Sample records for detonations explosion models

  1. Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hang, Gui-yun; Yu, Wen-li; Wang, Tao; Wang, Jin-tao; Li, Zhen

    2017-08-01

    The CL-20/RDX cocrystal models with different molar ratios were established by substitution method and molecular dynamics (MD) simulation method was applied to investigate the influences of molar ratios on mechanical properties, stabilities and detonation performance of cocrystal explosives. The crystal parameters, structures, binding energies, mechanical properties and some detonation parameters of different cocrystal explosives were got and compared. The results illustrate that the molar ratio has a direct influence on properties of cocrystal explosive and each of the cocrystal model holds different mechanical properties, binding energies and detonation parameters. The mechanical properties of CL-20/RDX cocrystal explosive can be effectively improved and the cocrystal model with molar ratio in 1:1 has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The detonation parameters show that the cocrystal explosive has better detonation performance than RDX. In a word, the cocrystal explosive with molar ratio in 1:1 has the best mechanical properties, highest binding energy and excellent energy density and detonation performance, it is quite promising and can satisfy the requirements of high energy density compounds (HEDC). This paper could offer some theoretical instructions and novel insights for the CL-20 cocrystal explosive designing.

  2. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  3. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less

  4. Shock Interaction of Metal Particles in Condensed Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2005-07-01

    For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.

  5. Numerical modelling of underwater detonation of non-ideal condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikolaos

    2015-01-01

    The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.

  6. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  7. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren; Higgins, Andrew; Yoshinaka, Akio; Zhang, Fan

    2007-06-01

    The propagation of detonation in shock compressed nitromethane was observed with a high speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures on the order of 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation was determined using two methods: manganin strain gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the explosive post-reverberating shock wave and prior to being detonated. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  8. Determination of detonation wave boundary angles via hydrocode simulations using CREST

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.; Childs, M.

    2017-01-01

    A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.

  9. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  10. Helium in double-detonation models of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Sim, Stuart A.; Hachinger, Stephan; Kerzendorf, Wolfgang

    2017-03-01

    The double-detonation explosion model has been considered a candidate for explaining astrophysical transients with a wide range of luminosities. In this model, a carbon-oxygen white dwarf star explodes following detonation of a surface layer of helium. One potential signature of this explosion mechanism is the presence of unburned helium in the outer ejecta, left over from the surface helium layer. In this paper we present simple approximations to estimate the optical depths of important He I lines in the ejecta of double-detonation models. We use these approximations to compute synthetic spectra, including the He I lines, for double-detonation models obtained from hydrodynamical explosion simulations. Specifically, we focus on photospheric-phase predictions for the near-infrared 10 830 Å and 2 μm lines of He I. We first consider a double detonation model with a luminosity corresponding roughly to normal SNe Ia. This model has a post-explosion unburned He mass of 0.03 M⊙ and our calculations suggest that the 2 μm feature is expected to be very weak but that the 10 830 Å feature may have modest opacity in the outer ejecta. Consequently, we suggest that a moderate-to-weak He I 10 830 Å feature may be expected to form in double-detonation explosions at epochs around maximum light. However, the high velocities of unburned helium predicted by the model ( 19 000 km s-1) mean that the He I 10 830 Å feature may be confused or blended with the C I 10 690 Å line forming at lower velocities. We also present calculations for the He I 10 830 Å and 2 μm lines for a lower mass (low luminosity) double detonation model, which has a post-explosion He mass of 0.077 M⊙. In this case, both the He I features we consider are strong and can provide a clear observational signature of the double-detonation mechanism.

  11. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  12. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  13. Determination of the effects of water adsorption on the sensitivity and detonation performance of the explosive JOB-9003 by molecular dynamics simulation.

    PubMed

    Hang, GuiYun; Yu, WenLi; Wang, Tao; Li, Zhen

    2016-11-01

    In order to determine the adsorption mechanism of water on the crystal surfaces of the explosive JOB-9003 and the effect of this adsorption on the sensitivity and detonation performance of this explosive, a model of the crystal of JOB-9003 was created in the software package Materials Studio (MS). The adsorption process was simulated, and molecular dynamics simulation was performed with the COMPASS force field in the NPT ensemble to calculate the sensitivity and detonation performance of the explosive. The results show that the maximum trigger bond length decreases whereas the interaction energy of the trigger bond and the cohesive energy density increase after adsorption, indicating that the sensitivity of JOB-9003 decreases. The results for the detonation performance show that the detonation pressure, detonation velocity, and detonation heat decrease upon the adsorption of water, thus illustrating that the detonation performance of JOB-9003 is degraded. In summary, the adsorption of water has a positive effect on the sensitivity and safety of the explosive JOB-9003 but a negative effect on its detonation performance.

  14. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  15. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Nicholas Alexander

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  16. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  17. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  18. Modelling of Deflagration to Detonation Transition in Porous PETN of Density 1.4 g / cc with HERMES

    NASA Astrophysics Data System (ADS)

    Reaugh, John; Curtis, John; Maheswaran, Mary-Ann

    2017-06-01

    The modelling of Deflagration to Detonation Transition in explosives is a severe challenge for reactive burn models because of the complexity of the physics; there is mechanical and thermal interaction of the gaseous burn products with the burning porous matrix, with resulting compaction, shock formation and subsequent detonation. Experiments on the explosive PETN show a strong dependence of run distance to detonation on porosity. The minimum run distance appears to occur when the density is approximately 1.4 g / cc. Recent research on the High Explosive Response to Mechanical Stimulation (HERMES) model for High Explosive Violent Reaction has included the development of a model for PETN at 1.4 g / cc., which allows the prediction of the run distance in the experiments for PETN at this density. Detonation and retonation waves as seen in the experiment are evident. The HERMES simulations are analysed to help illuminate the physics occurring in the experiments. JER's work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 and partially funded by the Joint US DoD/DOE Munitions Technology Development Program. LLNL-ABS-723537.

  19. Multicale modeling of the detonation of aluminized explosives using SPH-MD-QM method

    NASA Astrophysics Data System (ADS)

    Peng, Qing; Wang, Guangyu; Liu, Gui-Rong; de, Suvranu

    Aluminized explosives have been applied in military industry since decades ago. Compared with ideal explosives, aluminized explosives feature both fast detonation and slow metal combustion chemistry, generating a complex multi-phase reactive flow. Here, we introduce a sequential multiscale model of SPH-MD-QM to simulate the detonation behavior of aluminized explosives. At the bottom level, first-principles quantum mechanics (QM) calculations are employed to obtain the training sets for fitting the ReaxFF potentials, which are used in turn in the reactive molecular dynamics (MD) simulations in the middle level to obtain the chemical reaction rates and equations of states. At the up lever, a smooth particle hydrodynamics (SPH) method incorporated ignition and growth model and afterburning model has been used for the simulation of the detonation and combustion of the aluminized explosive. Simulation is compared with experiment and good agreement is observed. The proposed multiscale method of SPH-MD-QM could be used to optimize the performance of aluminized explosives. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant No. HDTRA1-13-1-0025 and the Office of Naval Research Grants ONR Award No. N00014-08-1-0462 and No. N00014-12-1-0527.

  20. Influence of Dense Inert Additives (W and Pb) on Detonation Conditions and Regime of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Imkhovik, Nikolay A.

    2010-10-01

    Results of experimental and theoretical studies of the unusual detonation properties of mixtures of high explosives (HEs) with high-density inert additives W and Pb were analyzed and systematized. Typical examples of the nonideal detonation of composite explosives for which the measured detonation pressure is substantially lower and the detonation velocity is higher than the values calculated within the framework of the hydrodynamic model, with the specific heat ratio for the detonation products of ∼6-8, are presented. Mechanisms of formation of anomalous pressure and mass velocity profiles, which explain the correlation between the Chapman-Jouguet pressure for HE-W and HE-Pb mixtures, the velocity of the free surface of duralumin target, and the depth of the dent imprinted in steel witness plates, are described.

  1. Controlled Detonation Dynamics in Additively Manufactured High Explosives

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew; Tappan, Bryce; Bowden, Patrick; Manner, Virginia; Clements, Brad; Menikoff, Ralph; Ionita, Axinte; Branch, Brittany; Dattelbaum, Dana; Espy, Michelle; Patterson, Brian; Wu, Ruilian; Mueller, Alexander

    2017-06-01

    The effect of structure in explosives has long been a subject of interest to explosives engineers and scientists. Through structure, detonation dynamics in explosives can be manipulated, introducing a new level of safety and directed performance into these previously difficult to control materials. New advances in additive manufacturing (AM) allow the deliberate introduction of exact internal structures at dimensions approaching the mesoscale of these energetic materials. We show through simulation and experiment that this structure can be used to control detonation behavior by manipulating complex shockwave interactions. We use high-speed video and shorting mag-wires to determine the detonation velocity in AM generated explosive structures, demonstrating, for the first time, a method of controlling the directional propagation of reactive flow through the controlled introduction of structure within a high explosive. With ongoing improvement in the AM methods available coupled with guidance through modeling and simulations, more complex interactions are being explored. LANL LDRD Office.

  2. Reaction of Shocked but Undetonated HMX-Based Explosive

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.

    2002-07-01

    Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.

  3. Detonation Performance Analyses for Recent Energetic Molecules

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Samuels, Philip; Spangler, Kimberly; Iwaniuk, Daniel; Cornell, Rodger; Baker, Ernest

    2017-06-01

    Detonation performance analyses were conducted for a number of evolving and potential high explosive materials. The calculations were completed for theoretical maximum densities of the explosives using the Jaguar thermo-chemical equation of state computer programs for performance evaluations and JWL/JWLB equations of state parameterizations. A number of recently synthesized materials were investigated for performance characterizations and comparisons to existing explosives, including TNT, RDX, HMX, and Cl-20. The analytic cylinder model was utilized to establish cylinder and Gurney velocities as functions of the radial expansions of the cylinder for each explosive. The densities and heats of formulation utilized in the calculations are primarily experimental values from Picatinny Arsenal and other sources. Several of the new materials considered were predicted to have enhanced detonation characteristics compared to conventional explosives. In order to confirm the accuracy of the Jaguar and analytic cylinder model results, available experimental detonation and Gurney velocities for representative energetic molecules and their formulations were compared with the corresponding calculated values. Close agreement was obtained with most of the data. Presently at NATO.

  4. Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.

    2016-11-01

    Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.

  5. Computational Modeling of Causal Mechanisms of Blast Wave Induced Traumatic Brain Injury - A Potential Tool for Injury Prevention

    DTIC Science & Technology

    2009-10-01

    detonation and expansion of the TNT explosive materials was described using the JWL (Jones-Wilkins-Lee) equation of state (EOS) along with a high...explosive material definition (Dobratz 1981). The JWL equation is described as: Where V= ρ0 (initial density of an explosive)/ρ (density of detonation...gas). E is specific internal energy. A, B, R1, R2, ω are JWL fitting parameters (Table 2). ρ0 Detonation velocity CJ pressure Material

  6. Characterizing the growth to detonation in HNS with small-scale PDV "cutback" experiments

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan R.; Yarrington, Cole D.; Knepper, Robert; Tappan, Alexander S.; Olles, Joseph D.; Damm, David L.

    2017-01-01

    For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are particularly difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from vapor-deposited explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 µm. These data are being used to assess and improve burn-model parameterization and equations of state for simulating shock initiation.

  7. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A new reactive flow model for highly non-ideal explosives and propellants is presented. These compositions, which contain large amounts of metal, upon explosion have reaction kinetics that are characteristic of both fast detonation and slow metal combustion chemistry. A reaction model for these systems was incorporated into the two-dimensional, finite element, Lagrangian hydrodynamic code, DYNA2D. A description of how to determine the model parameters is given. The use of the model and variations are applied to AP, Al, and nitramine underwater explosive and propellant systems.

  8. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  9. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  10. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2018-07-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  11. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2017-11-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  12. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steven

    2017-01-01

    The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. As an initial work, we assume that the heterogeneity comes from the local density variation or porosity only.

  13. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  14. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  15. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, P C; Hust, G; May, C

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performedmore » detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.« less

  16. Numerical modeling of divergent detonation wave

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Liu, Bangdi

    1987-11-01

    The indefinite nature of divergent detonations under the assumption of instantaneous stable detonation is described. In the numerical modeling method for divergent detonation, the artificial cohesiveness was improved and the Cochran reaction rate and the JWL equations of state were used to describe the ignition process of the explosion. Several typical divergent detonation problems were computed obtaining rather satisfying results.

  17. Equations of state for explosive detonation products: The PANDA model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, G.I.

    1994-05-01

    This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition ofmore » the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.« less

  18. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  19. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  20. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  1. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  2. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  3. Pressure Amplification Off High Impedance Barriers in DDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less

  4. Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen

    2017-01-01

    To research and estimate the effects of molar ratios on structures, stabilities, mechanical properties, and detonation properties of CL-20/HMX cocrystal explosive, the CL-20/HMX cocrystal explosive models with different molar ratios were established in Materials Studio (MS). The crystal parameters, structures, stabilities, mechanical properties, and some detonation parameters of different cocrystal explosives were obtained and compared. The molecular dynamics (MD) simulation results illustrate that the molar ratios of CL-20/HMX have a direct influence on the comprehensive performance of cocrystal explosive. The hardness and rigidity of the 1:1 cocrystal explosive was the poorest, while the plastic property and ductibility were the best, thus implying that the explosive has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The cocrystal explosive has better detonation performance than HMX. In a word, the 1:1 cocrystal explosive is worth more attention and further research. This paper could offer some theoretical instructions and technological support, which could help in the design of the CL-20 cocrystal explosive.

  5. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, M.; Osmont, A.; Baudin, G.

    2014-05-01

    The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP - air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  6. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, Marc; Osmont, Antoine; Baudin, Gerard

    2013-06-01

    The objective is to compare ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes into account only the detonation, the secondary combustion DP - air being not considered. To solve this problem a secondary combustion model has been developed to take into account the OB effect. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollier, A., E-mail: arnaud.sollier@cea.fr; Bouyer, V.; Hébert, P.

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressuremore » lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.« less

  8. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  9. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  10. Quantitative understanding of explosive stimulus transfer

    NASA Technical Reports Server (NTRS)

    Schimmel, M. L.

    1973-01-01

    The mechanisms of detonation transfer across hermetically sealed interfaces created by necessary interruptions in high explosive trains, such as at detonators to explosive columns, field joints in explosive columns, and components of munitions fuse trains are demostrated. Reliability of detonation transfer is limited by minimizing explosive quantities, the use of intensitive explosives for safety, and requirements to propagate across gaps and angles dictated by installation and production restraints. The major detonation transfer variables studied were: explosive quanity, sensitivity, and thickness, and the separation distances between donor and acceptor explosives.

  11. Formation of double front detonations of a condensed-phase explosive with powdered aluminium

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Yoh, Jack J.

    2018-03-01

    The performance characteristics of aluminised high explosive are considered by varying the aluminium (Al) mass fraction in a hybrid non-ideal detonation model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al mass fraction and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In order to simulate the performance characteristics due to the varying Al mass fraction, the tetrahexamine tetranitramine (HMX) is considered as a base high explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between particles and HMX product gases. While experimental studies have been reported on the effect of Al mass fraction on both gas-phase and solid-phase detonations, the numerical investigations have been limited to only gas-phase detonation for the varying Al particles in the mixture. In the current study, a two-phase model is utilised for understanding the volumetric effects of Al mass fraction in condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterising the performance of aluminised HMX with a maximum Al mass fraction of 50%. The simulated results are compared with the experimental data for 5-25% mass fractions, and the higher mass fraction behaviours are consistent with the experimental observations.

  12. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen

    2017-09-19

    To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.

  13. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transporting explosives and detonators. 75.1311... Transporting explosives and detonators. (a) When explosives and detonators are to be transported underground... transported by any cars or vehicles— (1) The cars or vehicles shall be marked with warnings to identify the...

  14. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Transporting explosives and detonators. 75.1311... Transporting explosives and detonators. (a) When explosives and detonators are to be transported underground... transported by any cars or vehicles— (1) The cars or vehicles shall be marked with warnings to identify the...

  15. Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres

    NASA Astrophysics Data System (ADS)

    Courtiaud, S.; Lecysyn, N.; Damamme, G.; Poinsot, T.; Selle, L.

    2018-02-01

    After the detonation of an oxygen-deficient homogeneous high explosive, a phase of turbulent combustion, called afterburning, takes place at the interface between the rich detonation products and air. Its modelling is instrumental for the accurate prediction of the performance of these explosives. Because of the high temperature of detonation products, the chemical reactions are mixing-driven. Modelling afterburning thus relies on the precise description of the mixing process inside fireballs. This work presents a joint numerical and experimental study of a non-reacting reduced-scale set-up, which uses the compressed balloon analogy and does not involve the detonation of a high explosive. The set-up produces a flow similar to the one caused by a spherical detonation and allows focusing on the mixing process. The numerical work is composed of 2D and 3D LES simulations of the set-up. It is shown that grid independence can be reached by imposing perturbations at the edge of the fireball. The results compare well with the existing literature and give new insights on the mixing process inside fireballs. In particular, they highlight the fact that the mixing layer development follows an energetic scaling law but remains sensitive to the density ratio between the detonation products and air.

  16. On the neutralization of bacterial spores in post-detonation flows

    NASA Astrophysics Data System (ADS)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  17. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  18. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  19. Modeling and Optimization of Shaped Charge Liner Collapse and Jet Formation

    DTIC Science & Technology

    1993-01-01

    Properties of Chemical Explosives and Explosive Simulants," Technical Report UCRL -52997, University of California, CA, 1981. 22. Mader, C. L., "FORTRAN...Numerical Modeling of Detonations, University of California Press, CA, 19,9. 49. Wilkens, M. L., "The Equation of State of PBX 9404 and LX04-01 ," Report UCRL ...of High Explosive Detonation Products, Report UCRL -50422, University of Califor- nia, CA, 1968. 51. Green, L. G.; Traver, C. M.; and Erskine, D. J

  20. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  1. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  2. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  3. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation.

    PubMed

    Yu, Holly A; Nic Daeid, Niamh; Dawson, Lorna A; DeTata, David A; Lewis, Simon W

    2017-01-01

    Explosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking 'pristine' soils using explosives solutions. Here we investigate the fate of explosives present in soils following an actual detonation process and compare this to the fate of explosives spiked into 'pristine' undetonated soils. We also assess the effects of the detonations on the physical properties of the soils. Our scanning electron microscopy analyses reveal that detonations result in newly-fractured planes within the soil aggregates, and novel micro Computed Tomography analyses of the soils reveal, for the first time, the effect of the detonations on the internal architecture of the soils. We demonstrate that detonations cause an increase in soil porosity, and this correlates to an increased rate of TNT transformation and loss within the detonated soils, compared to spiked pristine soils. We propose that this increased TNT transformation is due to an increased bioavailability of the TNT within the now more porous post-detonation soils, making the TNT more easily accessible by soil-borne bacteria for potential biodegradation. This new discovery potentially exposes novel remediation methods for explosive contaminated soils where actual detonation of the soil significantly promotes subsequent TNT degradation. This work also suggests previously unexplored ramifications associated with high energy soil disruption.

  4. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding

    NASA Astrophysics Data System (ADS)

    Liu, M. B.; Zhang, Z. L.; Feng, D. L.

    2017-09-01

    Explosive welding involves processes like the detonation of explosive, impact of metal structures and strong fluid-structure interaction, while the whole process of explosive welding has not been well modeled before. In this paper, a novel smoothed particle hydrodynamics (SPH) model is developed to simulate explosive welding. In the SPH model, a kernel gradient correction algorithm is used to achieve better computational accuracy. A density adapting technique which can effectively treat large density ratio is also proposed. The developed SPH model is firstly validated by simulating a benchmark problem of one-dimensional TNT detonation and an impact welding problem. The SPH model is then successfully applied to simulate the whole process of explosive welding. It is demonstrated that the presented SPH method can capture typical physics in explosive welding including explosion wave, welding surface morphology, jet flow and acceleration of the flyer plate. The welding angle obtained from the SPH simulation agrees well with that from a kinematic analysis.

  5. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  6. Optimum performance of explosives in a quasistatic detonation cycle

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Stiel, Leonard I.

    2017-01-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.

  7. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  9. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

  10. A verification and validation effort for high explosives at Los Alamos National Lab (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovel, Christina A; Menikoff, Ralph S

    2009-01-01

    We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentropemore » for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.« less

  11. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  12. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation

    PubMed Central

    Yu, Holly A.; Nic Daeid, Niamh; Dawson, Lorna A.; DeTata, David A.; Lewis, Simon W.

    2017-01-01

    Explosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking ‘pristine’ soils using explosives solutions. Here we investigate the fate of explosives present in soils following an actual detonation process and compare this to the fate of explosives spiked into ‘pristine’ undetonated soils. We also assess the effects of the detonations on the physical properties of the soils. Our scanning electron microscopy analyses reveal that detonations result in newly-fractured planes within the soil aggregates, and novel micro Computed Tomography analyses of the soils reveal, for the first time, the effect of the detonations on the internal architecture of the soils. We demonstrate that detonations cause an increase in soil porosity, and this correlates to an increased rate of TNT transformation and loss within the detonated soils, compared to spiked pristine soils. We propose that this increased TNT transformation is due to an increased bioavailability of the TNT within the now more porous post-detonation soils, making the TNT more easily accessible by soil-borne bacteria for potential biodegradation. This new discovery potentially exposes novel remediation methods for explosive contaminated soils where actual detonation of the soil significantly promotes subsequent TNT degradation. This work also suggests previously unexplored ramifications associated with high energy soil disruption. PMID:29281650

  13. Measurements of observables during detonator function

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Remelius, Dennis

    Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.

