Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound
Marling, John B.; Herman, Irving P.
1981-01-01
A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.
NASA Astrophysics Data System (ADS)
Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian
2016-02-01
Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).
Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian
2016-12-01
Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of deuterium ion implantation. This manifests itself in a nearly complete ceasing of deuterium accumulation from a newly implanted dose (radiation-resistant structure).
SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry.
Villar, Maria T; Miller, Danny E; Fenton, Aron W; Artigues, Antonio
2010-01-01
Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide.
SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry
Villar, Maria T.; Miller, Danny E.; Fenton, Aron W.; Artigues, Antonio
2011-01-01
Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide. PMID:25309638
NASA Astrophysics Data System (ADS)
Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.
2015-08-01
The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.
NASA Astrophysics Data System (ADS)
Bondarenko, G. G.; Volobuev, I. V.; Eriskin, A. A.; Kobzev, A. P.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Borovitskaya, I. V.
2017-09-01
Deuteron and proton elastic recoil detection analysis is used to study the accumulation and redistribution of deuterium and hydrogen in assemblies of two high-pure zirconium or titanium foils upon pulsed action of high-temperature deuterium plasma (PHTDP) in a plasma-focus installation PF-4. It is noted that, under the action of PHTDP, an implanted deuterium and hydrogen gas impurity are redistributed in the irradiated foils in large depths, which are significantly larger than the deuterium ion free paths (at their maximum velocity to 108 cm/s). The observed phenomenon is attributed to the carrying out of implanted deuterium and hydrogen under the action of powerful shock waves formed in the metallic foils under the action of PHTDP and/or the acceleration of diffusion of deuterium and hydrogen atoms under the action of a compression-rarefaction shock wave at the shock wave front with the redistribution of deuterium and hydrogen to large depths.
NASA Astrophysics Data System (ADS)
Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria
2015-03-01
Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 1015 to 5 × 1018 D/cm2. The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Quanico, Jusal; Franck, Julien
2016-01-01
Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083
Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers
NASA Astrophysics Data System (ADS)
Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.
2018-04-01
Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.
Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma
NASA Astrophysics Data System (ADS)
Taylor, C. N.; Shimada, M.
2017-05-01
Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ˜46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.
Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria
2015-01-01
Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.
Deuterium separation by infrared-induced addition reaction
Marling, John B.
1977-01-01
A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.
Desorption dynamics of deuterium in CuCrZr alloy
NASA Astrophysics Data System (ADS)
Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong
2017-12-01
Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.
Strekalova, Tatyana; Evans, Matthew; Chernopiatko, Anton; Couch, Yvonne; Costa-Nunes, João; Cespuglio, Raymond; Chesson, Lesley; Vignisse, Julie; Steinbusch, Harry W; Anthony, Daniel C; Pomytkin, Igor; Lesch, Klaus-Peter
2015-01-15
Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naïve mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naïve mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van de Voort, Freeke; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Chan, T. K.; Feldmann, Robert; Hafen, Zachary
2018-06-01
We quantify the gas-phase abundance of deuterium and fractional contribution of stellar mass loss to the gas in cosmological zoom-in simulations from the Feedback In Realistic Environments project. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. The chemical evolution of the deuterium abundance that we derive here agrees quantitatively with analytical chemical evolution models. We furthermore find that the relation between the deuterium and oxygen abundance exhibits very little scatter. We compare our simulations to existing high-redshift observations in order to determine a primordial deuterium fraction of (2.549 ± 0.033) × 10-5 and stress that future observations at higher metallicity can also be used to constrain this value. At fixed metallicity, the deuterium fraction decreases slightly with decreasing redshift, due to the increased importance of mass-loss from intermediate-mass stars. We find that the evolution of the average deuterium fraction in a galaxy correlates with its star formation history. Our simulations are consistent with observations of the Milky Way's interstellar medium (ISM): the deuterium fraction at the solar circle is 85-92 per cent of the primordial deuterium fraction. We use our simulations to make predictions for future observations. In particular, the deuterium abundance is lower at smaller galactocentric radii and in higher mass galaxies, showing that stellar mass loss is more important for fuelling star formation in these regimes (and can even dominate). Gas accreting on to galaxies has a deuterium fraction above that of the galaxies' ISM, but below the primordial fraction, because it is a mix of gas accreting from the intergalactic medium and gas previously ejected or stripped from galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.; Quevedo, H. J.; Bernstein, A. C.
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...
2014-12-10
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound
Marling, John B.
1981-01-01
A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.
Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma
Taylor, Chase N.; Shimada, M.
2017-05-08
Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. Furthermore, a ~46 µm depth profile revealed that the deuterium content decreased precipitously in the first 7 µm, and detectable amounts were observed to depths in excess of 20 µm. The large probing depth of GD-OES (up to 100s of µm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention.more » Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high diffusion is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.« less
Effects of chemical states of carbon on deuterium retention in carbon-containing materials
NASA Astrophysics Data System (ADS)
Oyaidzu, Makoto; Kimura, Hiromi; Nakahata, Toshihiko; Nishikawa, Yusuke; Tokitani, Masayuki; Oya, Yasuhisa; Iwakiri, Hirotomo; Yoshida, Naoaki; Okuno, Kenji
2007-08-01
Deuterium retention behavior in highly oriented pyrolytic graphite (HOPG), poly-crystalline diamond, poly-crystalline SiC, sintered WC, and converted B 4C were investigated to reveal tritium behavior in re-deposition and co-deposition layers. Such layers would contain carbon, when the first wall and/or divertor were made of graphite or carbon-containing materials. Furthermore, the employment of other materials such as tungsten, and first wall conditioning such as boronization would complicate the layers. No different deuterium trapping sites due to carbon from those in HOPG were found in all the samples, where two deuterium trapping processes were observed: hot atom chemical trapping of energetic deuterium by a dangling bond of carbon and thermochemical trapping of thermalized deuterium in a constituent atom vacancy surrounded by carbons. Additionally, the latter reaction could be easily counteracted by or competed with the other deuterium trapping reactions by constituent atoms.
Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils
NASA Astrophysics Data System (ADS)
Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan
2014-12-01
Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850-950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10-14 mol m-1 s-1 Pa-1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten.
NASA Astrophysics Data System (ADS)
Barbier, G.; Ross, G. G.; El Khakani, M. A.; Chevarier, N.; Chevarier, A.
1997-02-01
The hydrogen release in plasma facing materials is a challenging problem for the hydrogen recycling. The hydrogen desorption from the a-C:H and a-SiC:H materials induced by deuterium bombardment has been investigated. Prior to the deuterium bombardment, both materials were implanted with different fluences of lithium ions. Before and after each irradiation, depth profiles of H, Li and deuterium were determined by nuclear microanalysis. After deuterium bombardment, it is shown that the retention of the initial hydrogen in both materials was enhanced by increasing the total dose of the implanted Li. For the a-C:H samples, the hydrogen desorption under deuterium bombardment was strongly reduced by lithium implantation. This effect was also evidenced in a-SiC:H samples, even though it is less spectacular than in a-C:H. Also, nuclear analyses showed that the retained dose of deuterium decreases when the lithium concentration increases. This could be a result of the formation of LiH bonds which occurs to the detriment of deuterium retention in both a-C:H and a-SiC:H materials. Preliminary results of both materials exposed to TdeV tokamak discharges confirms the role of Li in hydrogen retention, already observed in deuterium bombardment exposure.
Creation of deuterium protective layer below the tungsten surface
NASA Astrophysics Data System (ADS)
Krstic, Predrag; Kaganovich, Igor; Startsev, Edward
2014-10-01
By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.
Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2009-09-01
The Centurion-Halite experiment demonstrated the feasibility of igniting a deuterium-tritium micro-explosion with an energy of not more than a few megajoule, and the Mike test, the feasibility of a pure deuterium explosion with an energy of more than 106 MJ. In both cases the ignition energy was supplied by a fission bomb explosive. While an energy of a few megajoule, to be released in the time required of less than 10-9 s, can be supplied by lasers and intense particle beams, this is not enough to ignite a pure deuterium explosion. Because the deuterium-tritium reaction depends on the availability of lithium, the non-fission ignition of a pure deuterium fusion reaction would be highly desirable. It is shown that this goal can conceivably be reached with a "Super Marx Generator", where a large number of "ordinary" Marx generators charge (magnetically insulated) fast high voltage capacitors of a second stage Marx generator, called a "Super Marx Generator", ultimately reaching gigavolt potentials with an energy output in excess of 100 MJ. An intense 107 Ampere-GeV proton beam drawn from a "Super Marx Generator" can ignite a deuterium thermonuclear detonation wave in a compressed deuterium cylinder, where the strong magnetic field of the proton beam entraps the charged fusion reaction products inside the cylinder. In solving the stand-off problem, the stiffness of a GeV proton beam permits to place the deuterium target at a comparatively large distance from the wall of a cavity confining the deuterium micro-explosion.
Characterization of a deuterium-deuterium plasma fusion neutron generator
NASA Astrophysics Data System (ADS)
Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.
2018-01-01
We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.
Deuterium-lithium plasma as a source of fusion neutrons
NASA Astrophysics Data System (ADS)
Chirkov, A. Yu; Vesnin, V. R.
2017-11-01
The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.
Isotopic separation of snowmelt runoff during an artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav
2013-04-01
Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The increased total output v. input of the water volume was caused by the warmer spray-water induced snowmelt also connecting separated liquid layers in the snowpack within the process of infiltration and drainage. Key words: deuterium tracer, rainfall simulator, snowmelt
Deuterium used as artificial tracer in column studies under saturated water flow conditions
NASA Astrophysics Data System (ADS)
Koeniger, P.; Geiges, M.; Leibundgut, Ch.
2003-04-01
In contrast to numerous investigations using deuterium as an environmental tracer, hydrological investigations with deuterium-labelled water are rather rare. Currently applications in groundwater studies are restricted due to increasing costs of spiking large water quantities but an application as intelligent tracer might be of advantage especially in combination with other tracers and under distinct environmental conditions. Therefore deuterium was applied as artificial tracer in column experiments that are well proved as a tool to characterise tracer behaviour in recent studies. Deuterium was tested in comparison to the more familiar conservative tracer fluorescein. Varying experimental conditions, e.g. column length (0.5, 1.0, 1.5 m), initial tracer concentration (0.01, 0.02, 0.2 mg) and flow velocity (1.5 to 6.0 m/d) were used to investigate tracer behaviour under saturated water flow conditions. Deuterium was analysed using an H/Device with chrome reduction connected to an isotope ratio mass spectrometer and expressed in relative concentrations [per mill V-SMOW]. Theoretical tracer breakthrough curves were calculated using a one dimensional dispersion model. The results indicate higher mean transport velocities and smaller dispersion for deuterium in all experiments. Due to different molecule properties that also determine the interaction of soil substrate and tracer, deuterium indicates a more conservative transport behaviour. Deuterium is non-toxic, completely soluble, chemically and biologically stable and not subject to light-influenced decay. Furthermore, it shows promise for investigations of water flow in the unsaturated zone, and of interactions of water in soil-plant-atmosphere systems. A further discussion of problems, together with possibilities for applying deuterium as an artificial tracer, will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, C. J.; Radha, P. B.; Knauer, J. P.
In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less
Forrest, C. J.; Radha, P. B.; Knauer, J. P.; ...
2017-03-03
In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.
Bang, W
2015-07-01
Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns.
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo
2017-05-01
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.
Hamuro, Yoshitomo
2017-05-01
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yaowei; Hu, Jiansheng, E-mail: hujs@ipp.ac.cn; Wan, Zhao
2016-03-15
Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10{sup −6}–5.0 × 10{sup −2} Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eVmore » and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P{sub D{sub 2}}) and helium partial pressure (P{sub He}) could be obtained. The result shows that deuterium partial pressure could be measured if P{sub D{sub 2}} > 10{sup −6} Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P{sub He}/P{sub D{sub 2}} > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.« less
The deuterium content of water in some volcanic glasses
Friedman, I.; Smith, R.L.
1958-01-01
The deuterium-hydrogen composition (relative to Lake Michigan water = 0.0) of water extractsd from coexisting perlite and obsidian from eleven different localities was determined. The water content of the obsidians is generally from 0.09 to 0.29 per cent by weight, though two samples from near Olancha, California, contain about 0.92 per cent. The relative deuterium concentration is from -4.6 to -12.3 per cent. The coexisting perlite contains from 2.0 to 3.8 per cent of water with a relative deuterium concentration of -3.1 to -16.6 per cent. The deuterium concentration in the perlites is not related to that in the enclosed obsidian. The deuterium concentration in the perlite water is related to the deuterium concentration of the modern meteoric water and the perlite water contains approximately 4 per cent less deuterium than does the groundwater of the area in which the perlites occur. The above relations hold true for perlites from northern New Mexico, east slope of the Sierra Nevada. California Coast Range, Yellowstone Park, Wyoming, and New Zealand. As the water in the obsidian is unrelated to meteoric water, but the enclosing perlite water is related, we believe that this is evidence for the secondary hydration of obsidian to form high water content perlitic glass. ?? 1958.
Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.
2017-06-06
Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.
Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering
NASA Astrophysics Data System (ADS)
Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho
2017-12-01
The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.
NASA Astrophysics Data System (ADS)
Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei
2018-02-01
The ionization rate of the released deuterium from a metal deuteride cathode in vacuum arc discharges is investigated by both experiments and modeling analysis. Experimental results show that the deuterium ionization rate increases from 2% to 30% with the increasing arc current in the range of 2-100 A. Thus the full ionization assumption, as is widely used in arc plasma simulations, is not satisfied for the released deuterium at low discharge current. According to the modeling results, the neutral-to-ion conversion efficiency for the deuterium traveling across the cathodic spot region can be significantly less than one, due to the fast plasma expansion and rarefaction in the vacuum. In addition, the model also reveals that, unlike the metal atoms which are mainly ionized in the sheath region and flow back to the cathode, the deuterium ionization primarily occurs in the quasi-neutral region and moves towards the anode. Consequently, the cathodic sheath layer acts like a filter that increases the deuterium fraction beyond the sheath region.
Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun
2015-07-13
There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.
Is High Primordial Deuterium Consistent with Galactic Evolution?
NASA Astrophysics Data System (ADS)
Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina
1998-05-01
Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.
Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications
NASA Astrophysics Data System (ADS)
Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr
2017-09-01
In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.
NASA Astrophysics Data System (ADS)
Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.
2017-02-01
A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.
