the equivalence of walks on hexagonal lattices. The proofs are based both on the geometry of the lattice and the structure of the scattering rule.
Zhao, Zhiqiang; Hou, Junjie; Xie, Zhensheng; Deng, Jianwei; Wang, Xiaoming; Chen, Danfang; Yang, Fuquan; Gong, Weimin
2010-11-01
Research has shown that the palmitoyl group of α-tubulin mediates the hydrophobic interaction between microtubules and intracellular membranes and that palmitoylated tubulin plays a role in signal transduction. There are 20 cysteine residues per α/β tubulin heterodimer. C376 of α-tubulin was reported to be predominantly palmitoylated and C20, C213 and C305 of α-tubulin were palmitoylated at lower levels. The previous method used for the analysis of the palmitoylation sites on α-tubulin was based on ³H-labeling, enzymolysis, purification and sequencing. This approach, although efficient, is laborious. Mass spectrometry (MS), especially tandem MS, has been shown to be a successful method for identification of various post-translational modifications of proteins. We report here a convenient MS-based method to comprehensively analyze the palmitoylation sites of the α/β tubulin heterodimer. Acyl-biotinyl exchange chemistry and streptavidin agarose affinity purification were applied to enrich palmitoylated peptides from tubulin. After nano-LC-MS/MS analysis, database searching and manual analysis of the spectra revealed that 11 cysteine residues of the α/β tubulin heterodimer were palmitoylated.
Deterministic versus stochastic trends: Detection and challenges
NASA Astrophysics Data System (ADS)
Fatichi, S.; Barbosa, S. M.; Caporali, E.; Silva, M. E.
2009-09-01
The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's ρ tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.
Deterministic phase retrieval employing spherical illumination
NASA Astrophysics Data System (ADS)
Martínez-Carranza, J.; Falaggis, K.; Kozacki, T.
2015-05-01
Deterministic Phase Retrieval techniques (DPRTs) employ a series of paraxial beam intensities in order to recover the phase of a complex field. These paraxial intensities are usually generated in systems that employ plane-wave illumination. This type of illumination allows a direct processing of the captured intensities with DPRTs for recovering the phase. Furthermore, it has been shown that intensities for DPRTs can be acquired from systems that use spherical illumination as well. However, this type of illumination presents a major setback for DPRTs: the captured intensities change their size for each position of the detector on the propagation axis. In order to apply the DPRTs, reescalation of the captured intensities has to be applied. This condition can increase the error sensitivity of the final phase result if it is not carried out properly. In this work, we introduce a novel system based on a Phase Light Modulator (PLM) for capturing the intensities when employing spherical illumination. The proposed optical system enables us to capture the diffraction pattern of under, in, and over-focus intensities. The employment of the PLM allows capturing the corresponding intensities without displacing the detector. Moreover, with the proposed optical system we can control accurately the magnification of the captured intensities. Thus, the stack of captured intensities can be used in DPRTs, overcoming the problems related with the resizing of the images. In order to prove our claims, the corresponding numerical experiments will be carried out. These simulations will show that the retrieved phases with spherical illumination are accurate and can be compared with those that employ plane wave illumination. We demonstrate that with the employment of the PLM, the proposed optical system has several advantages as: the optical system is compact, the beam size on the detector plane is controlled accurately, and the errors coming from mechanical motion can be suppressed easily.
Understanding Vertical Jump Potentiation: A Deterministic Model.
Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L
2016-06-01
This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength.
ZERODUR: deterministic approach for strength design
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two
Deterministic transfer function for transionospheric propagation
Roussel-Dupre, R.; Argo, P.
1992-01-01
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25--175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = {omega}{sub pe}{sup 2}/{omega}{sup 2} where X is assumed to be small compared to one, {omega}{sub pe} is the peak plasma frequency of the ionosphere, and {omega} is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to ,venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
Deterministic transfer function for transionospheric propagation
Roussel-Dupre, R.; Argo, P.
1992-09-01
Recent interest in ground-to-satellite propagation of broadband signals has prompted investigation into the development of a transfer function for the ionosphere that includes effects such as dispersion, refraction, changes in polarization, reflection, absorption, and scattering. Depending on the application (e.g. geolocation), it may be necessary to incorporate all of these processes in order to extract the information of interest from the measured transionospheric signal. A transfer function for midlatitudes at VBF from 25--175 MHz is one of the goals of the BLACKBEARD program in characterizing propagation distortion. In support of this program we discuss in this paper an analytic model for the deterministic transfer function of the ionosphere that includes the effects of dispersion, refraction, and changes in polarization to second order in the parameter X = {omega}{sub pe}{sup 2}/{omega}{sup 2} where X is assumed to be small compared to one, {omega}{sub pe} is the peak plasma frequency of the ionosphere, and {omega} is the wave frequency. Analytic expressions for the total phase change, group delay, and polarization change in a spherical geometry assuming a radial, electron density profile are presented. A computer code ITF (Ionospheric Transfer Function) that makes use of the ICED (Ionospheric Conductivity and Electron Density) model to ,venerate electron density profiles was developed to calculate the ionospheric transfer function along a specified transmitter-to-receiver path. Details of this code will be presented as well as comparisons made between ITF analytic results and ray-tracing calculations.
Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F
2012-01-01
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.
Cooper, Hannah LF; Bossak, Brian; Tempalski, Barbara; Des Jarlais, Don C.; Friedman, Samuel R.
2009-01-01
The concept of the “risk environment” – defined as the “space … [where] factors exogenous to the individual interact to increase the chances of HIV transmission” – draws together the disciplines of public health and geography. Researchers have increasingly turned to geographic methods to quantify dimensions of the risk environment that are both structural and spatial (e.g., local poverty rates). The scientific power of the intersection between public health and geography, however, has yet to be fully mined. In particular, research on the risk environment has rarely applied geographic methods to create neighbourhood-based measures of syringe exchange programs (SEPs) or of drug-related law enforcement activities, despite the fact that these interventions are widely conceptualized as structural and spatial in nature and are two of the most well-established dimensions of the risk environment. To strengthen research on the risk environment, this paper presents a way of using geographic methods to create neighbourhood-based measures of (1) access to SEP sites and (2) exposure to drug-related arrests, and then applies these methods to one setting (New York City). NYC-based results identified substantial cross-neighbourhood variation in SEP site access and in exposure to drug-related arrest rates (even within the subset of neighbourhoods nominally experiencing the same drug-related police strategy). These geographic measures – grounded as they are in conceptualizations of SEPs and drug-related law enforcement strategies – can help develop new arenas of inquiry regarding the impact of these two dimensions of the risk environment on injectors’ health, including exploring whether and how neighbourhood-level access to SEP sites and exposure to drug-related arrests shape a range of outcomes among local injectors. PMID:18963907
Deterministic and Advanced Statistical Modeling of Wind-Driven Sea
2015-07-06
COVERED (From - To) 01/09/2010-06/07/2015 4. TITLE AND SUBTITLE Deterministic and advanced statistical modeling of wind-driven sea 5a. CONTRACT...Technical Report Deterministic and advanced statistical modeling of wind-driven sea Vladimir Zakharov, Andrei Pushkarev Waves and Solitons LLC, 1719 W...Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean surface waves, based on first physical principles, which will
Structural deterministic safety factors selection criteria and verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
NASA Astrophysics Data System (ADS)
Mamadou, Ossenatou; Gourlez de la Motte, Louis; De Ligne, Anne; Bernard, Heineisch; Aubinet, Marc
2016-04-01
Although widely used to measure CO2 and other gas fluxes, the eddy covariance technique still needs methodological improvements. This research focuses on the high frequency loss corrections, which are especially important when using a closed-path infrared gas analyzer. We compared three approaches to implement these corrections for CO2 fluxes and evaluated their impact on the carbon balance at the Dorinne Terrestrial Observatory (DTO), an intensively grazed grassland site in Belgium. The carbon balance at DTO is also the object of a separate analysis (Gourlez de la Motte et al., Geophysical Research Abstract, Vol. 18, EGU2016-6813-1, 2016). In the first approach, the computation of correction factors was based on the measured sensible heat cospectra ('local' cospectra), whereas the other two were based on theoretical models (Kaimal et al., 1972). The correction approaches were validated by comparing the nighttime eddy covariance CO2 fluxes corrected with each approach and in situ soil respiration measurements. We found that the local cospectra differed from the Kaimal theoretical shape, although the site could not be considered 'difficult' (i.e., fairly flat, homogeneous, low vegetation, sufficient measurement height), appearing less peaked in the inertial subrange. This difference greatly affected the correction factor, especially for night fluxes. Night fluxes measured by eddy covariance were found to be in good agreement with in situ soil respiration measurements when corrected with local cospectra and to be overestimated when corrected with Kaimal cospectra. As the difference between correction factors was larger in stable than unstable conditions, this acts as a selective systematic error and has an important impact on annual fluxes. On the basis of a 4-year average, at DTO, the errors reach 71-150 g C m-2 y-1 for net ecosystem exchange (NEE), 280-562 g C m-2 y-1 for total ecosystem respiration (TER) and 209-412 g C m-2 y-1 for gross primary productivity (GPP
The recursive deterministic perceptron neural network.
Tajine, Mohamed; Elizondo, David
1998-12-01
We introduce a feedforward multilayer neural network which is a generalization of the single layer perceptron topology (SLPT), called recursive deterministic perceptron (RDP). This new model is capable of solving any two-class classification problem, as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets (two subsets X and Y of R(d) are said to be linearly separable if there exists a hyperplane such that the elements of X and Y lie on the two opposite sides of R(d) delimited by this hyperplane). We propose several growing methods for constructing a RDP. These growing methods build a RDP by successively adding intermediate neurons (IN) to the topology (an IN corresponds to a SLPT). Thus, as a result, we obtain a multilayer perceptron topology, which together with the weights, are determined automatically by the constructing algorithms. Each IN augments the affine dimension of the set of input vectors. This augmentation is done by adding the output of each of these INs, as a new component, to every input vector. The construction of a new IN is made by selecting a subset from the set of augmented input vectors which is LS from the rest of this set. This process ends with LS classes in almost n-1 steps where n is the number of input vectors. For this construction, if we assume that the selected LS subsets are of maximum cardinality, the problem is proven to be NP-complete. We also introduce a generalization of the RDP model for classification of m classes (m>2) allowing to always separate m classes. This generalization is based on a new notion of linear separability for m classes, and it follows naturally from the RDP. This new model can be used to compute functions with a finite domain, and thus, to approximate continuous functions. We have also compared - over several classification problems - the percentage of test data correctly classified, or the topology of the 2 and m classes RDPs with that of
Single Ion Implantation and Deterministic Doping
Schenkel, Thomas
2010-06-11
The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
Kalita, Anamika; Hussain, Sameer; Malik, Akhtar Hussain; Barman, Ujjwol; Goswami, Namami; Iyer, Parameswar Krishnan
2016-09-28
A new derivative of naphthalene diimide (NDMI) was synthesized that displayed optical, electrical, and visual changes exclusively for the most widespread nitroexplosive and highly water-soluble toxicant picric acid (PA) due to strong π-π interactions, dipole-charge interaction, and a favorable ground state electron transfer process facilitated by Coulombic attraction. The sensing mechanism and interaction between NDMI with PA is demonstrated via X-ray diffraction analysis, (1)H NMR studies, cyclic voltammetry, UV-visible/fluorescence spectroscopy, and lifetime measurements. Single crystal X-ray structure of NDMI revealed the formation of self-assembled crystalline network assisted by noncovalent C-H···I interactions that get disrupted upon introducing PA as a result of anion exchange and strong π-π stacking between NDMI and PA. Morphological studies of NDMI displayed large numbers of single crystalline microrods along with some three-dimensional (3D) daisy-like structures which were fabricated on Al-coated glass substrate to construct a low-cost two terminal sensor device for realizing vapor mode detection of PA at room temperature and under ambient conditions. Furthermore, an economical and portable electronic prototype was developed for visual and on-site detection of PA vapors under exceptionally realistic conditions.
Zhang, Jie; Draxl, Caroline; Hopson, Thomas; Monache, Luca Delle; Vanvyve, Emilie; Hodge, Bri-Mathias
2015-10-01
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applications (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.
Ergodicity of Truncated Stochastic Navier Stokes with Deterministic Forcing and Dispersion
NASA Astrophysics Data System (ADS)
Majda, Andrew J.; Tong, Xin T.
2016-10-01
Turbulence in idealized geophysical flows is a very rich and important topic. The anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due to the β -plane and F-plane, and topography together with random forcing all combine to produce a remarkable number of realistic phenomena. These effects have been studied through careful numerical experiments in the truncated geophysical models. These important results include transitions between coherent jets and vortices, and direct and inverse turbulence cascades as parameters are varied, and it is a contemporary challenge to explain these diverse statistical predictions. Here we contribute to these issues by proving with full mathematical rigor that for any values of the deterministic forcing, the β - and F-plane effects and topography, with minimal stochastic forcing, there is geometric ergodicity for any finite Galerkin truncation. This means that there is a unique smooth invariant measure which attracts all statistical initial data at an exponential rate. In particular, this rigorous statistical theory guarantees that there are no bifurcations to multiple stable and unstable statistical steady states as geophysical parameters are varied in contrast to claims in the applied literature. The proof utilizes a new statistical Lyapunov function to account for enstrophy exchanges between the statistical mean and the variance fluctuations due to the deterministic forcing. It also requires careful proofs of hypoellipticity with geophysical effects and uses geometric control theory to establish reachability. To illustrate the necessity of these conditions, a two-dimensional example is developed which has the square of the Euclidean norm as the Lyapunov function and is hypoelliptic with nonzero noise forcing, yet fails to be reachable or ergodic.
Deterministic sensing matrices in compressive sensing: a survey.
Nguyen, Thu L N; Shin, Yoan
2013-01-01
Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.
Estimating the epidemic threshold on networks by deterministic connections
Li, Kezan Zhu, Guanghu; Fu, Xinchu; Small, Michael
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.
Cummins, David J; Espada, Alfonso; Novick, Scott J; Molina-Martin, Manuel; Stites, Ryan E; Espinosa, Juan Felix; Broughton, Howard; Goswami, Devrishi; Pascal, Bruce D; Dodge, Jeffrey A; Chalmers, Michael J; Griffin, Patrick R
2016-06-21
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) is an information-rich biophysical method for the characterization of protein dynamics. Successful applications of differential HDX-MS include the characterization of protein-ligand binding. A single differential HDX-MS data set (protein ± ligand) is often comprised of more than 40 individual HDX-MS experiments. To eliminate laborious manual processing of samples, and to minimize random and gross errors, automated systems for HDX-MS analysis have become routine in many laboratories. However, an automated system, while less prone to random errors introduced by human operators, may have systematic errors that go unnoticed without proper detection. Although the application of automated (and manual) HDX-MS has become common, there are only a handful of studies reporting the systematic evaluation of the performance of HDX-MS experiments, and no reports have been published describing a cross-site comparison of HDX-MS experiments. Here, we describe an automated HDX-MS platform that operates with a parallel, two-trap, two-column configuration that has been installed in two remote laboratories. To understand the performance of the system both within and between laboratories, we have designed and completed a test-retest repeatability study for differential HDX-MS experiments implemented at each of two laboratories, one in Florida and the other in Spain. This study provided sufficient data to do both within and between laboratory variability assessments. Initial results revealed a systematic run-order effect within one of the two systems. Therefore, the study was repeated, and this time the conclusion was that the experimental conditions were successfully replicated with minimal systematic error.
NASA Astrophysics Data System (ADS)
Carey, S. K.; Drewitt, G. B.
2013-12-01
The oil sands mining industry in Canada has made a commitment to restore disturbed areas to an equivalent capability to that which existed prior to mining. Certification requires successful reclamation, which can in part be evaluated through long-term ecosystem studies. A reclamation site, informally named South Bison Hill (SBH) has had growing season water, energy and carbon fluxes measured via the eddy covariance method for 10 years since establishment. SBH was capped with a 0.2 m peat-glacial till mixture overlying 0.8 m of reworked glacial till soil. The site was seeded to barley cultivar (Hordeum spp.) in the summer of 2002 and later planted to white spruce (Picea glauca) and aspen (Populus spp.) in the summer/fall of 2004. Since 2007, the major species atop SBH has been aspen, and by 2012 was on average ~ 4 m in height. Climatically, mean growing temperature did not vary greatly, yet there was considerable difference in rainfall among years, with 2012 having the greatest rainfall at 321 mm, whereas 2011 and 2007 were notably dry at 180 and 178 mm, respectively. The partitioning of energy varied among years, but the fraction of latent heat as a portion of net radiation increased with the establishment of aspen, along with concomitant increases in LAI and growing season net ecosystem exchange (NEE). Peat growing season ET was smallest in 2004 at 2.3 mm/d and greatest in 2010 at ~3.9 mm/d. ET rates showed a marked increase in 2008 corresponding with the increase in LAI attributed to the aspen cover. Since the establishment of a surface cover and vegetation in 2003, SBH has been a growing season sink for carbon dioxide. Values of NEE follow similar patterns to those of ET, with values gradually becoming more negative (greater carbon uptake) as the aspen forest established. Comparison with other disturbed and undisturbed boreal aspen stands show that SBH exhibits similar water, energy and carbon flux patterns during the growing season.
Complexity of Monte Carlo and deterministic dose-calculation methods.
Börgers, C
1998-03-01
Grid-based deterministic dose-calculation methods for radiotherapy planning require the use of six-dimensional phase space grids. Because of the large number of phase space dimensions, a growing number of medical physicists appear to believe that grid-based deterministic dose-calculation methods are not competitive with Monte Carlo methods. We argue that this conclusion may be premature. Our results do suggest, however, that finite difference or finite element schemes with orders of accuracy greater than one will probably be needed if such methods are to compete well with Monte Carlo methods for dose calculations.
Deterministic and efficient quantum cryptography based on Bell's theorem
Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg
2006-05-15
We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Deterministic extinction by mixing in cyclically competing species
NASA Astrophysics Data System (ADS)
Feldager, Cilie W.; Mitarai, Namiko; Ohta, Hiroki
2017-03-01
We consider a cyclically competing species model on a ring with global mixing at finite rate, which corresponds to the well-known Lotka-Volterra equation in the limit of infinite mixing rate. Within a perturbation analysis of the model from the infinite mixing rate, we provide analytical evidence that extinction occurs deterministically at sufficiently large but finite values of the mixing rate for any species number N ≥3 . Further, by focusing on the cases of rather small species numbers, we discuss numerical results concerning the trajectories toward such deterministic extinction, including global bifurcations caused by changing the mixing rate.
Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon
2017-01-01
This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead–encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin–biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules. PMID:28393911
Deterministic entanglement distillation for secure double-server blind quantum computation
Sheng, Yu-Bo; Zhou, Lan
2015-01-01
Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565
Not Available
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.
Comparison of deterministic and Monte Carlo methods in shielding design.
Oliveira, A D; Oliveira, C
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.
Risk-based versus deterministic explosives safety criteria
Wright, R.E.