  14. Jack Rabbit Pretest Data For TATB Based IHE Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest series consisted of 5 focused hydrodynamic experiments, 2021E PT3, PT4, PT5, PT6, and PT7. They were fired in March and April of 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory, Livermore, California. These experiments measured dead-zone formation and impulse gradients created during the detonation of TATB based insensitive high explosive. This document contains reference data tables for all 5 experiments. These data tables include: (1) Measured laser velocimetry of the experiment diagnostic plate (2) Computed diagnostic plate profile contours through velocity integration (3) Computed center axis pressures through velocity differentiation. All timesmore » are in microseconds, referenced from detonator circuit current start. All dimensions are in millimeters. Schematic axi-symmetric cross sections are shown for each experiment. These schematics detail the materials used and dimensions of the experiment and component parts. This should allow anyone wanting to evaluate their TATB based insensitive high explosive detonation model against experiment. These data are particularly relevant in examining reactive flow detonation model prediction in computational simulation of dead-zone formation and resulting impulse gradients produced by detonating TATB based explosive.« less

  15. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  16. Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).

    PubMed

    Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek

    2008-09-15

    1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.

  17. Competency Development Detonator Development and Design

    DTIC Science & Technology

    2007-09-01

    required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train

  18. Modeling Initiation in Exploding Bridgewire Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrousis, C A

    2005-05-18

    One- and two-dimensional models of initiation in detonators are being developed for the purpose of evaluating the performance of aged and modified detonator designs. The models focus on accurate description of the initiator, whether it be an EBW (exploding bridgewire) that directly initiates a high explosive powder or an EBF (exploding bridgefoil) that sends an inert flyer into a dense HE pellet. The explosion of the initiator is simulated using detailed MHD equations of state as opposed to specific action-based phenomenological descriptions. The HE is modeled using the best available JWL equations of state. Results to date have been promising,more » however, work is still in progress.« less

  19. Using Underwater Explosion and Cylinder Expansion Tests to Calibrate Afterburn Models for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Wedberg, Rasmus

    2017-06-01

    The study explores the combined use of underwater performance tests and cylinder expansion tests in order to parameterize detonation models for aluminized explosives which exhibit afterburning. The approach is suggested to be used in conjunction with thermochemical computation. A formulation containing RDX and aluminum powder is considered and several charges with varying masses are submerged and detonated. Pressure gauges are employed at horizontal distances scaling with the charge diameter, and the specific shock wave energy is shown to increase with charge mass. This is attributed to the combustion of aluminum particles after the Chapman-Jouguet plane. Cylinder expansion tests are carried out using Photon Doppler Velocimetry to register the wall expansion velocity. The tests are modeled using a multi-material arbitrary Lagrangian-Eulerian approach with the Guirguis-Miller model describing detonation with afterburning. The equation of state and afterburn rate law parameters are adjusted such that the model reproduces the results from the cylinder expansion and underwater tests. The approach seems promising, and might be valuable for aluminized explosive formulations intended to be used in a variety of confinement conditions. Swedish Armed Forces.

  20. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5 feet...

  1. High-speed multi-frame laser Schlieren for visualization of explosive events

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-09-01

    High-Speed Multi-Frame Laser Schlieren is used for visualization of a range of explosive and non-explosive events. Schlieren is a well-known technique for visualizing shock phenomena in transparent media. Laser backlighting and a framing camera allow for Schlieren images with very short (down to 5 ns) exposure times, band pass filtering to block out explosive self-light, and 14 frames of a single explosive event. This diagnostic has been applied to several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this Diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. The setup has also been used to visualize a range of other explosive events, such as explosively driven metal shock experiments and explosively driven microjets. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. Finite element codes (EPIC, CTH) have been used to analyze the schlieren images to determine likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. These experiments are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation.

  2. Numerical Simulation of Detonation in Condensed Phase Explosives

    DTIC Science & Technology

    1998-08-01

    34Numerical modelling of shocks in solids with elastic-plastic conditions", Shock Waves, 3: 55-66. 22. Jones, D.A., Oran, E.S. and Guirguis , R. (1990). "A...China Lake, CA 93555-6001, preprint. 55. P.J. Miller , P.J. and G.T. Sutherland, G.T. (1996) Reaction Rate Modelling of PBXN- 110, Shock Compression...report describes the development of a two-dimensional multi-material Eulerian hydrocode to model the effects of detonating condensed phase explosives on

  3. Simulation of the detonation process of an ammonium nitrate based emulsion explosive using the Lee-Tarver reactive flow model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose; Silva, Cristovao; Mendes, Ricardo; Plaksin, Igor; Campos, Jose

    2011-06-01

    The use of emulsion explosives [EEx] for processing materials (compaction, welding and forming) requires the ability to perform detailed simulations of its detonation process [DP]. Detailed numerical simulations of the DP of this kind of explosives, characterized by having a finite reaction zone thickness, are thought to be suitable performed using the Lee-Tarver reactive flow model. In this work a real coded genetic algorithm methodology was used to estimate the 15 parameters of the reaction rate equation [RRE] of that model for a particular EEx. This methodology allows, in a single optimization procedure, using only one experimental result and without the need of any starting solution, to seek for the 15 parameters of the RRE that fit the numerical to the experimental results. Mass averaging and the Plate-Gap Model have been used for the determination of the shock data used in the unreacted explosive JWL EoS assessment and the thermochemical code THOR retrieved the data used in the detonation products JWL EoS assessment. The obtained parameters allow a good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.

  4. Determination of performance of non-ideal aluminized explosives.

    PubMed

    Keshavarz, Mohammad Hossein; Mofrad, Reza Teimuri; Poor, Karim Esmail; Shokrollahi, Arash; Zali, Abbas; Yousefi, Mohammad Hassan

    2006-09-01

    Non-ideal explosives can have Chapman-Jouguet (C-J) detonation pressure significantly different from those expected from existing thermodynamic computer codes, which usually allows finding the parameters of ideal detonation of individual high explosives with good accuracy. A simple method is introduced by which detonation pressure of non-ideal aluminized explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from a, b, c, d and e at any loading density without using any assumed detonation products and experimental data. Calculated detonation pressures show good agreement with experimental values with respect to computed results obtained by complicated computer code. It is shown here how loading density and atomic composition can be integrated into an empirical formula for predicting detonation pressure of proposed aluminized explosives.

  5. A fast, low resistance switch for small slapper detonators

    NASA Astrophysics Data System (ADS)

    Richardson, D. D.; Jones, D. A.

    1986-10-01

    A novel design for a shock compression conduction switch for use with slapper detonators is described. The switch is based on the concept of an explosively driven flyer plate impacting a plastic insulator and producing sufficient pressure within the insulator to produce a conduction transition. An analysis of the functioning of the switch is made using a simple Gurney model for the explosive, and basic shock wave theory to calculate impact pressure and switch closure times. The effect of explosive tamping is considered, and calculations are carried out for two donor explosive thicknesses and a range of flyer plate thicknesses. The new switch has been successfully tested in a series of experimental slapper detonator firings. The results of these tests show trends in overall agreement with those predicted by the calculations.

  6. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.

    PubMed

    Abdul-Karim, Nadia; Blackman, Christopher S; Gill, Philip P; Karu, Kersti

    2016-10-05

    The continued usage of explosive devices, as well as the ever growing threat of 'dirty' bombs necessitates a comprehensive understanding of particle dispersal during detonation events in order to develop effectual methods for targeting explosive and/or additive remediation efforts. Herein, the distribution of explosive analytes from controlled detonations of aluminised ammonium nitrate and an RDX-based explosive composition were established by systematically sampling sites positioned around each firing. This is the first experimental study to produce evidence that the post-blast residue mass can distribute according to an approximate inverse-square law model, while also demonstrating for the first time that distribution trends can vary depending on individual analytes. Furthermore, by incorporating blast-wave overpressure measurements, high-speed imaging for fireball volume recordings, and monitoring of environmental conditions, it was determined that the principle factor affecting all analyte dispersals was the wind direction, with other factors affecting specific analytes to varying degrees. The dispersal mechanism for explosive residue is primarily the smoke cloud, a finding which in itself has wider impacts on the environment and fundamental detonation theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, S.; Taylor, P.; Burns, M.

    2007-12-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  8. Detonation initiation of heterogeneous melt-cast high explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, V.; Baudin, G.; Lefrançois, A.; Genetier, M.; Barbarin, Y.; Jacquet, L.; Lhopitault, J.-L.; Peix, J.; Boulanger, R.; Catoire, L.

    2017-01-01

    2,4,6-trinitrotoluene (TNT) is widely used in conventional and insensitive munitions as a fusible binder, commonly melt-cast with other explosives such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) or 3-nitro-1,2,4-triazol-one (NTO). In this paper, we study the shock-to-detonation transition phenomenon in two melt-cast high explosives (HE). We have performed plate impact tests on wedge samples to measure run-distance and time-to-detonation in order to establish the Pop-plot relation for several melt-cast HE. Highlighting the existence of the single curve buildup, we propose a two phase model based on a Zeldovich, Von-Neumann, Döring (ZND) approach where the deflagration fronts grow from the explosive grain boundaries. Knowing the grain size distribution, we calculate the deflagration velocities of the explosive charges as a function of shock pressure and explore the possible grain fragmentation.

  9. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a magazine for use in a working section or other area where blasting is to be performed shall— (1) Not exceed...

  10. Simulation of the detonation process of an ammonium nitrate based emulsion explosive using the lee-tarver reactive flow model

    NASA Astrophysics Data System (ADS)

    Ribeiro, José B.; Silva, Cristóvão; Mendes, Ricardo; Plaksin, I.; Campos, Jose

    2012-03-01

    The use of emulsion explosives [EEx] for processing materials (compaction, welding and forming) requires the ability to perform detailed simulations of its detonation process [DP]. Detailed numerical simulations of the DP of this kind of explosives, characterized by having a finite reaction zone thickness, are thought to be suitably performed using the Lee-Tarver reactive flow model. In this work a real coded genetic algorithm methodology was used to estimate the 15 parameters of the reaction rate equation [RRE] of that model for a particular EEx. This methodology allows, in a single optimization procedure, using only one experimental result and without the need of any starting solution, to seek for the 15 parameters of the RRE that fit the numerical to the experimental results. Mass averaging and the Plate-Gap Model have been used for the determination of the shock data used in the unreacted explosive JWL EoS assessment, and the thermochemical code THOR retrieved the data used in the detonation products JWL EoS assessment. The obtained parameters allow a reasonable description of the experimental data.

  11. Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao

    2018-06-09

    "Perfect" and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the "perfect" model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.

  12. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, V D

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficientlymore » relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.« less

  13. Implementation of Smoothed Particle Hydrodynamics for Detonation of Explosive with Application to Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Pramanik, R.; Deb, D.

    2015-07-01

    The paper presents a methodology in the SPH framework to analyze physical phenomena those occur in detonation process of an explosive. It mainly investigates the dynamic failure mechanism in surrounding brittle rock media under blast-induced stress wave and expansion of high pressure product gases. A program burn model is implemented along with JWL equation of state to simulate the reaction zone in between unreacted explosive and product gas. Numerical examples of detonation of one- and two-dimensional explosive slab have been carried out to investigate the effect of reaction zone in detonation process and outward dispersion of gaseous product. The results are compared with those obtained from existing solutions. A procedure is also developed in SPH framework to apply continuity conditions between gas and rock interface boundaries. The modified Grady-Kipp damage model for the onset of tensile yielding and Drucker-Prager model for shear failure are implemented for elasto-plastic analysis of rock medium. The results show that high compressive stress causes high crack density in the vicinity of blast hole. The major principal stress (tensile) is responsible for forming radial cracks from the blast hole. Spalling zones are also developed due to stress waves reflected from the free surfaces.

  14. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  15. Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push Process

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph E.

    2005-07-01

    This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.

  16. Detonation propagation in annular arcs of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  17. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  18. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  19. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, Jr., Robert W.; Kopczewski, Michael R.; Schwarz, Alfred C.

    1986-01-01

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  20. Detonation corner turning in vapor-deposited explosives using the micromushroom test

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Yarrington, Cole D.; Knepper, Robert

    2017-06-01

    Detonation corner turning describes the ability of a detonation wave to propagate into unreacted explosive that is not immediately in the path normal to the wave. The classic example of corner turning is cylindrical and involves a small diameter explosive propagating into a larger diameter explosive as described by Los Alamos' Mushroom test (e.g. (Hill, Seitz et al. 1998)), where corner turning is inferred from optical breakout of the detonation wave. We present a complimentary method to study corner turning in millimeter-scale explosives through the use of vapor deposition to prepare the slab (quasi-2D) analog of the axisymmetric mushroom test. Because the samples are in a slab configuration, optical access to the explosive is excellent and direct imaging of the detonation wave and ``dead zone'' that results during corner turning is possible. Results are compared for explosives that demonstrate a range of behaviors, from pentaerythritol tetranitrate (PETN), which has corner turning properties that are nearly ideal; to HNAB (hexanitroazobenzene), which has corner turning properties that reveal a substantial dead zone. Results are discussed in the context of microstructure and detonation failure thickness.

  1. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  2. Detonation failure characterization of non-ideal explosives

    NASA Astrophysics Data System (ADS)

    Janesheski, Robert S.; Groven, Lori J.; Son, Steven

    2012-03-01

    Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.

  3. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Stewart, D., E-mail: dss@illinois.edu; Hernández, Alberto; Lee, Kibaek

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art ofmore » two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.« less

  5. Particle Size Effects on CL-20 Initiation and Detonation

    NASA Astrophysics Data System (ADS)

    Valancius, Cole; Bainbridge, Joe; Love, Cody; Richardson, Duane

    2017-06-01

    Particle size or specific surface area effects on explosives has been of interest to the explosives community for both application and modeling of initiation and detonation. Different particles sizes of CL-20 were used in detonator experiments to determine the effects of particle size on initiation, run-up to steady state detonation, and steady state detonation. Historical tests have demonstrated a direct relationship between particle size and initiation. However, historical tests inadvertently employed density gradients, making it difficult to discern the effects of particle size from the effects of density. Density gradients were removed from these tests using a larger diameter, shorter charge column, allowing for similar loading across different particle sizes. Without the density gradient, the effects of particle size on initiation and detonation are easier to determine. The results of which contrast with historical results, showing particle size does not directly affect initiation threshold.

  6. Final Report: Ionization chemistry of high temperature molecular fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E

    2007-02-26

    With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} andmore » mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.« less

  7. Shock temperature dependent rate law for plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  8. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  9. Electromagnetic field effects in explosives

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  10. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.

    2007-12-01

    Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.

  11. An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, Susan; Taylor, Peter

    2007-06-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  12. Numerical simulation of long-duration blast wave evolution in confined facilities

    NASA Astrophysics Data System (ADS)

    Togashi, F.; Baum, J. D.; Mestreau, E.; Löhner, R.; Sunshine, D.

    2010-10-01

    The objective of this research effort was to investigate the quasi-steady flow field produced by explosives in confined facilities. In this effort we modeled tests in which a high explosive (HE) cylindrical charge was hung in the center of a room and detonated. The HEs used for the tests were C-4 and AFX 757. While C-4 is just slightly under-oxidized and is typically modeled as an ideal explosive, AFX 757 includes a significant percentage of aluminum particles, so long-time afterburning and energy release must be considered. The Lawrence Livermore National Laboratory (LLNL)-produced thermo-chemical equilibrium algorithm, “Cheetah”, was used to estimate the remaining burnable detonation products. From these remaining species, the afterburning energy was computed and added to the flow field. Computations of the detonation and afterburn of two HEs in the confined multi-room facility were performed. The results demonstrate excellent agreement with available experimental data in terms of blast wave time of arrival, peak shock amplitude, reverberation, and total impulse (and hence, total energy release, via either the detonation or afterburn processes.

  13. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  14. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.

    2011-12-01

    An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.

  15. Underwater sympathetic detonation of pellet explosive

    NASA Astrophysics Data System (ADS)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito

    2017-06-01

    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  16. Safety and performance enhancement circuit for primary explosive detonators

    DOEpatents

    Davis, Ronald W [Tracy, CA

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  17. The Nuclear Barcode: a New Taggant for Identifying Explosives

    NASA Astrophysics Data System (ADS)

    Seman, James; Johnson, Catherine; Castaño, Carlos

    2017-06-01

    Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.

  18. Shock initiation and detonation properties of bisfluorodinitroethyl formal (FEFO)

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Sheffield, S. A.; Dattelbaum, Dana M.; Stahl, David B.

    2012-03-01

    FEFO is a liquid explosive with a density of 1.60 g/cm3 and an energy output similar to that of trinitrotoluene (TNT), making it one of the more energetic liquid explosives. Here we describe shock initiation experiments that were conducted using a two-stage gas gun using magnetic gauges to measure the wave profiles during a shock-to-detonation transition. Unreacted Hugoniot data, time-to detonation (overtake) measurements, and reactive wave profiles were obtained from each experiment. FEFO was found to initiate by the homogeneous initiation model, similar to all other liquid explosives we have studied (nitromethane, isopropyl nitrate, hydrogen peroxide). The new unreacted Hugoniot points agree well with other published data. A universal liquid Hugoniot estimation slightly under predicts the measured Hugoniot data. FEFO is very insensitive, with about the same shock sensitivity as the triamino-trinitro-benzene (TATB)-based explosive PBX9502 and cast TNT.

  19. Diameter Effect In Initiating Explosives, Numerical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; Benterou, J.; Roeske, F.

    2006-02-10

    The ability to safely machine small pieces of HE with the femtosecond laser allows diameter effect experiments to be performed in initiating explosives in order to study the failure diameter, the reduction of the detonation velocity and curvature versus the diameter. The reduced diameter configuration needs to be optimized, so that the detonation products of the first cylinder will not affect the measurement of the detonation velocity of the second cylinder with a streak camera. Different 2D axi-symmetrical configurations have been calculated to identify the best solution using the Ignition and Growth reactive flow model for LX16 Pellet with Ls-Dyna.

  20. Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Quirk, James J; Kiyanda, Charles B

    2010-01-01

    Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inertmore » sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.« less

  1. Isotope-Labeled Composition B for Tracing Detonation Signatures

    NASA Astrophysics Data System (ADS)

    Manner, Virginia; Podlesak, David; Huber, Rachel; Amato, Ronald; Giambra, Anna; Bowden, Patrick; Hartline, Ernest; Dattelbaum, Dana

    2017-06-01

    To better understand how solid carbon forms and evolves during detonation, we have prepared Composition B with 13 C and 15 N-labeled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 2,4,6-trinitrotoluene (TNT) in order to trace the formation of soot from the carbon and nitrogen atoms in these explosives. Isotope-labeling of explosives has been performed in the recent past for a variety of reasons, including environmental remediation and reaction mechanism studies. Because it is expensive and time consuming to prepare these materials, and our detection equipment only requires trace amounts of isotopes, we have prepared fully-labeled materials and substituted them into unlabeled RDX and TNT at less than the 1% level. We will discuss the preparation and full characterization of this labeled Composition B, the detonation tests performed, along with the results of the post-detonation soot analysis. Various detonation models predict differing amounts and forms of carbon and nitrogen; these isotopically-labeled precursors have allowed these models to be tested.

  2. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W.; Bonzon, Lloyd L.

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  3. On the Stability of the Detonation Wave Front in the High Explosive Liquid Mixture Tetranitromethane/Nitrobenzene

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Mikhaylov, A. L.; Men'Shikh, A. V.; Nazarov, D. V.; Finyushin, S. A.; Davydov, V. A.

    2010-10-01

    We performed experimental studies on the stability of the detonation wave front in mixtures of the liquids tetranitromethane (TNM) and nitrobenzene (NB). Tetranitromethane is an oxygen-rich explosive and nitrobenzene was used as a solvent or dilutant. (NB is not classed as an explosive but as an explosive would be oxygen poor and fuel rich.) The primary diagnostic was a laser velocimetry method with high temporal resolution. Data obtained were compared with the detonation parameters of the TNM/NB mixtures. In previous experimental work [1,2] it was shown that the detonation wave front in liquid explosives may be either smooth or rough. Rough detonation fronts have been reported in nitromethane, as well as nitromethane mixed with a solvent. Smooth detonation fronts have been reported in tetranitromethane. Previously, we conducted studies on the structure of the detonation wave front in liquid explosives containing tetranitromethane [3-5]. Smooth, stable fronts were recorded in pure tetranitromethane and in a 46/54 mixture of tetranitromethane and nitromethane. A pulsating, unstable detonation wave front was recorded in a 74/26 mixture of tetranitromethane and nitrobenzene. The goal of the present work is to extend our research on the structure of the detonation wave front in mixtures of tetranitromethane diluted with less energetic nitrobenzene. To this end, the following TNM/NB mixtures were studied: 95/5, 90/10, 85/15, 80/20, 74/26, and 50/50.

  4. Detonation energies of explosives by optimized JCZ3 procedures

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard I.; Baker, Ernest L.

    1998-07-01

    Procedures for the detonation properties of explosives have been extended for the calculation of detonation energies at adiabatic expansion conditions. The use of the JCZ3 equation of state with optimized Exp-6 potential parameters leads to lower errors in comparison to JWL detonation energies than for other methods tested.

  5. 30 CFR 15.30 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonator completely embedded in the well; (3) Is provided with a means of securing the detonator in the well; and (4) Is clearly marked. (d) Drop test. The outer covering of the sheathed explosive unit shall.... (c) Detonator well. The sheathed explosive unit shall have a detonator well that— (1) Is protected by...