NASA Astrophysics Data System (ADS)
Kapser, Stefan; Balden, Martin; Fiorini da Silva, Tiago; Elgeti, Stefan; Manhard, Armin; Schmid, Klaus; Schwarz-Selinger, Thomas; von Toussaint, Udo
2018-05-01
Low-energy-plasma-driven deuterium permeation through tungsten at 300 K and 450 K has been investigated. Microstructural analysis by scanning electron microscopy, assisted by focused ion beam, revealed sub-surface damage evolution only at 300 K. This damage evolution was correlated with a significant evolution of the deuterium amount retained below the plasma-exposed surface. Although both of these phenomena were observed for 300 K exposure temperature only, the deuterium permeation flux at both exposure temperatures was indistinguishable within the experimental uncertainty. The permeation flux was used to estimate the maximum ratio of solute-deuterium to tungsten atoms during deuterium-plasma exposure at both temperatures and thus in the presence and absence of damage evolution. Diffusion-trapping simulations revealed the proximity of damage evolution to the implantation surface as the reason for an only insignificant decrease of the permeation flux.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less
NASA Astrophysics Data System (ADS)
Damideh, Vahid; Ali, Jalil; Saw, Sor Heoh; Rawat, Rajdeep Singh; Lee, Paul; Chaudhary, Kashif Tufail; Rizvi, Zuhaib Haider; Dabagh, Shadab; Ismail, Fairuz Diyana; Sing, Lee
2017-06-01
In this work, the design and construction of a 50 Ω fast Faraday cup and its results in correlation with the Lee Model Code for fast ion beam and ion time of flight measurements for a Deuterium filled plasma focus device are presented. Fast ion beam properties such as ion flux, fluence, speed, and energy at 2-8 Torr Deuterium are studied. The minimum 34 ns full width at half maximum ion signal at 12 kV, 3 Torr Deuterium in INTI PF was captured by a Faraday cup. The maximum ion energy of 67 ± 5 keV at 4 Torr Deuterium was detected by the Faraday cup. Ion time of flight measurements by the Faraday cup show consistent correlation with Lee Code results for Deuterium especially at near to optimum pressures.
Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse
Bang, W.
2015-07-02
Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masashi Shimada
2012-06-01
A tungsten (W) coated (0.0005-inch thickness) silicon carbide (SiC) (1.0-inch diameter and 0.19-inch thickness) sample was exposed to a divertor relevant high-flux (~1022 m-2s-1) deuterium plasma at 200 and 400°C in the Idaho National Laboratory’s (INL’s) Tritium Plasma Experiment (TPE), and the total deuterium retention was subsequently measured via the thermal desorption spectroscopy (TDS) method. The deuterium retentions were 6.4x1019 m-2 and 1.7x1020 m-2, for 200 and 400°C exposure, respectively. The Tritium Migration Analysis Program (TMAP) was used to analyze the measured TDS spectrum to investigate the deuterium behavior in the W coated SiC, and the results indicated that mostmore » of the deuterium was trapped in the W coated layer even at 400°C. This thin W layer (0.0005-inch ~ 13µm thickness) prevented deuterium ions from bombarding directly into the SiC substrate, minimizing erosion of SiC and damage creation via ion bombardment. The shift in the D desorption peak in the TDS spectra from 200 C to 400°C can be attributed to D migration to the bulk material. This unexpectedly low deuterium retention and short migration might be due to the porous nature of the tungsten coating, which can decrease the solution concentration of deuterium atoms.« less
NASA Astrophysics Data System (ADS)
Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.
2018-01-01
The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.
Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel
NASA Astrophysics Data System (ADS)
T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama
2005-04-01
Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was exposed to the environment of JFT-2M tokamak in JAERI and after that the deuterium retention was examined. The result was roughly the same as the case of deuterium ion irradiation experiment.
Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A
2014-10-10
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
Method for nondestructive fuel assay of laser fusion targets
Farnum, Eugene H.; Fries, R. Jay
1976-01-01
A method for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates.
Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Brand, J.; Bulten, H.; Zhou, Z.
1997-02-01
Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}
Development of a plasma focus neutron source powered by an explosive magnetic generator
NASA Astrophysics Data System (ADS)
Ablesimov, V. E.; Andrianov, A. V.; Bazanov, A. A.; Glybin, A. M.; Dolin, Yu. N.; Drozdov, I. Yu.; Drozdov, Yu. M.; Duday, P. V.; Zimenkov, A. A.; Ivanov, V. A.; Ivanovskii, A. V.; Kalinychev, A. E.; Karpov, G. V.; Kraev, A. I.; Lomtev, S. S.; Nudikov, V. N.; Pak, S. V.; Pozdov, N. I.; Polyushko, S. M.; Rybakov, A. F.; Skobelev, A. N.; Turov, A. N.; Fevralev, A. Yu.
2015-01-01
This paper presents the results of laboratory and explosive experiments with a plasma focus discharge Mather-type chamber at a discharge current amplitude of 1.3-1.4 MA. It has been found that in laboratory experiments, the yield of a deuterium-deuterium neutrons reached 1011, and in an explosive experiment using the chamber filled with a deuterium-tritium gas mixture, the integral yield of a deuterium-tritium neutrons with an energy of 14 MeV was more than 1012 neutrons.
Measurement of deuterium-labeled phylloquinone in plasma by LC-APCI-MS
USDA-ARS?s Scientific Manuscript database
Deuterium-labeled vegetables were fed to humans for the measurement of both unlabeled and deuterium-labeled phylloquinone in plasma. We developed a technique to determine the quantities of these compounds using liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization (LC...
The temperature and ion energy dependence of deuterium retention in lithium films
NASA Astrophysics Data System (ADS)
Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.
2016-10-01
Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.
Thermodynamic and electrical properties of laser-shocked liquid deuterium
NASA Astrophysics Data System (ADS)
He, Zhiyu; Jia, Guo; Zhang, Fan; Luo, Kui; Huang, Xiuguang; Shu, Hua; Fang, Zhiheng; Ye, Junjian; Xie, Zhiyong; Xia, Miao; Fu, Sizu
2018-01-01
Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches 1.3 × 105 (Ωṡm)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new "dynamic calibration" was introduced in this work to make the experiments simpler and more accurate.
NASA Astrophysics Data System (ADS)
Forrest, C. J.; Radha, P. B.; Knauer, J. P.; Glebov, V. Yu.; Goncharov, V. N.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Shmayda, W. T.; Stoeckl, C.; Gatu Johnson, M.
2017-03-01
The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012), 10.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.
Site occupancy of interstitial deuterium atoms in face-centred cubic iron
Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi
2014-01-01
Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789
USDA-ARS?s Scientific Manuscript database
We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluc...
NASA Astrophysics Data System (ADS)
Serra, E.; Perujo, A.; Benamati, G.
1997-06-01
A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.
Implanted Deuterium Retention and Release in Carbon-Coated Beryllium
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.
1997-06-01
Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.
Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira; Shishido, Rie
2016-10-01
Ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) capacitors were fabricated with Pt, Al:ZnO (AZO), or Sn:In 2 O 3 (ITO) top electrodes. Hydrogen- or deuterium-induced degradation was investigated for the three capacitors by annealing in a 3% H 2 /balance N 2 or 3% D 2 /balance N 2 ambient environment at 200 °C and 1 torr. The remnant polarization of all capacitors decreased after annealing in both H 2 and D 2 ambient after 45 min, and the remnant polarization of the Pt/PLZT/Pt capacitor significantly decreased after 45-min annealing compared with that of the AZO/PLZT/Pt and ITO/PLZT/Pt capacitors, even though the initial remnant polarization for the Pt/PLZT/Pt capacitor was larger. Time-of-flight secondary ion mass spectrometry showed slight differences in hydrogen content for the three different capacitors after H 2 annealing. In contrast, the deuterium content of the Pt/PLZT/Pt and AZO/PLZT/Pt or ITO/PLZT/PT capacitors was significantly different after deuterium annealing. Deuterium depth profiles for the Pt/PLZT/Pt capacitor after annealing showed that deuterium conformally exists in the PLZT layer of the Pt/PLZT/Pt capacitor, and deuterium accumulation under the Pt bottom electrode was also observed. This result suggests that diffusion of deuterium in Pt was much higher than that in PLZT. AZO and ITO top electrodes could act as a hydrogen barrier layer for ferroelectric films.
NASA Astrophysics Data System (ADS)
Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.
2017-09-01
Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.
The Effects of Deuterium Oxide on Certain Microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovanni, Rosalie
1960-11-01
The growth of several strains of E. coli and B. subtilis was inhibited by the presence of D 2O; the degree of inhibition exhibited by each strain was specific. The addition of 0.5 per cent NaCl to the D 2O media decreased the inhibition of growth. A deuterium-resistant mutant was obtained from one strain of E.coli. The incorporation of deuterium induces not only phenotypic but also genotypic changes in microorganisms. The effects induced by deuterium depend, however, on the genotype of the strain. The isotope appears to be mutagenic for some strains and some loci but not for others. Variousmore » types of forward mutations were obtained in some of the bacterial strains tested and the frequency of backward mutation was increased in two strains exposed to deuterium. Thymine containing deuterium, possibly in its methyl group, is not capable of inducing any detectable changes in a thymine requiring mutant. Cells, grown in D 2O media and subsequently washed and irradiated in H 2O saline, are more sensitive to ultraviolet irradiation than control cells.« less
Forrest, C J; Radha, P B; Knauer, J P; Glebov, V Yu; Goncharov, V N; Regan, S P; Rosenberg, M J; Sangster, T C; Shmayda, W T; Stoeckl, C; Gatu Johnson, M
2017-03-03
The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.
Overview of HIT-SI Results and Plans
NASA Astrophysics Data System (ADS)
Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.
2011-10-01
Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.
Dzhimak, S S; Baryshev, M G; Basov, A A; Timakov, A A
2014-01-01
The influence of deuterium depleted water on the body of different rats generations was investigated in physiological conditions. As a result of this study it was established that the most significant and rapid reduction in D/H equilibrium was observed in plasma (by 36.2%), and lyophilized kidney tissues (by 15.8%). Less pronounced deuterium decrease was characteristic of liver tissue (9.3%) and heart (8.5%). Stabilization of the isotopic exchange reaction rate was fixed in the blood and tissues of rats, starting from the second generation. At the same time when deuterium depleted water (40 ppm) was used in dietary intake, the change in morphological and functional parameters in laboratory animals associated with the processes of adaptation to the effects of substress isotopic D/H gradient was also noted. The study shows that modification of:only drinking water intake regime can't significantly change the deuterium content in tissues of metabolically active organs, because of the concurrent deuterium receipt in food substances of plant and animal origin.
Structure and reaction properties of thin Al films deposited on Ni(110)
NASA Astrophysics Data System (ADS)
Hahn, Peter; Bertino, Massimo F.; Toennies, J. Peter; Ritter, Michael; Weiss, Werner
1998-09-01
A variety of experimental techniques, including scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS) have been used to investigate the structure and reaction properties of thin Al films on Ni(110) as a model for technical Raney nickel catalysts. The measurements show that Al grows by the Volmer-Weber growth mode, with Al islands reaching a height of 30 Å before the first Al layer is completed. On exposure to deuterium the TDS spectra indicate that the addition of Al produces a new deuterium chemisorption state with a desorption energy which decreases from 27 to 14 kJ/mol with increasing deuterium coverage. This new bound state is attributed to deuterium atoms bound to adsorption sites in the vicinity of Al islands. Thermal desorption measurements also reveal that the deuterium initial sticking coefficient S0 decreases with Al coverage. The results can be explained by a simple model which shows that for low Al coverages each Al island inhibits deuterium dissociation in a region which is about three times larger than the island area.
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Chrystal, C.; Stagner, L.; Burrell, K.; Groebner, R. J.; Kaplan, D. H.; Nazikian, R.
2016-10-01
The recently commissioned edge deuterium charge exchange recombination (CER) spectroscopy diagnostic on DIII-D is providing direct measurements of the deuterium rotation, temperature, and density in H-mode pedestals. The deuterium temperature and temperature scale length can be 50 % lower than the carbon measurement in the gradient region of the pedestal, indicating that the ion pedestal pressure can deviate significantly from that inferred from carbon CER. In addition, deuterium exhibits a larger toroidal rotation in the co-Ip direction near the separatrix compared with the carbon. These differences are qualitatively consistent with theory-based models that identify thermal ion orbit loss across the separatrix as a source of intrinsic angular momentum. The first direct measurements of the deuterium density pedestal profile show an inward shift of the impurity pedestal compared with the main ions, validating neoclassical predictions from the XGC0 code. Work supported by the U.S. DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Park, Hokyung; Choi, Rino; Lee, Byoung Hun; Hwang, Hyunsang
2007-09-01
High pressure deuterium annealing on the hot carrier reliability characteristics of HfSiO metal oxide semiconductor field effect transistor (MOSFET) was investigated. Comparing with the conventional forming gas (H2/Ar=10%/96%, 480 °C, 30 min) annealed sample, MOSFET annealed in 5 atm pure deuterium ambient at 400 °C showed the improvement of linear drain current, reduction of interface trap density, and improvement of the hot carrier reliability characteristics. These improvements can be attributed to the effective passivation of the interface trap site after high pressure annealing and heavy mass effect of deuterium. These results indicate that high pressure pure deuterium annealing can be a promising process for improving device performance as well as hot carrier reliability, together.
Observations of interstellar hydrogen and deuterium toward Alpha Centauri A
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1984-01-01
A composite profile is presented of the Ly-alpha emission line of Alpha Cen A, obtained from 10 individual spectra with the high-resolution spectrograph aboard the International Ultraviolet Explorer (IUE) satellite. There is excellent overall agreement with two previous Copernicus observations. Interstellar deuterium is detected, and a lower limit is set on the deuterium to hydrogen ratio of nDI/nHI greater than 8 x 10 to the -6th. In addition, the deuterium bulk velocity appears blueshifted by 8 + or - 2 km/s with respect to interstellar hydrogen, suggesting a nonuniform medium along the line of sight.
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.
1989-01-01
An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.
The Production of Hadrons in Muon Scattering on Deuterium and Xenon Nuclei at 480-GeV (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldner-Rembold, Stefan
1992-01-01
For the present thesis the hadronic final states of 6309 muon-deuterium events and 2064 muon-xenon events in the kinematical range Q 2>1 (GeV/c) 2, x>0.002, 0.1< y<0.85, 8< W<30 GeV, and θ>3.5 mrad were studied. The multiplicity distributions of the muon-deuterium events and the muon-xenon events were described by means of the negative binomial distribution in intervals of the c.m. energy W. The two parameters anti n (mean multiplicity) and 1/k show for the muon-deuterium events a linear dependence on ln W2. The mean multiplicity anti n on xenon (anti n=10.43±0.19) is distinctly higher than on deuterium (anti n=7.76±0.07). Themore » rapidity distributions of the positively charged and the negatively charged hadrons from muon-deuterium events are very well described by the Monte-Carlo program LUND. In the two-particle rapidity correlation both short-range and long-range correlations can be detected. The two-particle rapidity correlation in the xenon data are different from the deuterium data in the backward range. This difference indicates that the intranuclear cascade takes place in a limited range of small rapidities - relatively independently on the residual fragmentation process.« less
ERIC Educational Resources Information Center
Nichols, Michael A.; Waner, Mark J.
2010-01-01
An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…
Vanadium hydride deuterium-tritium generator
Christensen, Leslie D.
1982-01-01
A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, J.J.; Crespi, H.L.; Finkel, A.J.