1996-12-01
The Department of Defense Explosives Safety Board (DDESB) is actively considering ways to apply risk-based approaches in its decision- making processes. As such, an understanding of the impact of converting to risk-based criteria is required. The objectives of this project are to examine the benefits and drawbacks of risk-based criteria and to define the impact of converting from deterministic to risk-based criteria. Conclusions will be couched in terms that allow meaningful comparisons of deterministic and risk-based approaches. To this end, direct comparisons of the consequences and impacts of both deterministic and risk-based criteria at selected military installations are made. Deterministic criteria used in this report are those in DoD 6055.9-STD, `DoD Ammunition and Explosives Safety Standard.` Risk-based criteria selected for comparison are those used by the government of Switzerland, `Technical Requirements for the Storage of Ammunition (TLM 75).` The risk-based criteria used in Switzerland were selected because they have been successfully applied for over twenty-five years.
A Deterministic Annealing Approach to Clustering AIRS Data
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander
2012-01-01
We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique
Deterministic dense coding and faithful teleportation with multipartite graph states
Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.
2009-05-15
We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.
Deterministic retrieval of complex Green's functions using hard X rays.
Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E
2009-01-30
A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Ivanka, Paskaleva; Mihaela, Kouteva; Franco, Vaccari; Panza, Giuliano F.
2008-07-08
The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed.
Estimation of seismic ground motions using deterministic approach for major cities of Gujarat
NASA Astrophysics Data System (ADS)
Shukla, J.; Choudhury, D.
2012-06-01
A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs) of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs). The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002) to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the Kachchh region i.e. Bhuj
Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA.
Currin, Andrew; Korovin, Konstantin; Ababi, Maria; Roper, Katherine; Kell, Douglas B; Day, Philip J; King, Ross D
2017-03-01
The theory of computer science is based around universal Turing machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of classical UTMs. For the most important class of problem in computer science, non-deterministic polynomial complete problems, non-deterministic UTMs (NUTMs) are theoretically exponentially faster than both classical UTMs and quantum mechanical UTMs (QUTMs). However, no attempt has previously been made to build an NUTM, and their construction has been regarded as impossible. Here, we demonstrate the first physical design of an NUTM. This design is based on Thue string rewriting systems, and thereby avoids the limitations of most previous DNA computing schemes: all the computation is local (simple edits to strings) so there is no need for communication, and there is no need to order operations. The design exploits DNA's ability to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that the design works using both computational modelling and in vitro molecular biology experimentation: the design is thermodynamically favourable, microprogramming can be used to encode arbitrary Thue rules, all classes of Thue rule can be implemented, and non-deterministic rule implementation. In an NUTM, the resource limitation is space, which contrasts with classical UTMs and QUTMs where it is time. This fundamental difference enables an NUTM to trade space for time, which is significant for both theoretical computer science and physics. It is also of practical importance, for to quote Richard Feynman 'there's plenty of room at the bottom'. This means that a desktop DNA NUTM could potentially utilize more processors than all the electronic computers in the world combined, and thereby outperform the world
Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA
Currin, Andrew; Korovin, Konstantin; Ababi, Maria; Roper, Katherine; Kell, Douglas B.; Day, Philip J.
2017-01-01
The theory of computer science is based around universal Turing machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of classical UTMs. For the most important class of problem in computer science, non-deterministic polynomial complete problems, non-deterministic UTMs (NUTMs) are theoretically exponentially faster than both classical UTMs and quantum mechanical UTMs (QUTMs). However, no attempt has previously been made to build an NUTM, and their construction has been regarded as impossible. Here, we demonstrate the first physical design of an NUTM. This design is based on Thue string rewriting systems, and thereby avoids the limitations of most previous DNA computing schemes: all the computation is local (simple edits to strings) so there is no need for communication, and there is no need to order operations. The design exploits DNA's ability to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that the design works using both computational modelling and in vitro molecular biology experimentation: the design is thermodynamically favourable, microprogramming can be used to encode arbitrary Thue rules, all classes of Thue rule can be implemented, and non-deterministic rule implementation. In an NUTM, the resource limitation is space, which contrasts with classical UTMs and QUTMs where it is time. This fundamental difference enables an NUTM to trade space for time, which is significant for both theoretical computer science and physics. It is also of practical importance, for to quote Richard Feynman ‘there's plenty of room at the bottom’. This means that a desktop DNA NUTM could potentially utilize more processors than all the electronic computers in the world combined, and thereby outperform the world
Deterministically Polarized Fluorescence from Single Dye Molecules Aligned in Liquid Crystal Host
Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Boyd, R. W.; Stroud, Jr., C. R.; Marshall, K.L.
2005-09-30
We demonstrated for the first time to our konwledge deterministically polarized fluorescence from single dye molecules. Planar aligned nematic liquid crystal hosts provide deterministic alignment of single dye molecules in a preferred direction.
Approaches to implementing deterministic models in a probabilistic framework
Talbott, D.V.
1995-04-01
The increasing use of results from probabilistic risk assessments in the decision-making process makes it ever more important to eliminate simplifications in probabilistic models that might lead to conservative results. One area in which conservative simplifications are often made is modeling the physical interactions that occur during the progression of an accident sequence. This paper demonstrates and compares different approaches for incorporating deterministic models of physical parameters into probabilistic models; parameter range binning, response curves, and integral deterministic models. An example that combines all three approaches in a probabilistic model for the handling of an energetic material (i.e. high explosive, rocket propellant,...) is then presented using a directed graph model.
Deterministic algorithm with agglomerative heuristic for location problems
NASA Astrophysics Data System (ADS)
Kazakovtsev, L.; Stupina, A.
2015-10-01
Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.
Deterministic control of ferroelastic switching in multiferroic materials.
Balke, N; Choudhury, S; Jesse, S; Huijben, M; Chu, Y H; Baddorf, A P; Chen, L Q; Ramesh, R; Kalinin, S V
2009-12-01
Multiferroic materials showing coupled electric, magnetic and elastic orderings provide a platform to explore complexity and new paradigms for memory and logic devices. Until now, the deterministic control of non-ferroelectric order parameters in multiferroics has been elusive. Here, we demonstrate deterministic ferroelastic switching in rhombohedral BiFeO(3) by domain nucleation with a scanning probe. We are able to select among final states that have the same electrostatic energy, but differ dramatically in elastic or magnetic order, by applying voltage to the probe while it is in lateral motion. We also demonstrate the controlled creation of a ferrotoroidal order parameter. The ability to control local elastic, magnetic and torroidal order parameters with an electric field will make it possible to probe local strain and magnetic ordering, and engineer various magnetoelectric, domain-wall-based and strain-coupled devices.
Towards a quasi-deterministic single-photon source
NASA Astrophysics Data System (ADS)
Peters, N. A.; Arnold, K. J.; VanDevender, A. P.; Jeffrey, E. R.; Rangarajan, R.; Hosten, O.; Barreiro, J. T.; Altepeter, J. B.; Kwiat, P. G.
2006-08-01
A source of single photons allows secure quantum key distribution, in addition, to being a critical resource for linear optics quantum computing. We describe our progress on deterministically creating single photons from spontaneous parametric downconversion, an extension of the Pittman, Jacobs and Franson scheme [Phys. Rev A, v66, 042303 (2002)]. Their idea was to conditionally prepare single photons by measuring one member of a spontaneously emitted photon pair and storing the remaining conditionally prepared photon until a predetermined time, when it would be "deterministically" released from storage. Our approach attempts to improve upon this by recycling the pump pulse in order to decrease the possibility of multiple-pair generation, while maintaining a high probability of producing a single pair. Many of the challenges we discuss are central to other quantum information technologies, including the need for low-loss optical storage, switching and detection, and fast feed-forward control.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
On the secure obfuscation of deterministic finite automata.
Anderson, William Erik
2008-06-01
In this paper, we show how to construct secure obfuscation for Deterministic Finite Automata, assuming non-uniformly strong one-way functions exist. We revisit the software protection approaches originally proposed by [5, 10, 12, 17] and revise them to the current obfuscation setting of Barak et al. [2]. Under this model, we introduce an efficient oracle that retains some 'small' secret about the original program. Using this secret, we can construct an obfuscator and two-party protocol that securely obfuscates Deterministic Finite Automata against malicious adversaries. The security of this model retains the strong 'virtual black box' property originally proposed in [2] while incorporating the stronger condition of dependent auxiliary inputs in [15]. Additionally, we show that our techniques remain secure under concurrent self-composition with adaptive inputs and that Turing machines are obfuscatable under this model.
Deterministic remote two-qubit state preparation in dissipative environments
NASA Astrophysics Data System (ADS)
Li, Jin-Fang; Liu, Jin-Ming; Feng, Xun-Li; Oh, C. H.
2016-05-01
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein-Podolsky-Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity's approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
A deterministic algorithm for constrained enumeration of transmembrane protein folds.
Brown, William Michael; Young, Malin M.; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Schoeniger, Joseph S.
2004-07-01
A deterministic algorithm for enumeration of transmembrane protein folds is presented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations, which can be scored and refined as part of a process designed for computational elucidation of transmembrane protein structures.
Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators?
NASA Astrophysics Data System (ADS)
Timmer, Jens; Häußler, Siegfried; Lauk, Michael; Lücking, Carl
2000-02-01
Pathological tremors exhibit a nonlinear oscillation that is not strictly periodic. We investigate whether the deviation from periodicity is due to nonlinear deterministic chaotic dynamics or due to nonlinear stochastic dynamics. To do so, we apply methods from linear and nonlinear time series analysis to tremor time series. The results of the different methods suggest that the considered types of pathological tremors represent nonlinear stochastic second order processes.
The deterministic SIS epidemic model in a Markovian random environment.
Economou, Antonis; Lopez-Herrero, Maria Jesus
2016-07-01
We consider the classical deterministic susceptible-infective-susceptible epidemic model, where the infection and recovery rates depend on a background environmental process that is modeled by a continuous time Markov chain. This framework is able to capture several important characteristics that appear in the evolution of real epidemics in large populations, such as seasonality effects and environmental influences. We propose computational approaches for the determination of various distributions that quantify the evolution of the number of infectives in the population.
Deterministic chaos control in neural networks on various topologies
NASA Astrophysics Data System (ADS)
Neto, A. J. F.; Lima, F. W. S.
2017-01-01
Using numerical simulations, we study the control of deterministic chaos in neural networks on various topologies like Voronoi-Delaunay, Barabási-Albert, Small-World networks and Erdös-Rényi random graphs by "pinning" the state of a "special" neuron. We show that the chaotic activity of the networks or graphs, when control is on, can become constant or periodic.
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Probabilistic vs deterministic views in facing natural hazards
NASA Astrophysics Data System (ADS)
Arattano, Massimo; Coviello, Velio
2015-04-01
Natural hazards can be mitigated through active or passive measures. Among these latter countermeasures, Early Warning Systems (EWSs) are playing an increasing and significant role. In particular, a growing number of studies investigate the reliability of landslide EWSs, their comparability to alternative protection measures and their cost-effectiveness. EWSs, however, inevitably and intrinsically imply the concept of probability of occurrence and/or probability of error. Since a long time science has accepted and integrated the probabilistic nature of reality and its phenomena. The same cannot be told for other fields of knowledge, such as law or politics, with which scientists sometimes have to interact. These disciplines are in fact still linked to more deterministic views of life. The same is true for what is perceived by the public opinion, which often requires or even pretends a deterministic type of answer to its needs. So, as an example, it might be easy for people to feel completely safe because an EWS has been installed. It is also easy for an administrator or a politician to contribute to spread this wrong feeling, together with the idea of having dealt with the problem and done something definitive to face it. May geoethics play a role to create a link between the probabilistic world of nature and science and the tendency of the society to a more deterministic view of things? Answering this question could help scientists to feel more confident in planning and performing their research activities.
Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes
NASA Astrophysics Data System (ADS)
Faggionato, A.; Gabrielli, D.; Ribezzi Crivellari, M.
2009-10-01
We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states ( x, σ)∈Ω×Γ, Ω being a region in ℝ d or the d-dimensional torus, Γ being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the σ-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat. Phys. 107(3-4):635-675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at http://www.arxiv.org/abs/0807.4457, 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti-Cohen-type symmetry relation with involution map different from time-reversal.
How Does Quantum Uncertainty Emerge from Deterministic Bohmian Mechanics?
NASA Astrophysics Data System (ADS)
Solé, A.; Oriols, X.; Marian, D.; Zanghì, N.
2016-10-01
Bohmian mechanics is a theory that provides a consistent explanation of quantum phenomena in terms of point particles whose motion is guided by the wave function. In this theory, the state of a system of particles is defined by the actual positions of the particles and the wave function of the system; and the state of the system evolves deterministically. Thus, the Bohmian state can be compared with the state in classical mechanics, which is given by the positions and momenta of all the particles, and which also evolves deterministically. However, while in classical mechanics it is usually taken for granted and considered unproblematic that the state is, at least in principle, measurable, this is not the case in Bohmian mechanics. Due to the linearity of the quantum dynamical laws, one essential component of the Bohmian state, the wave function, is not directly measurable. Moreover, it turns out that the measurement of the other component of the state — the positions of the particles — must be mediated by the wave function; a fact that in turn implies that the positions of the particles, though measurable, are constrained by absolute uncertainty. This is the key to understanding how Bohmian mechanics, despite being deterministic, can account for all quantum predictions, including quantum randomness and uncertainty.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Demographic noise can reverse the direction of deterministic selection
Constable, George W. A.; Rogers, Tim; McKane, Alan J.; Tarnita, Corina E.
2016-01-01
Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to r−K theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085
Deterministic form correction of extreme freeform optical surfaces
NASA Astrophysics Data System (ADS)
Lynch, Timothy P.; Myer, Brian W.; Medicus, Kate; DeGroote Nelson, Jessica
2015-10-01
The blistering pace of recent technological advances has led lens designers to rely increasingly on freeform optical components as crucial pieces of their designs. As these freeform components increase in geometrical complexity and continue to deviate further from traditional optical designs, the optical manufacturing community must rethink their fabrication processes in order to keep pace. To meet these new demands, Optimax has developed a variety of new deterministic freeform manufacturing processes. Combining traditional optical fabrication techniques with cutting edge technological innovations has yielded a multifaceted manufacturing approach that can successfully handle even the most extreme freeform optical surfaces. In particular, Optimax has placed emphasis on refining the deterministic form correction process. By developing many of these procedures in house, changes can be implemented quickly and efficiently in order to rapidly converge on an optimal manufacturing method. Advances in metrology techniques allow for rapid identification and quantification of irregularities in freeform surfaces, while deterministic correction algorithms precisely target features on the part and drastically reduce overall correction time. Together, these improvements have yielded significant advances in the realm of freeform manufacturing. With further refinements to these and other aspects of the freeform manufacturing process, the production of increasingly radical freeform optical components is quickly becoming a reality.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2016-12-16
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false
Qu, Yanyan; Xia, Simin; Yuan, Huiming; Wu, Qi; Li, Man; Zou, Lijuan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui
2011-10-01
An integrated sample pretreatment system, composed of a click maltose hydrophilic interaction chromatography (HILIC) column, a strong cation exchange (SCX) precolumn, and a PNGase F immobilized enzymatic reactor (IMER), was established for the simultaneous glycopeptide enrichment, sample buffer exchange, and online deglycosylation, by which the sample pretreatment for glycoproteome could be performed online automatically, beneficial to improve the efficiency and sensitivity of the N-linked glycosylation site identification. With such a system, the deglycosylated glycopeptide from the digests of avidin with the coexistence of 50 times (mass ratio) BSA could be selectively detected, and the detection limit as low as 5 fmol was achieved. Moreover, the sample pretreatment time was significantly shortened to ~1 h. Such a system was further successfully applied for analyzing the digest of the soluble fraction extracted from rat brain. A total of 120 unique glycoprotein groups and 196 N-linked glycosylation sites were identified by nanoreversed phase liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoRPLC-ESI-MS/MS), with the injected digests amount as 6 μg. All these results demonstrate that the integrated system is of great promise for N-linked glycosylation site profiling and could be further online coupled with nanoHPLC-ESI-MS/MS to achieve high-throughput glycoproteome analysis.
Lambry, Jean-Christophe; Stranava, Martin; Lobato, Laura; Martinkova, Marketa; Shimizu, Toru; Liebl, Ursula; Vos, Marten H
2016-01-07
An important question for the functioning of heme proteins is whether different ligands present within the protein moiety can readily exchange with heme-bound ligands. Studying the dynamics of the heme domain of the Escherichia coli sensor protein YddV upon dissociation of NO from the ferric heme by ultrafast spectroscopy, we demonstrate that when the hydrophobic leucine residue in the distal heme pocket is mutated to glycine, in a substantial fraction of the protein water replaces NO as an internal ligand in as fast as ∼4 ps. This process, which is near-barrierless and occurs orders of magnitude faster than the corresponding process in myoglobin, corresponds to a ligand swap of NO with a water molecule present in the heme pocket, as corroborated by molecular dynamics simulations. Our findings provide important new insight into ligand exchange in heme proteins that functionally interact with different external ligands.
Georgakaki, Irene P; Miller, Matthew L; Darensbourg, Marcetta Y
2003-04-21
Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).
Mn(2+)-Ion Site Distribution of Zeolite Y (FAU, Si/Al = 1.56) Depending on the Ion-Exchange Ratio.
Seo, Sung Man; Moon, Dae Jun; Suh, Jeong Min; Zhu, John; Lim, Woo Taik
2016-05-01
To investigate the tendency of Mn(2+)-ion exchange into zeolite Y, four single crystals of fully dehydrated Mn2+, Na(+)-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of Na75-Y (INa75I[Si117Al75,O384]-FAU) with aqueous of various concentrations by Mn2+ and Na+ in a total 0.05 M for molar ratios of 1:1 (crystal 1), 1:25 (crystal 2), 1:50 (crystal 3), and 1:100 (crystal 4), respectively, followed by vacuum dehydration at 400 degrees C. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3(-)m and were refined to the final error indices R1/wR2 = 0.0440/0.1545, 0.0369/0.1153, 0.0373/0.1091, and 0.0506/0.1667, respectively. Their unit-cell formulas are approximately LMn33.5Na8I[Si117Al75O384]-FAU, IMn20.5Na34I[Si117Al75O384]-FAU, IMn20.5Na34I[Si117Al75O384]-FAU, and IMn16.5Na42I[Si117Al75O384]-FAU, respectively. The degree of Mn2+-ion exchange increases from 44.3% to 89.1% with increasing the initial Mn2+ concentrations as Na+ content and the unit cell constant of the zeolite framework decrease.
Espinosa-Asuar, Laura; Escalante, Ana Elena; Gasca-Pineda, Jaime; Blaz, Jazmín; Peña, Lorena; Eguiarte, Luis E; Souza, Valeria
2015-06-01
The aim of this study was to determine the contributions of stochastic vs. deterministic processes in the distribution of microbial diversity in four ponds (Pozas Azules) within a temporally stable aquatic system in the Cuatro Cienegas Basin, State of Coahuila, Mexico. A sampling strategy for sites that were geographically delimited and had low environmental variation was applied to avoid obscuring distance effects. Aquatic bacterial diversity was characterized following a culture-independent approach (16S sequencing of clone libraries). The results showed a correlation between bacterial beta diversity (1-Sorensen) and geographic distance (distance decay of similarity), which indicated the influence of stochastic processes related to dispersion in the assembly of the ponds' bacterial communities. Our findings are the first to show the influence of dispersal limitation in the prokaryotic diversity distribution of Cuatro Cienegas Basin.