  6. Modular initiator with integrated optical diagnostic

    DOEpatents

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  7. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng

    2015-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  8. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng; Iapcm Team

    2013-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  9. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Fried, L E; Vitello, P A

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data,more » including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.« less

  10. Precursor detonation wave development in ANFO due to aluminum confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understandingmore » and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.« less

  11. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be handled and used with the same respect and care given other explosives. (c) The line of detonating... explosive core is dry. (f) All detonating cord trunklines and branchlines shall be free of loops, sharp...

  12. 30 CFR 56.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...

  13. 30 CFR 56.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...

  14. Explosion containment device

    DOEpatents

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  15. Measurement of Front Curvature and Detonation Velocity for a Nonideal Heterogeneous Explosive in Axisymmetric and Two-Dimensional Geometries

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew

    2009-06-01

    Detonation in a heterogeneous explosive with a relatively sparse concentration of reaction centers (``hot spots'') is investigated experimentally. The explosive system considered is nitromethane gelled with PMMA and with glass microballoons (GMB's) in suspension. The detonation velocity is measured as a function of the characteristic charge dimension (diameter or thickness) in both axisymmetric and two-dimensional planar geometries. The use of a unique, annular charge geometry (with the diameter of the annulus much greater than the annular gap thickness) permits quasi-two-dimensional detonations to be observed without undesirable lateral rarefactions that result from a finite aspect ratio. The detonation front curvature is also measured directly using an electronic streak camera. The results confirm the prior findings of Gois et al. (1996) which showed that, for a low concentration of GMB's, detonation propagation does not exhibit the expected 2:1 scaling from axisymmetric to planar geometries. This reinforces the idea that detonation in highly nonideal explosives is not governed exclusively by front curvature.

  16. Fuze for explosive magnetohydrodynamic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of registermore » with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.« less

  17. Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning

    NASA Astrophysics Data System (ADS)

    Menon, Suresh; Gottiparthi, Kalyana

    2011-06-01

    Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency

  18. Detonation Propagation in Slabs and Axisymmetric Rate Sticks

    NASA Astrophysics Data System (ADS)

    Romick, Christopher; Aslam, Tariq

    Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.

  19. Sensitivities of ionic explosives

    NASA Astrophysics Data System (ADS)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  20. Measurement of Detonation Velocity for a Nonideal Heterogeneous Explosive in Axisymmetric and Two-Dimensional Geometries

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew

    2009-12-01

    Detonation in a heterogeneous explosive with a relatively sparse concentration of reaction centers ("hot spots") is investigated experimentally. The explosive system considered is nitromethane gelled with PMMA and with glass microballoons (GMB's) in suspension. The detonation velocity is measured as a function of the characteristic charge dimension (diameter or thickness) in both axisymmetric and two-dimensional geometries. The use of a unique, annular charge geometry (with the diameter of the annulus much greater than the annular gap thickness) permits quasi-two-dimensional detonations to be observed without undesirable lateral rarefactions that result from a finite aspect ratio. The results confirm the prior findings of Gois et al. (1996) which show that, for a low concentration of GMB's, detonation propagation does not exhibit the expected 2:1 scaling from axisymmetric to planar geometries. This reinforces the idea that detonation in highly nonideal explosives is not governed exclusively by global front curvature.

  1. Statistical Hotspot Model for Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2005-07-01

    The presence and need for energy localization in the ignition and detonation of high explosives is a corner stone in our understanding of explosive behavior. This energy localization, known as hot spots, provides the match that starts the energetic response that is integral to the detonation. In our model, we use the life cycle of a hot spot to predict explosive response. This life cycle begins with a random distribution of inhomogeneities in the explosive that we describe as a potential hot spot. A shock wave can transform these into hot spots that can then grow by consuming the explosive around them. The fact that the shock wave can collapse a potential hot spot without causing ignition is required in order to model phenomena like dead pressing. The burn rate of the hot spot is taken directly from experimental data. In our approach we do not assume that every hot spot is burning in an identical environment, but rather we take a statistical approach to the burning process. We also do not make a uniform temperature assumption in order to close the mixture equation of state, but track the flow of energy from reactant to product. Finally, we include both the hot spot burn model and a thermal decomposition path, required to explain certain long time behaviors. Building on work performed by Reaugh et. al., we have developed a set of reaction parameters for an HMX based heterogeneous explosive. These parameters have been determined from computer models on the micron scale, and experimental data. This model will be compared to experimental rate stick data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  2. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  3. Compact chemical energy system for seismic applications

    DOEpatents

    Engelke, Raymond P.; Hedges, Robert O.; Kammerman, Alan B.; Albright, James N.

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  4. Violent Mergers

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger

    The progenitor systems and explosion scenarios of Type Ia supernovae (SNe Ia) are still heavily debated. The violent merger scenario is a recent addition to explosion scenarios for SNe Ia. Here, two white dwarfs (WDs) in a binary system approach each other owing to the emission of gravitational waves. The interaction between the two WDs preluding or during the merger creates a hotspot on the surface of the primary, more massive, WD that ignites a detonation. If the detonation is a carbon detonation, it completely burns the primary WD leading to a SN Ia. If instead the detonation is a helium detonation in the helium shell of a carbon-oxygen WD, it burns around the primary WD in its helium shell and sends a shock wave into its core that ignites a carbon detonation. Again the primary WD is fully burned. Synthetic observables for explosion models of SNe Ia in the violent merger scenario show good agreement with normal SNe Ia and the subclass of faint, slowly evolving 02es-like SNe Ia for different masses of the primary WD. The violent merger scenario can also explain the delay time distribution and brightness distribution of normal SNe Ia. This chapter discusses in detail the mechanism that leads to ignition in the violent merger scenario, summarizes the properties of explosions in the violent merger scenario and compares to observations. It ends with a summary of the main properties of the population of normal SNe Ia and discusses to which degree they can be explained in the violent merger scenario.

  5. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGES

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  6. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  7. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion.

    PubMed

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  8. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  9. Modelling shock to detonation transition in PETN using HERMES and CREST

    NASA Astrophysics Data System (ADS)

    Maheswaran, Mary-Ann; Curtis, John; Reaugh, Jack

    2013-06-01

    The High Explosive Response to MEchanical Stimulus (HERMES) model has been developed to address High Explosive Violent Response (HEVR). It is a material model for use in the both the LS-DYNA finite element and ALE3D hydrocodes that enables the modelling of both shock to detonation (SDT) and deflagration to detonation (DDT) transition. As part of its ongoing development and application, model parameters for the explosive PETN were found by using experimental data for PETN at different densities. PETN was selected because of the availability of both SDT and DDT data. To model SDT and DDT, HERMES uses a subset of the CREST reactive burn model with the Mie-Gruneisen equation of state (EOS) for the unreacted explosive and a look-up table for the gas EOS as generated by Cheetah. The unreacted EOS parameters were found first by calculating the principal isentrope of unreacted PETN at TMD from PETN shock Hugoniot data. Then Pop-plot data for PETN was used to fit the CREST parameters at each density. The resulting new PETN HERMES material model provides a platform for further investigations of SDT and DDT in low density PETN powder. JER's activity was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, and partially funded by the Joint US DoD/DOE Munitions Technology Development Program.

  10. Predicting High Explosive Detonation Velocities from Their Composition and Structure

    DTIC Science & Technology

    1978-09-01

    for a gamut of ideal explosives. The explosives ranged from nitroaromatics, cyclic and linear nitramines, nitrate esters and nitro-nitrato...structure is postulated for a gamut of explosives. Since detonation velocity, DQ, is density dependent, the linear regression plot. Figure 1, of the

  11. Tidal double detonation: a new mechanism for the thermonuclear explosion of a white dwarf induced by a tidal disruption event

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru

    2018-03-01

    We suggest tidal double detonation as a new mechanism for the thermonuclear explosion of a white dwarf (WD) induced by a tidal disruption event (TDE). Tidal detonation is also a WD explosion induced by a TDE. In this case, helium (He) and carbon-oxygen (CO) detonation waves incinerate He WDs and CO WDs, respectively. On the other hand, for tidal double detonation, He detonation is first excited in the He shell of a CO WD, which then drives CO detonation in the CO core. We name this mechanism after the double detonation scenario in the context of type Ia supernovae. In this paper, by performing numerical simulations for CO WDs of mass 0.60 M⊙ with and without a He shell, we show that tidal double detonation occurs in the shallower encounter of a CO WD with an intermediate-mass black hole (IMBH) compared to simple tidal detonation. We expect tidal double detonation will increase the possibility of the occurrence of WD TDEs, which can help us to understand IMBHs.

  12. The escape of high explosive products: An exact-solution problem for verification of hydrodynamics codes

    DOE PAGES

    Doebling, Scott William

    2016-10-22

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  13. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.

    Here, the detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbonmore » clusters had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  14. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.

    The detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbon clustersmore » had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  15. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    DOE PAGES

    Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.; ...

    2017-08-15

    Here, the detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbonmore » clusters had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.« less

  16. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-12-01

    Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.

  17. Explosive Model Tarantula 4d/JWL++ Calibration of LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Vitello, P A

    2008-09-30

    Tarantula is an explosive kinetic package intended to do detonation, shock initiation, failure, corner-turning with dead zones, gap tests and air gaps in reactive flow hydrocode models. The first, 2007-2008 version with monotonic Q is here run inside JWL++ with square zoning from 40 to 200 zones/cm on ambient LX-17. The model splits the rate behavior in every zone into sections set by the hydrocode pressure, P + Q. As the pressure rises, we pass through the no-reaction, initiation, ramp-up/failure and detonation sections sequentially. We find that the initiation and pure detonation rate constants are largely insensitive to zoning butmore » that the ramp-up/failure rate constant is extremely sensitive. At no time does the model pass every test, but the pressure-based approach generally works. The best values for the ramp/failure region are listed here in Mb units.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    SURFplus is a reactive burn model for high explosives aimed at modelling shock initiation and propagation of detonation waves. It utilizes the SURF model for the fast hot-spot reaction plus a slow reaction for the energy released by carbon clustering. A feature of the SURF model is that there is a partially decoupling between burn rate parameters and detonation wave properties. Previously, parameters for PBX 9502 that control shock ini- tiation had been calibrated to Pop plot data (distance-of-run to detonation as a function of shock pressure initiating the detonation). Here burn rate parameters for the high pres- sure regimemore » are adjusted to t the failure diameter and the limiting detonation speed just above the failure diameter. Simulated results are shown for an uncon ned rate stick when the 9502 diameter is slightly above and slightly below the failure diameter. Just above the failure diameter, in the rest frame of the detonation wave, the front is sonic at the PBX/air interface. As a consequence, the lead shock in the neighborhood of the interface is supported by the detonation pressure in the interior of the explosive rather than the reaction immediately behind the front. In the interior, the sonic point occurs near the end of the fast hot-spot reaction. Consequently, the slow carbon clustering reaction can not a ect the failure diameter. Below the failure diameter, the radial extent of the detonation front decreases starting from the PBX/air interface. That is, the failure starts at the PBX boundary and propagates inward to the axis of the rate stick.« less

  19. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.

  20. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. Formore » example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.« less

  1. MC3196 Detonator Shipping Package Hazard Classification Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones; Robert B.

    1979-05-31

    An investigation was made to determine whether the MC3196 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosives per 49 CFR 173.113. This study covers the Propagation Test and the External Heat Test as approved by DOE Albuquerque Operations Office. Test data led to the recommeded hazard classification of detonating fuze, Class C explosives.

  2. Assessment of the MC3608 detonator shipping package hazard classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.

    1981-08-07

    An investigation was made to determine whether the MC 3608 Detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosive, per 49 CFR 173.113. This study covers the propagation test as approved by DOE-Albuquerque Operations Office. Analysis of the test data led to the recommended hazard classification of Detonating Fuze, Class C Explosive.

  3. Explosive acceleration of plates using nonconventional explosives heavily loaded with inert and reactive materials

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Petel, Oren; Huneault, Justin; Serge, Matthew; Frost, David; Higgins, Andrew

    2013-06-01

    The detonation behavior of high explosives containing dispersed quantities or packed beds of dense additives has been previously investigated with the observation that such systems depart from the ``gamma law'' behavior typical of homogeneous explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been far less rigorously studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. Two experimental configurations are used to study acceleration either by a purely grazing detonation in a finite thickness slab of explosive or by a normal detonation from an effectively infinite thickness of explosive. Flyer acceleration and velocity is measured via Photonic Doppler Velocimetry. Packed beds of plastic, aluminum, glass, iron, and bismuth are considered and the data is compared to Gurney velocity predictions.

  4. 27 CFR 555.122 - Records maintained by licensed importers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators (det), display fireworks (df), etc.) and size... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators...

  5. 27 CFR 555.122 - Records maintained by licensed importers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators (det), display fireworks (df), etc.) and size... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators...

  6. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE PAGES

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin; ...

    2017-03-10

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  7. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  8. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes. Published by Elsevier Ltd.

  9. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  10. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  11. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent compressively. We indirectly confirmed the existence of the lower limit of the degree of compressibility of the turbulent drive for the formation of detonation kernels by analyzing simulation results of the He0609 model of Fenn et al. (2016), which produces a detonation in a helium-rich boundary layer. We found that the amount of energy in the compressible component of the kinetic energy in this model corresponds to about 96 percent compressibility in the turbulent drive. The fact that no detonation was found in the original CO0812 model for nominally the same problem conditions suggests that models with carbon-rich boundary layers may require higher resolution in order to adequately represent the mass distributions in terms of ignition times.

  12. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  13. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less

  14. Macro-Scale Reactive Flow Model for High-Explosive Detonation in Support of ASCI Weapon Safety Milepost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2002-01-03

    Explosive grain-scale simulations are not practical for weapon safety simulations. Indeed for nearly ideal explosives with reaction zones of order 500 {micro}m, even reactive flow models are not practical for weapon safety simulations. By design, reactive flow models must resolve the reaction zone, which implies computational cells with dimension of order 50 {micro}m for such explosives. The desired result for a simulation in which the reaction zone is not resolved is that the explosive behaves as an ideal one. The pressure at the shock front rises to the Chapman-Jouget (CJ) pressure with a reaction zone dimension that is like thatmore » of a shock propagating in an unreactive medium, on the order of a few computational cells. It should propagate with the detonation velocity that is determined by the equation of state of the products. In the past, this was achieved in one dimensional simulations with ''beta-burn'', a method in which the extent of conversion to final product is proportional to the approach of the specific volume in the shock front to the specific volume of the CJ state. One drawback with this method is that there is a relatively long build-up to steady detonation that is typically 50 to 100 computational cells. The need for relatively coarsely zoned simulations in two dimensions lead to ''program-burn'' by which the time to detonation can be determined by a simple ray-tracing algorithm when there are no barriers or shadows. Complications arise in two and three dimensions to the extent that some calculations of the lighting time in complex geometry can give incorrect results. We sought to develop a model based on reactive flow that might help the needs of the Weapon Safety Simulation milepost. Important features of the model are: (1) That it be useable with any equation of state description of the explosive product gases including both JWL and LEOS table forms. (2) That it exhibits the desired dependence on zone size. We believe that the model described here does exhibit these features.« less

  15. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  16. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  17. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE PAGES

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; ...

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  18. Investigation of detonation velocity in heterogeneous explosive system using the reactive Burgers' analog

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.

    2016-06-01

    In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.

  19. Kinetics of carbon clustering in detonation of high explosives: Does theory match experiment?

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Watkins, Erik; Dattelbaum, Dana; Gustavsen, Richard; Aslam, Tariq; Podlesak, David; Firestone, Millicent; Huber, Rachel; Ringstrand, Bryan; Willey, Trevor; Bagge-Hansen, Michael; Hodgin, Ralph; Lauderbach, Lisa; van Buuren, Tony; Sinclair, Nicholas; Rigg, Paulo; Seifert, Soenke; Gog, Thomas

    2017-06-01

    Chemical reactions in detonation of carbon-rich high explosives yield carbon clusters as major constituents of the products. Efforts to model carbon clustering as a diffusion-limited irreversible coagulation of carbon clusters go back to the seminal paper by Shaw and Johnson. However, first direct experimental observations of the kinetics of clustering yielded cluster growth one to two orders of magnitude slower than theoretical predictions. Multiple efforts were undertaken to test and revise the basic assumptions of the model in order to achieve better agreement with experiment. We discuss our very recent direct experimental observations of carbon clustering dynamics and demonstrate that these new results are in much better agreement with the modified Shaw-Johnson model. The implications of this much better agreement on our present understanding of detonation carbon clustering processes and possible ways to increase the agreement between theory and experiment even further are discussed.

  20. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  1. Characterization of Detonation Products of RSI-007 Explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Chhabildas, Lalit

    2011-06-01

    PDV and VISAR have been employed to characterize the detonation products of a production quality RSI-007 explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The free surface of the Kovar serves as the witness plate for the interferometry measurements. Detailed shock reverberations are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further determine the release state in different pressure regimes. Presenter

  2. Characterization of detonation products of RSI-007 explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Breaux, Bradley; Vineski, Christopher; Welle, Eric; Lambert, David; Chhabildas, Lalit

    2012-03-01

    PDV and VISAR have been employed to characterize the detonation products of a high-purity CL-20 based explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The back surface of the Kovar serves as the witness plate for interferometry measurements. Detailed reverberations corresponding to shock arrival and release are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further refine the release states.

  3. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-01-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass (M/C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  4. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-07-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass ( M/ C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/ C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/ C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  5. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  6. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  7. Optically triggered fire set/detonator system

    DOEpatents

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  8. Determination of JWL Parameters for Non-Ideal Explosive

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Kato, Y.; Itoh, S.

    2004-07-01

    JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.

  9. Design of a Simple Blast Pressure Gauge Based on a Heterodyne Velocimetry Measuring Technique

    DTIC Science & Technology

    2016-08-01

    deployed in an experiment during which the blast pressure was measured from detonation of 114 g of Primasheet 1000 high explosive. The gauge reported... detonation of high explosive where accelerated projectiles and debris may occur. Many times, overpressures generated by such events can be a nuisance to...as that generated by release of energy from a high-explosive detonation or deflagration, materials such as metals or ceramics may be needed. A

  10. Chain-Thermal Explosions and the Transition from Deflagration Combustion to Detonation

    NASA Astrophysics Data System (ADS)

    Prokopenko, V. M.; Azatyan, V. V.

    2018-01-01

    The transition from combustion to a chain-thermal explosion, a necessary step in the transition from deflagration combustion into detonation, is studied using the example of hydrogen oxidation. Differences between the kinetic modes of ignition and a chain-thermal explosion are discussed.

  11. Influence of Small Change of Porosity on Shock Initiation of an HMX/TATB/Viton Explosive and Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping

    2016-07-01

    All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.

  12. Theoretical and computer models of detonation in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  13. Fast Reactions of Aluminum and Explosive Decomposition Products in a Post-Detonation Environment

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce; Manner, Virginia; Lloyd, Joseph; Pemberton, Steven; Explosives Applications; Special Projects Team

    2011-06-01

    In order to determine the reaction behavior of Al in HMX/cast-cured binder formulations shortly after the passage of the detonation, a series of cylinder tests was performed on formulations with varying amounts of 2 μm spherical Al as well as LiF (an inert surrogate for Al). In these studies, both detonation velocity and cylinder expansion velocity are measured in order to determine exactly how and when Al contributes to the explosive event, particularly in the presence of oxidizing/energetic binders. The U.S. Army ARDEC at Picatinny has recently coined the term ``combined effects explosives'' for these materials as they demonstrate both high metal pushing capability and high blast ability. This study is aimed at developing a fundamental understanding of the reaction of Al with explosives decomposition products, where both the detonation and post-detonation environment are analyzed. Reaction rates of Al metal are determined via comparison of predicted performance based on thermoequilibrium calculations. The JWL equation of state, detonation velocities, wall velocities, and parameters at the C-J plane are some of the parameters that will be discussed.

  14. Method for fabricating non-detonable explosive simulants

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  15. Detonation shock dynamics with an acceleration relation for nitromethane and TATB

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Kraus, Richard; Mulford, Roberta; White, Stephen

    2015-06-01

    The propagation of curved detonation waves has been treated phenomenologically through models of the speed D of a detonation wave as a function of its curvature K, in the Whitham-Bdzil-Lambourn model, also known as detonation shock dynamics. D(K) relations, and the edge angle with adjacent material, have been deduced from the steady shape of detonation waves in long rods and slabs of explosive. Nonlinear D(K) relations have proven necessary to interpret data from charges of different diameter, and even then the D(K) relation may not transfer between diameters. This is an indication that the D(K) relation oversimplifies the kinematics. It is also possible to interpret wave-shape data in terms of an acceleration relation, as used in Brun's Jouguet relaxe model. One form of acceleration behavior is to couple an asymptotic D(K) relation with a time-dependent relaxation toward it from the instantaneous, local speed. This approach is also capable of modeling overdriving of a detonation by a booster. Using archival data for the TATB-based explosive EDC35 and for nitromethane, we found that a simple linear asymptotic D(K) relation with a constant relaxation rate was able to reproduce the experimental wave-shapes better, with fewer parameters, than a nonlinear instantaneous D(K) relation. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  17. The Measurement of Electrical Conductivity in Detonating Condensed Explosives

    DTIC Science & Technology

    1993-03-01

    in the light of our existing understanding. DETONATION CONDUCTION MODELS Various models of conduction have been considered during the course of these...reduction, shock induced conduction in the reaction products, and conduction in coagulated carbon behind the reaction zone. The first model , due to...results below show. The second model was proposed by Griem. 3 For relative simplicity, he assumed that the reaction zone could be represented by a

  18. Comparison of Explosives Residues from the Blow-in-Place Detonation of 155-mm High-Explosive Projectiles

    DTIC Science & Technology

    2006-06-01

    were M107 high-explosive deep-cavity 155-mm howitzer projectiles with a supplemental charge and an M739 point- detonating fuze mounted in the nose...M107, HE, w/o fuze IOP03E100-011 14 1390010809447 N340 Fuze, point-detonating, M739 MA-84B007-013 14 1375014151232 ML47 Cap, blasting, non-electric 30... M739 N340 0 21 0 ə Cap, blasting, M11 ML47 ə 27 ə ə Cap, blasting, M13 MN03 0 ə 0 ə Cap, blasting, M14 MN06 0 0 0 ə Cord, detonating M456 0

  19. A Common Initiation Criterion for CL-20 EBW Detonators

    NASA Astrophysics Data System (ADS)

    Valancius, Cole; Garasi, Christopher; O'Malley, Patrick

    2014-11-01

    In an effort to better understand the initiation mechanisms of hexanitrohexaazaisowurtzitane (CL-20) based Exploding Bridgewire (EBW) detonators, a series of studies were performed comparing electrical input parameters and detonator performance. Traditional methods of analysis, such as burst current and action, do not allow performance to be compared across multiple firesets. A new metric, electrical burst energy density (Eρ) , allows an explosive train to be characterized across all possible electrical configurations (different firesets, different sized gold bridges, different cables and cable lengths); by testing one electrical configuration, performance across all others is understood. This discovery has implications for design and surveillance, and for the first time, presents a link between modeling of electrical circuits (such as in ALEGRA) and explosive performance.