1958-10-31
g been noted, but the full scope and nature of these effects still remain largely unexplored. Early work was greatly hampered by the difficulties of obtaining deuterium but the development of a vast nuclear energy technology has made deuterium available on a larghe scale. It has now become opportune to undertake comprehensive reports work undertaken on algae, fungi, bacteria, and mammals. Mice will tolerate up to about 40 per cent D/sub 2/O in the drinking water for at least four months; of about 30 per cent heavy water. When deuteration is into various tissues and organs to the amount ofmore » from 40 to 50 per cent of the deuterium in the body fluids. 25 atom per cent, for as long as 12 months without obcal effects of deuterium is the kinetic isotpe effect. In general, bonds to deuterium react less readily than bonds to hydrogen; in consequence, reaction reates are decreased, and a depression in tissue metabolism should result. At concentrations about 30 atom per cen deuterium mice and rats show weakness, neutrmuscular por and death Since neoplastic cells metabolize rapidly, presumably these should be particularly sensitive to the effects of deuteration. Deuteration of host mice resulted in reduced growth rates of injected Krebs-2 ascites tumors and of inoculated P-1534 lymphatic leukemia. The general effects of deuterium on growth has been Chlorella vulgaris and Scenedesmus obliquus, have been have been harvested that yield water of combustion containing more than 90 atom per cent deuterium. The e were altered by deuteration. The fungi Penicillium notatum and Aspergillus fonsecaeus have been grown in media containing various concentrations of D/sub 2/O up to 99.6 per cent, and here, too, morphology, sporulation, pigment production, and growth rate were all affected by deuteration. The results obtained with algae clearly indicate the feasibility of producing fully deuterated compounds of biological significance by biosynthetic procedures. Bacterial studies on Group C hemolytic streptococci, Type I pnemococci, Mycobacterium tuberculosis and M.phlei, and Escherichia coli showed that the growth rates were diminished with elevation of the D/.sub 2/O concentration above 50 per cent and that cessation of growth uniformly occurred at D/sub 2/O levels greater than 90 per cent. Deuterium may also be utilized in the study of metabolism by the administration of deuterated essential metabolites. Experiments are described wherein fungi have been grown on glucose in which the hydrogen on carbon-1 (D-glucose-d/sub 1/) has been completely replaced by deuterium. (auth)« less
NASA Astrophysics Data System (ADS)
Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.
2005-05-01
In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.
Chacko, Shaji K; Sunehag, Agneta L; Sharma, Susan; Sauer, Pieter J J; Haymond, Morey W
2008-04-01
We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluconeogenesis are based on measurements of the average enrichment of deuterium on carbon 1, 3, 4, 5, and 6 of glucose and the deuterium enrichment in body water. In a sample from an adult volunteer after ingestion of deuterium oxide, fractional gluconeogenesis using the "average deuterium enrichment method" was 48.3 +/- 0.5% (mean +/- SD) and that with the C-5 hexamethylenetetramine (HMT) method by Landau et al. (Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC; J Clin Invest 98: 378-385, 1996) was 46.9 +/- 5.4%. The coefficient of variation of 10 replicate analyses using the new method was 1.0% compared with 11.5% for the C-5 HMT method. In samples derived from an infant receiving total parenteral nutrition, fractional gluconeogenesis was 13.3 +/- 0.3% using the new method and 13.7 +/- 0.8% using the C-5 HMT method. Fractional gluconeogenesis measured in six adult volunteers after 66 h of continuous fasting was 83.7 +/- 2.3% using the new method and 84.2 +/- 5.0% using the C-5 HMT method. In conclusion, the average deuterium enrichment method is simple, highly reproducible, and cost effective. Furthermore, it requires only small blood sample volumes. With the use of an additional tracer, glucose rate of appearance can also be measured during the same analysis. Thus the new method makes measurements of gluconeogenesis available and affordable to large numbers of investigators under conditions of low and high fractional gluconeogenesis ( approximately 10 to approximately 90) in all subject populations.
NASA Astrophysics Data System (ADS)
Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.
1988-12-01
The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.
Vanadium hydride deuterium-tritium generator
Christensen, L.D.
1980-03-13
A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.
Temperature derivatives for fusion reactivity of D-D and D-T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbrunner, James R.; Makaruk, Hanna Ewa
Deuterium-tritium (D-T) and deuterium-deuterium (D-D) fusion reaction rates are observable using leakage gamma flux. A direct measurement of γ-rays with equipment that exhibits fast temporal response could be used to infer temperature, if the detector signal is amenable for taking the logarithmic time-derivative, alpha. We consider the temperature dependence for fusion cross section reactivity.
[Consideration of the deuterium-free water supply to an expedition to Mars].
Siniak, Iu E; Turusov, V S; Grigor'ev, A I; Zaridze, D G; Gaĭdadymov, V B; Gus'kova, E I; Antoshina, E E; Gor'kova, T G; Trukhanova, L S
2003-01-01
Interplanetary missions, including to Mars, will put crews into severe radiation conditions. Search for methods of reducing the risk of radiation-induced cancer is of the top priority in preparation for the mission to Mars. One of the options is designing life support systems that will generate water with low content of the stable hydrogen isotope (deuterium) to be consumed by crewmembers. Preliminary investigations have shown that a decrease of the deuterium fraction by 65% does impart to water certain anti-cancer properties. Therefore, drinking deuterium-free water has the potential to reduce the risk of cancer consequent to the extreme radiation exposure of the Martian crew.
Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.
2005-01-18
A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.
On the Possibility of Creating a Point-Like Neutron Source
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Razin, S. V.; Shaposhnikov, R. A.; Lapin, R. L.; Bokhanov, A. F.; Kazakov, M. Yu.
2018-03-01
We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s-1 on the basis of a deuterium-deuterium fusion reaction (or 1012 s-1 on the basis of a deuterium-tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.
NASA Technical Reports Server (NTRS)
Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)
1997-01-01
The alpha-amino and alpha-hydroxy acids found in the Murchison carbonaceous chondrite are deuterium enriched. These compounds are thought to have originated from common deuterium enriched carbonyl precursors, by way of a Strecker synthesis which took place in a solution of HCN, NH3, and carbonyl compounds during the period of aqueous alteration of the meteorite parent body. However, the hydroxy acids found on Murchison are less deuterium enriched than the amino acids. With the objective of determining if the discrepancy in deuterium enrichment between the amino acids and the hydroxy acids found on Murchison is consistent with their formation in a Strecker synthesis, we have measured the deuterium content of alpha-amino and alpha-hydroxy acids produced in solutions of deuterated carbonyl compounds, KCN and NH4Cl, and also in mixtures of such solutions and Allende dust at 263 K and 295 K. Retention of the isotopic signature of the starting carbonyl by both alpha amino acids and alpha hydroxy acids is more dependent upon temperature, concentration and pH than upon the presence of meteorite dust in the solution. The constraints these observations place on Murchison parent body conditions will be discussed.
NASA Astrophysics Data System (ADS)
Wang, Jun; Cheng, Long; Yuan, Yue; Qin, Shao-Yang; Arshad, Kameel; Guo, Wang-Guo; Wang, Zheng; Zhou, Zhang-Jian; Lu, Guang-Hong
2018-03-01
The behavior of tungsten-vanadium (W-V) alloys fabricated by powder metallurgy as a plasma facing material has been studied. W-V alloys with different vanadium concentrations (5 and 10 wt %) manufactured by hot pressing (HP) were exposed to deuterium plasma (flux ∼4.6 × 1021 m-2s-1, fluence ∼5.6 × 1025 m-2, ion energy ∼60 eV, target temperature ∼450 K) in the linear plasma device STEP at Beihang University. Three typical grains are observed on HP sintered W-V alloys and exhibit a significant effect on its performance under deuterium plasma irradiation. Surface blistering only occurs at W-enriched grains and is significantly mitigated in W-V alloys, especially in W-10 V, blistering is completely suppressed. On the other hand, deuterium retention dramatically increases in the W-V alloys due to vanadium addition. The deuterium retention in W-5 wt. % V is about 6.2 times more than that in rolled pure W, and this factor further increases to 6.9 when the V concentration rises to 10 wt %. We ascribe these phenomena to the changes of microstructures and components caused by vanadium addition.
NASA Astrophysics Data System (ADS)
Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.
2018-03-01
The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.
Winterberg, F.
2009-01-01
The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less
Source, movement and age of groundwater in the upper part of the Mojave River Basin, California, USA
Izbicki, J.A.; Martin, P.; Michel, R.L.
1995-01-01
Water samples from wells were collected and analysed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66??? and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60???. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84???, which is as much as 20??? lighter than the volume-weighted deuterium composition of present-day precipitation. These data show that this water was recharged under climatic conditions different from average conditions today. Carbon-14 data indicate that some water in the regional aquifer was recharged more than 20 000 years ago.Water samples from wells were collected and analyzed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66qq and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60qq. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84qq, which is as much as 20qq lighter than the volume-weighted deuterium composition of present-day precipitation. These data show that this water was recharged under climatic conditions different from average conditions today. Carbon-14 data indicate that some water in the regional aquifer was recharged more than 20 000 years ago.
NASA Astrophysics Data System (ADS)
Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.
2016-03-01
Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.
Energy Levels of Hydrogen and Deuterium
National Institute of Standards and Technology Data Gateway
SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access) This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.
Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.
Holm, Jason; Roberts, Jeffrey T
2009-06-16
Isotopic labeling techniques were employed to study alkene addition to hydrogen- and deuterium-terminated silicon nanoparticles. Deuterium-terminated silicon nanoparticle synthesis is described, as is the characterization of fresh deuterium-terminated particles by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FTIR). Particles were refluxed in pure 1-dodecene and subsequently characterized by FTIR and nuclear magnetic resonance (NMR) spectroscopy. (1)H NMR results showed features consistent with dodecyl-terminated nanoparticles. Infrared absorption spectra of refluxed particles showed strong evidence of new C-D bond formation, which is consistent with a radical chain mechanism for alkene addition by hydrosilylation.
Permeation of deuterium implanted into V-15Cr-5Ti
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.
1987-02-01
Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.
Meyer, Thomas J.; Narula, Poonam M.
2001-01-01
Concentration of tritium and/or deuterium that is a contaminant in H.sub.2 O, followed by separation of the concentrate from the H.sub.2 O. Employed are certain metal oxo complexes, preferably with a metal from Group VIII. For instance, [Ru.sup.IV (2,2',6',2"-terpyridine)(2,2'-bipyridine)(O)](ClO.sub.4).sub.2 is very suitable.
Production of 14 MeV neutrons by heavy ions
Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.
1977-01-01
This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.
EFFECTS OF DEUTERIUM OXIDE UPON POLIOVIRUS MULTIPLICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carp, R.I.; Kritchevsky, D.; Koprowski, H.
1960-09-01
The effects of deuterium oxide on the multiplication of CHAT, an attenuated type of poliomyeliths virus, was studied in cells of HeLa and of monkey kidney cells in primary cultures. Yields of virus obtained from deuterated cells were consistently higher than those obtained from controls. The incorporation of deuterium oxide in the growth media resulted in an increase in the average plague size of polio virus. (C.H.)
NASA Astrophysics Data System (ADS)
Ghezzi, F.; Caniello, R.; Giubertoni, D.; Bersani, M.; Hakola, A.; Mayer, M.; Rohde, V.; Anderle, M.; ASDEX Upgrade Team
2014-10-01
We present the results of a study where secondary ion mass spectrometry (SIMS) has been used to obtain depth profiles of deuterium concentration on plasma facing components of the first wall of the ASDEX Upgrade tokamak. The method uses primary and secondary standards to quantify the amount of deuterium retained. Samples of bulk graphite coated with tungsten or tantalum-doped tungsten are independently profiled with three different SIMS instruments. Their deuterium concentration profiles are compared showing good agreement. In order to assess the validity of the method, the integrated deuterium concentrations in the coatings given by one of the SIMS devices is compared with nuclear reaction analysis (NRA) data. Although in the case of tungsten the agreement between NRA and SIMS is satisfactory, for tantalum-doped tungsten samples the discrepancy is significant because of matrix effect induced by tantalum and differently eroded surface (W + Ta always exposed to plasma, W largely shadowed). A further comparison where the SIMS deuterium concentration is obtained by calibrating the measurements against NRA values is also presented. For the tungsten samples, where no Ta induced matrix effects are present, the two methods are almost equivalent.The results presented show the potential of the method provided that the standards used for the calibration reproduce faithfully the matrix nature of the samples.
In-vivo NMR studies of deuterium-labeled photosensitizers in mice tumor model
NASA Astrophysics Data System (ADS)
Ramaprasad, Subbaraya; Liu, Y. H.; Pandey, R. K.; Shiau, Fuu-Yau; Smith, Kevin M.
1993-06-01
Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of cancer. We are using newly synthesized and chemically defined and characterized porphyrin photosensitizers that are specifically labeled with deuterium to perform in vivo NMR studies in a murine tumor model. In vivo magnetic resonance offers the potential for repetitive, safe, noninvasive evaluation of photosensitizers, tumor metabolism, and the effect of PDT on the tumor metabolism. In an effort to monitor noninvasively the photosensitizers in an in vivo tumor model, we are synthesizing several deuterium labeled photosensitizers which absorb red light at or above 630 nm. Development of methods to test these photosensitizers directly in humans is not feasible at this time, since these photosensitizers are new and we do not yet understand the side effects. In addition, we do not understand the potential benefits compared with Photofrin II, the widely used photosensitizer. To perform our in vivo deuterium NMR studies on mouse foot tumors, we have constructed a solenoid coil which operates at 30.7 MHz for the deuterium nucleus. We have been able to detect the deuterium labeled photosensitizer in the tumor after a direct intra-tumor injection. The use of 31P NMR to predict the possible outcome of PDT in these tumors is also discussed.
NASA Astrophysics Data System (ADS)
Gann, V. V.; Tolstolutskaya, G. D.
2008-08-01
An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.
Physicochemical Processes on Ice Dust Towards Deuterium Enrichment
NASA Astrophysics Data System (ADS)
Watanabe, Naoki
2017-06-01
Water and some organic molecules were found to be deuterium enriched toward various astronomical targets. Understanding the deuterium-fractionation process pertains directly to know how and when molecules are created. Although gas phase chemistry is certainly important for deuterium enrichment, the role of physicochemical processes on the dust surfaces should be also considered. In fact, the extreme deuterium enrichment of formaldehyde and methanol requires the dust grain-surface process. In this context, we have performed a series of experiments on the formation of deuterated species of water and simple organic molecules. From the results of these experiments and related works, I will discuss the key processes for the deuterium enrichment on dust. For deuterium chemistry, another important issue is the ortho-to-para ratio (OPR) of H_{2}, which is closely related to the formation of H_{2}D^{+} and thus the deuterium fractionation of molecules in the gas phase. Because the radiative nuclear spin conversion of H_{2} is forbidden, the ortho-para conversion is very slow in the gas phase. In contrast, it was not obvious how the nuclear spins behave on cosmic dust. Therefore, it is desirable to understand how the OPR of H_{2} is determined on the dust surfaces. We have tackled this issue experimentally. Using experimental techniques of molecular beam, photostimulated-desorption, and resonance-enhanced multiphoton ionization, we measured the OPRs of H_{2} photodesorbed from amorphous solid water at around 10 K, which is an ice dust analogue. It was first demonstrated that the rate of spin conversion from ortho to para drastically increases from 2.4 × 10^{-4} to 1.7 × 10^{-3} s^{-1} within the very narrow temperature window of 9.2 to16 K. The observed strong temperature cannot be explained by solely state-mixing models ever proposed but by the energy dissipation model via two phonon process. I will present our recent experiments regarding this.