NASA Astrophysics Data System (ADS)
Ervens, Barbara; Feingold, Graham
2013-06-01
Ice particle number concentrations are often described deterministically, i.e., ice nucleation is singular and occurs on active sites unambiguously at a given temperature. Other approaches are based on classical nucleation theory (CNT) that describes ice nucleation stochastically as a function of time and nucleation rate. Sensitivity studies of CNT for immersion freezing performed here show that ice nucleation has by far the lowest sensitivity to time as compared to temperature, ice nucleus (IN) diameter, and contact angle. Sensitivities generally decrease with decreasing temperature. Our study helps to reconcile the apparent differences in stochastic and singular freezing behavior, and suggests that over a wide range of temperatures and IN parameters, time-independent CNT-based expressions for immersion freezing may be derived for use in large-scale models.
Deterministic Aperiodic One-Dimensional Systems with All States Extended, One of Which is Periodic
NASA Astrophysics Data System (ADS)
Lindquist, Bruno; Riklund, Rolf
1998-05-01
A one-dimensional discrete tight-binding model with nearest-neighbour interaction is studied. We use the transfer model with variable hopping matrix elements, here assuming the two values t or -t, and constant on-site potential. Under this conditions all the eigenstates are known to be extended. It is shown that if the distribution of the off-diagonal matrix elements constitutes a deterministic aperiodic sequence, the eigenstate corresponding to the middle eigenvalue is periodic for some choices of the sequence, but not for all. The studied sequences that turn out to have a periodic middle state are the Thue-Morse sequence, the Rudin-Shapiro sequence and many of the generalised Thue-Morse sequences but not for instance the well known Fibonacci sequence.
Matching solute breakthrough with deterministic and stochastic aquifer models.
Lemke, Lawrence D; Barrack, William A; Abriola, Linda M; Goovaerts, Pierre
2004-01-01
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.
Optical image encryption technique based on deterministic phase masks
NASA Astrophysics Data System (ADS)
Zamrani, Wiam; Ahouzi, Esmail; Lizana, Angel; Campos, Juan; Yzuel, María J.
2016-10-01
The double-random phase encoding (DRPE) scheme, which is based on a 4f optical correlator system, is considered as a reference for the optical encryption field. We propose a modification of the classical DRPE scheme based on the use of a class of structured phase masks, the deterministic phase masks. In particular, we propose to conduct the encryption process by using two deterministic phase masks, which are built from linear combinations of several subkeys. For the decryption step, the input image is retrieved by using the complex conjugate of the deterministic phase masks, which were set in the encryption process. This concept of structured masks gives rise to encryption-decryption keys which are smaller and more compact than those required in the classical DRPE. In addition, we show that our method significantly improves the tolerance of the DRPE method to shifts of the decrypting phase mask-when no shift is applied, it provides similar performance to the DRPE scheme in terms of encryption-decryption results. This enhanced tolerance to the shift, which is proven by providing numerical simulation results for grayscale and binary images, may relax the rigidity of an encryption-decryption experimental implementation setup. To evaluate the effectiveness of the described method, the mean-square-error and the peak signal-to-noise ratio between the input images and the recovered images are calculated. Different studies based on simulated data are also provided to highlight the suitability and robustness of the method when applied to the image encryption-decryption processes.
Deterministic side-branching during thermal dendritic growth
NASA Astrophysics Data System (ADS)
Mullis, Andrew M.
2015-06-01
The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43 (2012) 391]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here we present simulations at high undercooling that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Not only are multigrid solvers one of the most efficient means of inverting the large, but sparse, system of equations that results from implicit time-stepping, they are also very effective at smoothing noise at all wavelengths. This is in contrast to most Jacobi or Gauss-Seidel iterative schemes which are effective at removing noise with wavelengths comparable to the mesh size but tend to leave noise at longer wavelengths largely undamped. From an analysis of the tangential thermal gradients on the solid-liquid interface the mechanism for side-branching appears to be consistent with the deterministic model proposed by Glicksman.
Spatial continuity measures for probabilistic and deterministic geostatistics
Isaaks, E.H.; Srivastava, R.M.
1988-05-01
Geostatistics has traditionally used a probabilistic framework, one in which expected values or ensemble averages are of primary importance. The less familiar deterministic framework views geostatistical problems in terms of spatial integrals. This paper outlines the two frameworks and examines the issue of which spatial continuity measure, the covariance C(h) or the variogram ..sigma..(h), is appropriate for each framework. Although C(h) and ..sigma..(h) were defined originally in terms of spatial integrals, the convenience of probabilistic notation made the expected value definitions more common. These now classical expected value definitions entail a linear relationship between C(h) and ..sigma..(h); the spatial integral definitions do not. In a probabilistic framework, where available sample information is extrapolated to domains other than the one which was sampled, the expected value definitions are appropriate; furthermore, within a probabilistic framework, reasons exist for preferring the variogram to the covariance function. In a deterministic framework, where available sample information is interpolated within the same domain, the spatial integral definitions are appropriate and no reasons are known for preferring the variogram. A case study on a Wiener-Levy process demonstrates differences between the two frameworks and shows that, for most estimation problems, the deterministic viewpoint is more appropriate. Several case studies on real data sets reveal that the sample covariance function reflects the character of spatial continuity better than the sample variogram. From both theoretical and practical considerations, clearly for most geostatistical problems, direct estimation of the covariance is better than the traditional variogram approach.
CALTRANS: A parallel, deterministic, 3D neutronics code
Carson, L.; Ferguson, J.; Rogers, J.
1994-04-01
Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.
Deterministic Models of Channel Headwall Erosion: Initiation and Propagation
1991-06-14
Port Ocean Div., Amer. Soc. Civil Engr. 106(WW3):369-389. Beltaos , S . 1976 Oblique impingement of plane turbulent jets. J. Hydr. Div. Amer. Soc. Civil...Engrs. 102(HY9): 1177-1192. Beltaos , S . and Rajaratnam. 1973. Plane turbulent impinging jets. J. Hydr. Res. 11:29-59. Bradford, J. M. and R. F. Priest...June 14, 1991 FINAL 7!5T Oy7- /%faq 4. TITLE AND SUBTITLE S . FUNDING NUMB ERS Deterministic Models of Channel Headwall Erosion: Initiation and
Demonstration of deterministic and high fidelity squeezing of quantum information
Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.
2007-12-15
By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.
Deterministic regularization of three-dimensional optical diffraction tomography
Sung, Yongjin; Dasari, Ramachandra R.
2012-01-01
In this paper we discuss a deterministic regularization algorithm to handle the missing cone problem of three-dimensional optical diffraction tomography (ODT). The missing cone problem arises in most practical applications of ODT and is responsible for elongation of the reconstructed shape and underestimation of the value of the refractive index. By applying positivity and piecewise-smoothness constraints in an iterative reconstruction framework, we effectively suppress the missing cone artifact and recover sharp edges rounded out by the missing cone, and we significantly improve the accuracy of the predictions of the refractive index. We also show the noise handling capability of our algorithm in the reconstruction process. PMID:21811316
Deterministic shape control in plasma-aided nanotip assembly
NASA Astrophysics Data System (ADS)
Tam, E.; Levchenko, I.; Ostrikov, K.
2006-08-01
The possibility of deterministic plasma-assisted reshaping of capped cylindrical seed nanotips by manipulating the plasma parameter-dependent sheath width is shown. Multiscale hybrid gas phase/solid surface numerical experiments reveal that under the wide-sheath conditions the nanotips widen at the base and when the sheath is narrow, they sharpen up. By combining the wide- and narrow-sheath stages in a single process, it turns out possible to synthesize wide-base nanotips with long- and narrow-apex spikes, ideal for electron microemitter applications. This plasma-based approach is generic and can be applied to a larger number of multipurpose nanoassemblies.
Deterministic versus stochastic aspects of superexponential population growth models
NASA Astrophysics Data System (ADS)
Grosjean, Nicolas; Huillet, Thierry
2016-08-01
Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.
The deterministic optical alignment of the HERMES spectrograph
NASA Astrophysics Data System (ADS)
Gers, Luke; Staszak, Nicholas
2014-07-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Non-deterministic analysis of ocean environment loads
Fang Huacan; Xu Fayan; Gao Guohua; Xu Xingping
1995-12-31
Ocean environment loads consist of the wind force, sea wave force etc. Sea wave force not only has randomness, but also has fuzziness. Hence the non-deterministic description of wave environment must be carried out, in designing of an offshore structure or evaluation of the safety of offshore structure members in service. In order to consider the randomness of sea wave, the wind speed single parameter sea wave spectrum is proposed in the paper. And a new fuzzy grading statistic method for considering fuzziness of sea wave height H and period T is given in this paper. The principle and process of calculating fuzzy random sea wave spectrum will be published lastly.
Lasing in an optimized deterministic aperiodic nanobeam cavity
NASA Astrophysics Data System (ADS)
Moon, Seul-Ki; Jeong, Kwang-Yong; Noh, Heeso; Yang, Jin-Kyu
2016-12-01
We have demonstrated lasing action from partially extended modes in deterministic aperiodic nanobeam cavities inflated by Rudin-Shapiro sequence with two different air holes at room temperature. By varying the size ratio of the holes and hence the structural aperiodicity, different optical lasing modes were obtained with maximized quality factors. The lasing characteristics of the partially extended modes were confirmed by numerical simulations based on scanning microscope images of the fabricated samples. We believe that this partially extended nanobeam modes will be useful for label-free optical biosensors.
Deterministic Smoluchowski-Feynman ratchets driven by chaotic noise.
Chew, Lock Yue
2012-01-01
We have elucidated the effect of statistical asymmetry on the directed current in Smoluchowski-Feynman ratchets driven by chaotic noise. Based on the inhomogeneous Smoluchowski equation and its generalized version, we arrive at analytical expressions of the directed current that includes a source term. The source term indicates that statistical asymmetry can drive the system further away from thermodynamic equilibrium, as exemplified by the constant flashing, the state-dependent, and the tilted deterministic Smoluchowski-Feynman ratchets, with the consequence of an enhancement in the directed current.
Macroreticular chelating ion-exchangers.
Hirsch, R F; E Gancher, R; Russo, F R
1970-06-01
Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.
Baldocchi, Dennis
2015-03-24
Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.
Deterministic composite nanophotonic lattices in large area for broadband applications
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates. PMID:27941869
Directional locking in deterministic lateral-displacement microfluidic separation systems.
Risbud, Sumedh R; Drazer, German
2014-07-01
We analyze the trajectory of suspended spherical particles moving through a square array of obstacles, in the deterministic limit and at zero Reynolds number. We show that in the dilute approximation of widely separated obstacles, the average motion of the particles is equivalent to the trajectory followed by a point particle moving through an array of obstacles with an effective radius. The effective radius accounts for the hydrodynamic as well as short-range repulsive nonhydrodynamic interactions between the suspended particles and the obstacles, and is equal to the critical offset at which particle trajectories become irreversible. Using this equivalent system we demonstrate the presence of directional locking in the trajectory of the particles and derive an inequality that accurately describes the "devil's staircase" type of structure observed in the migration angle as a function of the forcing direction. We use these results to determine the optimum resolution in the fractionation of binary mixtures using deterministic lateral-displacement microfluidic separation systems as well as to comment on the collision frequencies when the arrays of posts are utilized as immunocapture devices.
Deterministic doping and the exploration of spin qubits
Schenkel, T.; Weis, C. D.; Persaud, A.; Lo, C. C.; Chakarov, I.; Schneider, D. H.; Bokor, J.
2015-01-09
Deterministic doping by single ion implantation, the precise placement of individual dopant atoms into devices, is a path for the realization of quantum computer test structures where quantum bits (qubits) are based on electron and nuclear spins of donors or color centers. We present a donor - quantum dot type qubit architecture and discuss the use of medium and highly charged ions extracted from an Electron Beam Ion Trap/Source (EBIT/S) for deterministic doping. EBIT/S are attractive for the formation of qubit test structures due to the relatively low emittance of ion beams from an EBIT/S and due to the potential energy associated with the ions' charge state, which can aid single ion impact detection. Following ion implantation, dopant specific diffusion mechanisms during device processing affect the placement accuracy and coherence properties of donor spin qubits. For bismuth, range straggling is minimal but its relatively low solubility in silicon limits thermal budgets for the formation of qubit test structures.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Deterministic nature of the underlying dynamics of surface wind fluctuations
NASA Astrophysics Data System (ADS)
Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.
2012-10-01
Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.
Stochastic and deterministic causes of streamer branching in liquid dielectrics
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-08-14
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
On the deterministic and stochastic use of hydrologic models
NASA Astrophysics Data System (ADS)
Farmer, William H.; Vogel, Richard M.
2016-07-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
Deterministic composite nanophotonic lattices in large area for broadband applications
NASA Astrophysics Data System (ADS)
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Predictability of normal heart rhythms and deterministic chaos
NASA Astrophysics Data System (ADS)
Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.
1993-04-01
The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.
An advanced deterministic method for spent fuel criticality safety analysis
DeHart, M.D.
1998-01-01
Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.
Shock-induced explosive chemistry in a deterministic sample configuration.
Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III; Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith
2005-10-01
Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-03
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations
NASA Astrophysics Data System (ADS)
Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael
2012-02-01
We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations
Deterministic composite nanophotonic lattices in large area for broadband applications.
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-12
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm(2)) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Larin, A V; Zhidomirov, G M; Trubnikov, D N; Vercauteren, D P
2010-01-30
A new series of calcium oxide clusters Ca(2)O(X) (X = 1-4) at cationic positions of mordenite (MOR) and faujasite (FAU) is studied via the isolated cluster approach. Active oxide framework fragments are represented via 8-membered window (8R) in MOR, and two 6R and 4R windows (6R+4R) possessing one common Si-O-Si moiety in FAU. Structural similarities between the Ca(2)O(X)(8R) and Ca(2)O(X)(6R+4R) moieties are considered up to X = 4. High oxidation possibilities of the Ca(2)O(2)(nR) and Ca(2)O(3)(nR) systems are demonstrated relative to CO, whose oxidation over the Ca-exchanged zeolite forms is well studied experimentally. Relevance of the oxide cluster models with respect to trapping and desorption of singlet dioxygen is discussed.
Vest, Joshua R; Abramson, Erika
2015-01-01
Health information exchange (HIE) systems facilitate access to patient information for a variety of health care organizations, end users, and clinical and organizational goals. While a complex intervention, organizations' usage of HIE is often conceptualized and measured narrowly. We sought to provide greater specificity to the concept of HIE as an intervention by formulating a typology of organizational HIE usage. We interviewed representatives of a regional health information organization and health care organizations actively using HIE information to change patient utilization and costs. The resultant typology includes three dimensions: user role, usage initiation, and patient set. This approach to categorizing how health care organizations are actually applying HIE information to clinical and business tasks provides greater clarity about HIE as an intervention and helps elucidate the conceptual linkage between HIE an organizational and patient outcomes.
Groskinsky Link, B. L.; Cary, L.E.
1988-01-01
Stations were selected to monitor water discharge and water quality of streams in eastern Montana. This report describes the stations and indicates the availability of hydrologic data through 1985. Included are stations that are operated by organizations that do not belong to the National Water Data Exchange (NAWDEX) program operated by the U.S. Geological Survey. Each station description contains a narration of the station 's history including location, drainage area, elevation, operator, period of record, type of equipment and instruments used at the station, and data availability. The data collected at each station have been identified according to type: water discharge, chemical quality, and suspended sediment. Descriptions are provided for 113 stations. These data have potential uses in characterizing small hydrologic basins, as well as other uses. A map of eastern Montana shows the location of the stations selected. (USGS)
Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.; Dail, D. B.; Scott, N.
2013-03-25
Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.
Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that inﬂuence personal exposures to ambient ﬁne-particulate matter (PM_{2.5}). We describe and compare different ambient PM_{2.5} exposure estimation...
Ground Motion and Variability from 3-D Deterministic Broadband Simulations
NASA Astrophysics Data System (ADS)
Withers, Kyle Brett
The accuracy of earthquake source descriptions is a major limitation in high-frequency (> 1 Hz) deterministic ground motion prediction, which is critical for performance-based design by building engineers. With the recent addition of realistic fault topography in 3D simulations of earthquake source models, ground motion can be deterministically calculated more realistically up to higher frequencies. We first introduce a technique to model frequency-dependent attenuation and compare its impact on strong ground motions recorded for the 2008 Chino Hills earthquake. Then, we model dynamic rupture propagation for both a generic strike-slip event and blind thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We incorporate frequency-dependent attenuation via a power law above a reference frequency in the form Q0fn, with high accuracy down to Q values of 15, and include nonlinear effects via Drucker-Prager plasticity. We model the region surrounding the fault with and without small-scale medium complexity in both a 1D layered model characteristic of southern California rock and a 3D medium extracted from the SCEC CVMSi.426 including a near-surface geotechnical layer. We find that the spectral acceleration from our models are within 1-2 interevent standard deviations from recent ground motion prediction equations (GMPEs) and compare well with that of recordings from strong ground motion stations at both short and long periods. At periods shorter than 1 second, Q(f) is needed to match the decay of spectral acceleration seen in the GMPEs as a function of distance from the fault. We find that the similarity between the intraevent variability of our simulations and observations increases when small-scale heterogeneity and plasticity are included, extremely important as uncertainty in ground motion estimates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we compare with simple
Deterministic model for an internal melt ice-on-coil thermal storage tank
Neto, J.H.M.; Krarti, M.
1997-12-31
A deterministic numerical model, based on a quasi-steady-state approach, is developed for an internal melt ice-on-coil thermal storage tank with a built-in spiral coil tubing heat exchanger having a counterflow configuration and quiescent water around the coils. This model is able to simulate both charging and discharging modes, taking into account the overlapping phenomenon that occurs due to the superposition of the ice layers during freezing as well as the superposition of the water layers during melting. The developed model accounts for the cooldown of the water earlier during the charging period and the warm-up of the water later during the discharging period. The input parameters include the geometric dimensions of the tank, the secondary fluid temperature and its flow rate entering the tank, the number of segments along the coil, and the time step. The model determines the heat transfer rates, the inventory of the ice, and other output parameters such as temperatures and ice/water radius. This model can be used by manufacturers and engineers for design and simulation purposes.
NASA Astrophysics Data System (ADS)
Thaker, T. P.; Rathod, Ganesh W.; Rao, K. S.; Gupta, K. K.