  20. High Explosive Detonation-Confiner Interactions

    NASA Astrophysics Data System (ADS)

    Short, Mark; Quirk, James J.

    2018-01-01

    The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE-confiner material interface. The detonation-confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation-confiner interactions. Computations that reveal the fluid mechanics of HE detonation-confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation-confiner interactions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  2. A complete equation of state for non-ideal condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. D.; Braithwaite, M.; Nikiforakis, N.; Michael, L.

    2017-12-01

    The objective of this work is to improve the robustness and accuracy of numerical simulations of both ideal and non-ideal explosives by introducing temperature dependence in mechanical equations of state for reactants and products. To this end, we modify existing mechanical equations of state to appropriately approximate the temperature in the reaction zone. Mechanical equations of state of the Mie-Grüneisen form are developed with extensions, which allow the temperature to be evaluated appropriately and the temperature equilibrium condition to be applied robustly. Furthermore, the snow plow model is used to capture the effect of porosity on the reactant equation of state. We apply the methodology to predict the velocity of compliantly confined detonation waves. Once reaction rates are calibrated for unconfined detonation velocities, simulations of confined rate sticks and slabs are performed, and the experimental detonation velocities are matched without further parameter alteration, demonstrating the predictive capability of our simulations. We apply the same methodology to both ideal (PBX9502, a high explosive with principal ingredient TATB) and non-ideal (EM120D, an ANE or ammonium nitrate based emulsion) explosives.

  3. Hazard classification assessment for the MC3423 detonator shipping package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.

    1981-11-05

    An investigation was made to determine whether the MC3423 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosive, per Federal Register 49 CFR 173.113, when packaged as specified. This study covers two propagation tests which evaluated the effects of two orientations of the MC3423 in its shipping tray. The method of testing was approved by DOE, Albuquerque Operations Office. Test data led to the recommended hazard classification of Detonating Fuze, Class C Explosive for both orientations of the detonator.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Tarver, C M; Garcia, F

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of themore » binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.« less

  5. Optical Pressure Measurements of Explosions

    DTIC Science & Technology

    2013-09-01

    near field detonation product gases can have a significant effect upon afterburn ignition times (4). The implication being that afterburning times...can be tuned to bring detonation product afterburning into proximity of the leading shock, influencing brisance, and explosive impulse on target. 3...R. Z.; McAndrew, B. A. Afterburn Ignition Delay and Shock Augmentation in Fuel Rich Solid Explosives. Propellants, Explosives, Pyrotechnics 2010

  6. Molecular dynamics calculation on structures, stabilities, mechanical properties, and energy density of CL-20/FOX-7 cocrystal explosives.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen

    2017-11-30

    In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.

  7. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., electric blasting caps, detonating primers, and primed cartridges shall not be stored in the same magazine... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... least two modes of exit have been provided. (e) Permanent underground storage magazines shall be at...

  8. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  9. Numerical Simulation of Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) Concepts for Advanced Propulsion Systems

    DTIC Science & Technology

    2012-02-28

    Coupling in Detonation Waves: 1D Dynamics”, Paper 89, 23rd International Colloquium on the Dynamics of Explosions and Reactive ...and temperature, and can be modeled as a constant volume reaction , which is more efficient than a constant pressure reaction . After the detonation ... kinetics , and flow processes using high order numerical methods. A fifth-order WENO (weighted essentially non -oscillatory12,13) scheme was used

  10. Optical spectroscopy to study confined and semi-closed explosions of homogeneous and composite charges

    NASA Astrophysics Data System (ADS)

    Maiz, Lotfi; Trzciński, Waldemar A.; Paszula, Józef

    2017-01-01

    Confined and semi-closed explosions of new class of energetic composites as well as TNT and RDX charges were investigated using optical spectroscopy. These composites are considered as thermobarics when used in layered charges or enhanced blast explosives when pressed. Two methods to estimate fireball temperature histories of both homogeneous and metallized explosives from the spectroscopic data are also presented, compared and analyzed. Fireball temperature results of the charges detonated in a small explosion chamber under air and argon atmospheres, and detonated in a semi-closed bunker are presented and compared with theoretical ones calculated by a thermochemical code. Important conclusions about the fireball temperatures and the physical and chemical phenomena occurring after the detonation of homogeneous explosives and composite formulations are deduced.

  11. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  13. SN 1991T - Gamma-Ray Observatory's first supernova?

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.

    1991-01-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.

  14. Shock Initiation of Secondary Explosives by MicroSlapper

    NASA Astrophysics Data System (ADS)

    Mendes, Ricardo; Campos, Jose; Plaksin, Igor; Ribeiro, Jose

    2001-06-01

    Using the well known Exploding Foil Initiator (EFI) also called slapper detonator the shock to Detonation Wave (DW) transition in a low dense secondary explosive like PETN and RDX is presented in this study. The EFI formed by a capacitor with capacity up to 0.2μF charged until 3kV was used to burst copper bridges with 0.3x0.3mm and 0.4x0.3mm with 5μm of thickness, and to accelerate Kapton flyer plates with 25μm of thickness until 5mm/μs. The process of Shock to Detonation Transition (SDT) in explosive samples with 5mm of diameter by 10mm of height was characterized by an optical method based on 64 optical fibbers ribbon (250mm of diameter each fibber) connected to a fast electronic streak camera. The obtained results, (x,t) diagrams, with 1ns resolution, show continuously the shock to detonation transition regime and allowed the evaluation of the detonation velocity and the detonation wave front curvature. In that regime DW propagation presents the oscillations in detonation velocity. The results also show the influence of the flyer plate velocity and the initial density of the explosive sample in the process of SDT and front oscillations.

  15. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  16. Kinetic modeling of non-ideal explosives with CHEETAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E; Howard, W M; Souers, P C

    1998-08-06

    We report an implementation of the Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions. Other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. We find that we can replicate experimental detonation velocities to within a few per cent, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  17. Numerical Simulations of Thermobaric Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions inmore » five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.« less

  18. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    NASA Astrophysics Data System (ADS)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  19. Green primaries: Environmentally friendly energetic complexes

    PubMed Central

    Huynh, My Hang V.; Hiskey, Michael A.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    Primary explosives are used in small quantities to generate a detonation wave when subjected to a flame, heat, impact, electric spark, or friction. Detonation of the primary explosive initiates the secondary booster or main-charge explosive or propellant. Long-term use of lead azide and lead styphnate as primary explosives has resulted in lead contamination at artillery and firing ranges and become a major health hazard and environmental problem for both military and civilian personnel. Devices using lead primary explosives are manufactured by the tens of millions every year in the United States from primers for bullets to detonators for mining. Although substantial synthetic efforts have long been focused on the search for greener primary explosives, this unresolved problem has become a “holy grail” of energetic materials research. Existing candidates suffer from instability or excessive sensitivity, or they possess toxic metals or perchlorate. We report here four previously undescribed green primary explosives based on complex metal dianions and environmentally benign cations, (cat)2[MII(NT)4(H2O)2] (where cat is NH4+ or Na+, M is Fe2+ or Cu2+, and NT− is 5-nitrotetrazolato-N2). They are safer to prepare, handle, and transport than lead compounds, have comparable initiation efficiencies to lead azide, and offer rapid reliable detonation comparable with lead styphnate. Remarkably, they possess all current requirements for green primary explosives and are suitable to replace lead primary explosives in detonators. More importantly, they can be synthesized more safely, do not pose health risks to personnel, and cause much less pollution to the environment. PMID:16567623

  20. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  1. Prediction of the explosion effect of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Xiang, Cong; Liang, HuiMin

    2013-05-01

    We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.

  2. Anatomy of a diffracting detonation in a circular arc of explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan

    Using high-resolution numerical simulation, study diffraction of a detonation as it traverses a 270° finite-thickness condensed-phase explosive arc. This geometry admits a steady solution in a frame rotating with angular speed ω 0, which thereby facilitates a detailed analysis of how the loss of energy from the detonation reaction zone due to the diffraction process slows the propagation of the detonation. There exists a region of subsonic flow, between the detonation shock and the curve of sonic flow (labelled the DDZ), which is responsible for setting ω 0. Although the DDZ spans the entire thickness for thin arcs, it ismore » localized to a region near the inside surface as the arc is thickened. Furthermore the explosive energy release near this inside surface plays a disproportionate role in the diffraction process.« less

  3. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE PAGES

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.; ...

    2017-12-04

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  4. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  5. Anatomy of a diffracting detonation in a circular arc of explosive

    DOE PAGES

    Bdzil, John Bohdan

    2018-02-08

    Using high-resolution numerical simulation, study diffraction of a detonation as it traverses a 270° finite-thickness condensed-phase explosive arc. This geometry admits a steady solution in a frame rotating with angular speed ω 0, which thereby facilitates a detailed analysis of how the loss of energy from the detonation reaction zone due to the diffraction process slows the propagation of the detonation. There exists a region of subsonic flow, between the detonation shock and the curve of sonic flow (labelled the DDZ), which is responsible for setting ω 0. Although the DDZ spans the entire thickness for thin arcs, it ismore » localized to a region near the inside surface as the arc is thickened. Furthermore the explosive energy release near this inside surface plays a disproportionate role in the diffraction process.« less

  6. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  7. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  8. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  9. 30 CFR 75.1328 - Damaged or deteriorated explosives and detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (2) Removed from the mine or placed in a magazine and removed when the magazine is resupplied. (b... in a magazine. (c) Deteriorated explosives and detonators shall be handled and disposed of in...

  10. Fast reactions of aluminum and explosive decomposition products in a post-detonation environment

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce C.; Manner, Virginia W.; Lloyd, Joseph M.; Pemberton, Steven J.

    2012-03-01

    In order to determine the reaction behavior of Al in RDX or HMX/cast-cured binder formulations shortly after the passage of the detonation, a series of cylinder tests was performed on formulations comprising of varying binder systems and either 3.5 μm spherical Al or LiF (an inert salt with a similar molecular weight and density to Al). In these studies, both detonation velocity and cylinder expansion velocity are measured in order to determine exactly how and when Al contributes to the explosive event, particularly in the presence of oxidizing/energetic binders. The U.S. Army Research, Development and Engineering Laboratory at Picatinny have recently coined the term "combined effects" explosives for materials such as these; as they demonstrate both high metal pushing capability and high blast ability. This study is aimed at developing a fundamental understanding of the reaction of Al with explosives decomposition products, where both the detonation and early post-detonation environment are analyzed. Reaction rates of Al metal are investigated via comparison of predicted performance based on thermoequilibrium calculations. The detonation velocities, wall velocities, and parameters at the CJ plane are some of the parameters that will be discussed.

  11. GAP/CL-20-Based Compound Explosive: A New Booster Formulation Used in a Small-Sized Initiation Network

    NASA Astrophysics Data System (ADS)

    Yanju, Wei; Jingyu, Wang; Chongwei, An; Hequn, Li; Xiaomu, Wen; Binshuo, Yu

    2017-01-01

    With ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and glycidyl azide polymer (GAP) as the solid filler and binder, respectively, GAP/CL-20-based compound explosives were designed and prepared. Using micro injection charge technology, the compound explosives were packed into small grooves to explore their application in a small-sized initiation network. The detonation reliability, detonation velocity, mechanical sensitivity, shock sensitivity, and brisance of the explosive were measured and analyzed. The results show that when the solid content of CL-20 is 82 wt%, the explosive charged in the groove has a smooth surface from a macroscopic view. From a microscopic view, a coarse surface is bonded with many CL-20 particles by GAP binder. The GAP/CL-20-based explosive charge successfully generates detonation waves in a groove larger than 0.6 mm × 0.6 mm. When the charge density in the groove is 1.68 g.cm-3 (90% theoretical maximum density), the detonation velocity reaches 7,290 m.s-1. Moreover, this kind of explosive is characterized by low impact and shock sensitivity.

  12. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  13. On the violence of thermal explosion in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidester, S.K.; Tarver, C.M.; Green, L.G.

    Heavily confined cylinders of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and triaminotrinitrobenzene (TATB) were heated at rates varying from 2 C/min to 3.3 C/h. Fourteen of the cylinders were hollow, and inner metallic liners with small heaters attached were used to produce uniform temperatures just prior to explosion. A complex thermocouple pattern was used to measure the temperature history throughout the charge and to determine the approximate location where the runaway exothermic reaction first occurred. The violence of the resulting explosion was measured using velocity pin arrays placed inside and outside of the metal confinement cylinders, flash x-rays, overpressure gauges, and fragment collection techniques.more » Five cylinders were intentionally detonated for violence comparisons. The measured temperature histories, times to explosion, and the locations of first reaction agreed closely with those calculated by a two-dimensional heat transfer code using multistep chemical decomposition models. The acceleration of the confining metal cylinders by the explosion process was accurately simulated using a two-dimensional pressure dependent deflagration reactive flow hydrodynamic mode. The most violent HMX thermal explosions gradually accelerated their outer cases to velocities approaching those of intentional detonations approximately 120 {micro}m after the onset of explosion. The measured inner cylinder collapse velocities from thermal explosions were considerably lower than those produced by detonations. In contrast to the HMX thermal reactions, no violent thermal explosions were produced by the TATB-based explosive LX-17. A heavily confined, slowly heated LX-17 test produced sufficient pressure to cause a 0.1 cm bend in a 2 cm thick steel plate.« less

  14. A small-scale experiment using microwave interferometry to investigate detonation and shock-to-detonation transition in pressed TATB

    NASA Astrophysics Data System (ADS)

    Renslow, Peter John

    A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.

  15. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be...

  16. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Pachman, Jiri; Zeman, Svatopluk; Vávra, Pavel; Trzciński, Waldemar A.; Akštein, zbyněk

    2012-10-01

    Four highly brisant nitramines, RDX (1,3,5-trinitro-1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), and ɛ-HNIW (ɛ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), were studied as extruded plastic explosives bonded by two plastic matrices based on polyisobutylene (C4 matrix) and poly-methylmethacrylate (plasticized by dioctyl-adipate) binders. The detonation velocities, D, were measured experimentally. Detonation parameters were also calculated by means of the Kamlet and Jacobs method and CHEETAH and EXPLO5 codes. These detonation parameters showed that plastic-bonded explosives (PBXs) based on BCHMX are more powerful explosives than those based on RDX. The Urizar coefficient for poly(methyl methacrylate) binder was also calculated.

  17. Interaction between a steady detonation wave in nitromethane and geometrical complex confinement defects.

    NASA Astrophysics Data System (ADS)

    Crouzet, Blandine; Carion, Noel; Manczur, Philippe

    2007-06-01

    It is well known that detonation propagation is altered if the explosive is encased in an inert confining material. But in practice, explosives are rarely used without confinement and particular attention must be paid to the problem of explosive/confinement interactions. In this work, we have carried out two copper cylinder expansion tests on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, rapid framing camera, glass block associated with streak camera and velocity laser interferometers. The different experimental records have been examined in the light of a simple 2D theoretical shock polar analysis and 2D numerical simulations.

  18. Chemical energy system for a borehole seismic source. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosivemore » mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).« less

  19. Seismic explosive charge loader and anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcreynolds, O.B.

    1981-07-14

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  20. Three Dimensional Analysis of Induced Detonation of Cased Explosive

    DTIC Science & Technology

    2014-10-16

    hardness and ductility . RHA steel is largely used in military applications to manufacture armoured vehicles. The Johnson Cook (JC) constitutive...armour (RHA) steel were investigated through the LS-DYNA. The investigation focused on shock to detonation simulations of Composition B, with the... hot spots caused by the compression of the explosive from the initial shockwave. Detonation was also caused by pressure waves reflecting against the

  1. Energetic Residues from Blow-in-Place Detonation of 60-mm and 120-mm Fuzed High-Explosive Mortar Cartridges

    DTIC Science & Technology

    2008-10-01

    ER D C/ CR R EL T R -0 8 -1 9 Energetic Residues from Blow-in-Place Detonation of 60-mm and 120-mm Fuzed High-Explosive Mortar Cartridges...Figure 4. Sample filtration setup. ............................................................................................................. 8 ...15 Table 8 . HE munitions BIP and live-fire detonation energetics residues data. .................................. 17 ERDC/CRREL TR-08

  2. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  3. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties

    USDA-ARS?s Scientific Manuscript database

    This book summarizes the science and technology of new generation high energy and insensitive explosives. The objective is to provide the professionals with comprehensive information on synthesis, physicochemical, and detonation properties of the explosives. Potential technologies applicable for tre...

  4. Nanoscience for Insensitive Munitions Development (Briefing Charts)

    DTIC Science & Technology

    2008-12-03

    reactive material Ni/Al Hypervelocity collisions of ND Melting of nitromethane Shocked energetic materials Self-sustained detonation of model explosive ...deformation by compressing, stretching or twisting the bond. First Observed by Bridgeman as Explosion of Common Substances Subjected to Pressure and Shear...in Energetic Materials as New Means for Designing Nonconventional High Explosives : An analysis of Soviet Research, Tech Report 1991. A. M

  5. Simulated Rainfall-Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles

    DTIC Science & Technology

    2009-01-01

    Comp B a b s t r a c t Live-fire military training can deposit millimeter- sized particles of high explosives (HE) on surface soils when rounds do not...might dissolve under the action of rainfall and to use the data to verify a model that predicts HE dissolution as a function of particle size , particle...Detonations scatter HE particles broadly over surface soils. High-order detonations scatter lm- size HE particles and low-order (LO) detonations scatter

  6. Modeling initiation trains based on HMX and TATB

    NASA Astrophysics Data System (ADS)

    Drake, R. C.; Maisey, M.

    2017-01-01

    There will always be a requirement to reduce the size of initiation trains. However, as the size is reduced the performance characteristics can be compromised. A detailed science-based understanding of the processes (ignition and growth to detonation) which determine the performance characteristics is required to enable compact and robust initiation trains to be designed. To assess the use of numerical models in the design of initiation trains a modeling study has been undertaken, with the aim of understanding the initiation of TATB and HMX charges by a confined, surface mounted detonator. The effect of detonator diameter and detonator confinement on the formation of dead zones in the acceptor explosives has been studied. The size of dead zones can be reduced by increasing the diameter of the detonator and by increasing the impedance of the confinement. The implications for the design of initiation trains are discussed.

  7. A transient semimetallic layer in detonating nitromethane

    NASA Astrophysics Data System (ADS)

    Reed, Evan J.; Riad Manaa, M.; Fried, Laurence E.; Glaesemann, Kurt R.; Joannopoulos, J. D.

    2008-01-01

    Despite decades of research, the microscopic details and extreme states of matter found within a detonating high explosive have yet to be elucidated. Here we present the first quantum molecular-dynamics simulation of a shocked explosive near detonation conditions. We discover that the wide-bandgap insulator nitromethane (CH3NO2) undergoes chemical decomposition and a transformation into a semimetallic state for a limited distance behind the detonation front. We find that this transformation is associated with the production of charged decomposition species and provides a mechanism to explain recent experimental observations.

  8. Detonating apparatus

    DOEpatents

    Johnston, Lawrence H.

    1976-01-01

    1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.

  9. Phase velocity enhancement of linear explosive shock tubes

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  10. Numerical simulation of double front detonations in a non-ideal explosive with varying aluminum concentration

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-Cheol; Yoh, Jack; Seoul National University Team

    2017-06-01

    The performance characteristics of aluminized HMX are considered by varying the aluminum (Al) concentration in a hybrid non-ideal detonation model. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when aerobic Al reaction occurs behind the front. While experimental studies have been reported on the effect of Al concentration on both gas-phase and solid-phase detonations, the numerical investigations were limited to only gas-phase detonation for the varying Al concentration. In the current study, a two-phase model is utilized for understanding the volumetric effects of Al concentration in the condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations, and the formation of DFD structure under varying Al concentration (0%-50%) in HMX is investigated.

  11. Shock Detector for SURF model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  12. Shock initiation of 2,4-dinitroimidazole (2,4-DNI)

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.; Tarver, C. M.; Simpson, R. L.