Properties of thick GEM in low-pressure deuterium
NASA Astrophysics Data System (ADS)
Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.
2014-05-01
Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.
The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten
NASA Astrophysics Data System (ADS)
Roszell, John Patrick Town
Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 eV) with the shallow penetration depth of low energy ions being the major factor in the reduction in retention. A change in retention mechanism was observed as tungsten temperature during irradiation was increased from 300 to 500 K. Modelling of deuterium retention in 300 and 500 K SCW specimens revealed that two traps, 1.0 and 1.3 eV, are involved in retention for irradiations performed at 300K while a single 2.1 eV trap is present for 500 K irradiations. Experiments suggest that the 2.1 eV trap is created during irradiation of tungsten at 500 K and this process also involves the annihilation of the 1.3 and 1.0 eV traps.
Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD
NASA Astrophysics Data System (ADS)
Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun
2012-01-01
The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.
NASA Astrophysics Data System (ADS)
Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.; Chubenko, A. P.; Ralchenko, V. G.; Bolshakov, A. P.
2015-07-01
At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on 3He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.A.; Stewart, B.B.
Deuterium gas exchanges slowly with liquid methanol over Raney nickel catalyst at 35 deg . The reaction is zero order with respect to deuterium pressure and has a low activation energy. The influences of catalyst weight, catalyst treatment, and of the presence of certain nitro compounds were studied. Since active Raney nickel can liberate hydrogen directly, a method for determining the origin of hydrogen which undergoes exchange with the deuterium gas was developed. It was shown that the exchanged hydrogen does originate from the hydroxyl hydrogen of methanol. The results are discussed in the light of the mechanism of catalyticmore » exchange and catalytic hydrogenation reactions. (auth)« less
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo; E, Sook Yen
2018-05-01
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.
Hamuro, Yoshitomo; E, Sook Yen
2018-05-01
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo; E, Sook Yen
2018-03-01
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.
Computational Simulation of High Energy Density Plasmas
2009-10-30
the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in
NASA Astrophysics Data System (ADS)
Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.
2018-06-01
Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.
Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E
2016-02-01
This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice. © Georg Thieme Verlag KG Stuttgart · New York.
Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma
NASA Astrophysics Data System (ADS)
Qiao, L.; Wang, P.; Hu, M.; Gao, L.; Jacob, W.; Fu, E. G.; Luo, G. N.
2017-12-01
In recent years reduced activation ferritic martensitic steel has been proposed as the plasma-facing material in remote regions of the first wall. This study reports the erosion and deuterium retention behaviours in CLF-1 steel exposed to deuterium (D) plasma in a linear experimental plasma system as function of incident ion energy and fluence. The incident D ion energy ranges from 30 to 180 eV at a flux of 4 × 1021 D m-2 s-1 up to a fluence of 1025 D m-2. SEM images revealed a clear change of the surface morphology as functions of incident fluence and impinging energy. The mass loss results showed a decrease of the total sputtering yield of CLF-1 steel with increasing incident fluence by up to one order of magnitude. The total sputtering yield of CLF-1 steel after 7.2 × 1024 D m-2 deuterium plasma exposure reduced by a factor of 4 compared with that of pure iron, which can be attributed to the enrichment of W at the surface due to preferential sputtering of iron and chromium. After D plasma exposure, the total deuterium retention in CLF-1 steel samples measured by TDS decreased with increasing incident fluence and energy, and a clear saturation tendency as function of incident fluence or energy was also observed.
The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence
NASA Astrophysics Data System (ADS)
Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce
2017-10-01
The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.
Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor
2016-02-01
The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the
2018-07-01
The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.
Effect of wetting on nucleation and growth of D2 in confinement
NASA Astrophysics Data System (ADS)
Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.
2018-04-01
We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.
NASA Technical Reports Server (NTRS)
Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, ([4,4'(1,3,4-oxadiazole-2,5-diyl-d4)] di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and ([4,4'(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog [4,4(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
NASA Astrophysics Data System (ADS)
Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.
2014-03-01
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.
Visualization of water transport into soybean nodules by Tof-SIMS cryo system.
Iijima, Morio; Watanabe, Toshimasa; Yoshida, Tomoharu; Kawasaki, Michio; Kato, Toshiyuki; Yamane, Koji
2015-04-15
This paper examined the route of water supply into soybean nodules through the new visualization technique of time of flight secondary ion mass spectrometry (Tof-SIMS) cryo system, and obtained circumstantial evidence for the water inflow route. The maximum resolution of the Tof-SIMS imaging used by this study was 1.8 μm (defined as the three pixel step length), which allowed us to detect water movement at the cellular level. Deuterium-labeled water was supplied to soybean plants for 4h and the presence of deuterium in soybean nodules was analyzed by the Tof-SIMS cryo system. Deuterium ions were found only in the endodermis tissue surrounding the central cylinder in soybean nodules. Neither xylem vessels nor phloem complex itself did not indicate any deuterium accumulation. Deuterium-ion counts in the endodermis tissue were not changed by girdling treatment, which restricted water movement through the phloem complex. The results strongly indicated that nodule tissues did not receive water directly from the phloem complex, but received water through root cortex apoplastic pathway from the root axis. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioziemski, B.
A foam shell, 1.2 mm outer diameter with a 35 μm thick foam layer, is used to quickly form a solid deuterium layer for ICF. Figures show the visible light microscope image and a corresponding schematic representation. In each case, images show the empty foam shell, with the dark and light patches due to the foam imperfections; the foam shell with liquid deuterium filling the foam (in this case, the liquid level exceeds the foam level because the deuterium will shrink when it freezes); and an image of the shell taken 10 minutes after the center image, after the temperaturemore » was reduced by 2 K to freeze the deuterium. This image shows that the majority of the solid deuterium has no observable defects, with the exception of the isolated crystal that formed on the foam surface. The next step is to get the correct level of liquid and cooling rate to prevent the extra crystal on the surface. In contrast, typical ICF DT fuel layers require ~13 hours to solidify in order to be defect free with a success rate of approximately 20%.« less
Nuclear spin polarized H and D by means of spin-exchange optical pumping
NASA Astrophysics Data System (ADS)
Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank
1998-01-01
Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.
EFFECTS OF HEAVY WATER ON POLIOVIRUS MULTIPLICATION: RESULTS AND SPECULATIONS ON MECHANISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kritchevsky, D.; Carp, R.I.; Koprowski, H.
1961-07-15
The CHAT strain of type I polio virus was grown on monkey kidney cell monolayers maintained in normal growth medium, in deuterium oxide, and irradiated by 300 r of x radiation. Duplicate cultures were kept at 35 and 40 deg C. Preliminary observations indicated the effect of deuterium oxide on plague size is more pronounced than that of x rays. Different plaque ratios were obtained for virus grown in deuterium oxide at 37 and 40 deg C. Mechanisms by which deuterium oxide influenced virus growth appeared to involve the extent of randomization of the virus structure and to be manifestmore » either by altering the stability of the hydrogen bonding in the molecule or by affecting the transition temperature of the helix-random coil transformation. (C.H.)« less
NASA Astrophysics Data System (ADS)
Huang, Richard Y.-C.; O'Neil, Steven R.; Lipovšek, Daša; Chen, Guodong
2018-05-01
Higher-order structure (HOS) characterization of therapeutic protein-drug conjugates for comprehensive assessment of conjugation-induced protein conformational changes is an important consideration in the biopharmaceutical industry to ensure proper behavior of protein therapeutics. In this study, conformational dynamics of a small therapeutic protein, adnectin 1, together with its drug conjugate were characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS) with different spatial resolutions. Top-down HDX allows detailed assessment of the residue-level deuterium content in the payload conjugation region. HDX-MS dataset revealed the ability of peptide-based payload/linker to retain deuterium in HDX experiments. Combined results from intact, top-down, and bottom-up HDX indicated no significant conformational changes of adnectin 1 upon payload conjugation. [Figure not available: see fulltext.
Deuterium diffusion and retention in tungsten coated with barrier layer during ion irradiation
NASA Astrophysics Data System (ADS)
Begrambekov, L. B.; Kaplevsky, A. S.; Dovganyuk, S. S.; Evsin, A. E.; Baryshnikova, I. E.
2017-12-01
The results of the comparative analysis of low-temperature desorption of deuterium from tungsten coated with aluminum and yttrium films under the irradiation by hydrogen plasma with oxygen impurity are presented. The irradiation of aluminum or yttrium coating by H2+1%O2 plasma leads to the desorption of implanted deuterium from the samples. It was shown that the number of atoms desorbed depends on the sign of enthalpy of hydrogen solution in the metal film.
Apparatus for producing laser targets
Jarboe, T.R.; Baker, W.R.
1975-09-23
This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbrunner, James R.; Booker, Jane M.
We examine the derivatives with respect to temperature, for various deuterium-tritium (DT) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and Makaruk [1] had studied this as a means of understanding the time and temperature domain of reaction history measured in dynamic fusion experiments. Presently, we consider the temperature derivative dependence of fusion reactivity as a means of exercising and verifying the consistency of the various reactivity formulations.
Neutron streaming studies along JET shielding penetrations
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan
2017-09-01
Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.
Masson, Glenn R.; Maslen, Sarah L.
2017-01-01
Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il'kaev, R. I.; Fortov, V. E.
2012-10-15
The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtainedmore » data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.« less
Alejo, A; Kar, S; Ahmed, H; Krygier, A G; Doria, D; Clarke, R; Fernandez, J; Freeman, R R; Fuchs, J; Green, A; Green, J S; Jung, D; Kleinschmidt, A; Lewis, C L S; Morrison, J T; Najmudin, Z; Nakamura, H; Nersisyan, G; Norreys, P; Notley, M; Oliver, M; Roth, M; Ruiz, J A; Vassura, L; Zepf, M; Borghesi, M
2014-09-01
A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C(6+), O(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.
NASA Astrophysics Data System (ADS)
Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A. G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R. R.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J. A.; Vassura, L.; Zepf, M.; Borghesi, M.
2014-09-01
A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa
NASA Astrophysics Data System (ADS)
Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.
2018-04-01
An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.
NASA Astrophysics Data System (ADS)
Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.
2016-01-01
The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.
Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten
Shimada, Masashi; Cao, G.; Otsuka, T.; ...
2014-12-01
Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less
Hydrogen isotope separation utilizing bulk getters
Knize, R.J.; Cecchi, J.L.
1991-08-20
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1991-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1990-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.
2016-01-01
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
A dual origin for water in carbonaceous asteroids revealed by CM chondrites
NASA Astrophysics Data System (ADS)
Piani, Laurette; Yurimoto, Hisayoshi; Remusat, Laurent
2018-04-01
Carbonaceous asteroids represent the principal source of water in the inner Solar System and might correspond to the main contributors for the delivery of water to Earth. Hydrogen isotopes in water-bearing primitive meteorites, for example carbonaceous chondrites, constitute a unique tool for deciphering the sources of water reservoirs at the time of asteroid formation. However, fine-scale isotopic measurements are required to unravel the effects of parent-body processes on the pre-accretion isotopic distributions. Here, we report in situ micrometre-scale analyses of hydrogen isotopes in six CM-type carbonaceous chondrites, revealing a dominant deuterium-poor water component (δD = -350 ± 40‰) mixed with deuterium-rich organic matter. We suggest that this deuterium-poor water corresponds to a ubiquitous water reservoir in the inner protoplanetary disk. A deuterium-rich water signature has been preserved in the least altered part of the Paris chondrite (δDParis ≥ -69 ± 163‰) in hydrated phases possibly present in the CM rock before alteration. The presence of the deuterium-enriched water signature in Paris might indicate that transfers of ice from the outer to the inner Solar System were significant within the first million years of the history of the Solar System.
Fusion product losses due to fishbone instabilities in deuterium JET plasmas
NASA Astrophysics Data System (ADS)
Kiptily, V. G.; Fitzgerald, M.; Goloborodko, V.; Sharapov, S. E.; Challis, C. D.; Frigione, D.; Graves, J.; Mantsinen, M. J.; Beaumont, P.; Garcia-Munoz, M.; Perez von Thun, C.; Rodriguez, J. F. R.; Darrow, D.; Keeling, D.; King, D.; McClements, K. G.; Solano, E. R.; Schmuck, S.; Sips, G.; Szepesi, G.; Contributors, JET
2018-01-01
During development of a high-performance hybrid scenario for future deuterium-tritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n = 1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10-25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced deuterium beam ions in the energy range ⩽120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n = 1 fishbones affects strongly the confinement of non-resonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.
Universes without the weak force: Astrophysical processes with stable neutrons
NASA Astrophysics Data System (ADS)
Grohs, E.; Howe, Alex R.; Adams, Fred C.
2018-02-01
We investigate a class of universes in which the weak interaction is not in operation. We consider how astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis (BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from our own, such universes remain potentially habitable.
Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baillie, T.A.; Adams, W.J.; Kaiser, D.G.
1989-05-01
The metabolic chiral inversion of R-(-)-ibuprofen has been studied in human subjects by means of specific deuterium labeling and stereoselective gas chromatography-mass spectrometry methodology. After simultaneous p.o. administration of a mixture of R-(-)-ibuprofen (300 mg) and R-(-)-(3,3,3-2H3)ibuprofen (304 mg) to four adult male volunteers, the enantiomeric composition and deuterium content of the drug in serum, and of the drug and its principal metabolites in urine, were followed over a period of 24 hr. The results of these analyses indicated that: (1) conversion of R-(-)- to S-(+)-ibuprofen takes place with complete retention of deuterium at the beta-methyl (C-3) position; (2) chiralmore » inversion of R-(-)-(2H3)ibuprofen is not subject to a discernible deuterium isotope effect; and (3) replacement of the beta-methyl hydrogen atoms by deuterium has no effect on any of the serum pharmacokinetic parameters for R-(-)- or S-(+)-ibuprofen. These data indicate that the process whereby R-(-)-ibuprofen undergoes metabolic inversion in human subjects does not involve 2,3-dehydroibuprofen as an intermediate, and that the underlying mechanism cannot, therefore, entail a desaturation/reduction sequence.« less
Water Sorption and Vapor-Phase Deuterium Exchange Studies on Methemoglobin CC, SC, SS, AS, and AA
Killion, Philip J.; Cameron, Bruce F.