2012-01-01
Surat, the financial capital of Gujarat, India, is a mega city with a population exceeding five millions. The city falls under Zone III of the Seismic Zoning Map of India. After the devastating 2001 Bhuj earthquake of Mw 7.7, much attention is paid towards the seismic microzonation activity in the state of Gujarat. In this work, an attempt has been made to evaluate the seismic hazard for Surat City (21.170 N, 72.830 E) based on the probabilistic and deterministic seismic hazard analysis. After collecting a catalogue of historical earthquakes in a 350 km radius around the city and after analyzing a database statistically, deterministic analysis has been carried out considering known tectonic sources; a further recurrence relationship for the control region is found out. Probabilistic seismic hazard analyses were then carried out for the Surat region considering five seismotectonic sources selected from a deterministic approach. The final results of the present investigations are presented in the form of peak ground acceleration and response spectra at bed rock level considering the local site conditions. Rock level Peak Ground Acceleration (PGA) and spectral acceleration values at 0.01 s and 1.0 s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated. Further Uniform Hazard Response Spectrum (UHRS) at rock level for 5% damping, and 10% and 2% probability of exceedance in 50 years, were also developed for the city considering all site classes. These results can be directly used by engineers as basic inputs in earthquake-resistant design of structures in and around the city.
Additivity Principle in High-Dimensional Deterministic Systems
NASA Astrophysics Data System (ADS)
Saito, Keiji; Dhar, Abhishek
2011-12-01
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.180601], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.
Additivity principle in high-dimensional deterministic systems.
Saito, Keiji; Dhar, Abhishek
2011-12-16
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
Sensitivity analysis in a Lassa fever deterministic mathematical model
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman
2015-05-01
Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.
Derivation Of Probabilistic Damage Definitions From High Fidelity Deterministic Computations
Leininger, L D
2004-10-26
This paper summarizes a methodology used by the Underground Analysis and Planning System (UGAPS) at Lawrence Livermore National Laboratory (LLNL) for the derivation of probabilistic damage curves for US Strategic Command (USSTRATCOM). UGAPS uses high fidelity finite element and discrete element codes on the massively parallel supercomputers to predict damage to underground structures from military interdiction scenarios. These deterministic calculations can be riddled with uncertainty, especially when intelligence, the basis for this modeling, is uncertain. The technique presented here attempts to account for this uncertainty by bounding the problem with reasonable cases and using those bounding cases as a statistical sample. Probability of damage curves are computed and represented that account for uncertainty within the sample and enable the war planner to make informed decisions. This work is flexible enough to incorporate any desired damage mechanism and can utilize the variety of finite element and discrete element codes within the national laboratory and government contractor community.
Location deterministic biosensing from quantum-dot-nanowire assemblies
Liu, Chao; Kim, Kwanoh; Fan, D. L.
2014-08-25
Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.
Integrating Clonal Selection and Deterministic Sampling for Efficient Associative Classification
Elsayed, Samir A. Mohamed; Rajasekaran, Sanguthevar; Ammar, Reda A.
2013-01-01
Traditional Associative Classification (AC) algorithms typically search for all possible association rules to find a representative subset of those rules. Since the search space of such rules may grow exponentially as the support threshold decreases, the rules discovery process can be computationally expensive. One effective way to tackle this problem is to directly find a set of high-stakes association rules that potentially builds a highly accurate classifier. This paper introduces AC-CS, an AC algorithm that integrates the clonal selection of the immune system along with deterministic data sampling. Upon picking a representative sample of the original data, it proceeds in an evolutionary fashion to populate only rules that are likely to yield good classification accuracy. Empirical results on several real datasets show that the approach generates dramatically less rules than traditional AC algorithms. In addition, the proposed approach is significantly more efficient than traditional AC algorithms while achieving a competitive accuracy. PMID:24500504
Deterministic single-file dynamics in collisional representation.
Marchesoni, F; Taloni, A
2007-12-01
We re-examine numerically the diffusion of a deterministic, or ballistic single file with preassigned velocity distribution (Jepsen's gas) from a collisional viewpoint. For a two-modal velocity distribution, where half the particles have velocity +/-c, the collisional statistics is analytically proven to reproduce the continuous time representation. For a three-modal velocity distribution with equal fractions, where less than 12 of the particles have velocity +/-c, with the remaining particles at rest, the collisional process is shown to be inhomogeneous; its stationary properties are discussed here by combining exact and phenomenological arguments. Collisional memory effects are then related to the negative power-law tails in the velocity autocorrelation functions, predicted earlier in the continuous time formalism. Numerical and analytical results for Gaussian and four-modal Jepsen's gases are also reported for the sake of a comparison.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.
Deterministic secure communications using two-mode squeezed states
Marino, Alberto M.; Stroud, C. R. Jr.
2006-08-15
We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.
Deterministic entanglement generation from driving through quantum phase transitions
NASA Astrophysics Data System (ADS)
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-01
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.
More on exact state reconstruction in deterministic digital control systems
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
Presented is a special form of the Ideal State Reconstructor for deterministic digital control systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so named because, if the plant parameters are known exactly, its output will exactly equal, not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects the measurement equation only. It is characterized by the fact that discrete measurements are generated every T/N seconds and input into a multi-input/multi-output moving-average (MA) process. The output of this process is sampled every T seconds and utilized in reconstructing the state of the system.
Safe microburst penetration techniques: A deterministic, nonlinear, optimal control approach
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1987-01-01
A relatively large amount of computer time was used for the calculation of a optimal trajectory, but it is subject to reduction with moderate effort. The Deterministic, Nonlinear, Optimal Control algorithm yielded excellent aircraft performance in trajectory tracking for the given microburst. It did so by varying the angle of attack to counteract the lift effects of microburst induced airspeed variations. Throttle saturation and aerodynamic stall limits were not a problem for the case considered, proving that the aircraft's performance capabilities were not violated by the given wind field. All closed loop control laws previously considered performed very poorly in comparison, and therefore do not come near to taking full advantage of aircraft performance.
Deterministic generation of a cluster state of entangled photons
NASA Astrophysics Data System (ADS)
Schwartz, I.; Cogan, D.; Schmidgall, E. R.; Don, Y.; Gantz, L.; Kenneth, O.; Lindner, N. H.; Gershoni, D.
2016-10-01
Photonic cluster states are a resource for quantum computation based solely on single-photon measurements. We use semiconductor quantum dots to deterministically generate long strings of polarization-entangled photons in a cluster state by periodic timed excitation of a precessing matter qubit. In each period, an entangled photon is added to the cluster state formed by the matter qubit and the previously emitted photons. In our prototype device, the qubit is the confined dark exciton, and it produces strings of hundreds of photons in which the entanglement persists over five sequential photons. The measured process map characterizing the device has a fidelity of 0.81 with that of an ideal device. Further feasible improvements of this device may reduce the resources needed for optical quantum information processing.
Capillary-mediated interface perturbations: Deterministic pattern formation
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
YALINA analytical benchmark analyses using the deterministic ERANOS code system.
Gohar, Y.; Aliberti, G.; Nuclear Engineering Division
2009-08-31
The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.
Deterministic Production of Photon Number States via Quantum Feedback Control
NASA Astrophysics Data System (ADS)
Geremia, J. M.
2006-05-01
It is well-known that measurements reduce the state of a quantum system, at least approximately, to an eigenstate of the operator associated with the physical property being measured. Here, we employ a continuous measurement of cavity photon number to achieve a robust, nondestructively verifiable procedure for preparing number states of an optical cavity mode. Such Fock states are highly sought after for the enabling role they play in quantum computing, networking and precision metrology. Furthermore, we demonstrate that the particular Fock state produced in each application of the continuous photon number measurement can be controlled using techniques from real-time quantum feedback control. The result of the feedback- stabilized measurement is a deterministic source of (nearly ideal) cavity Fock states. An analysis of feedback stability and the experimental viability of a quantum optical implementation currently underway at the University of New Mexico will be presented.
Working Memory and Its Relation to Deterministic Sequence Learning
Martini, Markus; Furtner, Marco R.; Sachse, Pierre
2013-01-01
Is there a relation between working memory (WM) and incidental sequence learning? Nearly all of the earlier investigations in the role of WM capacity (WMC) in sequence learning suggest no correlations in incidental learning conditions. However, the theoretical view of WM and operationalization of WMC made strong progress in recent years. The current study related performance in a coordination and transformation task to sequence knowledge in a four-choice incidental deterministic serial reaction time (SRT) task and a subsequent free generation task. The response-to-stimulus interval (RSI) was varied between 0 ms and 300 ms. Our results show correlations between WMC and error rates in condition RSI 0 ms. For condition RSI 300 ms we found relations between WMC and sequence knowledge in the SRT task as well as between WMC and generation task performance. Theoretical implications of these findings for ongoing processes during sequence learning and retrieval of sequence knowledge are discussed. PMID:23409148
Conservative deterministic spectral Boltzmann solver near the grazing collisions limit
NASA Astrophysics Data System (ADS)
Haack, Jeffrey R.; Gamba, Irene M.
2012-11-01
We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. Within this framework we have extended the formulation to the case of more general case of collision operators with anisotropic scattering mechanisms, which requires a new formulation of the convolution weights. We also derive the grazing collisions limit for the method, and show that it is consistent with the Fokker-Planck-Landau equations as the grazing collisions parameter goes to zero.
Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Pei, Yezhe
This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.
The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.
MedlinePlus Videos and Cool Tools
... during exhalation. Gas exchange is the delivery of oxygen from the lungs to the bloodstream, and the ... share a membrane with the capillaries in which oxygen and carbon dioxide move freely between the respiratory ...
Ion exchange technology assessment report
Duhn, E.F.
1992-01-01
In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.
Ion exchange technology assessment report
Duhn, E.F.
1992-12-31
In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.
Fox, T.H. III; Richey, T. Jr.; Winders, G.R.
1962-10-23
A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)
Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P
2011-09-27
The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074].
Pinter, A; Kopelman, R; Li, Z; Kayman, S C; Sanders, D A
1997-01-01
Previous studies have indicated that the surface (SU) and transmembrane (TM) subunits of the envelope protein (Env) of murine leukemia viruses (MuLVs) are joined by a labile disulfide bond that can be stabilized by treatment of virions with thiol-specific reagents. In the present study this observation was extended to the Envs of additional classes of MuLV, and the cysteines of SU involved in this linkage were mapped by proteolytic fragmentation analyses to the CWLC sequence present at the beginning of the C-terminal domain of SU. This sequence is highly conserved across a broad range of distantly related retroviruses and resembles the CXXC motif present at the active site of thiol-disulfide exchange enzymes. A model is proposed in which rearrangements of the SU-TM intersubunit disulfide linkage, mediated by the CWLC sequence, play roles in the assembly and function of the Env complex. PMID:9311907
NASA Astrophysics Data System (ADS)
Nicolay, S.; Brodie of Brodie, E. B.; Touchon, M.; d'Aubenton-Carafa, Y.; Thermes, C.; Arneodo, A.
2004-10-01
We use the continuous wavelet transform to perform a space-scale analysis of the AT and GC skews (strand asymmetries) in human genomic sequences, which have been shown to correlate with gene transcription. This study reveals the existence of a characteristic scale ℓ c≃25±10 kb that separates a monofractal long-range correlated noisy regime at small scales (ℓ<ℓ c) from relaxational oscillatory behavior at large-scale (ℓ>ℓ c). We show that these large scale nonlinear oscillations enlighten an organization of the human genome into adjacent domains ( ≈400 kb) with preferential gene orientation. When using classical techniques from dynamical systems theory, we demonstrate that these relaxational oscillations display all the characteristic properties of the chaotic strange attractor behavior observed nearby homoclinic orbits of Shil'nikov type. We discuss the possibility that replication and gene regulation processes are governed by a low-dimensional dynamical system that displays deterministic chaos.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
Ismail, I M; Basahi, J M; Hassan, I A
2014-11-01
Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009-2013) at a rural site in northern Egypt. Net photosynthetic rates (PN), stomatal conductance (gs), intercellular CO2 (Ci) and chlorophyll fluorescence were measured. Ozone (O3) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. PN of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O3. The maximum impairment in PN was recorded in the cultivar Victory (46%) in 2013 when the highest O3 levels were recorded (90 nL L(-1)). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between PN and Ci, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The PN vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (ΦPSII) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively.
Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-11-01
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.
Electromagnetic field enhancement and light localization in deterministic aperiodic nanostructures
NASA Astrophysics Data System (ADS)
Gopinath, Ashwin
The control of light matter interaction in periodic and random media has been investigated in depth during the last few decades, yet structures with controlled degree of disorder such as Deterministic Aperiodic Nano Structures (DANS) have been relatively unexplored. DANS are characterized by non-periodic yet long-range correlated (deterministic) morphologies and can be generated by the mathematical rules of symbolic dynamics and number theory. In this thesis, I have experimentally investigated the unique light transport and localization properties in planar dielectric and metal (plasmonics) DANS. In particular, I have focused on the design, nanofabrication and optical characterization of DANS, formed by arranging metal/dielectric nanoparticles in an aperiodic lattice. This effort is directed towards development of on-chip nanophotonic applications with emphasis on label-free bio-sensing and enhanced light emission. The DANS designed as Surface Enhanced Raman Scattering (SERS) substrate is composed of multi-scale aperiodic nanoparticle arrays fabricated by e-beam lithography and are capable of reproducibly demonstrating enhancement factors as high as ˜107. Further improvement of SERS efficiency is achieved by combining DANS formed by top-down approach with bottom-up reduction of gold nanoparticles, to fabricate novel nanostructures called plasmonic "nano-galaxies" which increases the SERS enhancement factors by 2--3 orders of magnitude while preserving the reproducibility. In this thesis, along with presenting details of fabrication and SERS characterization of these "rationally designed" SERS substrates, I will also present results on using these substrates for detection of DNA nucleobases, as well as reproducible label-free detection of pathogenic bacteria with species specificity. In addition to biochemical detection, the combination of broadband light scattering behavior and the ability for the generation of reproducible high fields in DANS make these
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Rapid detection of small oscillation faults via deterministic learning.
Wang, Cong; Chen, Tianrui
2011-08-01
Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.
Deterministic lateral displacement for particle separation: a review.
McGrath, J; Jimenez, M; Bridle, H
2014-11-07
Deterministic lateral displacement (DLD), a hydrodynamic, microfluidic technology, was first reported by Huang et al. in 2004 to separate particles on the basis of size in continuous flow with a resolution of down to 10 nm. For 10 years, DLD has been extensively studied, employed and modified by researchers in terms of theory, design, microfabrication and application to develop newer, faster and more efficient tools for separation of millimetre, micrometre and even sub-micrometre sized particles. To extend the range of potential applications, the specific arrangement of geometric features in DLD has also been adapted and/or coupled with external forces (e.g. acoustic, electric, gravitational) to separate particles on the basis of other properties than size such as the shape, deformability and dielectric properties of particles. Furthermore, investigations into DLD performance where inertial and non-Newtonian effects are present have been conducted. However, the evolvement and application of DLD has not yet been reviewed. In this paper, we collate many interesting publications to provide a comprehensive review of the development and diversity of this technology but also provide scope for future direction and detail the fundamentals for those wishing to design such devices for the first time.
Particle separation using virtual deterministic lateral displacement (vDLD).
Collins, David J; Alan, Tuncay; Neild, Adrian
2014-05-07
We present a method for sensitive and tunable particle sorting that we term virtual deterministic lateral displacement (vDLD). The vDLD system is composed of a set of interdigital transducers (IDTs) within a microfluidic chamber that produce a force field at an angle to the flow direction. Particles above a critical diameter, a function of the force induced by viscous drag and the force field, are displaced laterally along the minimum force potential lines, while smaller particles continue in the direction of the fluid flow without substantial perturbations. We demonstrate the effective separation of particles in a continuous-flow system with size sensitivity comparable or better than other previously reported microfluidic separation techniques. Separation of 5.0 μm from 6.6 μm, 6.6 μm from 7.0 μm and 300 nm from 500 nm particles are all achieved using the same device architecture. With the high sensitivity and flexibility vDLD affords we expect to find application in a wide variety of microfluidic platforms.
Method to deterministically study photonic nanostructures in different experimental instruments.
Husken, B H; Woldering, L A; Blum, C; Vos, W L
2009-01-01
We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Deterministic methods for multi-control fuel loading optimization
NASA Astrophysics Data System (ADS)
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Entrepreneurs, Chance, and the Deterministic Concentration of Wealth
Fargione, Joseph E.; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs–individuals with ownership in for-profit enterprises–comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels. PMID:21814540
Insights into the deterministic skill of air quality ensembles ...
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each stati
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402
Estimating interdependences in networks of weakly coupled deterministic systems
NASA Astrophysics Data System (ADS)
de Feo, Oscar; Carmeli, Cristian
2008-02-01
The extraction of information from measured data about the interactions taking place in a network of systems is a key topic in modern applied sciences. This topic has been traditionally addressed by considering bivariate time series, providing methods which are sometimes difficult to extend to multivariate data, the limiting factor being the computational complexity. Here, we present a computationally viable method based on black-box modeling which, while theoretically applicable only when a deterministic hypothesis about the processes behind the recordings is plausible, proves to work also when this assumption is severely affected. Conceptually, the method is very simple and is composed of three independent steps: in the first step a state-space reconstruction is performed separately on each measured signal; in the second step, a local model, i.e., a nonlinear dynamical system, is fitted separately on each (reconstructed) measured signal; afterward, a linear model of the dynamical interactions is obtained by cross-relating the (reconstructed) measured variables to the dynamics unexplained by the local models. The method is successfully validated on numerically generated data. An assessment of its sensitivity to data length and modeling and measurement noise intensity, and of its applicability to large-scale systems, is also provided.
Deterministic versus evidence-based attitude towards clinical diagnosis.
Soltani, Akbar; Moayyeri, Alireza
2007-08-01
Generally, two basic classes have been proposed for scientific explanation of events. Deductive reasoning emphasizes on reaching conclusions about a hypothesis based on verification of universal laws pertinent to that hypothesis, while inductive or probabilistic reasoning explains an event by calculation of some probabilities for that event to be related to a given hypothesis. Although both types of reasoning are used in clinical practice, evidence-based medicine stresses on the advantages of the second approach for most instances in medical decision making. While 'probabilistic or evidence-based' reasoning seems to involve more mathematical formulas at the first look, this attitude is more dynamic and less imprisoned by the rigidity of mathematics comparing with 'deterministic or mathematical attitude'. In the field of medical diagnosis, appreciation of uncertainty in clinical encounters and utilization of likelihood ratio as measure of accuracy seem to be the most important characteristics of evidence-based doctors. Other characteristics include use of series of tests for refining probability, changing diagnostic thresholds considering external evidences and nature of the disease, and attention to confidence intervals to estimate uncertainty of research-derived parameters.
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers
Stangl, Thomas; Wilhelm, Philipp; Remmerssen, Klaas; Höger, Sigurd; Vogelsang, Jan; Lupton, John M.
2015-01-01
An appealing definition of the term “molecule” arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder. PMID:26417079
Entrepreneurs, chance, and the deterministic concentration of wealth.
Fargione, Joseph E; Lehman, Clarence; Polasky, Stephen
2011-01-01
In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels.
Automated optimum design of wing structures. Deterministic and probabilistic approaches
NASA Technical Reports Server (NTRS)
Rao, S. S.