    1996-05-01

    The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO.

  13. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  14. Thermo-Gas-Dynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Bell, J B

    2003-07-27

    A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

  15. Thermodynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Howard, M; Fried, L

    2003-04-23

    Thermodynamic states encountered during afterburning of explosion products gases in air were analyzed with the Cheetah code. Results are displayed in the form of Le Chatelier diagrams: the locus of states of specific internal energy versus temperature, for six different condensed explosives charges. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f ( T ) suitable for specifying the thermodynamic properties required for gas-dynamic models of afterburning in explosions.

  16. Studies on formation of unconfined detonable vapor cloud using explosive means.

    PubMed

    Apparao, A; Rao, C R; Tewari, S P

    2013-06-15

    Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Equation of State of Detonation Products for TNT by Aquarium Technique

    NASA Astrophysics Data System (ADS)

    Han, Yong

    2017-06-01

    During explosive detonation, the detonation pressure (P) and temperature (T) will decay quickly with the expansion of detonation products, and the damage effect is determined by the thermodynamic state of detonation products under high pressure. The traditional and important method for calibrating the parameters of thermodynamic state is cylinder test, but the results showed that when the cylinder expanded to a certain distance, the cylinder wall would break up and the detonation products would jet out, which would affect the accuracy of the calibration parameters of thermodynamic state. In this paper, the aquarium technique was used to study the detonation product thermodynamic state of TNT explosive, obtaining the shock wave track under the water and the trace of the interface between water and detonation products in the specific position with the high speed rotating mirror camera. By thermodynamic calculation program BKW and VHL, the parameters of equation of state were obtained. Using the parameters and the dynamic software LS-DYNA, the underwater explosion of TNT was simulated. Comparison with experimental results shows that the thermodynamic state parameters which is calculated by VHL is more accurate than that of BKW. It is concluded that the aquarium test is a more effective method to calibrate the thermodynamic state than cylinder test.

  18. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  19. Measurement of carbon condensates using small-angle x-ray scattering during detonation of high explosives

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.

    2017-01-01

    The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.

  20. Detonator Performance Characterization Using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Landon, C. D.; Murphy, M. J.; Martinez, M. E.; Mason, T. A.; Thomas, K. A.

    2009-12-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High speed laser schlieren movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), exploding foil initiators (EFI) (or slappers), direct optical initiation (DOI), and electrostatic discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. The EPIC hydrodynamic code has been used to analyze the shock fronts from the schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-05099

  1. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Thomas, Keith; Martinez, Michael; Akinci, Adrian; Murphy, Michael; Adrian, Ronald

    2007-06-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High Speed Laser Schlieren Movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on ``cut-back'' detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. EPIC Hydrodynamic code has been used to analyze the shock fronts from the Schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-07-1229

  2. Use of noise attenuation modeling in managing missile motor detonation activities.

    PubMed

    McFarland, Michael J; Watkins, Jeffrey W; Kordich, Micheal M; Pollet, Dean A; Palmer, Glenn R

    2004-03-01

    The Sound Intensity Prediction System (SIPS) and Blast Operation Overpressure Model (BOOM) are semiempirical sound models that are employed by the Utah Test and Training Range (UTTR) to predict whether noise levels from the detonation of large missile motors will exceed regulatory thresholds. Field validation of SIPS confirmed that the model was effective in limiting the number of detonations of large missile motors that could potentially result in a regulatory noise exceedance. Although the SIPS accurately predicted the impact of weather on detonation noise propagation, regulators have required that the more conservative BOOM model be employed in conjunction with SIPS in evaluating peak noise levels in populated areas. By simultaneously considering the output of both models, in 2001, UTTR detonated 104 missile motors having net explosive weights (NEW) that ranged between 14,960 and 38,938 lb without a recorded public noise complaint. Based on the encouraging results, the U.S. Department of Defense is considering expanding the application of these noise models to support the detonation of missile motors having a NEW of 81,000 lb. Recent modeling results suggest that, under appropriate weather conditions, missile motors containing up to 96,000 lb NEW can be detonated at the UTTR without exceeding the regulatory noise limit of 134 decibels (dB).

  3. Detonation equation of state at LLNL, 1995. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuousmore » oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.« less

  4. 27 CFR 555.124 - Records maintained by licensed dealers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... following the date of purchase or other acquisition of explosive materials (except as provided in paragraph... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators...

  5. 27 CFR 555.124 - Records maintained by licensed dealers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... following the date of purchase or other acquisition of explosive materials (except as provided in paragraph... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators...

  6. DSD/WBL-consistent JWL equations of state for EDC35

    NASA Astrophysics Data System (ADS)

    Hodgson, Alexander N.; Handley, Caroline Angela

    2012-03-01

    The Detonation Shock Dynamics (DSD) model allows the calculation of curvature-dependent detonation propagation. It is of particular use when applied to insensitive high explosives, such as EDC35, since they have a greater non-ideal behaviour. The DSD model is used in conjunction with experimental cylinder test data to obtain the JWL Equation of State (EOS) for EDC35. Adjustment of parameters in the JWL equation changes the expansion profile of the cylinder wall in hydrocode simulations. The parameters are iterated until the best match can be made between simulation and experiment. Previous DSD models used at AWE have no mechanism to adjust the chemical energy release to match the detonation conditions. Two JWL calibrations are performed using the DSD model, with and without Hetherington's energy release model (these proceedings). Also in use is a newly-calibrated detonation speed-curvature relation.

  7. Effect of graphite particle size and content on the formation mechanism of detonation polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Tong, Y.; Cao, Y.; Liu, R.; Shang, S. Y.; Huang, F. L.

    2018-03-01

    The formation mechanism of detonation polycrystalline diamond (DPD) generated from the detonation of a mixed RDX/graphite explosive is investigated. It is found experimentally that the DPD conversion rate decreases with both the content and the particle size of the graphite. Moreover, the particle sizes of the generated DPD powder are analyzed, which shows that, with the decrease in the graphite particle size, the mean number diameter of DPD decreases, but the mean volume diameter increases. In addition, with the help of scanning electron microscopy, it is observed that the in situ phase change occurs in the graphite particles, by which the small particles combine to form numerous large DPD particles. Based on both the experimental data and the classical ZND detonation model, we divide such a DPD synthesis process into two stages: In the first stage, the in situ phase change from graphite to diamond is dominant, supplemented by some coalescence growth at high pressure and temperature, which is affected mainly by the detonation performance of the mixed explosive under consideration. In the second stage, the graphitization of DPD caused by the residual heat is dominant, which is affected mainly by the unloading rate of the particle temperature.

  8. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  9. IMPROVEMENTS IN RADIATION SHUTTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-07-12

    An apparatus for the protection of eyesight from the radiated energy released from a thermonuclear explosion is described. The apparatus consists of a shutter which is opaque to the radiation, an electrically ignitible detonator for blowing the shutter across the path of the radiation, and a phototransistor for igniting the detonator when the radiated energy exceeds a level which is injurious to the eyesight. There may be a second detonator for blowing the shutter away after the explosion has subsided. The second detonator is manually operated. Diagrams show the apparatus attached to a soldier's helmet and a turret. (N.W.R.)

  10. Nucleosynthesis of Iron-Peak Elements in Type-Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Nomoto, Ken'ichi

    The observed features of typical Type Ia supernovae are well-modeled as the explosions of carbon-oxygen white dwarfs both near Chandrasekhar mass and sub-Chandrasekhar mass. However, observations in the last decade have shown that Type Ia supernovae exhibit a wide diversity, which implies models for wider range of parameters are necessary. Based on the hydrodynamics code we developed, we carry out a parameter study of Chandrasekhar mass models for Type Ia supernovae. We conduct a series of two-dimensional hydrodynamics simulations of the explosion phase using the turbulent flame model with the deflagration-detonation-transition (DDT). To reconstruct the nucleosynthesis history, we use the particle tracer scheme. We examine the role of model parameters by examining their influences on the final product of nucleosynthesis. The parameters include the initial density, metallicity, initial flame structure, detonation criteria and so on. We show that the observed chemical evolution of galaxies can help constrain these model parameters.

  11. Report on Transport and Loading of Explosives in the Femtosecond Tank, Room 1711A HEAF 00-010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D L

    2002-04-25

    The current OSP associated with Room 1711A located in Building 191 (HEAF) sets a limit of 5 grams Net Explosive Weight (NEW) of explosives for the room. A question was raised as to the capability of that room to withstand the overpressure created by a detonation of 5 grams NEW of explosives. Calculations were inconclusive, but indicated the wallboard would not remain intact if there was a detonation of 5 grams NEW at a distance of eight feet from the wall. These calculations did not seem logical. To verify the hypothesis, a series of experiments were conducted in the 1more » Kilogram tank. The experiments consisted of exposing a pre-built double-sided wall with the same stud spacing and drywall thickness found in the walls of Room 1711A to various amounts of explosives to create expected overpressures. The objective of this test was to prove or disprove that the walls in room 1711A could withstand a detonation of 5 grams of high explosives and to determine if larger quantities of explosives could be worked on in the room while still providing the required level of protection for personnel outside the room. Testing has verified that not only can the walls withstand a 5 gram explosion, but a 10.75 gram explosion as well. A second test was conducted using 20 grams of explosive plus a detonator. Although the inner piece of drywall cracked, the outer piece of drywall maintained its integrity, thereby confining the effects of the anticipated overpressure to the room.« less

  12. EDS V25 containment vessel explosive qualification test report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests thatmore » were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.« less

  13. Effect of Shock Precompression on the Critical Diameter of Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan

    2006-07-01

    The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Gary R. Jr.; Holmes, Matthew D.; Dickson, Peter

    Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

  15. Smokeless Propellants as Vehicle Borne IED Main Charges: An Initial Threat Assessment

    DTIC Science & Technology

    2008-01-01

    uci: • danger clasa : (B) critical detonation height I 45 - 65 em. detonation danger , during fillin. material in mixing trough, in barrels as a in...Appendix A Examples ofMorphology Appendix B ATF List of Explosives Materials Appendix C Cabella Web Page Appendix D ATF Intelligence Report on Explosives...available for exploitation by violent extremist organizations and individuals. Discussion: Conventional explosive materials remain the most probable

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  17. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    NASA Astrophysics Data System (ADS)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  18. A two-phase model for aluminized explosives on the ballistic and brisance performance

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.

    2018-02-01

    The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.

  19. Explosively driven air blast in a conical shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less

  20. Soft container for explosive nuts

    NASA Technical Reports Server (NTRS)

    Glenn, D. C.; Drummond, W. E.; Miller, G.

    1981-01-01

    Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.

  1. Reconstruction and Modelling of Cylinder Test Wall Expansion from Heterodyne Velocimetry Data

    NASA Astrophysics Data System (ADS)

    Hodgson, Alexander

    2015-06-01

    The `cylinder test' is comprised of a cylinder of explosive encased in a copper tube and detonated at one end. Analysis of the copper wall expansion can be used to generate a JWL equation of state for the explosive. The wall arrival times are traditionally measured using angled probe boards. These times are converted to radial expansion times using the measured steady state detonation velocity. This expansion represents the intersection of the wall with a radial line, hence its differential is the radial intersection velocity. The true radial wall velocity is different due to the small component of particle velocity along the axis. Wall velocities can be directly measured using a Heterodyne Velocimetry (HetV) diagnostic, to a high degree of temporal resolution. However, the wall profile cannot be reconstructed from a standard HetV probe due to a lack of spatial information. This work describes how velocity traces from two HetV probes at different angles can be combined to evaluate the path of a particle on the copper wall, and how the wall profile may then be reconstructed. The method is applied to data from cylinder test experiments on a conventional high explosive. Results are validated using hydrocode modelling coupled with Detonation Shock Dynamics theory.

  2. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives.

    PubMed

    Zhang, Qinghua; Zhang, Jiaheng; Qi, Xiujuan; Shreeve, Jean'ne M

    2014-11-13

    Research in energetic materials is now heavily focused on the design and synthesis of novel insensitive high explosives (IHEs) for specialized applications. As an effective and time-saving tool for screening potential explosive structures, computer simulation has been widely used for the prediction of detonation properties of energetic molecules with relatively high precision. In this work, a series of new polynitrotetraoxopentaaza[3.3.3]-propellane molecules with tricyclic structures were designed. Their properties as potential high explosives including density, heats of formation, detonation properties, impact sensitivity, etc., have been extensively evaluated using volume-based thermodynamic calculations and density functional theory (DFT).These new energetic molecules exhibit high densities of >1.82 g cm(-3), in which 1 gives the highest density of 2.04 g cm(-3). Moreover, most new materials show good detonation properties and acceptable impact sensitivities, in which 5 displays much higher detonation velocity (9482 m s(-1)) and pressure (43.9 GPa) than HMX and has a h50 value of 11 cm. These results are expected to facilitate the experimental synthesis of new-generation nitramine-based high explosives.

  3. A simple model for the dependence on local detonation speed of the product entropy

    NASA Astrophysics Data System (ADS)

    Hetherington, David C.; Whitworth, Nicholas J.

    2012-03-01

    The generation of a burn time field as a pre-processing step ahead of a hydrocode calculation has been mostly upgraded in the explosives modelling community from the historical model of singlespeed programmed burn to DSD/WBL (Detonation Shock Dynamics / Whitham Bdzil Lambourn). The problem with this advance is that the previously conventional approach to the hydrodynamic stage of the model results in the entropy of the detonation products (s) having the wrong correlation with detonation speed (D). Instead of being higher where D is lower, the conventional method leads to s being lower where D is lower, resulting in a completely fictitious enhancement of available energy where the burn is degraded! A technique is described which removes this deficiency of the historical model when used with a DSD-generated burn time field. By treating the conventional JWL equation as a semi-empirical expression for the local expansion isentrope, and constraining the local parameter set for consistency with D, it is possible to obtain the two desirable outcomes that the model of the detonation wave is internally consistent, and s is realistically correlated with D.

  4. Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds

    NASA Astrophysics Data System (ADS)

    Menon, Suresh

    2015-06-01

    Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.

  5. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  6. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  7. Criticality and Induction Time of Hot Spots in Detonating Heterogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2017-06-01

    Detonation reaction in physically heterogeneous explosives is-to an extent that depends on multiple material attributes-likewise heterogeneous. Like all heterogeneous reaction, detonation heterogeneous reaction begins at nucleation sites, which, in this case, comprise localized regions of higher-than-average temperature-so-called hot spots. Burning grows at, and then spreads from these nucleation sites, via reactive-thermal (R-T) waves, to consume the interstitial material. Not all hot spots are consequential, but only those that are 1) supercritical, and 2) sufficiently so as to form R-T waves before being consumed by those already emanating from neighboring sites. I explore aspects of these two effects by deriving simple formulae for hot spot criticality and the induction time of supercritical hot spots. These results serve to illustrate the non-intuitive, yet mathematically simplifying, effects of extreme dependence of reaction rate upon temperature. They can play a role in the development of better reactive burn models, for which we seek to homogenize the essentials of heterogeneous detonation reaction without introducing spurious complexity. Work supported by the US Dept. of Energy.

  8. Advanced Warheads Concepts: An Advanced Equation of State for Overdriven Detonation

    DTIC Science & Technology

    1991-05-01

    equation of state (Jones-Wilkens Lee-Baker ( JWLB )] for high explosive detonation products. JWLB is suitable for overdriven detonation and material...In order to achieve a suitable equation of state, an appropriate equation of state form ( JWLB ) was derived. A standard explosive (octol 75/25) was...resulting equation of slate form, named Jones-Wilkens-Lcc-Baker ( JWLB ), is as follows: L ’L RiVJ .RiV+AJE + C(1.W(oH-l) -RoV X-JA^VC’V + O) The

  9. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  10. Coupling Detonation Shock Dynamics in a Consistent Manner to Equations of State

    NASA Astrophysics Data System (ADS)

    Belfield, William

    2017-06-01

    In hydrocode simulations, detonating high explosives (HE) are often modelled using programmed burn. Each HE cell is assigned a ``burn time'' at which it should begin to behave as HE products in the subsequent simulation. Traditionally, these burn times were calculated using a Huygens construction to propagate the detonation wave at a constant speed corresponding to the planar Chapman-Jouguet (CJ) velocity. The Detonation Shock Dynamics (DSD) model improves upon this approach by treating the local detonation velocity as a function of wave curvature, reflecting that the detonation speed is not constant in reality. However, without alterations being made, this variable detonation velocity is inconsistent with the CJ velocity associated with the HE products equation of state (EOS). Previous work has shown that the inconsistency can be resolved by modifying the HE product EOS, but this treatment is empirical in nature and has only been applied to the JWL EOS. This work investigates different methods to resolve the inconsistency that are applicable both to JWL and to tabular HE product EOS, and their impact on hydrocode simulations.

  11. Characterization of Detonation Soot Produced During Steady and Overdriven Conditions for Three High Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David; Amato, Ronald; Dattelbaum, Dana; Firestone, Millicent; Gustavsen, Richard; Huber, Rachel; Ringstrand, Bryan

    2015-06-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, ``onion-like'' carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Structural studies to glean the features of the solid carbon products have been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and X-Ray Pair Distribution Function measurements (PDF). Bulk soot was also analyzed for elemental and isotopic compositions. We will discuss differences in the structure and composition of the detonation carbon as a function of formulation, detonation conditions, and the surrounding atmosphere.

  12. Detonation Synthesis of Alpha-Variant Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  13. Experimental study of detonation of large-scale powder-droplet-vapor mixtures

    NASA Astrophysics Data System (ADS)

    Bai, C.-H.; Wang, Y.; Xue, K.; Wang, L.-F.

    2018-05-01

    Large-scale experiments were carried out to investigate the detonation performance of a 1600-m3 ternary cloud consisting of aluminum powder, fuel droplets, and vapor, which were dispersed by a central explosive in a cylindrically stratified configuration. High-frame-rate video cameras and pressure gauges were used to analyze the large-scale explosive dispersal of the mixture and the ensuing blast wave generated by the detonation of the cloud. Special attention was focused on the effect of the descending motion of the charge on the detonation performance of the dispersed ternary cloud. The charge was parachuted by an ensemble of apparatus from the designated height in order to achieve the required terminal velocity when the central explosive was detonated. A descending charge with a terminal velocity of 32 m/s produced a cloud with discernably increased concentration compared with that dispersed from a stationary charge, the detonation of which hence generates a significantly enhanced blast wave beyond the scaled distance of 6 m/kg^{1/3}. The results also show the influence of the descending motion of the charge on the jetting phenomenon and the distorted shock front.

  14. Minutes of the 23rd Eplosives Safety Seminar, volume 2

    NASA Astrophysics Data System (ADS)

    1988-08-01

    Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.

  15. Initiation of insensitive explosives by laser energy

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Yang, L. C.

    1972-01-01

    Instantaneous longitudinal detonations were observed in confined columns of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and tetryl when these materials were pulsed with light energy from a focused Q-switch ruby laser. The laser energy ranged from 0.5 to 4.2 J with a pulse width of 25 ns. Enhancement of the ignition mechanism is hypothesized when a 100-nm (1000-A) thick aluminum film is vacuum-deposited on the explosive side of the window. Upon irradiation from the laser, a shock is generated at the aluminum explosive interface. Steady state detonations can be reached in less than 0.5 microseconds with less than 10% variation in detonation velocity for PETN and RDX.

  16. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  17. Equations of state for detonation products of high energy PBX explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E. L.; Helm, F. H.; Finger, M.

    1977-08-01

    It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.

  18. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  19. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; ...

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  20. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time.more » After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  1. One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A; Roeske, F; Tran, T

    2006-02-06

    The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.

  2. Thermal Behaviors and Their Correlations of Mg(BH4)2-Contained Explosives

    NASA Astrophysics Data System (ADS)

    Yue, Yue; Chen, Liping; Peng, Jinhua

    2018-01-01

    In order to explore the effect of metal hydride on energetic materials' thermal behaviors and their correlations, we studied the heats of combustion and detonation of RDX, TNT, and Mg(BH4)2-containing explosives both theoretically and experimentally. The results showed that Mg(BH4)2 can significantly improve the energy of explosive. As the mass fraction of Mg(BH4)2 increases, the combustion heat of composite explosives increases gradually, while the combustion efficiency decreases. When its mass fraction is about 30%, the theoretical heats of detonation of RDX/Mg(BH4)2 and TNT/Mg(BH4)2 reach maximum, which are 7418.47 and 7032.46 kJ/kg, respectively. When we compared the errors between calculation and experimental values, we found that L-C method is more accurate in calculating oxygen-enriched and oxygen-balanced explosives, and that minimum free energy method is more suitable for seriously negative oxygen-balanced explosive. For single explosive, there are three kinds of relationships between heat of combustion and detonation according to the oxygen balance. For Mg(BH4)2-containing explosives, the relationship is in accordance with Boltzmann function.

  3. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  5. Reactive Blast Waves from Composite Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-10-16

    Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuingmore » Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.« less

  6. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Blasting in excavation work under compressed air. 1926.913... Use of Explosives § 1926.913 Blasting in excavation work under compressed air. (a) Detonators and... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no...

  7. 30 CFR 77.1303 - Explosives, handling and use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than one shot is to be fired at one time, blasting shall be done electrically or with detonating cord... shots are fired. (f) Explosives shall be kept separated from detonators until charging is started. (g... blunt and squared at one end and made of wood, nonsparking material, or of special plastic acceptable to...

  8. 30 CFR 77.1303 - Explosives, handling and use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than one shot is to be fired at one time, blasting shall be done electrically or with detonating cord... shots are fired. (f) Explosives shall be kept separated from detonators until charging is started. (g... blunt and squared at one end and made of wood, nonsparking material, or of special plastic acceptable to...