1972-01-01
Five hemoglobins whose genetic relationship to one another involves one set of alleles, hemoglobins CC, SC, SS, AS, and AA, were studied in the Met form. Two different investigations were conducted at 28°C on these methemoglobins within a McBain gravimetric sorption system: sorption of H2O vapor and vapor-phase deuterium-hydrogen exchange. For each of the five samples there was close agreement between the per cent hydration of polar sites as determined from sorption studies and the maximum per cent of labile hydrogens that were exchanged during the vapor-phase deuterium exchange study. Both studies measured a slight increase in the number of polar sites accessible to H2O or D2O vapor for those samples in which the substituent in the sixth position from the N-terminus of the two β-chains had a positively charged side chain and a slight decrease for those in which the substituent had a negatively charged side chain. The in-exchange of deuterium for hydrogen occurred at a faster observed rate than the out-exchange of hydrogen for deuterium. PMID:5030563
Biotechnological Patents Applications of the Deuterium Oxide in Human Health.
da S Mariano, Reysla M; Bila, Wendell C; Trindade, Maria Jaciara F; Lamounier, Joel A; Galdino, Alexsandro S
2017-01-01
Deuterium oxide is a molecule that has been used for decades in several studies related to human health. Currently, studies on D2O have mobilized a "Race for Patenting" worldwide. Several patents have been registered from biomedical and technological studies of D2O showing the potential of this stable isotope in industry and health care ecosystems. Most of the patents related to the applications of the deuterium oxide in human health have been summarized in this review. The following patents databases were consulted: European Patent Office (Espacenet), the United States Patent and Trademark Office (USPTO), the United States Latin America Patents (LATIPAT), Patent scope -Search International and National Patent Collections (WIPO), Google Patents and Free Patents Online. With this review, the information was collected on recent publications including 22 patents related to deuterium oxide and its applications in different areas. This review showed that deuterium oxide is a promising component in different areas, including biotechnology, chemistry and medicine. In addition, the knowledge of this compound was covered, reinforcing its importance in the field of biotechnology and human health. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cytology is advanced by studying effects of deuterium environment
NASA Technical Reports Server (NTRS)
Bose, S.; Crespi, H. L.; Flaumenhaft, E.; Katz, J. J.
1967-01-01
Research of deuterium effects on biological systems shows deuteriation is not incompatible with life. With the successful cultivation of deuteriated bacteria, work is now being done on extraction of deuterio-compounds from bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, John James
The E665 spectrometer at Fermila.b measured Deep-Inelastic Scattering of 490 GeV /c muons off several targets: Hydrogen, Deuterium, and Xenon. Events were selected from the Xenon and Deuterium targets, with a range of energy exchange,more » $$\
Deuterium: Natural variations used as a biological tracer
Gleason, J.D.; Friedman, I.
1970-01-01
The suggestion is made that isotope tracing be carried out by monitoring the natural variations in deuterium concentrations. As an example, the natural variations in deuterium concentrations between food and water collected in Illinois and food and water collected in Colorado were used to determine the residence time of water in the blood and urine of rats. We observed not only a 51/2-day turnover time of water in the blood and urine, but also evidence for the influx of water vapor from the atmosphere through the lungs into the blood.
Research on laser-removal of a deuterium deposit from a graphite sample
NASA Astrophysics Data System (ADS)
Kubkowska, M.; Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Rosinski, M.; Gasior, P.
2014-04-01
The paper presents experimental results of investigation of a removal of deuterium deposits from a graphite target by means of pulsed laser beams. The sample was a part of the TEXTOR limiter with a deuterium-deposited layer. That target was located in the vacuum chamber, pumped out to 5×10-5 Torr, and it was irradiated with a Nd:YAG laser, which generated 3.5-ns pulses of energy of 0.5 J at λ1 = 1063 nm, or 0.1 J at λ3 = 355 nm.
Generation of Mie size microdroplet aerosols with applications in laser-driven fusion experiments.
Higginbotham, A P; Semonin, O; Bruce, S; Chan, C; Maindi, M; Donnelly, T D; Maurer, M; Bang, W; Churina, I; Osterholz, J; Kim, I; Bernstein, A C; Ditmire, T
2009-06-01
We have developed a tunable source of Mie scale microdroplet aerosols that can be used for the generation of energetic ions. To demonstrate this potential, a terawatt Ti:Al2O3 laser focused to 2 x 10(19) W/cm2 was used to irradiate heavy water (D2O) aerosols composed of micron-scale droplets. Energetic deuterium ions, which were generated in the laser-droplet interaction, produced deuterium-deuterium fusion with approximately 2 x 10(3) fusion neutrons measured per joule of incident laser energy.
Buscopan labeled with carbon-14 and deuterium.
Latli, Bachir; Stiasni, Michael; Hrapchak, Matt; Li, Zhibin; Grinberg, Nelu; Lee, Heewon; Busacca, Carl A; Senanayake, Chris H
2016-11-01
Hyosine butyl bromide, the active ingredient in Buscopan, is an anticholinergic and antimuscarinic drug used to treat pain and discomfort caused by abdominal cramps. A straightforward synthesis of carbon-14- and deuterium-labeled Buscopan was developed using scopolamine, n-butyl-1- 14 C bromide, and n-butyl- 2 H 9 bromide, respectively. In a second carbon-14 synthesis, the radioactive carbon was incorporated in the tropic acid moiety to follow its metabolism. Herein, we describe the detailed preparations of carbon-14- and deuterium-labeled Buscopan. Copyright © 2016 John Wiley & Sons, Ltd.
Isotopic effects in the muon transfer from pmu and dmu to heavier atoms.
Dupays, Arnaud
2004-07-23
The results of accurate hyperspherical calculations of the muon-transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen, and neon are reported. Very good agreement with measured rates is obtained and, for the three systems, the isotopic effect is perfectly reproduced. The transfer rate is higher for deuterium in the cases of nitrogen and neon due to constructive interferences between two transfer paths. The lower transfer rate for deuterium in the case of oxygen results from a large resonant contribution. Copyright 2004 The American Physical Society
Diffusion of hydrogen in a hydrogen-saturated tungsten
NASA Astrophysics Data System (ADS)
Krstic, Predrag; Kaganovich, Igor
2015-11-01
Hydrogen diffusion in monoscrystalline tungsten is studied by molecular dynamics with BOP potential in function of hydrogen concentration and temperature. Tungsten surface is prepared by cumulative irradiation of the 25 eV deuterium atoms at various fluences. The diffusion coefficients for T>500K and various D concentrations were calculated from the average slope of the mean square displacements of deuterium as functions of time. The accumulation of deuterium suppresses its diffusion at all temperatures. The results are in a reasonable agreement with the existing experiments. Supported by the LDRD of PPPL.
Synthesis of deuterium labeled ketamine metabolite dehydronorketamine-d₄.
Sulake, Rohidas S; Chen, Chinpiao; Lin, Huei-Ru; Lua, Ahai-Chang
2011-10-01
A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Polarized deuterium internal target at AmPS (NIKHEF)
NASA Astrophysics Data System (ADS)
Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.
1998-01-01
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.
Highly Nuclear-Spin-Polarized Deuterium Atoms from the UV Photodissociation of Deuterium Iodide.
Sofikitis, Dimitris; Glodic, Pavle; Koumarianou, Greta; Jiang, Hongyan; Bougas, Lykourgos; Samartzis, Peter C; Andreev, Alexander; Rakitzis, T Peter
2017-06-09
We report a novel highly spin-polarized deuterium (SPD) source, via the photodissociation of deuterium iodide at 270 nm. I(^{2}P_{3/2}) photofragments are ionized with m-state selectivity, and their velocity distribution measured via velocity-map slice imaging, from which the D polarization is determined. The process produces ∼100% electronically polarized D at the time of dissociation, which is then converted to ∼60% nuclear D polarization after ∼1.6 ns. These production times for SPD allow collision-limited densities of ∼10^{18} cm^{-3} and at production rates of ∼10^{21} s^{-1} which are 10^{6} and 10^{4} times higher than conventional (Stern-Gerlach separation) methods, respectively. We discuss the production of SPD beams, and combining high-density SPD with laser fusion, to investigate polarized D-T, D-^{3}He, and D-D fusion.
Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A
2001-04-20
We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.
Selective deuterium ion acceleration using the Vulcan petawatt laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, F.C.; Sanz, A.T.
1959-01-01
In order to obtain deuterium for the feed of accelerator ion sources, a sample and automatic electrolytic installation was constructed. The installation, used with a small compressor, can fill pressure vessels of 1 to 2 liter capacity with deuterium up to a pressure of 4 atmospheres in a few hours of operation. The electrolytic cell has a "V" shape and can operate with only 3 cc of heavy water. The electrodes are platinum and NaOH solution in the proportion of 15 wt.% is the electrolyte. The operation is automatic. The compressor is small, and the charge is low so thatmore » an auxiliary motor is not needed. The compressor piston is the only moving part. Deuterium losses are practically zero. (auth)« less
NASA Astrophysics Data System (ADS)
Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET
2016-11-01
Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.
Field ionization characteristics of an ion source array for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.
2013-11-01
A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.
Fabiansen, Christian; Yaméogo, Charles W; Devi, Sarita; Friis, Henrik; Kurpad, Anura; Wells, Jonathan C
2017-08-01
Childhood malnutrition is highly prevalent and associated with high mortality risk. In observational and interventional studies among malnourished children, body composition is increasingly recognised as a key outcome. The deuterium dilution technique has generated high-quality data on body composition in studies of infants and young children in several settings, but its feasibility and accuracy in children suffering from moderate acute malnutrition requires further study. Prior to a large nutritional intervention trial among children with moderate acute malnutrition, we conducted pilot work to develop and adapt the deuterium dilution technique. We refined procedures for administration of isotope doses and collection of saliva. Furthermore, we established that equilibration time in local context is 3 h. These findings and the resulting standard operating procedures are important to improve data quality when using the deuterium dilution technique in malnutrition studies in field conditions, and may encourage a wider use of isotope techniques.
Polarized deuterium internal target at AmPS (NIKHEF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine; De Jager, Cornelis; Geurts, D.
1997-08-01
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less
Polarized deuterium internal target at AmPS (NIKHEF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.
1998-01-20
We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less
NASA Astrophysics Data System (ADS)
Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan
2018-01-01
Be-C-W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.
Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji
2015-08-01
Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 1026 m-2) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min-1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.
2011-08-01
With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esaki, N.; Sawada, S.; Tanaka, H.
L-Methionine ..gamma..-lyase catalyzes the exchange of ..cap alpha..- and ..beta..-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium or tritium of solvents. The rate of ..cap alpha..-hydrogen exchange with deuterium was about 40 times faster than that of the elimination reactions. The deuterium and tritium were exchanged also with the ..cap alpha..- and ..beta..-hydrogens of the straight-chain amino acids which do not undergo the elimination: L-alanine, L-..cap alpha..-aminobutyrate, L-norvaline, and L-norleucine. No exchange occurs for the D-isomers, acidic L-amino acids, basic L-amino acids, and branched-chain L-amino acids, although ..cap alpha..-hydrogen of glycine, L-trypotophan, and L-phenylalanine is exchanged slowly. These enzymatic hydrogen-exchange reactionsmore » facilitate specific labeling of the L-amino acids with deuterium and tritium.« less
Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF).
Andersson, Patrik U; Lönn, Benny; Holmlid, Leif
2011-01-01
A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10(12) W cm(-2) is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.
Okumura, Y; Gobin, R; Knaster, J; Heidinger, R; Ayala, J-M; Bolzon, B; Cara, P; Chauvin, N; Chel, S; Gex, D; Harrault, F; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kikuchi, T; Kitano, T; Komata, M; Kondo, K; Maebara, S; Marqueta, A; O'Hira, S; Perez, M; Phillips, G; Pruneri, G; Sakamoto, K; Scantamburlo, F; Senée, F; Shinto, K; Sugimoto, M; Takahashi, H; Usami, H; Valette, M
2016-02-01
The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10(9) n/s has been observed in the deuterium operation.
NASA Astrophysics Data System (ADS)
Salvagno, Anthony L.
This dissertation explores various effects of deuterium oxide (D2O also known as heavy water) in nature. Water is everywhere and interacts with just about everything. As such, it would be quite a daunting task to characterize every effect that water exhibits on everything in the universe. This research is a small piece of the puzzle, and provides some fundamental understanding of how water interacts with other molecules. This is done from two viewpoints: (1) the effects of heavy water on living cells and (2) the effects of heavy water on molecules. Varying concentrations of deuterium oxide were used as the growing solvent for four different organisms: S. cerevisiae, E. coli, A. thaliana, and N. tabacum. In each case growth rates and morphology was assessed and compared to the wild type. Organisms were surveyed for potential phenotypes exhibited in the presence of extremely low and high concentrations of D2O. In every organism, growth is increasingly inhibited in higher concentrations of D2O compared to lower concentrations of D2O. In the case of tobacco, a root hair phenotype was exhibited in the presence of deuterium depleted water (<1ppm deuterium atoms). Roots also grew faster in 1% D2O and DDW, compared to natural water. For Arabidopsis, root germination is statistically indistinguishable between DI water and 33% D2O. Growth of the plant in 10% D2O is identical to that of natural water, and potentially healthier. Meanwhile, plants grown in 60% D2O exhibit slower growth and leaf discoloration. Tests on E. coli reveal inconsistent growth rates, but exhibit increased growth in DDW when adapted to D2O. Cellular and colonial morphology is also very distinguished from the wt. Cells appear to remain joined after cellular fission, while colonies exhibit brainy structures. Yeast morphology is quite different. Yeast cells remain joined after mitosis in 99% D2O, causing large cellular aggregates, while colonies become slightly asymmetric. Adaptation of yeast to D2O was not possible. Molecular effects were examined using a variety of tools including: dynamic light spectroscopy, Fourier transform-infrared spectroscopy, cavity ring-down spectroscopy, and optical tweezers. Heat induced protein aggregation was possible in H2O, but prevented in the presence of D2O and analyzed via DLS. Deuterium exchange and replacement was observed and quantified using both FT-IR and CRDS. With FT-IR it was possible to identify differences between solvents, while the time-scale of hydrogen-deuterium exchange was quantified for bulk water with CRDS. Using optical tweezers, DNA was overstretched in both H2O and D2O. The average force for DNA overstretching was found to be ~2.5pN higher in D2O compared to H2O. Deuterium oxide has a stabilizing force on biomolecules, which prevents protein denaturing and can affect the timing for cellular processes. It is because of this molecular property that D2O is observed to affect organisms grown with D2O instead of H2O. Despite this, there seems to be an optimal concentration of deuterium which is above the natural concentration of 155.6ppm. In the presence of deuterium depleted water, cells exhibit signs of stress, further demonstrating that deuterium isn't merely tolerated in solution, but actually required as hypothesized by Gilbert N. Lewis in 1934.
Preheating temperature effect on tritium retention in VPS-W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, M.; Uchimura, H.; Toda, K.