1982-01-01
The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft’s algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms. PMID:27806102
Daman, Ernest L.; McCallister, Robert A.
1979-01-01
A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.
Pu Anion Exchange Process Intensification
Taylor-Pashow, K.
2015-10-08
This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.
Stochastic model of tumor-induced angiogenesis: Ensemble averages and deterministic equations
NASA Astrophysics Data System (ADS)
Terragni, F.; Carretero, M.; Capasso, V.; Bonilla, L. L.
2016-02-01
A recent conceptual model of tumor-driven angiogenesis including branching, elongation, and anastomosis of blood vessels captures some of the intrinsic multiscale structures of this complex system, yet allowing one to extract a deterministic integro-partial-differential description of the vessel tip density [Phys. Rev. E 90, 062716 (2014), 10.1103/PhysRevE.90.062716]. Here we solve the stochastic model, show that ensemble averages over many realizations correspond to the deterministic equations, and fit the anastomosis rate coefficient so that the total number of vessel tips evolves similarly in the deterministic and ensemble-averaged stochastic descriptions.
Hybrid Monte Carlo-Deterministic Methods for Nuclear Reactor-Related Criticality Calculations
Edward W. Larson
2004-02-17
The overall goal of this project is to develop, implement, and test new Hybrid Monte Carlo-deterministic (or simply Hybrid) methods for the more efficient and more accurate calculation of nuclear engineering criticality problems. These new methods will make use of two (philosophically and practically) very different techniques - the Monte Carlo technique, and the deterministic technique - which have been developed completely independently during the past 50 years. The concept of this proposal is to merge these two approaches and develop fundamentally new computational techniques that enhance the strengths of the individual Monte Carlo and deterministic approaches, while minimizing their weaknesses.
NASA Astrophysics Data System (ADS)
Maggs, J. E.; Morales, G. J.
2011-10-01
The dynamics of transport at the edge of magnetized plasmas is deterministic chaos. The connection is made by a previous survey [M. A. Pedrosa , Phys. Rev. Lett. 82, 3621 (1999)PRLTAO0031-900710.1103/PhysRevLett.82.3621] of measurements of fluctuations that is shown to exhibit power spectra with exponential frequency dependence over a broad range, which is the signature of deterministic chaos. The exponential character arises from Lorentzian pulses. The results suggest that the generalization to complex times used in studies of deterministic chaos is a representation of Lorentzian pulses emerging from the chaotic dynamics.
Pagowski, M O; Grell, G A; Devenyi, D; Peckham, S E; McKeen, S A; Gong, W; Monache, L D; McHenry, J N; McQueen, J; Lee, P
2006-02-02
Forecasts from seven air quality models and surface ozone data collected over the eastern USA and southern Canada during July and August 2004 provide a unique opportunity to assess benefits of ensemble-based ozone forecasting and devise methods to improve ozone forecasts. In this investigation, past forecasts from the ensemble of models and hourly surface ozone measurements at over 350 sites are used to issue deterministic 24-h forecasts using a method based on dynamic linear regression. Forecasts of hourly ozone concentrations as well as maximum daily 8-h and 1-h averaged concentrations are considered. It is shown that the forecasts issued with the application of this method have reduced bias and root mean square error and better overall performance scores than any of the ensemble members and the ensemble average. Performance of the method is similar to another method based on linear regression described previously by Pagowski et al., but unlike the latter, the current method does not require measurements from multiple monitors since it operates on individual time series. Improvement in the forecasts can be easily implemented and requires minimal computational cost.
Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes
Gong, Su-Hyun; Kim, Je-Hyung; Ko, Young-Ho; Rodriguez, Christophe; Shin, Jonghwa; Lee, Yong-Hee; Dang, Le Si; Zhang, Xiang; Cho, Yong-Hoon
2015-01-01
The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter–light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over ∼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing. PMID:25870303
NASA Astrophysics Data System (ADS)
Boyer, D.; Miramontes, O.; Larralde, H.
2009-10-01
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work, we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power law, p(k) ~ k-β, in some range of the exponent β, the foraging medium induces movements that are similar to Lévy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.
Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city
NASA Astrophysics Data System (ADS)
P, Anbazhagan; Bajaj, Ketan; Dutta, Nairwita; R Moustafa, Sayed S.; N Al-Arifi, Nassir S.
2017-02-01
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude ( M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed ({M_{max }^{ {obs}}} ), M_{max }^{ {obs}} +0.5 and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the `efficacy test'. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.
Chemical exchange program analysis.
Waffelaert, Pascale
2007-09-01
As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of
Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data
NASA Astrophysics Data System (ADS)
Kioutsioukis, Ioannis; Im, Ulas; Solazzo, Efisio; Bianconi, Roberto; Badia, Alba; Balzarini, Alessandra; Baró, Rocío; Bellasio, Roberto; Brunner, Dominik; Chemel, Charles; Curci, Gabriele; Denier van der Gon, Hugo; Flemming, Johannes; Forkel, Renate; Giordano, Lea; Jiménez-Guerrero, Pedro; Hirtl, Marcus; Jorba, Oriol; Manders-Groot, Astrid; Neal, Lucy; Pérez, Juan L.; Pirovano, Guidio; San Jose, Roberto; Savage, Nicholas; Schroder, Wolfram; Sokhi, Ranjeet S.; Syrakov, Dimiter; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Hogrefe, Christian; Galmarini, Stefano
2016-12-01
Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station's best deterministic model at no more than 60 % of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3 and lower for PM10, associated with the extent of potential changes in the joint distribution of accuracy
Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches
NASA Astrophysics Data System (ADS)
Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.
2009-12-01
We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis
Development of a Deterministic Ethernet Building blocks for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Jakovljevic, Mirko
2015-09-01
The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.
Automated leukocyte processing by microfluidic deterministic lateral displacement.
Civin, Curt I; Ward, Tony; Skelley, Alison M; Gandhi, Khushroo; Peilun Lee, Zendra; Dosier, Christopher R; D'Silva, Joseph L; Chen, Yu; Kim, MinJung; Moynihan, James; Chen, Xiaochun; Aurich, Lee; Gulnik, Sergei; Brittain, George C; Recktenwald, Diether J; Austin, Robert H; Sturm, James C
2016-12-01
We previously developed a Deterministic Lateral Displacement (DLD) microfluidic method in silicon to separate cells of various sizes from blood (Davis et al., Proc Natl Acad Sci 2006;103:14779-14784; Huang et al., Science 2004;304:987-990). Here, we present the reduction-to-practice of this technology with a commercially produced, high precision plastic microfluidic chip-based device designed for automated preparation of human leukocytes (white blood cells; WBCs) for flow cytometry, without centrifugation or manual handling of samples. After a human blood sample was incubated with fluorochrome-conjugated monoclonal antibodies (mAbs), the mixture was input to a DLD microfluidic chip (microchip) where it was driven through a micropost array designed to deflect WBCs via DLD on the basis of cell size from the Input flow stream into a buffer stream, thus separating WBCs and any larger cells from smaller cells and particles and washing them simultaneously. We developed a microfluidic cell processing protocol that recovered 88% (average) of input WBCs and removed 99.985% (average) of Input erythrocytes (red blood cells) and >99% of unbound mAb in 18 min (average). Flow cytometric evaluation of the microchip Product, with no further processing, lysis or centrifugation, revealed excellent forward and side light scattering and fluorescence characteristics of immunolabeled WBCs. These results indicate that cost-effective plastic DLD microchips can speed and automate leukocyte processing for high quality flow cytometry analysis, and suggest their utility for multiple other research and clinical applications involving enrichment or depletion of common or rare cell types from blood or tissue samples. © 2016 International Society for Advancement of Cytometry.
Graphics development of DCOR: Deterministic combat model of Oak Ridge
Hunt, G.; Azmy, Y.Y.
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR`s discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Contagion spreading on complex networks with local deterministic dynamics
NASA Astrophysics Data System (ADS)
Manshour, Pouya; Montakhab, Afshin
2014-07-01
Typically, contagion strength is modeled by a transmission rate λ, whereby all nodes in a network are treated uniformly in a mean-field approximation. However, local agents react differently to the same contagion based on their local characteristics. Following our recent work (Montakhab and Manshour, 2012 [42]), we investigate contagion spreading models with local dynamics on complex networks. We therefore quantify contagions by their quality, 0⩽α⩽1, and follow their spreading as their transmission condition (fitness) is evaluated by local agents. Instead of considering stochastic dynamics, here we consider various deterministic local rules. We find that initial spreading with exponential quality-dependent time scales is followed by a stationary state with a prevalence depending on the quality of the contagion. We also observe various interesting phenomena, for example, high prevalence without the participation of the hubs. This special feature of our "threshold rule" provides a mechanism for high prevalence spreading without the participation of "super-spreaders", in sharp contrast with many standard mechanism of spreading where hubs are believed to play the central role. On the other hand, if local nodes act as agents who stop the transmission once a threshold is reached, we find that spreading is severely hindered in a heterogeneous population while in a homogeneous one significant spreading may occur. We further decouple local characteristics from underlying topology in order to study the role of network topology in various models and find that as long as small-world effect exists, the underlying topology does not contribute to the final stationary state but only affects the initial spreading velocity.
"Eztrack": A single-vehicle deterministic tracking algorithm
Carrano, C J
2007-12-20
A variety of surveillance operations require the ability to track vehicles over a long period of time using sequences of images taken from a camera mounted on an airborne or similar platform. In order to be able to see and track a vehicle for any length of time, either a persistent surveillance imager is needed that can image wide fields of view over a long time-span or a highly maneuverable smaller field-of-view imager is needed that can follow the vehicle of interest. The algorithm described here was designed for the persistence surveillance case. In turns out that most vehicle tracking algorithms described in the literature[1,2,3,4] are designed for higher frame rates (> 5 FPS) and relatively short ground sampling distances (GSD) and resolutions ({approx} few cm to a couple tens of cm). But for our datasets, we are restricted to lower resolutions and GSD's ({ge}0.5 m) and limited frame-rates ({le}2.0 Hz). As a consequence, we designed our own simple approach in IDL which is a deterministic, motion-guided object tracker. The object tracking relies both on object features and path dynamics. The algorithm certainly has room for future improvements, but we have found it to be a useful tool in evaluating effects of frame-rate, resolution/GSD, and spectral content (eg. grayscale vs. color imaging ). A block diagram of the tracking approach is given in Figure 1. We describe each of the blocks of the diagram in the upcoming sections.
Ballistic deposition on deterministic fractals: Observation of discrete scale invariance
NASA Astrophysics Data System (ADS)
Horowitz, Claudio M.; Romá, Federico; Albano, Ezequiel V.
2008-12-01
The growth of ballistic aggregates on deterministic fractal substrates is studied by means of numerical simulations. First, we attempt the description of the evolving interface of the aggregates by applying the well-established Family-Vicsek dynamic scaling approach. Systematic deviations from that standard scaling law are observed, suggesting that significant scaling corrections have to be introduced in order to achieve a more accurate understanding of the behavior of the interface. Subsequently, we study the internal structure of the growing aggregates that can be rationalized in terms of the scaling behavior of frozen trees, i.e., structures inhibited for further growth, lying below the growing interface. It is shown that the rms height (hs) and width (ws) of the trees of size s obey power laws of the form hs∝sν∥ and ws∝sν⊥ , respectively. Also, the tree-size distribution (ns) behaves according to ns˜s-τ . Here, ν∥ and ν⊥ are the correlation length exponents in the directions parallel and perpendicular to the interface, respectively. Also, τ is a critical exponent. However, due to the interplay between the discrete scale invariance of the underlying fractal substrates and the dynamics of the growing process, all these power laws are modulated by logarithmic periodic oscillations. The fundamental scaling ratios, characteristic of these oscillations, can be linked to the (spatial) fundamental scaling ratio of the underlying fractal by means of relationships involving critical exponents. We argue that the interplay between the spatial discrete scale invariance of the fractal substrate and the dynamics of the physical process occurring in those media is a quite general phenomenon that leads to the observation of logarithmic-periodic modulations of physical observables.
Deterministic and Stochastic Descriptions of Gene Expression Dynamics
NASA Astrophysics Data System (ADS)
Marathe, Rahul; Bierbaum, Veronika; Gomez, David; Klumpp, Stefan
2012-09-01
A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.
Parkinson's disease classification using gait analysis via deterministic learning.
Zeng, Wei; Liu, Fenglin; Wang, Qinghui; Wang, Ying; Ma, Limin; Zhang, Yu
2016-10-28
Gait analysis plays an important role in maintaining the well-being of human mobility and health care, and is a valuable tool for obtaining quantitative information on motor deficits in Parkinson's disease (PD). In this paper, we propose a method to classify (diagnose) patients with PD and healthy control subjects using gait analysis via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait characteristics represented by the gait dynamics are derived from the vertical ground reaction forces under the usual and self-selected paces of the subjects. The gait dynamics underlying gait patterns of healthy controls and PD patients are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. The gait patterns of healthy controls and PD patients constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test gait pattern of a certain PD patient to be classified (diagnosed), a set of classification errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test PD gait pattern according to the smallest error principle. When the gait patterns of 93 PD patients and 73 healthy controls are classified with five-fold cross-validation method, the accuracy, sensitivity and specificity of the results are 96.39%, 96.77% and 95.89%, respectively. Based on the results, it may be claimed that the features and the classifiers used in the present study could effectively separate the gait patterns between the groups of PD patients and healthy
Development of site-specific earthquake response spectra for eastern US sites
Beavers, J.E.; Brock, W.R.; Hunt, R.J.; Shaffer, K.E.
1993-08-01
Site-specific earthquake, uniform-hazard response spectra have been defined for the Department of Energy Oak Ridge, Tennessee, and Portsmouth, Ohio, sites for use in evaluating existing facilities and designing new facilities. The site-specific response spectra were defined from probabilistic and deterministic seismic hazard studies following the requirements in DOE-STD-1024-92, ``Guidelines for Probabilistic Seismic Hazard Curves at DOE Sites.` For these two sites, the results show that site-specific uniform-hazard response spectra are slightly higher in the high-frequency range and considerably lower in the low-frequency range compared with response spectra defined for these sites in the past.
Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; Falcao Salles, Joana
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic matter (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.
A deterministic and statistical energy analysis of tyre cavity resonance noise
NASA Astrophysics Data System (ADS)
Mohamed, Zamri; Wang, Xu
2016-03-01
Tyre cavity resonance was studied using a combination of deterministic analysis and statistical energy analysis where its deterministic part was implemented using the impedance compact mobility matrix method and its statistical part was done by the statistical energy analysis method. While the impedance compact mobility matrix method can offer a deterministic solution to the cavity pressure response and the compliant wall vibration velocity response in the low frequency range, the statistical energy analysis method can offer a statistical solution of the responses in the high frequency range. In the mid frequency range, a combination of the statistical energy analysis and deterministic analysis methods can identify system coupling characteristics. Both methods have been compared to those from commercial softwares in order to validate the results. The combined analysis result has been verified by the measurement result from a tyre-cavity physical model. The analysis method developed in this study can be applied to other similar toroidal shape structural-acoustic systems.
Company, Anna; Prat, Irene; Frisch, Jonathan R.; Ballesté, Ruben Mas; Güell, Mireia; Juhász, Gergely; Ribas, Xavi; Münck, Eckard; Luis, Josep M.; Que, Lawrence
2011-01-01
The spectroscopic and chemical characterization of a new synthetic non-heme iron(IV)-oxo species [FeIV(O)(Me,HPytacn)(S)]2+ (2, Me,HPytacn = 1-(2′-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, S = CH3CN or H2O) is described. 2 has been prepared by reaction of [FeII(CF3SO3)2(Me,HPytacn)] (1) with peracetic acid. Complex 2 bears a tetradentate N4 ligand that leaves two cis- sites available for binding an oxo group and a second external ligand but, unlike related iron(IV)-oxo of tetradentate ligands, it is remarkably stable at room temperature (t1/2 > 2h at 288 K). Its ability to exchange the oxygen atom of the oxo ligand with water has been analyzed in detail by means of kinetic studies, and a mechanism has been proposed on the basis of DFT calculations. Hydrogen-atom abstraction from C-H bonds and oxygen atom transfer to sulfides by 2 have also been studied. Despite its thermal stability, 2 proves to be a very powerful oxidant that is capable of breaking the strong C-H bond of cyclohexane (BDE = 99.3 kcal·mol−1). PMID:21268165
Implementation of Gy-Eq for deterministic effects limitation in shield design
NASA Technical Reports Server (NTRS)
Wilson, John W.; Kim, Myung-Hee Y.; De Angelis, Giovanni; Cucinotta, Francis A.; Yoshizawa, Nobuaki; Badavi, Francis F.
2002-01-01
The NCRP has recently defined RBE values and a new quantity (Gy-Eq) for use in estimation of deterministic effects in space shielding and operations. The NCRP's RBE for neutrons is left ambiguous and not fully defined. In the present report we will suggest a complete definition of neutron RBE consistent with the NCRP recommendations and evaluate attenuation properties of deterministic effects (Gy-Eq) in comparison with other dosimetric quantities.
On the application of deterministic optimization methods to stochastic control problems
NASA Technical Reports Server (NTRS)
Kramer, L. C.; Athans, M.
1974-01-01
A technique is presented by which deterministic optimization techniques, for example, the maximum principle of Pontriagin, can be applied to stochastic optimal control problems formulated around linear systems with Gaussian noises and general cost criteria. Using this technique, the stochastic nature of the problem is suppressed but for two expectation operations, the optimization being deterministic. The use of the technique in treating problems with quadratic and nonquadratic costs is illustrated.
Deterministic methods in radiation transport. A compilation of papers presented February 4-5, 1992
Rice, A. F.; Roussin, R. W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Deterministic methods in radiation transport. A compilation of papers presented February 4--5, 1992
Rice, A.F.; Roussin, R.W.
1992-06-01
The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.
Hunt, G. ); Azmy, Y.Y. )
1992-10-01
DCOR is a user-friendly computer implementation of a deterministic combat model developed at ORNL. To make the interpretation of the results more intuitive, a conversion of the numerical solution to a graphic animation sequence of battle evolution is desirable. DCOR uses a coarse computational spatial mesh superimposed on the battlefield. This research is aimed at developing robust methods for computing the position of the combative units over the continuum (and also pixeled) battlefield, from DCOR's discrete-variable solution representing the density of each force type evaluated at gridpoints. Three main problems have been identified and solutions have been devised and implemented in a new visualization module of DCOR. First, there is the problem of distributing the total number of objects, each representing a combative unit of each force type, among the gridpoints at each time level of the animation. This problem is solved by distributing, for each force type, the total number of combative units, one by one, to the gridpoint with the largest calculated number of units. Second, there is the problem of distributing the number of units assigned to each computational gridpoint over the battlefield area attributed to that point. This problem is solved by distributing the units within that area by taking into account the influence of surrounding gridpoints using linear interpolation. Finally, time interpolated solutions must be generated to produce a sufficient number of frames to create a smooth animation sequence. Currently, enough frames may be generated either by direct computation via the PDE solver or by using linear programming techniques to linearly interpolate intermediate frames between calculated frames.