  9. 30 CFR 77.1303 - Explosives, handling and use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than one shot is to be fired at one time, blasting shall be done electrically or with detonating cord... shots are fired. (f) Explosives shall be kept separated from detonators until charging is started. (g... blunt and squared at one end and made of wood, nonsparking material, or of special plastic acceptable to...

  10. 30 CFR 77.1303 - Explosives, handling and use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than one shot is to be fired at one time, blasting shall be done electrically or with detonating cord... shots are fired. (f) Explosives shall be kept separated from detonators until charging is started. (g... blunt and squared at one end and made of wood, nonsparking material, or of special plastic acceptable to...

  11. 30 CFR 77.1303 - Explosives, handling and use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than one shot is to be fired at one time, blasting shall be done electrically or with detonating cord... shots are fired. (f) Explosives shall be kept separated from detonators until charging is started. (g... blunt and squared at one end and made of wood, nonsparking material, or of special plastic acceptable to...

  12. "US-detonated nano bombs" facilitate targeting treatment of resistant breast cancer.

    PubMed

    Shi, Jinjin; Liu, Wei; Fu, Yu; Yin, Na; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong

    2018-03-28

    Reversal of drug resistance and targeted therapy are the keys but remain challenging in resistant breast cancer treatment. Herein, low frequency ultrasound detonated "nano bombs" were rationally designed and used for treatment of resistant breast cancer. For the 'nano bombs', the ammunition (Doxorubicin, DOX) was loaded into the ammunition depot (hollow mesoporous TiO 2 , MTNs), and the safety device (dsDNA) was wrapped on the surface of MTNs to avoid the unexpected DOX release. We found the "US-detonated explosive" abilities of "nano bomb" MTNs (NBMTNs), including explosive generation of ROS, explosive release of DOX, US-triggered lysosome escape and mitochondrial targeting in the in vitro and in vivo studies. More importantly, the drug resistance of MCF-7/ADR cells could be reversed via the inhibition of mitochondrial energy supply approach caused by the "explosion" of NBMTNs. Furthermore, NBMTNs combined the superior chemotherapy efficacy of DOX and potent SDT efficacy in one single platform and significantly enhanced the anticancer efficacy. Our results demonstrate an approach for reversing resistance and specific targeting of tumors using 'US-detonated nano bombs'. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Nuclear and Non-Nuclear Airblast Effects.

    DTIC Science & Technology

    1984-02-14

    algorithms. 2 The above methodologr has been applied to a series of test prorlems initiated by a spherical high- explosive (HE) detonation In air . An...used, together with a real- air equation of state, to follow the development of an explosion initialized with the 1-kton standard as it reflects from the...interior. Stage (1) is not contained in our model; since the weapon mass greatly exceeds the ,mass of air contained within the initial explosion radius

  14. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Fried, L; Glaesemann, K

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for speciesmore » coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.« less

  15. Determination of detonation parameters for liquid High Explosives

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander

    2011-06-01

    The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.

  16. Determination of detonation parameters for liquid high explosives

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander

    2012-03-01

    The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.

  17. Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance

    DTIC Science & Technology

    2007-02-05

    Electronic excitation has been suggested as one contributing mechanistic step in a multiprocess detonation model [18], and such electronic...and, (b) Dick, J. J., Orientation Dependence of the Shock Initiation Sensitivity of PETN: A Steric Hindrance Model , Workshop on Desensitization of...Explosives and Propellants, Rijswijk, The Netherlands, 11-13 Nov 1991. [15] Piermarini, G. J., Block, S., Miller , P. J., Effects of Pressure on

  18. A metric space for Type Ia supernova spectra: a new method to assess explosion scenarios

    NASA Astrophysics Data System (ADS)

    Sasdelli, Michele; Hillebrandt, W.; Kromer, M.; Ishida, E. E. O.; Röpke, F. K.; Sim, S. A.; Pakmor, R.; Seitenzahl, I. R.; Fink, M.

    2017-04-01

    Over the past years, Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, and considerable attention has been given to, both, observations and models of these events. However, until now, their progenitors are not known. The observed diversity of light curves and spectra seems to point at different progenitor channels and explosion mechanisms. Here, we present a new way to compare model predictions with observations in a systematic way. Our method is based on the construction of a metric space for SN Ia spectra by means of linear principal component analysis, taking care of missing and/or noisy data, and making use of partial least-squares regression to find correlations between spectral properties and photometric data. We investigate realizations of the three major classes of explosion models that are presently discussed: delayed-detonation Chandrasekhar-mass explosions, sub-Chandrasekhar-mass detonations and double-degenerate mergers, and compare them with data. We show that in the principal component space, all scenarios have observed counterparts, supporting the idea that different progenitors are likely. However, all classes of models face problems in reproducing the observed correlations between spectral properties and light curves and colours. Possible reasons are briefly discussed.

  19. An adaptive method for a model of two-phase reactive flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Schwendeman, D. W.

    2008-11-01

    A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.

  20. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  1. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, . L

    2006-06-19

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  2. Development of multi-component explosive lenses for arbitrary phase velocity generation

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan

    2013-06-01

    The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.

  3. Acceleration of plates using non-conventional explosives heavily-loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Petel, O. E.; Huneault, J.; Serge, M.; Frost, D. L.; Higgins, A. J.

    2014-05-01

    The detonation behavior of high explosives containing quantities of dense additives has been previously investigated with the observation that such systems depart dramatically from the approximately "gamma law" behavior typical of conventional explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been less thoroughly studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. It was observed that terminal flyer velocity scales primarily with the ratio of flyer mass to mass of the explosive component; a fundamental feature of the Gurney method. Velocity decrement from the addition of particles was only 20%-30% compared to the resulting velocity if propelled by an equivalent quantity of neat explosive.

  4. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Carney, Joel R.; Miller, J. Scott; Gump, Jared C.; Pangilinan, G. I.

    2006-06-01

    The dynamic observation and characterization of light emission following the detonation and subsequent combustion of an aluminized explosive is described. The temporal, spatial, and spectral specificity of the light emission are achieved using a combination of optical diagnostics. Aluminum and aluminum monoxide emission peaks are monitored as a function of time and space using streak camera based spectroscopy in a number of light collection configurations. Peak areas of selected aluminum containing species are tracked as a function of time to ascertain the relative kinetics (growth and decay of emitting species) during the energetic event. At the chosen streak camera sensitivity, aluminum emission is observed for 10μs following the detonation of a confined 20g charge of PBXN-113, while aluminum monoxide emission persists longer than 20μs. A broadband optical emission gauge, shock velocity gauge, and fast digital framing camera are used as supplemental optical diagnostics. In-line, collimated detection is determined to be the optimum light collection geometry because it is independent of distance between the optics and the explosive charge. The chosen optical configuration also promotes a constant cylindrical collection volume that should facilitate future modeling efforts.

  5. Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator

    NASA Technical Reports Server (NTRS)

    Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen

    1994-01-01

    The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.

  6. Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas

    NASA Astrophysics Data System (ADS)

    Houim, Ryan

    2017-11-01

    Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.

  7. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  8. Building an Efficient Model for Afterburn Energy Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, S; Kuhl, A; Najjar, F

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here wemore » construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.« less

  9. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  10. Near-Infrared Spectra of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.

    2003-01-01

    We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or merger models. Differences in the spectra of the individual SNe Ia demonstrate the variety of these events.

  11. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  12. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  13. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  14. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  15. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  16. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  17. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  18. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  19. Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn; Myers, Thomas; Clarke, Steven

    2017-06-01

    Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.

  20. Selectable fragmentation warhead

    DOEpatents

    Bryan, Courtney S.; Paisley, Dennis L.; Montoya, Nelson I.; Stahl, David B.

    1993-01-01

    A selectable fragmentation warhead capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  1. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pineau, Nicolas

    2016-01-01

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  2. Formation Pathways of Carbon Allotropes in Detonation Condensates

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael; Bagge-Hansen, Michael; Hammons, Josh; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; Lee, Jonathan; van Buuren, Tony; Pagoria, Phil; May, Chadd; Aloni, Shaul; Willey, Trevor

    2017-06-01

    Time-resolved small-angle scattering (TR-SAXS) data reveal evolution in the size and morphology of nano-carbon particles that form during the first microsecond during the detonation of high explosive (HE) materials, but do not provide chemical or phase information. Herein, we present analysis of complementary post-detonation soots collected with minimal environmental carbon or other contamination: HE samples are detonated whithin clean ice capture layers to yield aqueous dispersions of the carbonaceous soot. We report substantial variation in soots formed through the detonation of HE materials that attain a variety of temperatures and pressures during detonation. Transmission electron microscopy analysis of these recovered soots provides physical and chemical information that we compare directly to TR-SAXS data and SAXS measurements from recovered soots. We observe various structures including graphitic and amorphous carbon, nanodiamond, and spherical carbon onions. These experimental data correlate to models of how products from HE materials traverse the carbon phase diagram during detonation. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Evolution of Fuel-Air and Contaminant Clouds Resulting from a Cruise Missile Explosion Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, A S; Kul, A L

    2005-06-22

    A low-mach-number hydrodynamics model has been used to simulate the evolution of a fuel-air mixture and contaminant cloud resulting from the detonation of a cruise missile. The detonation has been assumed to be non-nuclear. The cloud evolution has been carried out to a time of 5.5 seconds. At this time the contaminant has completely permeated the initial fuel-air mixture cloud.

  4. ASTROPHYSICS: Astronomers Spot Their First Carbon Bomb.

    PubMed

    Irion, R

    2000-11-17

    Carbon on the surface of an ultradense star detonated in a 3-hour thermonuclear explosion, according to a report at a meeting here last week of the American Astronomical Society's High Energy Astrophysics Division. If confirmed, the burst would be the first known cosmic explosion fueled solely by carbon rather than hydrogen or helium and could verify or revise models of carbon combustion.

  5. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  6. Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario

    DOE PAGES

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; ...

    2016-07-19

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  7. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    NASA Astrophysics Data System (ADS)

    Kittell, David E.; Cummock, Nick R.; Son, Steven F.

    2016-08-01

    Small scale characterization experiments using only 1-5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.

  8. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittell, David E.; Cummock, Nick R.; Son, Steven F.

    2016-08-14

    Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, itmore » is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.« less

  9. Kinetic calculations of explosives with slow-burning constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1998-07-01

    The equilibrium thermochemical code CHEETAH V1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  10. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  11. Turbulent mixing& combustion in TNT explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Oppenheim, A K

    2000-12-12

    Effects of turbulent mixing induced by explosion of a 1-g spherical TNT charge in air are investigated. The detonation wave in the charge transforms the solid explosive (C{sub 7}H{sub 5}N{sub 3}O{sub 6}) to gaseous products, rich in C{sub (S)}, and CO. The detonation pressure ({approx}210 kb) causes the products to expand rapidly, driving a blast wave into the surrounding air (Brode, 1959). The interface between the products and air is unstable (Richtmyer, 1960; Meshkov, 1960; Anisimov & Zel'dovich, 1977). As shown in Collage Ia-c, this region rapidly transitions into a turbulent mixing layer (Kuhl, 1996). As the embedded shock, I,more » implodes, it draws the mixing structures (Taylor cavities) into the origin (Collage Id-e). In this way air becomes distributed throughout the hot detonation products gases. This process is enhanced by shock reflections from confining walls. In either case (confined or unconfined), rapid combustion takes place where the expanded detonation products play the role of fuel. This leads to a dramatic increase in chamber pressure (Fig. 1)-in contrast to a corresponding TNT explosion in nitrogen. The problem was modeled as turbulent combustion in an unmixed system at large Reynolds, Peclet and Damkohler numbers (Kuhl et al, 1997). The numerical solution was obtained by a high-order Godunov scheme (Colella & Glaz, 1985). Adaptive Mesh Refinement (Berger & Colella, 1989) was used to follow the turbulent mixing on the computational grid in as much detail as possible. The results reveal all the dynamic features (Fig. 2) of the exothermic process of combustion controlled by fluid-mechanic transport in a highly turbulent field (Kuhl & Oppenheim, 1997), in contrast to the conventional reaction-diffusion mechanism of Zel'dovich & Frank-Kamenetskii (1938).« less

  12. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Cole; Guillochon, James; De Colle, Fabio

    2013-07-01

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range betweenmore » 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.« less

  13. Estimating Equivalency of Explosives Through A Thermochemical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less

  14. Numerical simulation of a 100-ton ANFO detonation

    NASA Astrophysics Data System (ADS)

    Weber, P. W.; Millage, K. K.; Crepeau, J. E.; Happ, H. J.; Gitterman, Y.; Needham, C. E.

    2015-03-01

    This work describes the results from a US government-owned hydrocode (SHAMRC, Second-Order Hydrodynamic Automatic Mesh Refinement Code) that simulated an explosive detonation experiment with 100,000 kg of Ammonium Nitrate-Fuel Oil (ANFO) and 2,080 kg of Composition B (CompB). The explosive surface charge was nearly hemispherical and detonated in desert terrain. Two-dimensional axisymmetric (2D) and three-dimensional (3D) simulations were conducted, with the 3D model providing a more accurate representation of the experimental setup geometry. Both 2D and 3D simulations yielded overpressure and impulse waveforms that agreed qualitatively with experiment, including the capture of the secondary shock observed in the experiment. The 2D simulation predicted the primary shock arrival time correctly but secondary shock arrival time was early. The 2D-predicted impulse waveforms agreed very well with the experiment, especially at later calculation times, and prediction of the early part of the impulse waveform (associated with the initial peak) was better quantitatively for 2D compared to 3D. The 3D simulation also predicted the primary shock arrival time correctly, and secondary shock arrival times in 3D were closer to the experiment than in the 2D results. The 3D-predicted impulse waveform had better quantitative agreement than 2D for the later part of the impulse waveform. The results of this numerical study show that SHAMRC may be used reliably to predict phenomena associated with the 100-ton detonation. The ultimate fidelity of the simulations was limited by both computer time and memory. The results obtained provide good accuracy and indicate that the code is well suited to predicting the outcomes of explosive detonations.

  15. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  16. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  17. Emergency response guidance for the first 48 hours after the outdoor detonation of an explosive radiological dispersal device.

    PubMed

    Musolino, Stephen V; Harper, Frederick T

    2006-04-01

    Strategies and decisions to protect emergency responders, the public, and critical infrastructure against the effects of a radiological dispersal device detonated outdoors must be made in the planning stage, not in the early period just after an attack. This contrasts with planning for small-scale types of radiological or nuclear emergencies, or for a large-scale nuclear-power-type accident that evolves over many hours or days before radioactivity is released to the environment, such that its effects can be prospectively modeled and analyzed. By the time it is known an attack has occurred, most likely there will have been casualties, all the radioactive material will have been released, plume growth will be progressing, and there will be no time left for evaluating possible countermeasures. This paper offers guidance to planners, first responders, and senior decision makers to assist them in developing strategies for protective actions and operational procedures for the first 48 hours after an explosive radiological dispersal device has been detonated.

  18. Detonation Initiation of Heterogeneous Melt-Cast High Explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent

    2015-06-01

    The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.

  19. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  20. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  1. DDT Characteristics of Laser Driven Exploding Bridgewire Detonators

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2005-07-01

    The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.

  2. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel

    2009-06-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the features (von Neumann spike and sonic locus) of the reaction zone make these measurements difficult. Here, we report results obtained from using and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating HE (nitromethane)/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments, in either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation systems and the velocimetry systems were different. Some differences were observed in the von Neumann spike height because of the approximately 2 nanosecond time resolution of the techniques -- in some or all cases the spike top was truncated.

  3. 76 FR 30552 - Taking and Importing Marine Mammals: U.S. Navy Training in the Virginia Capes Range Complex and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... involving underwater detonations that will occur over the course of the 5-year rules, and indicate that... within the analyzed and authorized limits. Since the issuance of these rules, the Navy realized that... of explosives and sound sources to be used (e.g., number of events or explosive detonations) over the...

  4. Experimental and computational investigation of microwave interferometry (MI) for detonation front characterization

    NASA Astrophysics Data System (ADS)

    Mays, Owen; Tringe, Joe; Souers, Clark; Lauderbach, Lisa; Baluyot, Emer; Converse, Mark; Kane, Ron

    2017-06-01

    Microwave interferometry (MI) presents several advantages over more traditional existing shock and deflagration front diagnostics. Most importantly, it directly interrogates these fronts, instead of measuring the evolution of containment surfaces or explosive edges. Here we present the results of MI measurements on detonator-initiated cylinder tests, as well as on deflagration-to-detonation transition experiments, with emphasis on optimization of signal strength through coupling devices and through microwave-transparent windows. Full-wave electromagnetic field finite element simulations were employed to better understand microwave coupling into porous and near full theoretical maximum density (TMD) explosives. HMX and TATB-based explosives were investigated. Data was collected simultaneously at 26.5 GHz and 39 GHz, allowing for direct comparison of the front characteristics and providing insight into the dielectric properties of explosives at these high frequencies. MI measurements are compared against detonation velocity results from photonic Doppler velocimetry probes and high speed cameras, demonstrating the accuracy of the MI technique. Our results illustrate features of front propagation behavior that are difficult to observe with other techniques. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  6. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  7. Apparatus and method for producing fragment-free openings

    DOEpatents

    Cherry, Christopher R.

    2001-01-01

    An apparatus and method for explosively penetrating hardened containers such as steel drums without producing metal fragmentation is disclosed. The apparatus can be used singularly or in combination with water disrupters and other disablement tools. The apparatus is mounted in close proximity to the target and features a main sheet explosive that is initiated at least three equidistant points along the sheet's periphery. A buffer material is placed between the sheet explosive and the target. As a result, the metallic fragments generated from the detonation of the detonator are attenuated so that no fragments from the detonator are transferred to the target. As a result, an opening can be created in containers such as steel drums through which access to the IED is obtained to defuse it with projectiles or fluids.

  8. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  9. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  10. Sensitized Liquid Hydrazine Detonation Studies

    NASA Technical Reports Server (NTRS)

    Rathgeber, K. A.; Keddy, C. P.; Bunker, R. L.

    1999-01-01

    Vapor-phase hydrazine (N2H4) is known to be very sensitive to detonation while liquid hydrazine is very insensitive to detonation, theoretically requiring extremely high pressures to induce initiation. A review of literature on solid and liquid explosives shows that when pure explosive substances are infiltrated with gas cavities, voids, and/or different phase contaminants, the energy or shock pressure necessary to induce detonation can decrease by an order of magnitude. Tests were conducted with liquid hydrazine in a modified card-gap configuration. Sensitization was attempted by bubbling helium gas through and/or suspending ceramic microspheres in the liquid. The hydrazine was subjected to the shock pressure from a 2 lb (0.9 kg) Composition C-4 explosive charge. The hydrazine was contained in a 4 in. (10.2 cm) diameter stainless steel cylinder with a 122 in(sup 3) (2 L) volume and sealed with a polyethylene cap. Blast pressures from the events were recorded by 63 high speed pressure transducers located on three radial legs extending from 4 to 115 ft (1.2 to 35.1 in) from ground zero. Comparison of the neat hydrazine and water baseline tests with the "sensitized" hydrazine tests indicates the liquid hydrazine did not detonate under these conditions.

  11. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  12. A morphological investigation of soot produced by the detonation of munitions.

    PubMed

    Pantea, Dana; Brochu, Sylvie; Thiboutot, Sonia; Ampleman, Guy; Scholz, Günter

    2006-10-01

    The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.

  13. TYPE Ia SUPERNOVAE: CAN CORIOLIS FORCE BREAK THE SYMMETRY OF THE GRAVITATIONAL CONFINED DETONATION EXPLOSION MECHANISM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Senz, D.; Cabezón, R. M.; Thielemann, F. K.

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependentmore » on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.« less

  14. Initiation and structures of gaseous detonation

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. A.; Vasiliev, V. A.

    2018-03-01

    The analysis of the initiation of a detonation wave (DW) and the emergence of a multi-front structure of the DW-front are presented. It is shown that the structure of the DW arises spontaneously at the stage of a strong overdriven of the wave. The hypothesis of the gradual enhancement of small perturbations on an initially smooth initiating blast wave, traditionally used in the numerical simulation of multi-front detonation, does not agree with the experimental data. The instability of the DW is due to the chemical energy release of the combustible mixture Q. A technique for determining the Q-value of mixture was proposed, based on reconstruction of the trajectory of the expanding wave from the position of the strong explosion model. The wave trajectory at the critical initiation of a multifront detonation in a combustible mixture is compared with the trajectory of an explosive wave from the same initiator in an inert mixture whose gas-dynamic parameters are equivalent to the parameters of the combustible mixture. The energy release of a mixture is defined as the difference in the joint energy release of the initiator and the fuel mixture during the critical initiation and energy release of the initiator when the blast wave is excited in an inert mixture. Observable deviations of the experimental profile of Q from existing model representations were found.

  15. Small-scale Detonation Velocity Measurement of Select CL-20 Cocrystals

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Vasant; Gunduz, I. Emre; Son, Steven F.

    2017-06-01

    The challenge of developing novel energetic materials makes cocrystallization using existing energetic molecules useful. Cocrystallization of CL-20 with other high explosives such as HMX has been demonstrated previously to yield novel energetic materials and may have favorable detonation performance. However, detonation performance characterization of these cocrystals is challenging due to limited availability of material. Also, the contribution of bonding energy between coformers contained within the cocrystal is not well-understood. We present the comparison of steady detonation velocities of CL-20 cocrystals to their corresponding physical mixtures using microwave interferometry. With less than 1.5 g of the cocrystal material contained within 6.52 mm diameter charges, shot-to-shot variation in detonation velocity of only about 100 m/s are achievable with this technique. This variation is adequate to resolve relatively small differences between physical mixed explosive molecules and cocrystals.