The W coating by Vacuum Plasma Spraying (VPS) technology is thought to be reasonable for most plasma facing components in future fusion reactors. In this paper the deuterium retention behavior for the Vacuum Plasma Spraying (VPS) tungsten (W) coating has been studied to demonstrate the tritium retention as a function of heating temperature. It has been found that two major deuterium desorption stages were observed at the temperature regions of 400 - 700 K (Stage 1) and 900 - 1100 K (Stage 2), considering that Stage 1 has been linked to the desorption of deuterium trapped by near surface andmore » intrinsic defects, and Stage 2 has been related to the desorption of deuterium bound to impurities as C-D bonds. By heating the sample above 673 K, the major peak of C-1s shifted from C-O bond to C-C bond, where the retention of deuterium as Stage 2 has increased. Therefore it indicates that the hydrogen isotope retention was controlled by the amount of C-C bond in VPS, most of which was contaminated during the VPS coating process. The comparison of several samples (VPS-W with shading, VPS-W without shading and Polycrystalline W (PCW)) shows that the carbon impurity has a large affinity with deuterium and makes stable trapping states compared to that with intrinsic defects and grain boundaries. However, most of them was reduced by heating at 1173 K. Therefore, heating treatment is quite important to get rid of carbon impurities and refrain higher tritium retention in VPS. (authors)« less
Andres, Hendrik; Morimoto, Hiromi; Williams, Philip G.
1993-01-01
Reagents and processes for reductively introducing deuterium or tritium into organic molecules are described. The reagents are deuterium or tritium analogs of trialkyl boranes, borane or alkali metal aluminum hydrides. The process involves forming these reagents in situ from alkali metal tritides or deuterides.
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.
2018-01-01
A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.
Gas temperature measurements in deuterium hollow cathode glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majstorović, Gordana, E-mail: gordana.majstorovic@va.mod.gov.rs; Šišović, Nikola, E-mail: nikolas@ff.bg.ac.rs
2016-03-25
We report results of optical emission spectroscopy measurements of rotational T{sub rot} and translational (gas) temperature of deuterium molecules in a hollow cathode (HC) glow discharge. The rotational temperature of excited electronic state of D{sub 2} was determined from the intensity distribution in the rotational structure of Q branch of the two Fulcher-α diagonal bands: (ν’=ν”=2) and (ν’=ν”=3). The population of excited energy levels, determined from relative line intensities, was used to derive radial rotational temperature distributions as well as gas temperature distribution of deuterium molecule.
Miller, Thomas F; Manolopoulos, David E; Madden, Paul A; Konieczny, Martin; Oberhofer, Harald
2005-02-01
We show that the two phase points considered in the recent simulations of liquid para hydrogen by Hone and Voth lie in the liquid-vapor coexistence region of a purely classical molecular dynamics simulation. By contrast, their phase point for ortho deuterium was in the one-phase liquid region for both classical and quantum simulations. These observations are used to account for their report that quantum mechanical effects enhance the diffusion in liquid para hydrogen and decrease it in ortho deuterium.(c) 2005 American Institute of Physics.
Synthesis of 2H- and 13C-substituted dithanes
Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.
2003-01-01
The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.
Synthesis Of 2h- And 13c-Substituted Dithanes
Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.
2004-05-04
The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor; Krstic, Predrag; Startsev, Edward
2014-10-01
It has been known that defects in tungsten, in particular at the grain boundaries, are preferable sites for deuterium and helium retention. For the case of the nano-grained boundaries, we study by classical molecular dynamics the cumulative retention of deuterium and helium at impact energies below 100 eV as functions of tungsten temperature at models of the dislocation boundaries. We obtain a strong preference of the retention of the impact particles at the boundaries at high temperature of 1000 K. Support of PPPL LDRD grant acknowledged.
Coincidence charged-current neutrino-induced deuteron disintegration for 2H2 16O
NASA Astrophysics Data System (ADS)
Van Orden, J. W.; Donnelly, T. W.; Moreno, O.
2017-12-01
Semi-inclusive charge-changing neutrino reactions on targets of heavy water are investigated with the goal of determining the relative contributions to the total cross section of deuterium and oxygen in kinematics chosen to emphasize the former. The study is undertaken for conditions where the typical neutrino beam energies are in the few GeV region, and hence relativistic modeling is essential. For this, the previous relativistic approach for the deuteron is employed, together with a spectral function approach for the case of oxygen. Upon optimizing the kinematics of the final-state particles assumed to be detected (typically a muon and a proton) it is shown that the oxygen contribution to the total cross section is suppressed by roughly an order of magnitude compared with the deuterium cross section, thereby confirming that CC ν studies of heavy water can effectively yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This opens the possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve as a target for which the nuclear structure issues are minimal, and possibly to use deuterium to provide improved knowledge of specific aspects of hadronic structure, such as to explore the momentum transfer dependence of the isovector axial-vector form factor of the nucleon.
Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J
A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connectedmore » to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.« less
Hydrogen ion-driven permeation in carbonaceous films
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Holland, D. F.; Longhurst, G. R.
1989-04-01
This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.
Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures
NASA Astrophysics Data System (ADS)
Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki
2016-10-01
Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.
Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaki, Machio; Itoh, Koichi
1963-09-15
Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.
Development of Approaches for Deuterium Incorporation in Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Barbara R
2015-01-01
Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium (2H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40 50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. 1H2H-NMR andmore » mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30 40 % deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.« less
Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I
2014-01-01
The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.
1976-06-11
Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...
2016-09-26
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
First-principles simulations of shock front propagation in liquid deuterium
NASA Astrophysics Data System (ADS)
Gygi, Francois; Galli, Giulia
2001-03-01
We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. J.; Krstić, P. S.; Allain, J. P.; Bedoya, F.; Islam, M. M.; Lotfi, R.; van Duin, A. C. T.
2018-05-01
We study the effects of deuterium irradiation on D-uptake by simultaneously boronized, lithiated, oxidized, and deuterated carbon surfaces. We present analysis of the bonding chemistry of D for various concentrations of boron, lithium, oxygen, and deuterium on carbon surfaces using molecular dynamics with reactive force field potentials, which are here adapted to include the interaction of boron and lithium. We calculate D retention and sputtering yields of each constituent of the Li-C-B-O mixture and discuss the role of oxygen in these processes. The extent of the qualitative agreement between new experimental data for B-C-O-D obtained in this paper and computational data is provided. As in the case of the Li-C-O system, comparative studies where experimental and computational data complement each other (in this case on the B-Li-C-O system) provide deeper insights into the mechanisms behind the role that O plays in the retention of D, a relevant issue in fusion machines.
The deuterium depth profile in neutron-irradiated tungsten exposed to plasma
NASA Astrophysics Data System (ADS)
Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.
2011-12-01
Tungsten samples (99.99% purity from A.L.M.T. Corp., 6 mm in diameter, 0.2 mm in thickness) were irradiated by high-flux neutrons at 50 °C to 0.025 dpa in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Subsequently, the neutron-irradiated tungsten samples were exposed to high-flux deuterium plasmas (ion flux: 1021-1022 m-2 s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment at Idaho National Laboratory. This paper reports the results of deuterium depth profiling in neutron-irradiated tungsten exposed to plasmas at 100, 200 and 500 °C via nuclear reaction analysis (NRA). The NRA measurements show that a significant amount of deuterium (>0.1 at.% D/W) remains trapped in the bulk material (up to 5 μm) at 500 °C. Tritium Migration Analysis Program simulation results using the NRA profiles indicate that different trapping mechanisms exist for neutron-irradiated and unirradiated tungsten.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
NASA Astrophysics Data System (ADS)
Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.
2015-06-01
The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.
Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Smith, Kyle K G; Poulsen, Jens Aage; Cunsolo, A; Rossky, Peter J
2014-01-21
The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm(-1). At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm(-1) para-hydrogen provides a test case for improved approximations to quantum dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Deuterium trapping in tungsten
NASA Astrophysics Data System (ADS)
Poon, Michael
Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.
Spectral irradiance standard for the ultraviolet - The deuterium lamp
NASA Technical Reports Server (NTRS)
Saunders, R. D.; Ott, W. R.; Bridges, J. M.
1978-01-01
A set of deuterium lamps is calibrated as spectral irradiance standards in the 200-350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167-330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.
Estimation of d- 2 H Breakup Neutron Energy Distributions From d- 3 He
Hoop, B.; Grimes, S. M.; Drosg, M.
2017-06-19
A method is described to estimate deuteron-on-deuteron breakup neutron distributions at 0° using deuterium bombardment of 3He. Break-up neutron distributions are modeled with the product of a Fermi-Dirac distribution and a cumulative logistic distribution function. Four measured break-up neutron distributions from 6.15- to 12.0-MeV deuterons on 3He are compared with thirteen measured distributions from 6.83- to 11.03-MeV deuterons on deuterium. Model pararmeters that describe d -3He neutron distributions are used to estimate neutron distributions from 6- to 12-MeV deuterons on deuterium.
URBAN STORMWATER TRACING WITH THE NATURALLY OCCURRING DEUTERIUM ISOTOPE
Measurements of the naturally-occurring deuterium isotope assist the tracing of water components during wet-weather flows in an urban watershed. A transect of installations in the vadose and saturated zones was completed in the vicinity of a small stream and storm sewer. High-r...
Ordered ground states of metallic hydrogen and deuterium
NASA Technical Reports Server (NTRS)
Ashcroft, N. W.
1981-01-01
The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.
METHOD OF OPERATING A NEUTRONIC REACTOR
Turkevich, A.
1963-01-22
This patent relates to one step in a method of operating a neutronic reactor consisting of a slurry of fissionable material in heavy water. Deuterium gas is passed through the slurry to sweep gaseous fission products therefrom and the deuterium is then separated from the gaseous fission products. (AEC)
NASA Technical Reports Server (NTRS)
Crespi, H. L.; Harkness, L.; Katz, J. J.; Norman, G.; Saur, W.
1969-01-01
Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location.
NASA Astrophysics Data System (ADS)
Popp, T. J.; Svensson, A.; Steffensen, J. P.; Johnsen, S. J.; White, J. W. C.
2009-04-01
Isotopic and chemical impurity records from Greenland ice cores with sub-annual resolution across three fast climate transitions of the last deglacial termination reveal complex patterns of environmental change for the onset of Greenland Interstadial 1 (GI-1 or Bølling), the onset of Greenland Stadial 1 (GS-1 or Younger Dryas), and the onset of the Holocene. In the NGRIP ice core each of these transitions is initiated by a 1-3 year mode shift in deuterium excess, which is a proxy for the Greenland precipitation moisture source. These mode shifts in deuterium excess are decoupled in time from the isotopic (deuterium and oxygen-18) transitions from which they are derived. In general the abrupt isotopic transitions follow the corresponding deuterium excess shifts and span decades rather than years. Similar data from GISP2 confirms the clear deuterium excess mode shifts for transitions from cold states to warm states; however the abrupt deuterium excess transition at the onset of GS-1 is not expressed in a similar way at GISP2. Ironically, it appears that this cooling at the beginning of the Younger Dryas, for which we have theories of the triggering event, is less clearly recorded than warming events, the triggering of which is still poorly understood. Along with other available paleo-data, these results indicate that the sum of an abrupt climate change is composed of multiple responses from different parts of the climate system. These responses can be separated by as little as a single year to a few decades and the collection of these responses result in a variety of abrupt transitions giving each a unique anatomy. Here we expand this type of analysis with new isotope, deuterium excess, and accumulation rate time series from NGRIP across the abrupt transitions associated with several interstadial events of the Last Glacial period (Dansgaard-Oeschger events). Indeed the temporal phasing of deuterium excess and the isotopic content of the ice can vary from one event to the next and emerging patterns may depend on the conditions associated with specific events such as Heinrich Events and ice volume boundary conditions. Together with modeling and chemical impurity data, these patterns will provide clues to the timing and origin of ocean and atmospheric changes that comprise an abrupt climate change. The emerging picture indicates that abrupt climate changes have both a temporal and geographic anatomy that can change from one event to the next in how they are recorded across Greenland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paxton, W. F., E-mail: william.f.paxton@vanderbilt.edu; Howell, M.; Kang, W. P.
2014-06-21
The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classicalmore » processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775 °C). An activation energy of 3.19 eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup −1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubes, P.; Cikhardtova, B.; Cikhardt, J.
In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) andmore » associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.« less
NASA Astrophysics Data System (ADS)
Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.
2013-10-01
Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.
The deuterium puzzle in the symmetric universe
NASA Technical Reports Server (NTRS)
Leroy, B.; Nicolle, J. P.; Schatzman, E.
1973-01-01
An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.
76 FR 52994 - Application for a License To Export Heavy Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... NUCLEAR REGULATORY COMMISSION Application for a License To Export Heavy Water Pursuant to 10 CFR... (liters). producing an active water). pharmaceutical ingredient known as CTP-499, which incorporates heavy water as the source of deuterium to achieve the hydrogen-deuterium exchange. November 30, 2010 December...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, A.P.; Kitching, W.
1992-08-01
This report provides information regarding the selectivity of alkyl groups and the nature of the transition state for C-H palladation by oxime-bound palladium(II) (the Shaw reaction). The kinetic deuterium isotope effects are also presented. 21 refs.
INVESTIGATION OF ARSINE-GENERATING REACTIONS USING DEUTERIUM-LABELED REAGENTS AND MASS SPECTROMETRY
Mass spectrometry was used to detect transfer of deuterium from labeled reagents to arsines following hydride-generation reactions. The arsine gases liberated from the reactions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid with HC1 and NaBD4 in H2O, or with...
The ratio of the nucleon structure functions F2N for iron and deuterium
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A. W.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1983-03-01
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F2N(Fe)/F2N(D) is presented. The observed x-dependence of this ratio is in disagreement with existing theoretical predictions.
NASA Astrophysics Data System (ADS)
Kurilenkov, Yu K.; Gus'kov, S. Yu; Karpukhin, V. T.; Oginov, A. V.; Samoylov, I. S.
2018-01-01
Earlier, there was demonstrated generation of DD neutrons in an interelectrode medium of a low-energy (˜ 1 J) nanosecond vacuum discharge with a hollow cathode and a deuterium-loaded Pd anode. There was revealed essential role of formation of a virtual cathode and a potential well corresponding thereto in the processes of collisional DD synthesis in the interelectrode space. In this work, we have obtained as a result of an experiment and discussed the neutron yield at the very initial stage of the discharge, when the beam of auto-electrons just starts to irradiate the non-ideal surface of the deuterium-loaded Pd anode.
Techniques for determining total body water using deuterium oxide
NASA Technical Reports Server (NTRS)
Bishop, Phillip A.
1990-01-01
The measurement of total body water (TBW) is fundamental to the study of body fluid changes consequent to microgravity exposure or treatment with microgravity countermeasures. Often, the use of radioactive isotopes is prohibited for safety or other reasons. It was selected and implemented for use by some Johnson Space Center (JCS) laboratories, which permitted serial measurements over a 14 day period which was accurate enough to serve as a criterion method for validating new techniques. These requirements resulted in the selection of deuterium oxide dilution as the method of choice for TBW measurement. The development of this technique at JSC is reviewed. The recommended dosage, body fluid sampling techniques, and deuterium assay options are described.
Tanabe, Katsuaki
2016-01-01
We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraga, H.; Mahigashi, N.; Yamada, T.