Application of tabu search to deterministic and stochastic optimization problems
NASA Astrophysics Data System (ADS)
Gurtuna, Ozgur
During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is
Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects
NASA Astrophysics Data System (ADS)
Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume
The analysis of the correlations between characteristics of the acceleration environment and the quality of the crystalline materials grown in microgravity remains an open and interesting question. Acceleration disturbances in space environments usually give rise to effective gravity pulses, gravity pulse trains of finite duration, quasi-steady accelerations or g-jitters. To quantify these disturbances, deterministic translational plane polarized signals have largely been used in the literature [1]. In the present work, we take an alternative approach which models g-jitters in terms of a stochastic process in the form of the so-called narrow-band noise, which is designed to capture the main statistical properties of realistic g-jitters. In particular we compare their effects so single-frequency disturbances. The crystalline quality has been characterized, following previous analyses, in terms of two parameters, the longitudinal and the radial segregation coefficients. The first one averages transversally the dopant distribution, providing continuous longitudinal information of the degree of segregation along the growth process. The radial segregation characterizes the degree of lateral non-uniformity of the dopant in the solid-liquid interface at each instant of growth. In order to complete the description, and because the heat flux fluctuations at the interface have a direct impact on the crystal growth quality -growth striations -the time dependence of a Nusselt number associated to the growing interface has also been monitored. For realistic g-jitters acting orthogonally to the thermal gradient, the longitudinal segregation remains practically unperturbed in all simulated cases. Also, the Nusselt number is not significantly affected by the noise. On the other hand, radial segregation, despite its low magnitude, exhibits a peculiar low-frequency response in all realizations. [1] X. Ruiz, "Modelling of the influence of residual gravity on the segregation in
Hybrid Monte Carlo/deterministic methods for radiation shielding problems
NASA Astrophysics Data System (ADS)
Becker, Troy L.
For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods
Deterministic Modeling of the High Temperature Test Reactor
Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the
Brackenbury, Phillip J.
1986-04-01
A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and
NASA Astrophysics Data System (ADS)
Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan
2016-11-01
The pattern of air-surface gaseous mercury (mainly Hg(0)) exchange in the Qinghai-Tibet Plateau (QTP) may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze-thaw process of permafrost soils. However, the air-surface Hg(0) flux in the QTP is poorly investigated. In this study, we performed field measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air-surface Hg(0) exchange at a high-altitude (4700 m a.s.l.) and remote site in the central QTP. The results of field measurements showed that surface soils were the net emission source of Hg(0) in the entire study (2.86 ng m-2 h-1 or 25.05 µg m-2 yr-1). Hg(0) flux showed remarkable seasonality with net high emission in the warm campaigns (June 2014: 4.95 ng m-2 h-1; September 2014: 5.16 ng m-2 h-1; and May-June 2015: 1.95 ng m-2 h-1) and net low deposition in the winter campaign (December 2014: -0.62 ng m-2 h-1) and also showed a diurnal pattern with emission in the daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced a large and immediate increase in Hg(0) emission. Snowfall events did not induce the pulse of Hg(0) emission, but snowmelt resulted in the immediate increase in Hg(0) emission. Daily Hg(0) fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0) emission both on short (minutes) and relatively long (hours) timescales, and they also showed that UV radiation was primarily attributed to Hg(0) emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem in the QTP.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly
Wildfire susceptibility mapping: comparing deterministic and stochastic approaches
NASA Astrophysics Data System (ADS)
Pereira, Mário; Leuenberger, Michael; Parente, Joana; Tonini, Marj
2016-04-01
Conservation of Nature and Forests (ICNF) (http://www.icnf.pt/portal) which provides a detailed description of the shape and the size of area burnt by each fire in each year of occurrence. Two methodologies for susceptibility mapping were compared. First, the deterministic approach, based on the study of Verde and Zêzere (2010), which includes the computation of the favorability scores for each variable and the fire occurrence probability, as well as the validation of each model, resulting from the integration of different variables. Second, as non-linear method we selected the Random Forest algorithm (Breiman, 2001): this led us to identifying the most relevant variables conditioning the presence of wildfire and allowed us generating a map of fire susceptibility based on the resulting variable importance measures. By means of GIS techniques, we mapped the obtained predictions which represent the susceptibility of the study area to fires. Results obtained applying both the methodologies for wildfire susceptibility mapping, as well as of wildfire hazard maps for different total annual burnt area scenarios, were compared with the reference maps and allow us to assess the best approach for susceptibility mapping in Portugal. References: - Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. - Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Science, 10(3), 485-497.
NASA Astrophysics Data System (ADS)
Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei
2013-04-01
Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally
Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann
2010-12-14
A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.
Deterministic photonic cluster state generation from quantum dot molecules
NASA Astrophysics Data System (ADS)
Economou, Sophia; Gimeno-Segovia, Mercedes; Rudolph, Terry
2014-03-01
Currently, the most promising approach for photon-based quantum information processing is measurement-based, or one-way, quantum computing. In this scheme, a large entangled state of photons is prepared upfront and the computation is implemented with single-qubit measurements alone. Available approaches to generating the cluster state are probabilistic, which makes scalability challenging. We propose to generate the cluster state using a quantum dot molecule with one electron spin per quantum dot. The two spins are coupled by exchange interaction and are periodically pulsed to produce photons. We show that the entanglement created by free evolution between the spins is transferred to the emitted photons, and thus a 2D photonic ladder can be created. Our scheme only utilizes single-spin gates and measurement, and is thus fully consistent with available technology.
Inorganic ion exchangers for nuclear waste remediation
Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.
1997-10-01
The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange Commission... Statement of the Terms of the Substance of the Proposed Rule Change The ISE is proposing to amend its... available on the Exchange's Web site ( http://www.ise.com ), at the principal office of the Exchange, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... Into ISE's Rules January 14, 2010. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934... International Securities Exchange, LLC (the ``Exchange'' or ``ISE'') filed with the Securities and Exchange.... The text of the proposed rule change is available on the Exchange's Web site http://www.ise.com ,...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... International Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange... ISE is proposing to extend an incentive plan for market makers in a number of foreign currency options... Exchange's Web site ( http://www.ise.com ), at the principal office of the Exchange, and at the...
Evaluation of Deterministic Models for Near Surface Soil Moisture Prediction
1988-05-01
probabilities for selected sites across Canada’, Agrometeorology Section. Research Branch. Agriculture Canada. Ottawa. Ontario. Technical Bulletin 86. i Dyer...J.A., (1980) ’Fall field workdays in Canada’, Agrometeorology Section. Research Branch, Agriculture Canada. Ottawa, Ontario, Technical Bulletin 92...Dyer, J.A. and A.R. Mack, (1984)’The versatile soil moisture budget - version three’, Agrometeorology Section. Research Branch. Agriculture Canada
Educator Exchange Resource Guide.
ERIC Educational Resources Information Center
Garza, Cris; Rodriguez, Victor
This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…
Functional brain networks: random, "small world" or deterministic?
Blinowska, Katarzyna J; Kaminski, Maciej
2013-01-01
Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several publications based on bivariate estimators of relations between EEG channels authors reported random or "small world" structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links, show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing. In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds exchange the information by weaker connections.
A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration
NASA Technical Reports Server (NTRS)
Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce
2008-01-01
Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.
NASA Astrophysics Data System (ADS)
Samson, E. C.; Wilson, K. E.; Newman, Z. L.; Anderson, B. P.
2016-02-01
We experimentally and numerically demonstrate deterministic creation and manipulation of a pair of oppositely charged singly quantized vortices in a highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned, focused Gaussian laser beams that pierce the BEC serve as repulsive obstacles for the superfluid atomic gas; by controlling the positions of the beams within the plane of the BEC, superfluid flow is deterministically established around each beam such that two vortices of opposite circulation are generated by the motion of the beams, with each vortex pinned to the in situ position of a laser beam. We study the vortex creation process, and show that the vortices can be moved about within the BEC by translating the positions of the laser beams. This technique can serve as a building block in future experimental techniques to create, on-demand, deterministic arrangements of few or many vortices within a BEC for precise studies of vortex dynamics and vortex interactions.
NASA Astrophysics Data System (ADS)
Tsuchiya, Kazuo; Nishiyama, Takehiro; Tsujita, Katsuyoshi
2001-02-01
We have proposed an optimization method for a combinatorial optimization problem using replicator equations. To improve the solution further, a deterministic annealing algorithm may be applied. During the annealing process, bifurcations of equilibrium solutions will occur and affect the performance of the deterministic annealing algorithm. In this paper, the bifurcation structure of the proposed model is analyzed in detail. It is shown that only pitchfork bifurcations occur in the annealing process, and the solution obtained by the annealing is the branch uniquely connected with the uniform solution. It is also shown experimentally that in many cases, this solution corresponds to a good approximate solution of the optimization problem. Based on the results, a deterministic annealing algorithm is proposed and applied to the quadratic assignment problem to verify its performance.
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
Segre, Hila; Ron, Ronen; De Malach, Niv; Henkin, Zalmen; Mandel, Micha; Kadmon, Ronen
2014-11-01
Species diversity has two components - number of species and spatial turnover in species composition (beta-diversity). Using a field experiment focusing on a system of Mediterranean grasslands, we show that interspecific competition may influence the two components in the same direction or in opposite directions, depending on whether competitive exclusions are deterministic or stochastic. Deterministic exclusions reduce both patch-scale richness and beta-diversity, thereby homogenising the community. Stochastic extinctions reduce richness at the patch scale, but increase the differences in species composition among patches. These results indicate that studies of competitive effects on beta diversity may help to distinguish between deterministic and stochastic components of competitive exclusion. Such distinction is crucial for understanding the causal relationship between competition and species diversity, one of the oldest and most fundamental questions in ecology.
Lonati, G; Cernuschi, S; Giugliano, M; Grosso, M
2007-04-01
Incremental lifetime health risks due to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) emitted from municipal waste incineration (MSWI) facilities were evaluated for resident population in the area of the plant. Risk assessment was performed through a multipathway combined probabilistic/deterministic approach for analyzing the effects of uncertainty and intrinsic variability of the main PCDD/F emission related parameters on final predicted values. Exposure through direct inhalation of contaminated air, soil ingestion, soil dermal contact and diet were considered, with the propagation of the variability of input parameters throughout the evaluation performed with Monte Carlo simulation techniques. The application to a case study representative of two different technological scenarios (modern facilities equipped with BAT - Best Available Technology - and older incinerators) in a location site typical of Northern Italy situation results in median values of the maximum individual excess risk on the order of 10(-9) and 10(-7) for most recent and older plant configurations, respectively. Corresponding ratios for the 90th and 10th percentile values are around 7 and 9. Individual risk estimates derived for the same scenarios from conventional deterministic approaches, where large conservative assumptions are normally adopted for compensating the lack of knowledge about uncertainty, are essentially comparable with maximum values resulting from the probabilistic approach, thus leading to situations with extreme and very low probabilities of occurrence. PCDD/F health risks from MSWI emissions might thus result largely overestimated if real emission characteristics are not properly considered in the assessment procedure. Sensitivity analysis for identifying the contribution of different input parameters on final predicted risk variance indicates, for the area considered in the simulation, a prevailing influence of PCDD/F stack concentration, with exposures
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.
NASA Astrophysics Data System (ADS)
Wang, Fengyu
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch
NASA Astrophysics Data System (ADS)
Mualchin, Lalliana
2011-03-01
Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Z uccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE's estimation method, and using new ground motion attenuation relationships from the latest published
Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures
NASA Astrophysics Data System (ADS)
Yang, Q.; Zhou, Z.; Sun, N. X.; Liu, M.
2017-04-01
Exchange bias, as an internal magnetic bias induced by a ferromagnetic-antiferromagnetic exchange coupling, is extremely important in many magnetic applications such as memories, sensors and other devices. Voltage control of exchange bias in multiferroics provides an energy-efficient way to achieve a rapidly 180° deterministic switching of magnetization, which has been considered as a key challenge in realizing next generation of fast, compact and ultra-low power magnetoelectric memories and sensors. Additionally, exchange bias can enhance dynamic magnetoelectric coupling strength in an external-field-free manner. In this paper, we provide a perspective on voltage control of exchange bias in different multiferroic heterostructures. Brief mechanization and related experiments are discussed as well as future trend and challenges that can be overcome by electrically tuning of exchange bias in state-of-the-art magnetoelectric devices.
Palmer, Tim N.; O’Shea, Michael
2015-01-01
How is the brain configured for creativity? What is the computational substrate for ‘eureka’ moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173
Corrosive resistant heat exchanger
Richlen, Scott L.
1989-01-01
A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Dietze, M.; Richardson, A. D.; Vargas, R.; Barr, A. G.; Anderson, R. S.; Arain, M. A.; Baker, I. T.; Black, T. A.; Chen, J. M.; Cook, R. B.; Gough, C. M.; Grant, R. F.; Hollinger, D. Y.; Izaurralde, R. C.; Kucharik, C. J.; Lafleur, P.; Law, B. E.; Liu, S.; Lokupitiya, E.; Luo, Y.; Munger, J. W.; Peng, C.; Poulter, B.; Price, D. T.; Ricciuto, D. M.; Riley, W. J.; Sahoo, A. K.; Schaefer, K.; Schwalm, C. R.; Tian, H.; Verbeeck, H.; Weng, E.
2013-02-01
Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model-data agreement, but usually do not identify the time and frequency patterns of model misfit, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and frequencies at which models and measurements are significantly different. We applied wavelet coherence to interpret the predictions of twenty ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy covariance-measured net ecosystem exchange (NEE) from ten ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, and the inclusion of foliar nitrogen (N). Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual time scales in grassland, wetland and agricultural ecosystems. Models that calculate NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual time scales in grassland and wetland ecosystems, but models that calculate NEE as GPP - ER were superior on monthly to seasonal time scales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) time scales at Howland Forest, Maine. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Dietze, M. C.; Richardson, A. D.; Vargas, R.; Barr, A. G.; Anderson, R. S.; Arain, M. A.; Baker, I. T.; Black, T. A.; Chen, J. M.; Cook, R. B.; Gough, C. M.; Grant, R. F.; Hollinger, D. Y.; Izaurralde, R. C.; Kucharik, C. J.; Lafleur, P.; Law, B. E.; Liu, S.; Lokupitiya, E.; Luo, Y.; Munger, J. W.; Peng, C.; Poulter, B.; Price, D. T.; Ricciuto, D. M.; Riley, W. J.; Sahoo, A. K.; Schaefer, K.; Schwalm, C. R.; Tian, H.; Verbeeck, H.; Weng, E.
2013-11-01
Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model-data agreement, but usually do not identify the time and frequency patterns of model-data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model-data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model-data fusion approach often, but not always, resulted in improved fit to data, suggesting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... available at the Exchange's Web site at http://www.batstrading.com , at the principal office of the Exchange... to three months of data on a T+1 basis available via download from the BATS Web site or additional... BATS Web site. For data beyond three months, which the Exchange provides on an external hard drive to...
NASA Astrophysics Data System (ADS)
Li, S.
2002-05-01
Taking advantage of the recent developments in groundwater modeling research and computer, image and graphics processing, and objected oriented programming technologies, Dr. Li and his research group have recently developed a comprehensive software system for unified deterministic and stochastic groundwater modeling. Characterized by a new real-time modeling paradigm and improved computational algorithms, the software simulates 3D unsteady flow and reactive transport in general groundwater formations subject to both systematic and "randomly" varying stresses and geological and chemical heterogeneity. The software system has following distinct features and capabilities: Interactive simulation and real time visualization and animation of flow in response to deterministic as well as stochastic stresses. Interactive, visual, and real time particle tracking, random walk, and reactive plume modeling in both systematically and randomly fluctuating flow. Interactive statistical inference, scattered data interpolation, regression, and ordinary and universal Kriging, conditional and unconditional simulation. Real-time, visual and parallel conditional flow and transport simulations. Interactive water and contaminant mass balance analysis and visual and real-time flux update. Interactive, visual, and real time monitoring of head and flux hydrographs and concentration breakthroughs. Real-time modeling and visualization of aquifer transition from confined to unconfined to partially de-saturated or completely dry and rewetting Simultaneous and embedded subscale models, automatic and real-time regional to local data extraction; Multiple subscale flow and transport models Real-time modeling of steady and transient vertical flow patterns on multiple arbitrarily-shaped cross-sections and simultaneous visualization of aquifer stratigraphy, properties, hydrological features (rivers, lakes, wetlands, wells, drains, surface seeps), and dynamically adjusted surface flooding area
Exchange frequency in replica exchange molecular dynamics
NASA Astrophysics Data System (ADS)
Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.
2008-01-01
The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.
Sample exchange/evaluation (SEE) report - Phase III
Winters, W.I.
1996-01-01
This report describes the results from Phase III of the Sample Exchange Evaluation (SEE) program. The SEE program is used to compare analytical laboratory performance on samples from the Hanford Site`s high level waste tanks.
Atmosphere-surface exchange measurements.
Dabberdt, W F; Lenschow, D H; Horst, T W; Zimmerman, P R; Oncley, S P; Delany, A C
1993-06-04
The exchange of various trace species and energy at the earth's surface plays an important role in climate, ecology, and human health and welfare. Surface exchange measurements can be difficult to obtain yet are important to understand physical processes, assess environmental and global change impacts, and develop robust parameterizations of atmospheric processes. The physics and turbulent structure of the atmospheric boundary layer are reviewed as they contribute to dry surface exchange rates (fluxes). Micrometeorological, budget, and enclosure techniques used to measure or estimate surface fluxes are described, along with their respective advantages and limitations. Various measurement issues (such as site characteristics, sampling considerations, sensor attributes, and flow distortion) impact on the ability to obtain representative surface-based and airborne flux data.
Calculation of photon pulse height distribution using deterministic and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Akhavan, Azadeh; Vosoughi, Naser
2015-12-01
Radiation transport techniques which are used in radiation detection systems comprise one of two categories namely probabilistic and deterministic. However, probabilistic methods are typically used in pulse height distribution simulation by recreating the behavior of each individual particle, the deterministic approach, which approximates the macroscopic behavior of particles by solution of Boltzmann transport equation, is being developed because of its potential advantages in computational efficiency for complex radiation detection problems. In current work linear transport equation is solved using two methods including collided components of the scalar flux algorithm which is applied by iterating on the scattering source and ANISN deterministic computer code. This approach is presented in one dimension with anisotropic scattering orders up to P8 and angular quadrature orders up to S16. Also, multi-group gamma cross-section library required for this numerical transport simulation is generated in a discrete appropriate form. Finally, photon pulse height distributions are indirectly calculated by deterministic methods that approvingly compare with those from Monte Carlo based codes namely MCNPX and FLUKA.
Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model
NASA Astrophysics Data System (ADS)
Novkaniza, F.; Ivana, Aldila, D.
2016-04-01
Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.