  16. Fine Tuning the CJ Detonation Speed of a High Explosive products Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    For high explosive (HE) simulations, inaccuracies of a per cent or two in the detonation wave speed can result from not suficiently resolving the reaction zone width or from small inaccuracies in calibrating the products equation of state (EOS) or from variation of HE lots. More accurate detonation speeds can be obtained by ne tuning the equation of state to compensate. Here we show that two simple EOS transformations can be used to adjust the CJ detonation speed by a couple of per cent with minimal effect on the CJ release isentrope. The two transformations are (1) a shift inmore » the energy origin and (2) a linear scaling of the speci c volume. The effectiveness of the transformations is demonstrated with simulations of the cylinder test for PBX 9502 starting with a products EOS for which the CJ detonation speed is 1 per cent too low.« less

  17. Understanding ultrafine nanodiamond formation using nanostructured explosives

    PubMed Central

    Pichot, Vincent; Risse, Benedikt; Schnell, Fabien; Mory, Julien; Spitzer, Denis

    2013-01-01

    The detonation process is able to build new materials with a bottom-up approach. Diamond, the hardest material on earth, can be synthesized in this way. This unconventional synthesis route is possible due to the presence of carbon inside the high-explosive molecules: firing high-explosive mixtures with a negative oxygen balance in a non-oxidative environment leads to the formation of nanodiamond particles. Trinitrotoluene (TNT) and hexogen (RDX) are the explosives primarily used to synthesize nanodiamonds. Here we show that the use of nanostructured explosive charges leads to the formation of smaller detonation nanodiamonds, and it also provides new understanding of nanodiamond formation-mechanisms. The discontinuity of the explosive at the nanoscale level plays the key role in modifying the diamond particle size, and therefore varying the size with microstructured charges is impossible. PMID:23831716

  18. Historical Survey: German Research on Hydrogen Peroxide/Alcohol Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmeter, John E.

    Discussion of HP/fuel explosives in the scientific literature dates back to at least 1927. A paper was published that year in a German journal entitled On Hydrogen Peroxide Explosives [Bamberger and Nussbaum 1927]. The paper dealt with HP/cotton/Vaseline formulations, specifically HP89/cotton/Vaseline (76/15/9) and (70/8.5/12.5). The authors performed experiments with charge masses of 250-750 g and charge diameters of 35-45 mm. This short paper provides brief discussion on the observed qualitative effects of detonations but does not report detonation velocities.

  19. Characterization of Jets From Exploding Bridge Wire Detonators

    DTIC Science & Technology

    2005-05-01

    Laboratories: Albuquerque, NM, 1992. 8. Lee, E. L; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL ...Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory, University of California: Livermore, CA 1981. 22...ATTN AFATL DLJR D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA ATTN W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 2 LOS

  20. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  1. Porting Inition and Failure to Linked Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Souers, P C

    2007-07-18

    Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over amore » small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration.« less

  2. Dynamics of explosively imploded pressurized tubes

    NASA Astrophysics Data System (ADS)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  3. 30 CFR 57.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...

  4. 30 CFR 57.6201 - Separation of transported explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...

  5. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  6. On the Violence of High Explosive Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C M; Chidester, S K

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  7. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations

    DOE PAGES

    Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.; ...

    2017-09-12

    Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less

  8. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.

    Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less

  9. DSD-Consistent JWL Equations of State for EDC35

    NASA Astrophysics Data System (ADS)

    Hodgson, Alexander

    2011-06-01

    The Detonation Shock Dynamics model (DSD) allows the calculation of curvature-dependent detonation propagation. It is of particular use when applied to insensitive high explosives, such as EDC35, since they have a greater non-ideal behaviour. The DSD model has been used in conjunction with an experimental cylinder test to obtain the JWL Equation of State (EoS) for EDC35. Adjustment of parameters in the JWL equation changes the expansion profile of the simulated wall expansion. The parameters are iterated until the best match can be made between simulation and experiment. Previous DSD models used at AWE have no energy release mechanism to adjust the release of chemical energy to match the detonation conditions. Two JWL calibrations are performed using the DSD model, with and without Hetherington's energy release model (these proceedings). Also in use is a newly-calibrated detonation speed-curvature relation that is much closer, compared to previous calibrations, to Bdzil's equivalent for PBX9502. This paper discusses the possible improvements that this approach makes to the EDC35 JWL EoS.

  10. Characterization of detonation soot produced during steady and overdriven conditions for three high explosive formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David W.; Huber, Rachel C.; Amato, Ronald S.; Dattelbaum, Dana M.; Firestone, Millicent A.; Gustavsen, Richard L.; Johnson, Carl E.; Mang, Joseph T.; Ringstrand, Bryan S.

    2017-01-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, onion-like carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Differences in solid carbon residues were quantified using X-ray photoelectron spectroscopy and carbon isotope measurements. Environmental conditions, HE formulation, and peak pressures influenced the amount of and isotopic composition of the carbon in the soot. Detonations in an Ar atmosphere produced greater amounts of carbon soot with lower δ13C values than those in ambient air. Therefore, solid carbon residues continued to evolve after detonation due to excess oxygen in the ambient air detonations. As well, higher peak pressures in overdriven conditions produced less carbon soot with, in general, higher δ13C values. Consequently, while overdriven conditions only produced peak pressures for a limited duration, it was enough to influence the composition of the solid carbon residues.

  11. Thermal stability of detonation-produced micro and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Zakatilova, E. I.; Maklashova, I. V.; Shevchenko, N. V.

    2018-01-01

    Detonation nanodiamonds are produced at utilization of high explosives. When an explosive blasts in a water environment, the detonation products contain microdiamonds, and in a gaseous medium, nanodiamonds. It is known that with decreasing size the influence of the surface energy of particles on their properties increases. Thus, it is interesting to compare the properties of detonation nano and microdiamonds. In this study, we have examined the thermal stability of diamond materials by synchronous thermal analysis. The experiments were performed at atmospheric pressure in argon flow for different heating rates in a range from room temperature to 1500 °C. Samples of initial and annealed micro and nanomaterials were studied using electron microscopy, x-ray and x-ray-fluorescence analysis. It was established that thermal and structural properties of micro and nanodiamonds differ substantially.

  12. Confined combustion of TNT explosion products in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, J; Ferguson, R E; Forbes, J

    1998-08-31

    Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m 3 chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C 7H 5N 3O 6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolvesmore » into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.« less

  13. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  14. 30 CFR 77.1301 - Explosives; magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than 6 feet high. (h) Ammonium nitrate-fuel oil blasting agents shall be physically separated from... explosion hazard. (d) Box-type magazines used to store explosives or detonators in work areas shall be...

  15. High-order shock-fitted detonation propagation in high explosives

    NASA Astrophysics Data System (ADS)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.

  16. The investigation of man-made modifications of the ionosphere. [effects of detonations and rocket exhaust

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Darosa, A. V.; Price, K. M.

    1980-01-01

    Topics covered include: (1) the application of ionosphere modifications models to the simulation of results obtained when rocket-borne explosives were detonated in the ionosphere; (2) the problem of hypersonic vapor releases from orbiting vehicles; (3) measuring the electron content reduction resulting from the firing of a Centaur rocket in the ionosphere; and (4) the preliminary design of the critical frequency tracker which displays the value of electron concentration at the peak of the F 2 region, in real time.

  17. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  18. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  19. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  20. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  1. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  2. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  3. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS time delays clearly separated for the shot of IMI explosives (characterized by much higher detonation velocity than ANFO). Additionally acoustic records at close distances from WSMR explosions Distant Image (2440 tons of ANFO) and Minor Uncle (2725 tons of ANFO) were used to extend the charge and distance range for the SS delay scaled relationship, that showed consistency with SMR ANFO shots. The developed specific charge design contributed to the success of this unique dual Sayarim explosion experiment, providing the strongest GT0 sources since the establishment of the IMS network, that demonstrated clearly the most favorable westward/ eastward infrasound propagation up to 3400/6250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere. The research was supported by the CTBTO, Vienna, and the Israel Ministry of Immigrant Absorption.

  4. Design of integrated laser initiator

    NASA Astrophysics Data System (ADS)

    Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue

    2018-03-01

    This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.

  5. Features of the incorporation of single and double based powders within emulsion explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.

    2014-05-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  6. Features of the Valorization of Single and Double Based Powders for Codetonation in Emulsion Explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina

    2013-06-01

    In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.

  7. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  8. The equation of state of predominant detonation products

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence

    2009-06-01

    The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.

  9. Improving the Explosive Performance of Aluminum Nanoparticles with Aluminum Iodate Hexahydrate (AIH).

    PubMed

    Gottfried, Jennifer L; Smith, Dylan K; Wu, Chi-Chin; Pantoya, Michelle L

    2018-05-23

    A new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the Al 2 O 3 passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales. Estimates of the detonation velocity for TNT-AIH composites suggest an enhancement of up to 30% may be achievable over pure TNT detonation velocities. Replacement of Al 2 O 3 with AIH allows Al to react on similar timescales as detonation waves. The AIH mixtures tested here have relatively low concentrations of AIH (15 wt. % and 6 wt. %) compared to previously reported samples (57.8 wt. %) and still increase TNT performance by up to 30%. Further optimization of AIH synthesis could result in additional increases in explosive performance.

  10. Comparison of detonation spreading in pressed ultra-fine and nano-TATB

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Wixom, Ryan; Knepper, Robert; Yarrington, Cole; Patel, Rajen; Stepanov, Victor

    2017-06-01

    Detonation spreading behavior in insensitive high explosives is an important performance characteristic for initiation-train design. In the past, several variations of the floret test have been used to study this phenomenon. Commonly, dent blocks or multi-fiber optical probes were employed for reduced cost and complexity. We devised a floret-like test, using minimal explosive material, to study the detonation spreading in nano-TATB as compared to ultra-fine TATB. Our test uses a streak camera, combined with photonic Doppler velocimetry, to image the breakout timing and quantify the output particle velocity. The TATB acceptor pellets are initiated using an explosively-driven aluminum flyer with a well characterized velocity. We characterized the two types of TATB by assessing purity, particle morphology, and the microstructure of the consolidated pellets. Our results align with published data for ultra-fine TATB, however the nano-TATB shows a distinct difference where output has a strong dependence on density. The results indicate that control over pellet pore size and pressing density may be used to optimize detonation spreading behavior.

  11. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  12. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Probing Aluminum Reactions in Combustion and Explosion Via the Kinetic Isotope Effect

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce

    2015-06-01

    The mechanism that controls the reaction speed of aluminum in explosion and combustion is poorly understood, and experimentally difficult to measure. Recently, work in our laboratory has demonstrated that during the combustion of nanoparticulate aluminum with H2O or D2O, different reaction rates due to the kinetic isotope effect are observed. This result is the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. During or shortly after a detonation, however, the reaction rates are dramatically faster and the physical mechanism controlling Al reaction is likely different than during combustion events. To utilize the kinetic isotope effect to probe Al reactions in detonation, formulations were produced that contain powdered Al in deuterated high explosives and high-fidelity detonation velocity were determined along with PDV measurements to observe early wall velocity expansion measurements. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods, in addition of Gurney energies, which enables the elucidation of Al reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale and isotope effects in both the HE detonation and post-detonation Al reactions are discussed.

  14. Investigation of an Unusually Shallow Earthquake Sequence in Mogul, NV from a Discrimination Perspective

    DTIC Science & Technology

    2014-08-31

    shows that polarity is occasionally flipped between events due to rotation of the focal mechanism. A total of 233,357 cross-correlation times were...model NEIS PDE 2008/04/26 06:40:10.61 39.520 -119.930 1.40 model unknown NSL original catalog 2008/04/26, 06:40:10.6 39.5247 -119.9180 3.08... detonated at Yucca Flat the P-velocity was 1.6 km/s and for nuclear explosions detonated at Pahute Mesa the P-velocity was 2.7 km/s. The S- velocity was

  15. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... physical condition of the bore hole and stemming and the type of explosives used. (b) Detonating cord shall... cord extending out of a bore hole or from a charge shall be cut from the supply spool before loading the remainder of the bore hole or placing additional charges. (d) Detonating cord shall be handled and...

  16. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... physical condition of the bore hole and stemming and the type of explosives used. (b) Detonating cord shall... cord extending out of a bore hole or from a charge shall be cut from the supply spool before loading the remainder of the bore hole or placing additional charges. (d) Detonating cord shall be handled and...

  17. Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges

    NASA Astrophysics Data System (ADS)

    Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.

    2016-12-01

    The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.

  18. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... excess of 20 million are not to be stored in one magazine unless approved by the Director. (b) Detonators are not to be stored in the same magazine with other explosive materials, except under the following circumstances: (1) In a type 4 magazine, detonators that will not mass detonate may be stored with electric...

  19. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  20. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  1. 30 CFR 57.6100 - Separation of stored explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall not be stored in the same magazine with other explosive material. (b) When stored in the same magazine, blasting agents shall be separated from explosives, safety fuse, and detonating cord to prevent...

  2. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, Michael J.

    1993-01-01

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or .beta. angle of the inner liner.

  3. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, M.J.

    1993-10-12

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or [beta] angle of the inner liner. 12 figures.

  4. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. Wemore » have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.« less

  5. Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments

    NASA Astrophysics Data System (ADS)

    Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.

    2009-12-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.

  6. Shock initiation behavior of PBXN-9 determined by gas gun experiments

    NASA Astrophysics Data System (ADS)

    Sanchez, Nathaniel; Gustavsen, Richard; Hooks, Daniel

    2009-06-01

    The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm^3 and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics are embedded magnetic gauges which are based on Faraday's law of induction along with photon Doppler velocimetry (PDV). The run distance to detonation vs. shock pressure, or ``Pop plot,'' was redefined as log (X*) = 2.14 -- 1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32 + 2.21 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 in addition to providing an increased understanding of HMX based explosives in varying formulations.

  7. SCB initiator

    DOEpatents

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  8. SCB initiator

    DOEpatents

    Bickes, Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  9. Reverse slapper detonator

    DOEpatents

    Weingart, Richard C.

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  10. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  11. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501)more » have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.« less

  12. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of the turbulent deflagration, the duration of this phase is several times longer than the sound crossing time in the initial WD. Therefore, the energy produced during the early nuclear burning can be redistributed over the entire WD, causing a slow preexpansion. In this intermediate state, the WD is still bound but its binding energy is reduced by the amount of nuclear energy. The expansion ratio depends mainly on the total amount of burning during the deflagration phase. Consequently, the conditions are very similar under which nuclear burning takes place during the subsequent detonation phase. In our example, the density and temperature at the burning front changes by less than 3%, and the expansion velocity changes by less than 10%. The burning conditions are very close to previous calculations which used a constant deflagration velocity. Based on a comparison with observations, those required low deflagration speeds (~2%-3% of the speed of sound). Exceptions to the similarity are the innermost layers of ~0.03-0.05 Msolar. Still, nuclear burning is in nuclear statistical equilibrium, but the rate of electron capture is larger for the new descriptions of the flame propagation. Consequently, the production of very neutron-rich isotopes is increased. In our example, close to the center Ye is about 0.44, compared to 0.46 in the model with constant deflagration speed. This increases the 48Ca production by more than a factor of 100 to 3.E-6 Msolar. Conclusions from previous analyses of light curves and spectra on the properties of the WD and the explosions will not change, and even with the new descriptions, the delayed detonation scenario is consistent with the observations. Namely, the central density results with respect to the chemical structure of the progenitor and the transition density from deflagration to detonation do not change. The reason for this similarity is the fact that the total amount of burning during the long deflagration phase determines the restructuring of the WD prior to the detonation. Therefore, we do not expect that the precise, microphysical prescription for the speed of a subsonic burning front has a significant effect on the outcome. However, at the current level of uncertainties for the burning front, the relation between properties of the burning front and of the initial white dwarf cannot be obtained from a comparison between observation and theoretical predictions by one-dimensional models. Multidimensional calculations are needed (1) to get inside the relations between model parameters such as central density and properties of the deflagration front and its relation to the transition density between deflagration and detonation and (2) to make use of information on asphericity that is provided by polarization measurements. These questions are essential to test, estimate, and predict some of the evolutionary effects of SNe Ia and their use as cosmological yardsticks.

  13. Detonation Velocity-Diameter Relation in Gelled Explosive with Inert Inclusions

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew; Loiseau, Jason; Mi, Xiaocheng

    2017-06-01

    The detonation velocity is measured in a gelled explosive that has been sensitized via the addition of glass microballoons (GMBs) and additionally diluted via the inclusion of large scale (300-700 micron) inert inclusions. The base explosive is nitromethane that has been gelled via the addition of poly(methyl methacrylate) and then sensitized via hot-spot inducing glass microballoons. Inert inclusions (e.g., glass, steel beads) are then added to the explosive to make a heterogeneous explosive with heterogeneities that are at a scale disparate from those of the microballoons. This system has the potential to be a synthetic explosive that can be tuned to have the properties of more complex commercial blasting agents. The velocity-diameter relation is studied using weak confinement (polyvinyl chloride) and time-of-arrival gages. The results are also used to further explore the phenomenon of anomalous scaling between axisymmetric charges (cylinders) and two-dimensional (slab) charges.

  14. Reactive flow modeling of initial density effect on divergence JB-9014 detonation driving

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Huang, Kuibang; Zheng, Miao

    2016-06-01

    A serious of experiments were designed and the results were represented in this paper, in which 2mm thickness cooper shells were impacted by explosives named JB-9014 with different densities, and the surface velocities of the OFHC shells were measured. The comparison of experimental data shows the free surface velocity of the OFHC shell increase with the IHE density. Numerical modeling, which occupied phenomenological reactive flow rate model using the two-dimensional Lagrange hydrodynamic code, were carried out to simulate the above experiments, and empirical adjustments on detonation velocity and pressure and Pier Tang's adjustments on EOS of detonation products were both introduced in our numerical simulation work. The computational results agree well with that of experiments, and the numerical results with original parameters of products and the adjusted ones of JB-9014 could describe the density effect distinctly.

  15. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  16. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  17. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  18. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  19. 27 CFR 555.213 - Quantity and storage restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...

  20. Predicting the Plate Dent Test Output in Order to Assess the Performance of Condensed High Explosives

    NASA Astrophysics Data System (ADS)

    Frem, Dany

    2017-01-01

    In the present study, a relationship is proposed that is capable of predicting the output of the plate dent test. It is shown that the initial density ?; condensed phase heat of formation ?; the number of carbon (C), nitrogen (N), oxygen (O); and the composition molecular weight (MW) are the most important parameters needed in order to accurately predict the absolute dent depth ? produced on 1018 cold-rolled steel by a detonating organic explosive. The estimated ? values can be used to predict the detonation pressure (P) of high explosives; furthermore, we show that a correlation exists between ? and the Gurney velocity ? parameter. The new correlation is used to accurately estimate ? for several C-H-N-O explosive compositions.

  1. A deep towed explosive source for seismic experiments on the ocean floor

    NASA Astrophysics Data System (ADS)

    Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.

    1986-12-01

    A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.

  2. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  3. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    PubMed

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  4. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  5. Delayed signatures of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  6. Delayed signatures of underground nuclear explosions.

    PubMed

    Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  7. Multi-shock experiments on a TATB-based composition

    NASA Astrophysics Data System (ADS)

    Sorin, Remy

    2017-06-01

    Temperature based models for condensed explosive need an unreacted equation of state (EOS) that allows a realistic estimation of the temperature for a shock compression driven at detonation velocity. To feed the detonation models, we aim at exploring the high pressure shock Hugoniot of unreacted TATB composition up to 30 GPa with both hydrodynamic and temperature measurements. We performed on the gas gun facility ARES, multi-shock experiments where the first shock is designed to desensitize the explosive and inhibit the reactivity of the composition. The hydrodynamic behavior was measured via the velocity of a TATB/LiF interface with PDV probes. We attempted to measure the temperature of the shocked material via surface emissivity with a pyrometer calibrated to the expected low temperature range. Based on single shock experiments and on ab-initio calculation, we built a complete EOS for the unreacted phase of the TATB explosive. The hydrodynamic data are in good agreement with our unreacted EOS. Despite the record of multi-stage emissivity signals, the temperature measurements were difficult to interpret dur to high-luminisity phenomena pertubation. In collaboration with: Nicolas Desbiens, Vincent Dubois and Fabrice Gillot, CEA DAM DIF.

  8. Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations.

    PubMed

    Nyanhongo, G S; Aichernig, N; Ortner, M; Steiner, Walter; Guebitz, G M

    2009-06-15

    Pseudomonas putida GG04 and Bacillus SF have been successfully incorporated into an explosive formulation to enhance biotransformation of TNT residues and/or explosives which fail to detonate due to technical faults. The incorporation of the microorganisms into the explosive did not affect the quality of the explosive (5 years storage) in terms of detonation velocity while complete biotransformation of TNT moieties upon transfer in liquid media was observed after 5 days. The incorporated microorganisms reduced TNT sequentially leading to the formation of hydroxylaminodinitrotoluenes (HADNT), 4-amino-2,6-dinitrotoluenes; 2-amino-4,6-dinitrotoluenes, different azoxy compounds; 2,6-diaminonitrotoluenes (2,4-DAMNT) and 2,4-diaminonitrotoluenes (2,6-DAMNT). However, the accumulation of AMDNT and DAMNT (major dead-end metabolites) was effectively prevented by incorporating guaiacol and catechol during the biotransformation process.