2008-10-15
Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.
Deuterium Abundance in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Ferlet, R.; Gry, C.; Vidal-Madjar, A.
1984-01-01
The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.
Crump, Anna M; Sefton, Mark A; Wilkinson, Kerry L
2014-11-01
This study reports the convenient, low cost, one-step synthesis of labelled analogues of six volatile phenols, guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol and vanillin, using microwave-assisted deuterium exchange, for use as internal standards for stable isotope dilution analysis. The current method improves on previous strategies in that it enables incorporation of deuterium atoms on the aromatic ring, thereby ensuring retention of the isotope label during mass spectrometry fragmentation. When used as standards for SIDA, these labelled volatile phenols will improve the accuracy and reproducibility of quantitative food and beverage analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Komives, A; Sint, A K; Bowers, M; Snow, M
2005-01-01
A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.
High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schmidt-Kaler, F.; Leibfried, D.; Seel, S.; Zimmermann, C.; König, W.; Weitz, M.; Hänsch, T. W.
1995-04-01
Two-photon spectroscopy of the hydrogen 1S-2S transition in a cold atomic beam has reached a resolution Δν/ν of 1 part in 1011 in hydrogen and 7 parts in 1012 in deuterium. The hydrogen and deuterium 1S-2S transition frequencies have been determined with a precision of 1 part in 1011. This leads to an accurate value for the Rydberg constant, while the 1S Lamb shift and the isotope shift are determined with order of magnitude improvements over previous measurements. We describe in detail the 1S-2S spectrometer, calculate the line shape of the resonance, and compare it to the experimental data.
Fission fragment driven neutron source
Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.
1976-01-01
Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.
Studies of lithiumization and boronization of ATJ graphite PFCs for NSTX-U
NASA Astrophysics Data System (ADS)
Dominguez, Javier; Bedoya, Felipe; Krstic, Predrag; Allain, Jean Paul; Neff, Anton; Luitjohan, Kara
2016-10-01
We examine and compare the effects of boron and lithium conditioning on ATJ graphite surfaces bombarded by low-energy deuterium atoms on deuterium retention and chemical sputtering. We use atomistic simulations and compare them with experimental in-situ ex-tempore studies with X-ray photoelectron spectroscopy (XPS), to understand the effects of deuterium exposure on the chemistry in lithiated, boronized and oxidized amorphous carbon surfaces. Our results are validated qualitatively by comparison with experiments and with classical-quantum molecular dynamic simulations. We explain the important role of oxygen in D retention for lithiated surfaces and the suppression of the oxygen role by boron in boronized surfaces. The calculated increase of the oxygen role in deuterium uptake after D accumulation in a B-C-O surface configuration is discussed. The sputtering yield per low-energy D impact is significantly smaller in boronized surfaces than in lithiated surfaces. This work was supported by the USDOE Grants DE-SC0013752 (PSK), DE-SC0010717 (JPA and FB) and DE-SC0010719 (AN) and by National council for Science and Technology of Mexico (CONACyT) through postdoctoral fellowship # 267898 (JD).
NASA Astrophysics Data System (ADS)
Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Kabadi, N. V.; Sutcliffe, G.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Rinderknecht, H. G.; Sayre, D. B.; Yeamans, C. B.; Khan, S. F.; Kyrala, G. A.; Lepape, S.; Berzak-Hopkins, L.; Meezan, N.; Bionta, R.; Ma, T.
2016-10-01
In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T born from the primary DD reaction branches can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence, and an electron temperature (Te) simultaneously. This technique has been used on a myriad of deuterium filled implosion experiments on the NIF using the nuclear time of flight (NTOF) diagnostics to measure the secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the secondary D3He protons. Additionally, a comparative study is conducted between the nuclear inferred convergence and x-ray inferred convergence obtained on these experiments. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kyle K. G., E-mail: kylesmith@utexas.edu; Rossky, Peter J., E-mail: peter.rossky@austin.utexas.edu; Poulsen, Jens Aage, E-mail: jens72@chem.gu.se
The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm{sup −3}) and (T = 23.0 K, n = 24.61 nm{sup −3}), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm{sup −1}.more » At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm{sup −1} para-hydrogen provides a test case for improved approximations to quantum dynamics.« less
Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?
NASA Astrophysics Data System (ADS)
Shomer, Isaac
2010-02-01
The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )
Yamauchi, Noriaki; Tanoue, Ryo
2017-11-01
The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.
The water, deuterium, gas and uranium content of tektites
Friedman, I.
1958-01-01
The water content, deuterium concentration of the water, total gas and uranium contents were determined on tektite samples and other glass samples from Texas, Australia, Philippine Islands, Java, French Indo-China, Czechoslovakia, Libyan Desert, Billiton Island, Thailand, French West Africa, Peru, and New Mexico. The water content ranges from 0.24 per cent for the Peru tektite, to 0.0002 per cent for a moldavite. The majority of the tektites have less than 0.05 per cent water, and average 0.005 per cent H2O by weight. No other gases were detected, the lower detection limit being about 1 p.p.m. by weight. The deuterium content of the water in tektites is in the same range as that in terrestrial waters, and varies from 0.010 mole per cent to 0.0166 mole per cent deuterium. The uranium content is about from 1 to 3 p.p.m. The possible origin of tektites is discussed. The experimental data presented favour their being originally terrestrial, but produced by some catastrophic event. An extra-terrestrial source is not ruled out. ?? 1958.
Biomolecular Deuteration for Neutron Structural Biology and Dynamics.
Haertlein, Michael; Moulin, Martine; Devos, Juliette M; Laux, Valerie; Dunne, Orla; Forsyth, V Trevor
2016-01-01
Neutron scattering studies provide important information in structural biology that is not accessible using other approaches. The uniqueness of the technique, and its complementarity with X-ray scattering, is greatest when full use is made of deuterium labeling. The ability to produce tailor-made deuterium-labeled biological macromolecules allows neutron studies involving solution scattering, crystallography, reflection, and dynamics to be optimized in a manner that has major impact on the scope, quality, and throughput of work in these areas. Deuteration facilities have now been developed at many neutron centres throughout the world; these are having a crucial effect on neutron studies in the life sciences and on biologically related studies in soft matter. This chapter describes methods that have been developed for the efficient production of deuterium-labeled samples for a wide range of neutron scattering applications. Examples are given that illustrate the use of these samples for each of the main techniques. Perspectives for biological deuterium labeling are discussed in relation to developments at current facilities and those that are planned in the future. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.
2017-02-15
The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less
Online hydrogen/deuterium exchange performed in the ion mobility cell of a hybrid mass spectrometer.
Nagy, Kornél; Redeuil, Karine; Rezzi, Serge
2009-11-15
The present paper describes the performance of online, gas-phase hydrogen/deuterium exchange implemented in the ion mobility cell of a quadrupole time-of-flight mass spectrometer. Deuterium oxide and deuterated methanol were utilized to create deuterated vapor that is introduced into the ion mobility region of the mass spectrometer. Hydrogen/deuterium exchange occurs spontaneously in the milliseconds time frame without the need of switching the instrument into ion mobility mode. The exchange was studied in case of low molecular weight molecules and proteins. The observed number of exchanged hydrogens was equal to the number of theoretically exchangeable hydrogens for all low molecular weight compounds. This method needs only minimal instrumental modifications, is simple, cheap, environment friendly, compatible with ultraperformance liquid chromatography, and can be implemented on commercially available instruments. It does not compromise choice of liquid chromatographic solvents and accurate mass or parallel-fragmentation (MS(E)) methods. The performance of this method was compared to that of conventional alternatives where the deuterated solvent is introduced into the cone gas of the instrument. Although the degree of exchange was similar between the two methods, the "cone gas method" requires 10 times higher deuterated solvent volumes (50 muL/min) and offers reduced sensitivity in the tandem mass spectrometry (MS/MS) mode. The presented method is suggested as a standard future element of mass spectrometers to aid online structural characterization of unknowns and to study conformational changes of proteins with hydrogen/deuterium exchange.
Field ion source development for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.
2012-01-01
An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.
Isotope effects on L-H threshold and confinement in tokamak plasmas
NASA Astrophysics Data System (ADS)
Maggi, C. F.; Weisen, H.; Hillesheim, J. C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I. S.; Corrigan, G.; Flanagan, J.; Garzotti, L.; Keeling, D.; King, D.; Lerche, E.; Lorenzini, R.; Maslov, M.; Menmuir, S.; Saarelma, S.; Sips, A. C. C.; Solano, E. R.; Belonohy, E.; Casson, F. J.; Challis, C.; Giroud, C.; Parail, V.; Silva, C.; Valisa, M.; Contributors, JET
2018-01-01
The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.
NASA Astrophysics Data System (ADS)
Dütsch, Marina; Pfahl, Stephan; Sodemann, Harald
2017-12-01
The deuterium excess (d) is a useful measure for nonequilibrium effects of isotopic fractionation and can therefore provide information about the meteorological conditions in evaporation regions or during ice cloud formation. In addition to nonequilibrium fractionation, two other effects can change d during phase transitions. The first is the dependence of the equilibrium fractionation factors on temperature, and the second is the nonlinearity of the δ scale on which d is defined. The second effect can be avoided by using an alternative definition that is based on the logarithmic scale. However, in this case d is not conserved when air parcels mix, which can lead to changes without phase transitions. Here we provide a systematic analysis of the benefits and limitations of both deuterium excess definitions by separately quantifying the impact of the nonequilibrium effect, the temperature effect, the δ-scale effect, and the mixing effect in a simple Rayleigh model simulating the isotopic composition of air parcels during moist adiabatic ascent. The δ-scale effect is important in depleted air parcels, for which it can change the sign of the traditional deuterium excess in the remaining vapor from negative to positive. The alternative definition mainly reflects the nonequilibrium and temperature effect, while the mixing effect is about 2 orders of magnitude smaller. Thus, the alternative deuterium excess definition appears to be a more accurate measure for nonequilibrium effects in situations where moisture is depleted and the δ-scale effect is large, for instance, at high latitudes or altitudes.
Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments
Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; ...
2015-04-29
In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10 12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm 3. In these experiments, up to 5 ×10 10 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm 2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10 10. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less
On the habitability of universes without stable deuterium
NASA Astrophysics Data System (ADS)
Adams, Fred C.; Grohs, Evan
2017-05-01
In both stars and in the early universe, the production of deuterium is the first step on the way to producing heavier nuclei. If the strong force were slightly weaker, then deuterium would not be stable, and many authors have noted that nuclesynthesis would be compromised so that helium production could not proceed through standard reaction chains. Motivated by the possibility that other regions of space-time could have different values for the fundamental constants, this paper considers stellar evolution in universes without stable deuterium and argues that such universes can remain habitable. Even in universes with no stellar nucleosynthesis, stars can form and will generate energy through gravitational contraction. Using both analytic estimates and a state-of-the-art stellar evolution code, we show that such stars can be sufficiently luminous and long-lived to support life. Stars with initial masses that exceed the Chandrasekhar mass cannot be supported by degeneracy pressure and will explode at the end of their contraction phase. The resulting explosive nucleosynthesis can thus provide the universe with some heavy elements. We also explore the possibility that helium can be produced in stellar cores through a triple-nucleon reaction that is roughly analogous to the triple-alpha reaction that operates in our universe. Stars burning hydrogen through this process are somewhat hotter than those in our universe, but otherwise play the same role. Next we show that with even trace amounts (metallicity Z ∼10-10) of heavy elements - produced through the triple-nucleon process or by explosive nucleosynthesis - the CNO cycle can operate and allow stars to function. Finally, we consider Big Bang Nucleosynthesis without stable deuterium and find that only trace amounts of helium are produced, with even smaller abundances of other nuclei. With stars evolving through gravitational contraction, explosive nucleosynthesis, the triple-nucleon reaction, and the CNO cycle, universes with no stable deuterium are thus potentially habitable, contrary to many previous claims.
Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
2015-05-15
The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutronmore » yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less
Cosmic Deuterium and Social Networking Software
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Suer, T.-A.; Lubowich, D. A.; Glaisyer, T.
2006-08-01
For the education of newcomers to a scientific field and for the convenience of students and workers in the field, it is helpful to have all the basic scientific papers gathered. For the study of deuterium in the Universe, in 2004-5 we set up http://www.cosmicdeuterium.info with clickable links to all the historic and basic papers in the field and to many of the current papers. Cosmic deuterium is especially important because all deuterium in the Universe was formed in the epoch of nucleosynthesis in the first 1000 seconds after the Big Bang, so study of its relative abundance (D:H~1:100,000) gives us information about those first minutes of the Universe's life. Thus the understanding of cosmic deuterium is one of the pillars of modern cosmology, joining the cosmic expansion, the 3 degree cosmic background radiation, and the ripples in that background radiation. Studies of deuterium are also important for understanding Galactic chemical evolution, astrochemistry, interstellar processes, and planetary formation. Some papers had to be scanned while others are available at the Astrophysical Data System, adswww.harvard.edu, or to publishers' Websites. By 2006, social networking software (http:tinyurl.com/ zx5hk) had advanced with popular sites like facebook.com and MySpace.com; the Astrophysical Data System had even set up MyADS. Social tagging software sites like http://del.icio.us have made it easy to share sets of links to papers already available online. We have set up http://del.icio.us/deuterium to provide links to many of the papers on cosmicdeuterium.info, furthering previous del.icio.us work on /eclipses and /plutocharon. It is easy for the site owner to add links to a del.icio.us site; it takes merely clicking on a button on the browser screen once the site is opened and the desired link is viewed in a browser. Categorizing different topics by keywords allows subsets to be easily displayed. The opportunity to expose knowledge and build an ecosystem of web pages that use the functionality of a facebook-type application to capture knowledge collaboratively is considerable. Setting up such a system would marry one of the youngest isotopes with the latest software technologies.
Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane
ERIC Educational Resources Information Center
Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce
2015-01-01
Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…
ERIC Educational Resources Information Center
Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon
2014-01-01
An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…
Effects of molecular dissociation on the hydrogen equation of state
NASA Astrophysics Data System (ADS)
Bonev, Stanimir; Schwegler, Eric; Galli, Giulia; Gygi, Francois
2002-03-01
It has been suggested recently(François Gygi and G. Galli, submitted to Phys. Rev. Lett.) that the physical mechanism behind the larger compressibility of liquid deuterium observed in laser shock experiments as compared to ab initio simulations may be related to shock-induced electronic excitations. A possible result of such non-adiabatic processes is hindering of the molecular dissociation. This has motivated us to study the importance of molecular dissociation on the hydrogen equation of state. To this end, we have carried out ab initio molecular dynamics simulations of liquid deuterium where intramolecular dissociation is prevented by the use of bond length contraints. Simulations at both fixed thermodynamic conditions and dynamical simulations of shocked deuterium will be discussed.
Chastagner, Philippe
1994-01-01
A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.
Chastagner, P.
1994-06-14
A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.