Vernekar, R; Krüger, T
2015-09-01
We investigate the effect of particle volume fraction on the efficiency of deterministic lateral displacement (DLD) devices. DLD is a popular passive sorting technique for microfluidic applications. Yet, it has been designed for treating dilute suspensions, and its efficiency for denser samples is not well known. We perform 3D simulations based on the immersed-boundary, lattice-Boltzmann and finite-element methods to model the flow of red blood cells (RBCs) in different DLD devices. We quantify the DLD efficiency in terms of appropriate "failure" probabilities and RBC counts in designated device outlets. Our main result is that the displacement mode breaks down upon an increase of RBC volume fraction, while the zigzag mode remains relatively robust. This suggests that the separation of larger particles (such as white blood cells) from a dense RBC background is simpler than separating smaller particles (such as platelets) from the same background. The observed breakdown stems from non-deterministic particle collisions interfering with the designed deterministic nature of DLD devices. Therefore, we postulate that dense suspension effects generally hamper efficient particle separation in devices based on deterministic principles.
Operational Global Deterministic and Ensemble Wave Prediction Systems at Environment Canada
NASA Astrophysics Data System (ADS)
Bernier, Natacha; Peel, Syd; Bélanger, Jean-Marc; Roch, Michel; Lépine, Mario; Pellerin, Pierre; Henrique Alves, José; Tolman, Hendrik
2015-04-01
Canada's new global deterministic and ensemble wave prediction systems are presented together with an evaluation of their performance over a 5 month hindcast. Particular attention is paid to the Arctic Ocean where accurate forecasts are crucial for maintaining safe activities such as drilling, and vessel operation. The wave prediction systems are based on WAVEWATCHIII and are operated at grid spacings of 1/4° (deterministic) and 1/2 ° (ensemble). Both systems are run twice daily with lead times of 120h (5 days) for the deterministic systems and 240h (10 days) for the ensemble system. The wave prediction systems will be shown to have skill in forecasting significant wave height and peak period over the future several days. Beyond lead times of 120h, deterministic forecasts are extended using ensembles of wave forecasts to generate probabilistic forecasts for long-range events. New displays will be used to summarize the wealth of information generated by ensembles into depictions that could help support early warning systems.
Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System
NASA Astrophysics Data System (ADS)
Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan
2004-12-01
Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.
ERIC Educational Resources Information Center
Moreland, James D., Jr
2013-01-01
This research investigates the instantiation of a Service-Oriented Architecture (SOA) within a hard real-time (stringent time constraints), deterministic (maximum predictability) combat system (CS) environment. There are numerous stakeholders across the U.S. Department of the Navy who are affected by this development, and therefore the system…
Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System
ERIC Educational Resources Information Center
Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.
2015-01-01
Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…
A Comparison of Deterministic and Probabilistic Approaches to Measuring Learning Structures.
ERIC Educational Resources Information Center
Wilson, Mark
1989-01-01
Structure of the Observed Learning Outcome (SOLO) science superitems were examined from the perspectives of Guttman Scaling (deterministic) and Item Response Theory (probabilistic). Differences between the measurement bases for the two approaches, and the results for a small case study, are reported. (Author/MLW)
Deterministic linear-optics quantum computing based on a hybrid approach
Lee, Seung-Woo; Jeong, Hyunseok
2014-12-04
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.
Deterministic LOCC transformation of three-qubit pure states and entanglement transfer
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu
2013-02-01
A necessary and sufficient condition of the possibility of a deterministic local operations and classical communication (LOCC) transformation of three-qubit pure states is given. The condition shows that the three-qubit pure states are a partially ordered set parametrized by five well-known entanglement parameters and a novel parameter; the five are the concurrences CAB, CAC, CBC, the tangle τABC and the fifth parameter J5 of Acín et al. (2000) Ref. [19], while the other new one is the entanglement charge Qe. The order of the partially ordered set is defined by the possibility of a deterministic LOCC transformation from a state to another state. In this sense, the present condition is an extension of Nielsen's work (Nielsen (1999) [14]) to three-qubit pure states. We also clarify the rules of transfer and dissipation of the entanglement which is caused by deterministic LOCC transformations. Moreover, the minimum number of times of measurements to reproduce an arbitrary deterministic LOCC transformation between three-qubit pure states is given.
Tag-mediated cooperation with non-deterministic genotype-phenotype mapping
NASA Astrophysics Data System (ADS)
Zhang, Hong; Chen, Shu
2016-01-01
Tag-mediated cooperation provides a helpful framework for resolving evolutionary social dilemmas. However, most of the previous studies have not taken into account genotype-phenotype distinction in tags, which may play an important role in the process of evolution. To take this into consideration, we introduce non-deterministic genotype-phenotype mapping into a tag-based model with spatial prisoner's dilemma. By our definition, the similarity between genotypic tags does not directly imply the similarity between phenotypic tags. We find that the non-deterministic mapping from genotypic tag to phenotypic tag has non-trivial effects on tag-mediated cooperation. Although we observe that high levels of cooperation can be established under a wide variety of conditions especially when the decisiveness is moderate, the uncertainty in the determination of phenotypic tags may have a detrimental effect on the tag mechanism by disturbing the homophilic interaction structure which can explain the promotion of cooperation in tag systems. Furthermore, the non-deterministic mapping may undermine the robustness of the tag mechanism with respect to various factors such as the structure of the tag space and the tag flexibility. This observation warns us about the danger of applying the classical tag-based models to the analysis of empirical phenomena if genotype-phenotype distinction is significant in real world. Non-deterministic genotype-phenotype mapping thus provides a new perspective to the understanding of tag-mediated cooperation.
Taking Control: Stealth Assessment of Deterministic Behaviors within a Game-Based System
ERIC Educational Resources Information Center
Snow, Erica L.; Likens, Aaron D.; Allen, Laura K.; McNamara, Danielle S.
2016-01-01
Game-based environments frequently afford students the opportunity to exert agency over their learning paths by making various choices within the environment. The combination of log data from these systems and dynamic methodologies may serve as a stealth means to assess how students behave (i.e., deterministic or random) within these learning…
In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s ...
Deterministic switching of hierarchy during wrinkling in quasi-planar bilayers
Saha, Sourabh K.; Culpepper, Martin L.
2016-04-25
Emergence of hierarchy during compression of quasi-planar bilayers is preceded by a mode-locked state during which the quasi-planar form persists. Transition to hierarchy is determined entirely by geometrically observable parameters. This results in a universal transition phase diagram that enables one to deterministically tune hierarchy even with limited knowledge about material properties.
Ion exchange polymers for anion separations
Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.
1997-01-01
Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Ion exchange polymers for anion separations
Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.
1997-09-23
Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Piscitella, Roger R.
1987-05-05
In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
Piscitella, Roger R.
1987-01-01
In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
NASA Astrophysics Data System (ADS)
Doyen, G.; Drakova, D.
2015-08-01
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle-wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The gravonons are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave
Electrically Switched Cesium Ion Exchange
JPH Sukamto; ML Lilga; RK Orth
1998-10-23
This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.
Showing particles their place: deterministic colloid immobilization by gold nanomeshes
NASA Astrophysics Data System (ADS)
Stelling, Christian; Mark, Andreas; Papastavrou, Georg; Retsch, Markus
2016-07-01
The defined immobilization of colloidal particles on a non-close packed lattice on solid substrates is a challenging task in the field of directed colloidal self-assembly. In this contribution the controlled self-assembly of polystyrene beads into chemically modified nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic interaction forces were exploited by the use of topographically shallow gold nanomeshes. Employing orthogonal functionalization, an electrostatic contrast between the glass surface and the gold nanomesh was introduced on a sub-micron scale. This surface charge contrast promotes a highly site-selective trapping of the negatively charged polystyrene particles from the liquid phase. AFM force spectroscopy with a polystyrene colloidal probe was used to rationalize this electrostatic focusing effect. It provides quantitative access to the occurring interaction forces between the particle and substrate surface and clarifies the role of the pH during the immobilization process. Furthermore, the structure of the non-close packed colloidal monolayers can be finely tuned by varying the ionic strength and geometric parameters between colloidal particles and nanomesh. Therefore one is able to specifically and selectively adsorb one or several particles into one individual nanohole.The defined immobilization of colloidal particles on a non-close packed lattice on solid substrates is a challenging task in the field of directed colloidal self-assembly. In this contribution the controlled self-assembly of polystyrene beads into chemically modified nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic interaction forces were exploited by the use of topographically shallow gold nanomeshes. Employing orthogonal functionalization, an electrostatic contrast between the glass surface and the gold nanomesh was introduced on a sub-micron scale. This surface charge contrast promotes a
BOREAS TF-11 SSA-Fen Leaf Gas Exchange Data
NASA Technical Reports Server (NTRS)
Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. This data set contains single-leaf gas exchange data from the SSA-Fen site during 1994 and 1995. These leaf gas exchange properties were measured for the dominant vascular plants using portable gas exchange systems. The data are stored in tabular ASCII files.
Electrically controlled cesium ion exchange
Lilga, M.
1996-10-01
Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.
Piscitella, R.R.
1984-07-16
This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
Apparent exchange rate mapping with diffusion MRI.
Lasič, Samo; Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; Topgaard, Daniel
2011-08-01
Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter-exchange pulsed gradient spin-echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model-free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof-of-principle experiments are performed on microimaging and whole-body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool.
Giant exchange interaction in mixed lanthanides
Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.
2016-01-01
Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470
Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.
2014-05-01
The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily
Spirally polarized beams for polarimetry measurements of deterministic and homogeneous samples
NASA Astrophysics Data System (ADS)
de Sande, Juan Carlos González; Santarsiero, Massimo; Piquero, Gemma
2017-04-01
The use of spirally polarized beams (SPBs) in polarimetric measurements of homogeneous and deterministic samples is proposed. Since across any transverse plane such beams present all possible linearly polarized states at once, the complete Mueller matrix of deterministic samples can be recovered with a reduced number of measurements and small errors. Furthermore, SPBs present the same polarization pattern across any transverse plane during propagation, and the same happens for the field propagated after the sample, so that both the sample plane and the plane where the polarization of the field is measured can be chosen at will. Experimental results are presented for the particular case of an azimuthally polarized beam and samples consisting of rotated retardation plates and linear polarizers.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design for radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)
Park, Junbo; Buhrman, R. A.; Ralph, D. C.
2013-12-16
We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, C{sub P} = P{sub IPP}/P{sub OPP}, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective P{sub IPP}, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum C{sub P} required to attain deterministic switching, while retaining low critical switching current, I{sub p} ∼ 500 μA.
Deterministic quantum-public-key encryption: Forward search attack and randomization
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.; Ioannou, Lawrence M.
2009-04-01
In the classical setting, public-key encryption requires randomness in order to be secure against a forward search attack, whereby an adversary compares the encryption of a guess of the secret message with the encryption of the actual secret message. We show that this is also true in the information-theoretic setting—where the public keys are quantum systems—by defining and giving an example of a forward search attack for any deterministic quantum-public-key bit-encryption scheme. However, unlike in the classical setting, we show that any such deterministic scheme can be used as a black box to build a randomized bit-encryption scheme that is no longer susceptible to this attack.
Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity
Lee, Jonathan C.; Cui, Shanying; Zhang, Xingyu; Russell, Kasey J.; Magyar, Andrew P.; Hu, Evelyn L.; Bracher, David O.; Ohno, Kenichi; McLellan, Claire A.; Alemán, Benjamin; Bleszynski Jayich, Ania; Andrich, Paolo; Awschalom, David; Aharonovich, Igor
2014-12-29
The negatively charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ∼24 000 and mode volume V ∼ 0.47(λ/n){sup 3} as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ∼20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters.
NASA Astrophysics Data System (ADS)
Rosenblum, Serge; Borne, Adrien; Dayan, Barak
2017-03-01
The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.
Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source
NASA Astrophysics Data System (ADS)
Jacob, Georg; Groot-Berning, Karin; Wolf, Sebastian; Ulm, Stefan; Couturier, Luc; Dawkins, Samuel T.; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand; Singer, Kilian
2016-07-01
We realize a single particle microscope by using deterministically extracted laser-cooled 40Ca+ ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8 ±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 μ m circular hole structure to a precision of 2.7 nm using only 579 probe particles.
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs and activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less
NASA Astrophysics Data System (ADS)
Wang, Xun; Liu, Zhirong; Huang, Kelin; Sun, Jingbo
2017-03-01
According to the theory of first-order Born approximation, analytical expressions for Gaussian Schell-model arrays (GSMA) beam scattered on a deterministic medium in the far-zone are derived. In terms of the analytical formula obtained, shifts of GSMA beam's scattered spectrum are numerically investigated. Results show that the scattering directions sx and sy, effective radius σ of the scattering medium, the initial beam transverse width σ0, correlation widths δx and δy of the source, and line width Γ0 of the incident spectrum closely influence the distributions of normalized scattered spectrum in the far-zone. These features of GSMA beam scattered spectrum could be used to obtain information about the structure of a deterministic medium.
Scaling of weighted spectral distribution in deterministic scale-free networks
NASA Astrophysics Data System (ADS)
Jiao, Bo; Nie, Yuan-ping; Shi, Jian-mai; Huang, Cheng-dong; Zhou, Ying; Du, Jing; Guo, Rong-hua; Tao, Ye-rong
2016-06-01
Scale-free networks are abundant in the real world. In this paper, we investigate the scaling properties of the weighted spectral distribution in several deterministic and stochastic models of evolving scale-free networks. First, we construct a new deterministic scale-free model whose node degrees have a unified format. Using graph structure features, we derive a precise formula for the spectral metric in this model. This formula verifies that the spectral metric grows sublinearly as network size (i.e., the number of nodes) grows. Additionally, the mathematical reasoning of the precise formula theoretically provides detailed explanations for this scaling property. Finally, we validate the scaling properties of the spectral metric using some stochastic models. The experimental results show that this scaling property can be retained regardless of local world, node deleting and assortativity adjustment.
[Regulation of the Na/Ca exchanger].
DiPolo, R; Rojas, H; Beaugé, L
1993-01-01
The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.
Mayo, Christie; Shelley, Courtney; MacLachlan, N. James; Gardner, Ian; Hartley, David; Barker, Christopher
2016-01-01
The global distribution of bluetongue virus (BTV) has been changing recently, perhaps as a result of climate change. To evaluate the risk of BTV infection and transmission in a BTV-endemic region of California, sentinel dairy cows were evaluated for BTV infection, and populations of Culicoides vectors were collected at different sites using carbon dioxide. A deterministic model was developed to quantify risk and guide future mitigation strategies to reduce BTV infection in California dairy cattle. The greatest risk of BTV transmission was predicted within the warm Central Valley of California that contains the highest density of dairy cattle in the United States. Temperature and parameters associated with Culicoides vectors (transmission probabilities, carrying capacity, and survivorship) had the greatest effect on BTV’s basic reproduction number, R0. Based on these analyses, optimal control strategies for reducing BTV infection risk in dairy cattle will be highly reliant upon early efforts to reduce vector abundance during the months prior to peak transmission. PMID:27812161
1991-12-01
This report contain-P a description of a study of the existing literature on deterministic zombai-models. The Lancheste quations are described, both...nadeel bieraan kleeft dat het uitvoeren van een studie met een dergelijk model redelijk veel tijd kost. Dit koint doordat er een groot aantal runs moet...oprijzen. De aannaznen die aan de kiassieke Lanchestervergehjkingen voor gericht vuur ten grondslag liggen zijn de volgende: " Elke partij is intern
A new approach to state estimation in deterministic digital control systems
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1987-01-01
The paper presents a new approach to state estimation in deterministic digital control systems. The scheme is based on sampling the output of the plant at a high rate and prefiltering the discrete measurements in a multi-input/multi-output moving average (MA) process. The coefficient matrices in the MA prefilter are selected so the estimated state equals the true state. An example is presented which illustrates the procedure to follow to completely design the estimator.
Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-03-17
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks
Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano
2009-01-01
Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J.
2012-07-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
On the application of deterministic optimization methods to stochastic control problems.
NASA Technical Reports Server (NTRS)
Kramer, L. C.; Athans, M.
1972-01-01
A technique is presented by which one can apply the Minimum Principle of Pontryagin to stochastic optimal control problems formulated around linear systems with Gaussian noises and general cost criteria. Using this technique, the stochastic nature of the problem is suppressed but for two expectation operations, the optimization being essentially deterministic. The technique is applied to systems with quadratic and non-quadratic costs to illustrate its use.
Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...
2015-02-18
Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less
Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; Wagner, Robert M.; Edwards, K. Dean; Green, Johney B.
2015-02-18
Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes and thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.
Applications of the 3-D Deterministic Transport Attila{reg_sign} for Core Safety Analysis
Lucas, D.S.; Gougar, D.; Roth, P.A.; Wareing, T.; Failla, G.; McGhee, J.; Barnett, A.
2004-10-06
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila{reg_sign}) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future.
Applications of the 3-D Deterministic Transport Code Attlla for Core Safety Analysis
D. S. Lucas
2004-10-01
An LDRD (Laboratory Directed Research and Development) project is ongoing at the Idaho National Engineering and Environmental Laboratory (INEEL) for applying the three-dimensional multi-group deterministic neutron transport code (Attila®) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the model development, capabilities of Attila, generation of the cross-section libraries, and comparisons to an ATR MCNP model and future.
Theory and applications of a deterministic approximation to the coalescent model.
Jewett, Ethan M; Rosenberg, Noah A
2014-05-01
Under the coalescent model, the random number nt of lineages ancestral to a sample is nearly deterministic as a function of time when nt is moderate to large in value, and it is well approximated by its expectation E[nt]. In turn, this expectation is well approximated by simple deterministic functions that are easy to compute. Such deterministic functions have been applied to estimate allele age, effective population size, and genetic diversity, and they have been used to study properties of models of infectious disease dynamics. Although a number of simple approximations of E[nt] have been derived and applied to problems of population-genetic inference, the theoretical accuracy of the resulting approximate formulas and the inferences obtained using these approximations is not known, and the range of problems to which they can be applied is not well understood. Here, we demonstrate general procedures by which the approximation nt≈E[nt] can be used to reduce the computational complexity of coalescent formulas, and we show that the resulting approximations converge to their true values under simple assumptions. Such approximations provide alternatives to exact formulas that are computationally intractable or numerically unstable when the number of sampled lineages is moderate or large. We also extend an existing class of approximations of E[nt] to the case of multiple populations of time-varying size with migration among them. Our results facilitate the use of the deterministic approximation nt≈E[nt] for deriving functionally simple, computationally efficient, and numerically stable approximations of coalescent formulas under complicated demographic scenarios.