  9. Fluid blade disablement tool

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  10. Detonation command and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan Lee; Seitz, Gerald J.; Echave, John A.

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  11. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  12. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  13. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  14. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  15. Propagation of Axially Symmetric Detonation Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druce, R L; Roeske, F; Souers, P C

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakoutmore » time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.« less

  16. Time variation in the reaction-zone structure of two-phase spray detonations.

    NASA Technical Reports Server (NTRS)

    Pierce, T. H.; Nicholls, J. A.

    1973-01-01

    A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.

  17. Investigating ground effects on mixing and afterburning during a TNT explosion

    NASA Astrophysics Data System (ADS)

    Fedina, E.; Fureby, C.

    2013-05-01

    In this paper, the unconfined and semi-confined condensed phase explosions of TNT will be studied using large eddy simulations based on the unsteady, compressible, reacting, multi-species Navier-Stokes equations to gain further understanding of the physical processes involved in a condensed phase explosion and the effect of confinement on the physical processes involved. The analysis of the mixing and afterburning of TNT explosions in free air (unconfined) and near the ground (semi-confined) indicates that the combustion region of detonation products and air is determined by the vorticity patterns, which are induced by the Richtmeyer-Meshkov instabilities that arise during the explosion. When the explosive is detonated in the vicinity of a surface, the surface affects the shock propagation by creating complex shock systems, thereby changing the orientation of the vorticity, giving the afterburning a mushroom shape, and increasing performance of an explosive charge by prolonging the existence of the mixing layer and thereby the afterburning.

  18. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOEpatents

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  19. Detonation Performance Testing of LX-19

    NASA Astrophysics Data System (ADS)

    Vincent, Samuel; Aslam, Tariq; Jackson, Scott

    2015-06-01

    CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.

  20. Detonation Energies of Explosives by Optimized JCZ3 Procedures

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest

    1997-07-01

    Procedures for the detonation properties of explosives have been extended for the calculation of detonation energies at adiabatic expansion conditions. Advanced variable metric optimization routines developed by ARDEC are utilized to establish chemical reaction equilibrium by the minimization of the Helmholtz free energy of the system. The use of the JCZ3 equation of state with optimized Exp-6 potential parameters leads to lower errors in JWL detonation energies than the TIGER JCZ3 procedure and other methods tested for relative volumes to 7.0. For the principal isentrope with C-J parameters and freeze conditions established at elevated pressures with the JCZ3 equation of state, best results are obtained if an alternate volumetric relationship is utilized at the highest expansions. Efficient subroutines (designated JAGUAR) have been developed which incorporate the ability to automatically generate JWL and JWLB equation of state parameters. abstract.

  1. A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests.

    PubMed

    Simon, S L; Robison, W L

    1997-07-01

    Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics.

  2. Cylinder Expansion Experiments and Measured Product Isentropes for XTX-8004 Explosive

    NASA Astrophysics Data System (ADS)

    Jackson, Scott

    2015-06-01

    We present cylinder expansion data from full-scale (25.4-mm inner diameter) and half-scale (12.7-mm inner diameter) experiments with XTX-8004 explosive, composed of 80% RDX explosive and 20% Sylgard 182 silicone elastomer. An analytic method is reviewed and used to recover detonation product isentropes from the experimental data, which are presented in the standard JWL form. The cylinder expansion data was found to scale well, indicating ideal detonation behavior across the test scales. The analytically determined product JWLs were found to agree well with those produced via iterative hydrocode methods, but required significantly less computational effort.

  3. Self-inflicted explosive death by intra-oral detonation of a firecracker: a case report.

    PubMed

    Makhoba, Musa Aubrey; du Toit-Prinsloo, Lorraine

    2017-12-01

    Self-inflicted explosive deaths due to detonation of fireworks are rare. In this case report, a peculiar case of an elderly male who discharged a firecracker inside his mouth, resulting in fatal blast induced craniofacial injuries, is described. There is paucity of published data describing fireworks-related suicidal and/or non-suicidal deaths. Even scantier data is present specifically describing fireworks-related blast induced neurotrauma and the mechanism(s) of injury involved in such cases. This case report emphasizes the severe damage that a commercially available explosive, the so-called "Gorilla Bomb", can cause, and raises questions about the relative ease of its acquisition.

  4. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    PubMed Central

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[FeII(NT)3(H2O)3], cat2[FeII(NT)4(H2O)2], cat3[FeII(NT)5(H2O)], and cat4[FeII(NT)6] with cat = cation and NT− = 5-nitrotetrazolato-N2. With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N2-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries. PMID:16803957

  5. Green primary explosives: 5-nitrotetrazolato-N2-ferrate hierarchies.

    PubMed

    Huynh, My Hang V; Coburn, Michael D; Meyer, Thomas J; Wetzler, Modi

    2006-07-05

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[Fe(II)(NT)(3)(H(2)O)(3)], cat(2)[Fe(II)(NT)(4)(H(2)O)(2)], cat(3)[Fe(II)(NT)(5)(H(2)O)], and cat(4)[Fe(II)(NT)(6)] with cat = cation and NT(-) = 5-nitrotetrazolato-N(2). With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N(2)-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries.

  6. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations.

    PubMed

    Wen, Yushi; Zhang, Chaoyang; Xue, Xianggui; Long, Xinping

    2015-05-14

    Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

  7. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    PubMed

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    PubMed

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  9. Fast emission spectroscopy for monitoring condensed carbon in detonation products of oxygen-deficient high explosives

    NASA Astrophysics Data System (ADS)

    Poeuf, Sandra; Baudin, Gerard; Genetier, Marc; Lefrançois, Alexandre; Cinnayya, Ashwin; Laurent, Jacquet

    2017-06-01

    A new thermochemical code, SIAME, dedicated to the study of high explosives, is currently being developed. New experimental data relative to the expansion of detonation products are required to validate the code, and a particular focus is made on solid carbon products. Two different high explosive formulations are used: a melt-cast one (RDX/TNT 60/40 % wt.) and a pressed one (HMX/VitonR 96/4 % wt.). The experimental setup allows the expansion of the products at pressures below 1 GPa in an inert medium (vacuum, helium, nitrogen and PMMA). The results of fast emission dynamic spectroscopy measurements used to monitor the detonation carbon products are reported. Two spectral signatures are identified: the first is associated to ionized gases and the second to carbon thermal radiation. The experimental spectral lines are compared with simulated spectra. The trajectory of the shock wave front is continuously recorded with a high frequency interferometer. Comparisons with numerical simulations on the hydrodynamic code Ouranoshave been done. These two measurements, using the different inert media, enable to make one step forward in the validation of the detonation products equation of state implemented in the SIAME code.

  10. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  11. The delayed-detonation model of Type Ia supernovae. 2: The detonation phase

    NASA Technical Reports Server (NTRS)

    Arnett, David; Livne, Eli

    1994-01-01

    The investigation, by use of two-dimensional numerical hydrodynamics simulations, of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is continued. Previously we found that the deflagration is insufficient to unbind the star. Expansion shuts off the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. The burning was allowed to develop into a detonation in these nonspherical models. The detonation grows toward spherical symmetry at late times. At these densities (rho approx. 10(exp 7) to 10(exp 8) g cm(exp -3)), either Ni-56 or nuclei of the Si-Ca group are the dominant products of the burning. The bulk yields are sensitive to the density of the star when the transition to detonation occurs. The relevance of the abundances, velocities, mixing, and total energy release to the theory and interpretation of Type Ia supernovae is discussed.

  12. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subpart. (b) An explosive mixture or device containing a chlorate and also containing: (1) An ammonium... explosive. (d) Propellants that are unstable, condemned or deteriorated. (e) Nitroglycerin, diethylene... detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum outside...

  13. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subpart. (b) An explosive mixture or device containing a chlorate and also containing: (1) An ammonium... explosive. (d) Propellants that are unstable, condemned or deteriorated. (e) Nitroglycerin, diethylene... detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum outside...

  14. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  15. SURF Model Calibration Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-Dmore » simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.« less

  16. Warfare Ecology on an Underwater Demolition Range: Acoustic Observations of Marine Life and Shallow Water Detonations in Hawai`i

    NASA Astrophysics Data System (ADS)

    Shannon, Lee H.

    Most studies investigating the effects of military-associated anthropogenic noise concentrate on deep sea or open ocean propagation of sonar and its effect on marine mammals. In littoral waters, U.S. military special operations units regularly conduct shallow water explosives training, yet relatively little attention has been given to the potential impact on nearshore marine ecosystems from these underwater detonations. This dissertation research focused on the Pu'uloa Underwater Detonation Range off the coast of O`ahu, and examined multiple aspects of the surrounding marine ecosystem and the effects of detonations using acoustic monitoring techniques. The soundscape of a nearshore reef ecosystem adjacent to the UNDET range was characterized through analysis of passive acoustic recordings collected over the span of 6 years. Snapping shrimp were the predominant source of noise, and a diel pattern was present, with increased sound energy during the night hours. Results revealed a difference of up to 7dB between two Ecological Acoustic Recorder locations 2.5km apart along the 60ft isobath. Passive acoustic recording files were searched visually and aurally for odontocete whistles. Whistles were detected in only 0.6% of files analyzed, indicating this area is not frequently transited by coastal odontocete emitting social sounds. The study also opportunistically captured a humpback whale singing during a detonation event, during which the animal showed no obvious alteration of its singing behavior. Four separate underwater detonation events were recorded using a surface deployed F-42C transducer, and the resulting analysis showed no measurable drop in the biologically produced acoustic energy in reaction to the explosive events. Coral reef fishes were recorded visually and acoustically during detonation events at a known distance and bearing from a known explosive sound source. Individual fish behavioral responses to the explosion varied, and a sharp uptick in fish vocalizations was recorded immediately following the blast, with rapid (within 30s) return to baseline visual and acoustic behavior. The results and conclusions of these studies are placed within the broader context of warfare ecology as an emerging scientific discipline.

  17. Detonation Diffraction in a Multi-Step Channel

    DTIC Science & Technology

    2010-12-01

    openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better understand...imaging systems to provide shock wave detail and velocity information. The images were observed through a newly designed explosive proof optical section...stepped openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better

  18. Density Gradient Separation of Detonation Soot for Nanocarbon Characterization

    NASA Astrophysics Data System (ADS)

    Ringstrand, Bryan; Jungjohann, Katie; Seifert, Sonke; Firestone, Millicent; Podlesak, David

    2017-06-01

    Detonation of high explosives (HE) can expand our understanding of chemical bonding at extreme conditions as well as the opportunity to prepare carbon nanomaterials. In order to understand detonation mechanisms, nanocarbon characterization contained within the soot is paramount. Thus, benign purification methods for detonation soot are important for its characterization. Progress towards a non-traditional approach to detonation soot processing is presented. Purification of soot using heavy liquid media such as sodium polytungstate to separate soot components based on their density was tested based on the premise that different nanocarbons possess different densities [ ρ = 1.79 g/cm3 (graphene) and ρ = 3.05 g/cm3 (nanodiamond)]. Analysis using XRD, SAXS, WAXS, Raman, XPS, TEM, and NMR provided information about particle morphology and carbon hybridization. Detonation synthesis offers an avenue for the discovery of new carbon frameworks. In addition, understanding reactions at extreme conditions provides for more accurate predictions of HE performance, explosion intent, and simulation refinement. These results are of interest to both the nanoscience and shock physics communities. We acknowledge the support of the U.S. Department of Energy LANL/LDRD Program (LANL #20150050DR). LA-UR-17-21502.

  19. Equations of State and High-Pressure Phases of Explosives

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  20. Gasdynamic model of turbulent combustion in an explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.

    1994-08-31

    Proposed here is a gasdynamic model of turbulent combustion in explosions. It is used to investigate turbulent mixing aspects of afterburning found in TNT charges detonated in air. Evolution of the turbulent velocity field was calculated by a high-order Godunov solution of the gasdynamic equations. Adaptive Mesh Refinement (AMR) was used to follow convective-mixing processes on the computational grid. Combustion was then taken into account by a simplified sub-grid model, demonstrating that it was controlled by turbulent mixing. The rate of fuel consumption decayed inversely with time, and was shown to be insensitive to grid resolution.

  1. Numerical models for afterburning of TNT detonation products in air

    NASA Astrophysics Data System (ADS)

    Donahue, L.; Zhang, F.; Ripley, R. C.

    2013-11-01

    Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.

  2. Imaging Detonations of Explosives

    DTIC Science & Technology

    2016-04-01

    made using a full-color single-camera pyrometer where wavelength resolution is achieved using the Bayer-type mask covering the sensor chip17 and a...many CHNO- based explosives (e.g., TNT [C7H5N3O6], the formulation C-4 [92% RDX, C3H6N6O6]), hot detonation products are mainly soot and permanent...unreferenced). Essentially, 2 light sensors (cameras), each filtered over a narrow wavelength region, observe an event over the same line of sight. The

  3. Yield Scaling of Frequency Domain Moment Tensors from Contained Chemical Explosions Detonated in Granite

    NASA Astrophysics Data System (ADS)

    MacPhail, M. D.; Stump, B. W.; Zhou, R.

    2017-12-01

    The Source Phenomenology Experiment (SPE - Arizona) was a series of nine, contained and partially contained chemical explosions within the porphyry granite at the Morenci Copper mine in Arizona. Its purpose was to detonate, record and analyze seismic waveforms from these single-fired explosions. Ground motion data from the SPE is analyzed in this study to assess the uniqueness of the time domain moment tensor source representation and its ability to quantify containment and yield scaling. Green's functions were computed for each of the explosions based on a 1D velocity model developed for the SPE. The Green's functions for the sixteen, near-source stations focused on observations from 37 to 680 m. This study analyzes the three deepest, fully contained explosions with a depth of burial of 30 m and yields of 0.77e-3, 3.08e-3 and 6.17e-3 kt. Inversions are conducted within the frequency domain and moment tensors are decomposed into deviatoric and isotropic components to evaluate the effects of containment and yield on the resulting source representation. Isotropic moments are compared to those for other contained explosions as reported by Denny and Johnson, 1991, and are in good agreement with their scaling results. The explosions in this study have isotropic moments of 1.2e12, 3.1e12 and 6.1e13 n*m. Isotropic and Mzz moment tensor spectra are compared to Mueller-Murphy, Denny-Johnson and revised Heard-Ackerman (HA) models and suggest that the larger explosions fit the HA model better. Secondary source effects resulting from free surface interactions including the effects of spallation contribute to the resulting moment tensors which include a CLVD component. Hudson diagrams, using frequency domain moment tensor data, are computed as a tool to assess how these containment scenarios affect the source representation. Our analysis suggests that, within our band of interest (2-20 Hz), as the frequency increases, the source representation becomes more explosion like, peaking at around 20 Hz. These results guide additional analysis of the observational data and the practical resolution of physical phenomenology accompanying underground explosions.

  4. High-temperature explosive development for geothermal well stimulation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonabilitymore » at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.« less

  5. Experimental investigation of turbulent mixing in post-explosion environment

    NASA Astrophysics Data System (ADS)

    Smith, Josh; Hargather, Michael

    2015-11-01

    Experiments are performed to investigate the turbulent mixing of product gases and the ambient environment in a post-explosion environment. The experiments are performed in a specially constructed shock tunnel where thermite-enhanced explosions are set off. The explosives are detonated at one end of the tunnel, producing a one-dimensional shock wave and product gas expansion which moves toward the open end of the tunnel. Optical diagnostics are applied to study the shock wave motion and the turbulent mixing of the gases after the detonation. Results are presented for schlieren, shadowgraph, and interferometry imaging of the expanding gases with simultaneous pressure measurements. An imaging spectrometer is used to identify the motion of product gas species. Results show varying shock speed with thermite mass and the identification of turbulent mixing regions.

  6. Explosive force of primacord grid forms large sheet metal parts

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  7. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrier, Danielle; Andersen, Kyle Richard

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less

  8. Explosive Spot Joining of Metals

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Perry, Ronnie B. (Inventor)

    1997-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebend, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires. and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity. angular collision between the mating surfaces. This collision creates surface melts and collision bonding resulting in electron-sharing linkups.

  9. Permanent wire splicing by an explosive joining process

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebent, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires, and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding results in electron sharing linkups.

  10. Research on Equation of State For Detonation Products of Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Yue, Jun-Zheng; Duan, Zhuo-Ping; Zhang, Zhen-Yu; Ou, Zhuo-Cheng

    2017-10-01

    The secondary reaction of the aluminum powder contained in an aluminized explosive is investigated, from which the energy loss resulted from the quantity reduce of the gaseous products is demonstrated. Moreover, taking the energy loss into account, the existing improved Jones-Wilkins-Lee (JWL) equation of state for detonation products of aluminized explosive is modified. Furthermore, the new modified JWL equation of state is implemented into the dynamic analysis software (DYNA)-2D hydro-code to simulate numerically the metal plate acceleration tests of the Hexogen (RDX)-based aluminized explosives. It is found that the numerical results are in good agreement with previous experimental data. In addition, it is also demonstrated that the reaction rate of explosive before the Chapman-Jouget (CJ) state has little influence on the motion of the metal plate, based on which a simple approach is proposed to simulate numerically the products expansion process after the CJ state.

  11. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Capellos, Christos; Stiel, Leonard I.; Pincay, Jack

    2010-10-01

    The Jones-Wilkins-Lee-Baker (JWLB) equation of state (EOS) was developed to more accurately describe overdriven detonation while maintaining an accurate description of high explosive products expansion work output. The increased mathematical complexity of the JWLB high explosive equations of state provides increased accuracy for practical problems of interest. Increased numbers of parameters are often justified based on improved physics descriptions but can also mean increased calibration complexity. A generalized extent of aluminum reaction Jones-Wilkins-Lee (JWL)-based EOS was developed in order to more accurately describe the observed behavior of aluminized explosives detonation products expansion. A calibration method was developed to describe the unreacted, partially reacted, and completely reacted explosive using nonlinear optimization. A reasonable calibration of a generalized extent of aluminum reaction JWLB EOS as a function of aluminum reaction fraction has not yet been achieved due to the increased mathematical complexity of the JWLB form.

  12. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  13. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  14. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  15. Explosively generated shock wave processing of metal powders by instrumented detonics

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2013-06-01

    The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.

  16. A Physical Basis for M s-Yield Scaling in Hard Rock and Implications for Late-Time Damage of the Source Medium

    DOE PAGES

    Patton, Howard John

    2016-04-11

    Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less

  17. A Physical Basis for M s-Yield Scaling in Hard Rock and Implications for Late-Time Damage of the Source Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Howard John

    Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less

  18. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    NASA Astrophysics Data System (ADS)

    Gamage, Nipuni-Dhanesha Horadugoda

    One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary HEDMs. Oxygen-rich (0.80--1.00) geminal hydroperoxides have detonation velocities in the range of 6150--7130 m/s. These impressive detonation velocities are greater than the detonation velocities of the known peroxo-based explosives. The highest detonation velocity (7130 m/s) was obtained for 1,4-bis(dihydroperoxymethyl)benzene, which has the highest crystalline density (1.648 g/cm3). This detonation velocity is greater than the secondary explosive 2,4,6-trinitrotoluene (TNT). The sensitivities of these oxygen-rich geminal hydroperoxides are lower than the known peroxo-based explosives due to the O--H•••O hydrogen bonds and O•••O contacts, which stabilize the weak O--O bonds in the crystalline lattice. They could be useful as primary HEDMs. Dihydroperoxy dioxane and dioxolanes have impressive detonation velocities in the range of 6350--6694 m/s. However, their extremely high sensitivities render them unsafe for HEDM applications. Interestingly, hydroperoxy dioxanol and dioxolanols also have high detonation velocities in the range of 6100--6461 m/s even with the lower oxygen contents. The hydroperoxy compounds with one less O--O bond were much less sensitive than the dihydroperoxy compounds. These hydroperoxy compounds could be useful as primary HEDMs. We observed that the ring strain was useful in increasing the detonation velocities, since it led to compounds with higher crystalline densities. However, increasing the steric strain using bulky groups led to lower crystalline densities and lower detonation velocities. Higher steric strain not only resulted in higher sensitivities but also lower thermal stabilities. Peroxy acids have high detonation velocities in the range of 5262--7885 m/s. The detonation velocity of 3,5-dinitrobenzoperoxoic acid (7217 m/s) was the highest detonation velocity obtained for the peroxo-based compounds synthesized in our study, which is greater than the detonation velocity of TNT. The detonation velocity of 2,4,6-trinitrobenzoperoxoic acid (7885 m/s) is close to the detonation velocity of the secondary high explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Peroxy acids have surprisingly low impact and friction sensitivities that are well below the known peroxo-based explosives TATP, DADP, HMTD, and MEKP. Based on the crystal structure of 3,5-dinitrobenzoperoxoic acid, the low sensitivities can be attributed to the stabilization of the weak O--O bonds in the crystalline lattice by O--H•••O hydrogen bonds and O•••O short contacts. These are the first peroxo-based oxygen-rich compounds that can be useful as secondary HEDMs. The ease of synthesis in high yields with minimum synthetic manipulations, storability, and high thermal stabilities are all advantageous properties of peroxy acids for their use as HEDMs. Through this work, we have gained a wealth of fundamental information about the structures and energetic materials properties of a large family of peroxo-based compounds. Solid state intermolecular interactions were useful to understand the impact and friction sensitivities. The safe peroxy O:C ratio was found to be approximately 1.00. However, the oxygen contents could be further increased with more stable nitro and hydroxy groups. Highly attractive low sensitivity peroxo-based compounds were obtained with impressive detonation performances for potential use as greener primary and secondary HEDMs.

  19. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  20. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

Top