Accuracy of probabilistic and deterministic record linkage: the case of tuberculosis
de Oliveira, Gisele Pinto; Bierrenbach, Ana Luiza de Souza; de Camargo, Kenneth Rochel; Coeli, Cláudia Medina; Pinheiro, Rejane Sobrino
2016-01-01
ABSTRACT OBJECTIVE To analyze the accuracy of deterministic and probabilistic record linkage to identify TB duplicate records, as well as the characteristics of discordant pairs. METHODS The study analyzed all TB records from 2009 to 2011 in the state of Rio de Janeiro. A deterministic record linkage algorithm was developed using a set of 70 rules, based on the combination of fragments of the key variables with or without modification (Soundex or substring). Each rule was formed by three or more fragments. The probabilistic approach required a cutoff point for the score, above which the links would be automatically classified as belonging to the same individual. The cutoff point was obtained by linkage of the Notifiable Diseases Information System – Tuberculosis database with itself, subsequent manual review and ROC curves and precision-recall. Sensitivity and specificity for accurate analysis were calculated. RESULTS Accuracy ranged from 87.2% to 95.2% for sensitivity and 99.8% to 99.9% for specificity for probabilistic and deterministic record linkage, respectively. The occurrence of missing values for the key variables and the low percentage of similarity measure for name and date of birth were mainly responsible for the failure to identify records of the same individual with the techniques used. CONCLUSIONS The two techniques showed a high level of correlation for pair classification. Although deterministic linkage identified more duplicate records than probabilistic linkage, the latter retrieved records not identified by the former. User need and experience should be considered when choosing the best technique to be used. PMID:27556963
Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics
Terlizzi, Stefano; Dulla, Sandra; Ravetto, Piero; Rahnema, Farzad; Zhang, Dingkang
2015-12-31
A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.
Nonstationary discrete-time deterministic and stochastic control systems with infinite horizon
NASA Astrophysics Data System (ADS)
Guo, Xianping; Hernández-del-Valle, Adrián; Hernández-Lerma, Onésimo
2010-09-01
This article is about nonstationary nonlinear discrete-time deterministic and stochastic control systems with Borel state and control spaces, possibly noncompact control constraint sets, and unbounded costs. The control problem is to minimise an infinite-horizon total cost performance index. Using dynamic programming arguments we show that, under suitable assumptions, the optimal cost functions satisfy optimality equations, which in turn give a procedure to find optimal control policies.
Deterministic and stochastic control of chimera states in delayed feedback oscillator
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-06-01
Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... Immediate Effectiveness of Proposed Rule Change To Amend ISE Rule 2128 To Extend the Pilot Program December... Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange Commission... Web site at http://www.ise.com , at the principal office of the Exchange, at the Commission's...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... International Securities Exchange, LLC (the ``Exchange'' or ``ISE'') filed with the Securities and Exchange...-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change The ISE is... site ( http://www.ise.com ), at the principal office of the Exchange, and at the Commission's...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Immediate Effectiveness of Proposed Rule Change To Amend ISE Rule 2102 To Extend the Pilot Program April 5... Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange Commission... text of the proposed rule change is available on the Exchange's Internet Web site at...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... Immediate Effectiveness of Proposed Rule Change To Amend ISE Rule 2102 To Extend the Pilot Program February... Exchange, LLC (``ISE'' or ``Exchange'') filed with the Securities and Exchange Commission (``Commission... available on the Exchange's Internet Web site at http://www.ise.com , at the principal office of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... 20, 2011, the International Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the... Change The ISE is proposing to amend fees for certain complex orders executed on the Exchange. The text of the proposed rule change is available on the Exchange's Web site ( http://www.ise.com ), at...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... Immediate Effectiveness of Proposed Rule Change To Amend ISE Rule 2102 To Extend the Pilot Program August 9... Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange Commission... text of the proposed rule change is available on the Exchange's Internet Web site at...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... Immediate Effectiveness of a Proposed Rule Change to Amend ISE Rule 2102 to Extend the Market-Wide Circuit..., International Securities Exchange, LLC (the ``Exchange'' or ``ISE'') filed with the Securities and Exchange... on the Exchange's Internet Web site at http://www.ise.com , at the principal office of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... Immediate Effectiveness of Proposed Rule Change to Amend ISE Rule 2128 Relating to Clearly Erroneous Trades... Securities Exchange, LLC (the ``Exchange'' or the ``ISE'') filed with the Securities and Exchange Commission... text of the proposed rule change is available on the Exchange's Internet Web site at...
Indiana Health Information Exchange
The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.
Deterministic Agent-Based Path Optimization by Mimicking the Spreading of Ripples.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Di Paolo, Ezequiel A; Liu, Hao
2016-01-01
Inspirations from nature have contributed fundamentally to the development of evolutionary computation. Learning from the natural ripple-spreading phenomenon, this article proposes a novel ripple-spreading algorithm (RSA) for the path optimization problem (POP). In nature, a ripple spreads at a constant speed in all directions, and the node closest to the source is the first to be reached. This very simple principle forms the foundation of the proposed RSA. In contrast to most deterministic top-down centralized path optimization methods, such as Dijkstra's algorithm, the RSA is a bottom-up decentralized agent-based simulation model. Moreover, it is distinguished from other agent-based algorithms, such as genetic algorithms and ant colony optimization, by being a deterministic method that can always guarantee the global optimal solution with very good scalability. Here, the RSA is specifically applied to four different POPs. The comparative simulation results illustrate the advantages of the RSA in terms of effectiveness and efficiency. Thanks to the agent-based and deterministic features, the RSA opens new opportunities to attack some problems, such as calculating the exact complete Pareto front in multiobjective optimization and determining the kth shortest project time in project management, which are very difficult, if not impossible, for existing methods to resolve. The ripple-spreading optimization principle and the new distinguishing features and capacities of the RSA enrich the theoretical foundations of evolutionary computation.
Implementation speed of deterministic population passages compared to that of Rabi pulses
NASA Astrophysics Data System (ADS)
Chen, Jingwei; Wei, L. F.
2015-02-01
Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.
Chang, T; Schiff, S J; Sauer, T; Gossard, J P; Burke, R E
1994-01-01
Long time series of monosynaptic Ia-afferent to alpha-motoneuron reflexes were recorded in the L7 or S1 ventral roots in the cat. Time series were collected before and after spinalization at T13 during constant amplitude stimulations of group Ia muscle afferents in the triceps surae muscle nerves. Using autocorrelation to analyze the linear correlation in the time series demonstrated oscillations in the decerebrate state (4/4) that were eliminated after spinalization (5/5). Three tests for determinism were applied to these series: 1) local flow, 2) local dispersion, and 3) nonlinear prediction. These algorithms were validated with time series generated from known deterministic equations. For each experimental and theoretical time series used, matched time-series of stochastic surrogate data were generated to serve as mathematical and statistical controls. Two of the time series collected in the decerebrate state (2/4) demonstrated evidence for deterministic structure. This structure could not be accounted for by the autocorrelation in the data, and was abolished following spinalization. None of the time series collected in the spinalized state (0/5) demonstrated evidence of determinism. Although monosynaptic reflex variability is generally stochastic in the spinalized state, this simple driven system may display deterministic behavior in the decerebrate state. Images FIGURE 1 PMID:7948680
The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes
NASA Astrophysics Data System (ADS)
Bogdanova, E. V.; Kuznetsov, A. N.
2017-01-01
The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.
Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel
2013-06-01
Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.
Improved Deterministic N-To-One Joint Remote Preparation of an Arbitrary Qubit via EPR Pairs
NASA Astrophysics Data System (ADS)
Liu, Wen-Jie; Chen, Zheng-Fei; Liu, Chao; Zheng, Yu
2015-02-01
Recently, Bich et al. (Int. J. Theor. Phys. 51: 2272, 2012) proposed two deterministic joint remote state preparation (JRSP) protocols of an arbitrary single-qubit state: one is for two preparers to remotely prepare for a receiver by using two Einstein-Podolsky-Rosen (ERP) pairs; the other is its generalized form in the case of arbitrary N ( N > 2) preparers via N ERP pairs. While examining these two protocols, we find that the success probability for the receiver achieving the desired state is not deterministic, i.e., , for N > 2 preparers in the second protocol. Through constructing two sets of adaptive projective measurement bases for both the real space and the complex space, an improved deterministic N-to-one JRSP protocol for an arbitrary single-qubit state is presented. Analysis shows our protocol can truly achieve the unit success probability, i.e., . What is more, the receiver can be randomly assigned even after the distribution of the qubits of EPR pairs, so it is more flexible and applicable in the network situation.
NASA Astrophysics Data System (ADS)
Chen, Xi; Diez, Matteo; Kandasamy, Manivannan; Zhang, Zhiguo; Campana, Emilio F.; Stern, Frederick
2015-04-01
Advances in high-fidelity shape optimization for industrial problems are presented, based on geometric variability assessment and design-space dimensionality reduction by Karhunen-Loève expansion, metamodels and deterministic particle swarm optimization (PSO). Hull-form optimization is performed for resistance reduction of the high-speed Delft catamaran, advancing in calm water at a given speed, and free to sink and trim. Two feasible sets (A and B) are assessed, using different geometric constraints. Dimensionality reduction for 95% confidence is applied to high-dimensional free-form deformation. Metamodels are trained by design of experiments with URANS; multiple deterministic PSOs achieve a resistance reduction of 9.63% for A and 6.89% for B. Deterministic PSO is found to be effective and efficient, as shown by comparison with stochastic PSO. The optimum for A has the best overall performance over a wide range of speed. Compared with earlier optimization, the present studies provide an additional resistance reduction of 6.6% at 1/10 of the computational cost.
Chang, T; Schiff, S J; Sauer, T; Gossard, J P; Burke, R E
1994-08-01
Long time series of monosynaptic Ia-afferent to alpha-motoneuron reflexes were recorded in the L7 or S1 ventral roots in the cat. Time series were collected before and after spinalization at T13 during constant amplitude stimulations of group Ia muscle afferents in the triceps surae muscle nerves. Using autocorrelation to analyze the linear correlation in the time series demonstrated oscillations in the decerebrate state (4/4) that were eliminated after spinalization (5/5). Three tests for determinism were applied to these series: 1) local flow, 2) local dispersion, and 3) nonlinear prediction. These algorithms were validated with time series generated from known deterministic equations. For each experimental and theoretical time series used, matched time-series of stochastic surrogate data were generated to serve as mathematical and statistical controls. Two of the time series collected in the decerebrate state (2/4) demonstrated evidence for deterministic structure. This structure could not be accounted for by the autocorrelation in the data, and was abolished following spinalization. None of the time series collected in the spinalized state (0/5) demonstrated evidence of determinism. Although monosynaptic reflex variability is generally stochastic in the spinalized state, this simple driven system may display deterministic behavior in the decerebrate state.
NASA Astrophysics Data System (ADS)
He, Chong; Chiam, Keng-Hwee; Chew, Lock Yue
2016-10-01
Ultradian cycles are frequently observed in biological systems. They serve important roles in regulating, for example, cell fate and the development of the organism. Many mathematical models have been developed to analyze their behavior. Generally, these models can be classified into two classes: Deterministic models that generate oscillatory behavior by incorporating time delays or Hopf bifurcations, and stochastic models that generate oscillatory behavior by noise driven resonance. However, it is still unclear which of these two mechanisms applies to cellular oscillations. In this paper, we show through theoretical analysis and numerical simulation that we can distinguish which of these two mechanisms govern cellular oscillations, by measuring statistics of oscillation amplitudes for cells of different sizes. We found that, for oscillations driven deterministically, the normalized average amplitude is constant with respect to cell size, while the coefficient of variation of the amplitude scales with cell size with an exponent of -0.5 . On the other hand, for oscillations driven stochastically, the coefficient of variation of the amplitude is constant with respect to cell size, while the normalized average amplitude scales with cell size with an exponent of -0.5 . Our results provide a theoretical basis to discern whether a particular oscillatory behavior is governed by a deterministic or stochastic mechanism.
SIR model with local and global infective contacts: A deterministic approach and applications.
Maltz, Alberto; Fabricius, Gabriel
2016-12-01
An epidemic model with births and deaths is considered on a two-dimensional L×L lattice. Each individual can have global infective contacts according to the standard susceptible-infected-recovered (SIR) model rules or local infective contacts with their nearest neighbors. We propose a deterministic approach to this model and, for the parameters corresponding to pertussis and rubella in the prevaccine era, verify that there is a close agreement with the stochastic simulations when epidemic spread or endemic stationarity is considered. We also find that our approach captures the characteristic features of the dynamic behavior of the system after a sudden decrease in global contacts that may arise as a consequence of health care measures. By using the deterministic approach, we are able to characterize the exponential growth of the epidemic behavior and analyze the stability of the system at the stationary values. Since the deterministic approximation captures the essential features of the disease transmission dynamics of the stochastic model, it provides a useful tool for performing systematic studies as a function of the model parameters. We give an example of this potentiality by analyzing the likelihood of the endemic state to become extinct when the weight of the global contacts is drastically reduced.
A deterministic, gigabit serial timing, synchronization and data link for the RHIC LLRF
Hayes, T.; Smith, K.S.; Severino, F.
2011-03-28
A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To provide synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.
CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O.
2006-01-01
This paper presents a complete methodology for both probabilistic and deterministic assessment of seismic soil liquefaction triggering potential based on the cone penetration test (CPT). A comprehensive worldwide set of CPT-based liquefaction field case histories were compiled and back analyzed, and the data then used to develop probabilistic triggering correlations. Issues investigated in this study include improved normalization of CPT resistance measurements for the influence of effective overburden stress, and adjustment to CPT tip resistance for the potential influence of "thin" liquefiable layers. The effects of soil type and soil character (i.e., "fines" adjustment) for the new correlations are based on a combination of CPT tip and sleeve resistance. To quantify probability for performancebased engineering applications, Bayesian "regression" methods were used, and the uncertainties of all variables comprising both the seismic demand and the liquefaction resistance were estimated and included in the analysis. The resulting correlations were developed using a Bayesian framework and are presented in both probabilistic and deterministic formats. The results are compared to previous probabilistic and deterministic correlations. ?? 2006 ASCE.
An alternative approach to measure similarity between two deterministic transient signals
NASA Astrophysics Data System (ADS)
Shin, Kihong
2016-06-01
In many practical engineering applications, it is often required to measure the similarity of two signals to gain insight into the conditions of a system. For example, an application that monitors machinery can regularly measure the signal of the vibration and compare it to a healthy reference signal in order to monitor whether or not any fault symptom is developing. Also in modal analysis, a frequency response function (FRF) from a finite element model (FEM) is often compared with an FRF from experimental modal analysis. Many different similarity measures are applicable in such cases, and correlation-based similarity measures may be most frequently used among these such as in the case where the correlation coefficient in the time domain and the frequency response assurance criterion (FRAC) in the frequency domain are used. Although correlation-based similarity measures may be particularly useful for random signals because they are based on probability and statistics, we frequently deal with signals that are largely deterministic and transient. Thus, it may be useful to develop another similarity measure that takes the characteristics of the deterministic transient signal properly into account. In this paper, an alternative approach to measure the similarity between two deterministic transient signals is proposed. This newly proposed similarity measure is based on the fictitious system frequency response function, and it consists of the magnitude similarity and the shape similarity. Finally, a few examples are presented to demonstrate the use of the proposed similarity measure.
Comparison of deterministic and stochastic models of the lac operon genetic network.
Stamatakis, Michail; Mantzaris, Nikos V
2009-02-01
The lac operon has been a paradigm for genetic regulation with positive feedback, and several modeling studies have described its dynamics at various levels of detail. However, it has not yet been analyzed how stochasticity can enrich the system's behavior, creating effects that are not observed in the deterministic case. To address this problem we use a comparative approach. We develop a reaction network for the dynamics of the lac operon genetic switch and derive corresponding deterministic and stochastic models that incorporate biological details. We then analyze the effects of key biomolecular mechanisms, such as promoter strength and binding affinities, on the behavior of the models. No assumptions or approximations are made when building the models other than those utilized in the reaction network. Thus, we are able to carry out a meaningful comparison between the predictions of the two models to demonstrate genuine effects of stochasticity. Such a comparison reveals that in the presence of stochasticity, certain biomolecular mechanisms can profoundly influence the region where the system exhibits bistability, a key characteristic of the lac operon dynamics. For these cases, the temporal asymptotic behavior of the deterministic model remains unchanged, indicating a role of stochasticity in modulating the behavior of the system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
....'' See Exchange Rule 1.5. The text of the proposed rule change is available on the Exchange's Web site at... is a Reserve Order for which the entire order size remains hidden or undisplayed. Exchange Rule 11.15... the Commission's Internet Web site ( http://www.sec.gov/rules/sro.shtml ). Copies of the...
Anderson, Oscar A.
1978-01-01
An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.
1978-01-01
C( ŕTO I;I" COMIPLET’ION ’[[Tl,. By schedul ing 1 e of jobs oil a vinputing system, we mecan to assgn within certain time interval(s), to each job...34Bounds on multiprocessing anomalies and related packing problems," Proc. or tho Spring Joint Couuputer Confeorouev (1972), 205-2 17. (09] Gonzales, T., 0...34Scheduling of time critical processes," Proc. of the Spring Joint Computers Confrvnicte (1972), 925-932. CYI1 Yao, A. C., "Ott scheduling unit-time tasks
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... the Exchange's Web Site; and (ii) Adopt as New Rules Certain Provisions That Are Currently Included in... updated listing application materials that will be posted on the Exchange's Web site; and (ii) adopt as...) and adopt updated listing application materials that will be posted on the Exchange's Web site;...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... be Posted on the Exchange's Web site; and (ii) Adopt As New Rules Certain Provisions that are... application materials that will be posted on the Exchange's Web site; and (ii) adopt as new rules certain... that will be posted on the Exchange's Web site; and (ii) adopt as new rules certain provisions that...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... Updated Listing Application Materials That Will Be Posted on the Exchange's Web Site; and (ii) Adopt as... be posted on the Exchange's Web site; and (ii) adopt as new rules certain provisions that are... proposed rule change is available on the Exchange's Web site at www.nyse.com , at the principal office...
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
Wertin, Timothy M; McGuire, Mary Anne; Teskey, Robert O
2012-07-01
Predicted future changes in air temperature and atmospheric CO(2) concentration ([CO(2)]), coupled with altered precipitation, are expected to substantially affect tree growth. Effects on growth may vary considerably across a species range, as temperatures vary from sub-optimal to supra-optimal for growth. We performed an experiment simultaneously at two locations in the current range of loblolly pine, a cool site and a warm site, to examine the effect of future climate conditions on growth of loblolly pine seedlings in contrasting regions of the species range. At both sites 1-year-old loblolly pine seedlings were grown in current (local ambient temperature and [CO(2)]) and predicted future atmospheric conditions (ambient +2 °C temperature and 700 μmol mol(-1) [CO(2)]). Additionally, high and low soil moisture treatments were applied within each atmospheric treatment at each site by altering the amount of water provided to the seedlings. Averaged across water treatments, photosynthesis (A(net)) was 31% greater at the cool site and 34% greater at the warm site in elevated temperature and [CO(2)] compared with ambient temperature. Biomass accumulation was also stimulated by 38% at the cool site and by 24% at the warm site in that treatment. These results suggest that a temperature increase of 2 °C coupled with an increase in [CO(2)] (predicted future climate) will create conditions favorable for growth of this species. Reduced soil moisture decreased growth in both current and predicted atmospheric conditions. Biomass accumulation and A(net) were reduced by ∼39 and 17%, respectively, in the low water treatment. These results suggest that any benefit of future atmospheric conditions may be negated if soil moisture is reduced by altered precipitation patterns.