Feature Based Retention Time Alignment for Improved HDX MS Analysis
NASA Astrophysics Data System (ADS)
Venable, John D.; Scuba, William; Brock, Ansgar
2013-04-01
An algorithm for retention time alignment of mass shifted hydrogen-deuterium exchange (HDX) data based on an iterative distance minimization procedure is described. The algorithm performs pairwise comparisons in an iterative fashion between a list of features from a reference file and a file to be time aligned to calculate a retention time mapping function. Features are characterized by their charge, retention time and mass of the monoisotopic peak. The algorithm is able to align datasets with mass shifted features, which is a prerequisite for aligning hydrogen-deuterium exchange mass spectrometry datasets. Confidence assignments from the fully automated processing of a commercial HDX software package are shown to benefit significantly from retention time alignment prior to extraction of deuterium incorporation values.
Deuterium microbomb rocket propulsion
NASA Astrophysics Data System (ADS)
Winterberg, F.
2010-01-01
Large scale manned space flight within the solar system is still confronted with the solution of two problems: (1) A propulsion system to transport large payloads with short transit times between different planetary orbits. (2) A cost effective lifting of large payloads into earth orbit. For the solution of the first problem a deuterium fusion bomb propulsion system is proposed where a thermonuclear detonation wave is ignited in a small cylindrical assembly of deuterium with a gigavolt-multimegaampere proton beam, drawn from the magnetically insulated spacecraft acting in the ultrahigh vacuum of space as a gigavolt capacitor. For the solution of the second problem, the ignition is done by argon ion lasers driven by high explosives, with the lasers destroyed in the fusion explosion and becoming part of the exhaust.
Deuterium retention and surface modification of tungsten macrobrush samples exposed in FTU Tokamak
NASA Astrophysics Data System (ADS)
Maddaluno, G.; Giacomi, G.; Rufoloni, A.; Verdini, L.
2007-06-01
The effect of discrete structures such as macrobrush or castellated surfaces on power handling and deuterium retention of plasma facing components is to be assessed since such geometrical configurations are needed for increasing the lifetime of the armour to heat-sink joint. Four small macrobrush W and W + 1%La2O3 samples have been exposed in the Frascati Tokamak Upgrade (FTU) scrape-off layer up to the last closed flux surface by means of the Sample Introduction System. FTU is an all metal machine with no carbon source inside vacuum vessel; it exhibits ITER relevant energy and particle fluxes on the plasma facing components. Here, results on morphological surface changes (SEM), chemical composition (EDX) and deuterium retention (TDS) are reported.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan
There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of lessmore » than 0.2% vol.« less
Proposal for a possible use of fusion power for hydrogen production within this century
NASA Astrophysics Data System (ADS)
Seifritz, W.
Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.
Inelastic X-ray Scattering from Shocked Liquid Deuterium
Regan, S. P.; Falk, K.; Gregori, G.; ...
2012-12-28
The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly α line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×10 23 cm -3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il’kaev, R. I.; Fortov, V. E.
We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm{sup 3}more » to ρ ≈ 6 g/cm{sup 3}, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].« less
NASA Astrophysics Data System (ADS)
Kelemen, Mitja; Založnik, Anže; Vavpetič, Primož; Pečovnik, Matic; Pelicon, Primož; Hakola, Antti; Lahtinen, Aki; Karhunen, Juuso; Piip, Kaarel; Paris, Peeter; Laan, Matti; Krieger, Karl; Oberkofler, Martin; van der Meiden, Hennie; Markelj, Sabina
2017-08-01
Micro nuclear reaction analysis (micro-NRA) exploiting the nuclear reaction D(3He,p)4He was used for post-mortem analyses of special marker samples, exposed to deuterium plasma inside ASDEX Upgrade (AUG) tokamak and to the deuterium plasma jet in the Pilot-PSI linear plasma gun. Lateral concentration profiles of deuterium and erosion/deposition profiles of the marker materials were obtained by a combination of micro-NRA and particle induced X-ray emission by 3He beam (3HIXE). In the case of AUG samples, where 25 nm thick W marker layers had been deposited on unpolished and polished graphite substrates, the effect of surface roughness on local erosion and deposition was also investigated. The lateral distribution of W concentration showed that erosion is much more distinct in the case of polished samples and the resulting surface shows a ;leopard; skin pattern of W accumulated on carbon aggregates left on the surface from polishing. The Pilot-PSI samples indicated preferential accumulation of deuterium a few mm off from the centre of the region affected by the plasma beam. This is connected with the largest surface modifications while the thick deposited layers at the centre do not favour deuterium retention per se. The results were cross correlated with those obtained using laser-induced breakdown spectroscopy (LIBS). With its quantitative abilities, micro-NRA provided essential calibration data for in situ LIBS operation, as well as for complementary post mortem Secondary Ion Mass Spectroscopy (SIMS).
Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)
NASA Astrophysics Data System (ADS)
Passell, Thomas O.
2011-03-01
My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.
DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu
2017-01-20
The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, formingmore » an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.« less
NMR analysis of t-butyl-catalyzed deuterium exchange at unactivated arene localities.
Stack, Douglas E; Eastman, Rachel
2016-10-01
Regioselective labelling of arene rings via electrophilic exchange is often dictated by the electronic environment caused by substituents present on the aromatic system. Previously, we observed the presence of a t-butyl group, either covalently bond or added as an external reagent, could impart deuterium exchange to the unactivated, C1-position of estrone. Here, we provide nuclear magnetic resonance analysis of this exchange in a solvent system composed of 50:50 trifluoroacetic acid and D 2 O with either 2-t-butylestrone or estrone in the presence of t-butyl alcohol has shed insights into the mechanism of this t-butyl-catalyzed exchange. Fast exchange of the t-butyl group concurrent with the gradual reduction of the H1 proton signal in both systems suggest a mechanism involving ipso attack of the t-butyl position by deuterium. The reversible addition/elimination of the t-butyl group activates the H1 proton towards exchange by a mechanism of t-butyl incorporation, H1 activation and exchange, followed by eventual t-butyl elimination. Density functional calculations are consistent with the observation of fast t-butyl exchange concurrent with slower H1 exchange. The σ-complex resulting from ipso attack of deuterium at the t-butyl carbon was 6.6 kcal/mol lower in energy than that of the σ-complex resulting from deuterium attack at C1. A better understanding of the t-butyl-catalyzed exchange could help in the design of labelling recipes for other phenolic metabolites. Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.
Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An
2011-01-01
Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...
Hydrogen isotope separation from water
Jensen, R.J.
1975-09-01
A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)
USDA-ARS?s Scientific Manuscript database
Little is known about alpha-tocopherol's bioavailability as a constituent of food or its dependence on a subject's age. To evaluate the alpha-tocopherol bioavailability from food, we used collard greens grown in deuterated water (2H collard greens) as a source of deuterium-labeled (2H) alpha-tocophe...
ERIC Educational Resources Information Center
Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.
2005-01-01
The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…
IUE observations of neutral hydrogen and deuterium in the local interstellar medium
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1986-01-01
Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.
Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.
Stack, Douglas E
2015-09-10
Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.
A semi-analytic model of magnetized liner inertial fusion
McBride, Ryan D.; Slutz, Stephen A.
2015-05-21
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primarymore » fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.« less
Cryogenic distillation facility for isotopic purification of protium and deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.
Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogenmore » isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.« less
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B
2004-01-01
This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.
Experiments with high-voltage insulators in the presence of tritium
NASA Astrophysics Data System (ADS)
Grisham, L. R.; Falter, H.; Causey, R.; Chrisman, W.; Stevenson, T.; Wright, K.
1991-02-01
During the final deuterium-tritium phases of the TFTR and JET tokamaks half of the neutral injectors will be used to produce tritium neutral beams to maintain an equal mix of deuterium and tritium in the core plasma, and such requirements may also occur in future devices. This will require that the voltage hold off capabilities of the high voltage insulators in the accelerators be unimpaired by any charge buildups associated with the beta decay of adsorbed layers. We report tests in which we measured the drain currents under high dc voltage of TFTR and JET accelerator insulators while they were successively exposed to vacuum, deuterium and tritium. There did not appear to be any substantial reduction in hold-off capability with tritium, although at some voltages there was a small increase in the leakage current. We also compared the breakdown properties of a plastic tubing filled with deuterium and then tritium at varying pressures, since such tubing has been considered as a high-voltage break in the gas feed system for TFTR, and the presence of large numbers of electron-ion pairs might lead to enhanced Paschen breakdown. We found no significant differences in the behavior for the geometry used.
Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures
NASA Astrophysics Data System (ADS)
Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET
2017-08-01
The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.; ...
2017-04-03
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle
NASA Astrophysics Data System (ADS)
Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.
2017-03-01
The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.
Measurement of the deuterium Balmer series line emission on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. R.; Xu, Z.; Jin, Z.
Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ∼0.0049 nm with 2400 gr/mm grating to measure the D{sub α}(H{sub α}) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissionsmore » and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (T{sub e}, n{sub e}) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.« less
A semi-analytic model of magnetized liner inertial fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Ryan D.; Slutz, Stephen A.
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primarymore » fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.« less
Synthesis and Characterization of a deuterium labeled Stercobilin: A Potential Biomarker for Autism.
Coffey, J M; Vadas, A; Puleo, Y; Lewis, K; Pirone, G; Rudolph, H L; Helms, E; Wood, T D; Flynn-Charlebois, A
2018-05-14
Stercobilin is an end-stage metabolite of hemoglobin, a component of red blood cells. It has been found that there is a significantly lower concentration of stercobilin in the urine of people diagnosed with Autism Spectrum Disorders (ASD), suggesting potential utility as a biomarker. In vitro, we have synthesized stercobilin from its precursor bilirubin through a reduction reaction proceeded by an oxidation reaction. In addition, we have isotopically labeled the stercobilin product with deuterium using this protocol. Nuclear Magnetic Resonance (NMR) investigations show the products of the unlabeled stercobilin (Rxn 1) and the deuterated stercobilin (Rxn 2) both had a loss of signals in the 5.0-7.0 ppm range indicating proper conversion to stercobilin. Changes in the multiplicity of the sp3 region of the proton NMR suggest proper deuterium incorporation. Mass Spectrometry (MS) studies of Rxn 1 show a difference in fragmentation patterns than that of Rxn 2 proposing potential locations for deuterium incorporation. This isotopologue of stercobilin is stable (> 6 months), and further analysis permits investigation for its use as a biomarker and potential quantitative diagnostic probe for ASD. This article is protected by copyright. All rights reserved.
Extending helium partial pressure measurement technology to JET DTE2 and ITER.
Klepper, C C; Biewer, T M; Kruezi, U; Vartanian, S; Douai, D; Hillis, D L; Marcus, C
2016-11-01
The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.
NASA Astrophysics Data System (ADS)
Benamati, G.; Serra, E.; Wu, C. H.
2000-12-01
The aim of this work is to measure the hydrogen/deuterium transport and inventory parameters in relevant structural and/or armour materials for the International Thermonuclear Experimental Reactor (ITER) divertor such as W and W-alloys. The W-alloys: W, W + 1% La 2O 3 and W + 5% Re have been investigated. The materials were supplied from the Metallwerk Plansee GmbH (Austria). Measurements were conducted using a time-dependent permeation method over the temperature range 673-873 K with hydrogen and deuterium pressures in the range 10-100 kPa (100-1000 mbar). The samples were also characterized using optical microscopy, SEM and energy dispersive spectroscopy (EDS) in order to investigate the composition, microstructure and morphology of the surfaces and cross-sections through the samples.
NASA Astrophysics Data System (ADS)
Elliott, Drew; Sutherland, Derek; Siddiqui, Umair; Scime, Earl; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom
2016-11-01
Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.
Deuterium retention in tungsten in dependence of the surface conditions
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Roth, J.; Mayer, M.
2003-03-01
The paper reviews hydrogen isotope retention and migration in tungsten (W). Due to a large scatter of the deuterium (D) retention database, new measurements of ion-driven D retention in polycrystalline W foil have been performed to clarify the mechanism of hydrogen isotope inventory in W. Deuterium retention has been investigated as a function of ion fluence, implantation temperature, incident energy and surface conditions. Special attention has been given on the investigation of D retention in thin films of tungsten carbide and tungsten oxide which can be formed on W surface in a fusion device. Such kinds of films increase the D retention in W. Several points are reviewed: (i) inventory in pure W, (ii) inventory in W pre-implanted by carbon ions and (iii) inventory in tungsten oxide.
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
Tsang, Wing-Yin; Wood, B McKay; Wong, Freeman M; Wu, Weiming; Gerlt, John A; Amyes, Tina L; Richard, John P
2012-09-05
The exchange for deuterium of the C-6 protons of uridine 5'-monophosphate (UMP) and 5-fluorouridine 5'-monophosphate (F-UMP) catalyzed by yeast orotidine 5'-monophosphate decarboxylase (ScOMPDC) at pD 6.5-9.3 and 25 °C was monitored by (1)H NMR spectroscopy. Deuterium exchange proceeds by proton transfer from C-6 of the bound nucleotide to the deprotonated side chain of Lys-93 to give the enzyme-bound vinyl carbanion. The pD-rate profiles for k(cat) give turnover numbers for deuterium exchange into enzyme-bound UMP and F-UMP of 1.2 × 10(-5) and 0.041 s(-1), respectively, so that the 5-fluoro substituent results in a 3400-fold increase in the first-order rate constant for deuterium exchange. The binding of UMP and F-UMP to ScOMPDC results in 0.5 and 1.4 unit decreases, respectively, in the pK(a) of the side chain of the catalytic base Lys-93, showing that these nucleotides bind preferentially to the deprotonated enzyme. We also report the first carbon acid pK(a) values for proton transfer from C-6 of uridine (pK(CH) = 28.8) and 5-fluorouridine (pK(CH) = 25.1) in aqueous solution. The stabilizing effects of the 5-fluoro substituent on C-6 carbanion formation in solution (5 kcal/mol) and at ScOMPDC (6 kcal/mol) are similar. The binding of UMP and F-UMP to ScOMPDC results in a greater than 5 × 10(9)-fold increase in the equilibrium constant for proton transfer from C-6, so that ScOMPDC stabilizes the bound vinyl carbanions, relative to the bound nucleotides, by at least 13 kcal/mol. The pD-rate profile for k(cat)/K(m) for deuterium exchange into F-UMP gives the intrinsic second-order rate constant for exchange catalyzed by the deprotonated enzyme as 2300 M(-1) s(-1). This was used to calculate a total rate acceleration for ScOMPDC-catalyzed deuterium exchange of 3 × 10(10) M(-1), which corresponds to a transition-state stabilization for deuterium exchange of 14 kcal/mol. We conclude that a large portion of the total transition-state stabilization for the decarboxylation of orotidine 5'-monophosphate can be accounted for by stabilization of the enzyme-bound vinyl carbanion intermediate of the stepwise reaction.
Tsang, Wing-Yin; Wood, B. McKay; Wong, Freeman M.; Wu, Weiming; Gerlt, John A.; Amyes, Tina L.; Richard, John P.
2012-01-01
The exchange for deuterium of the C-6 protons of uridine 5′-monophosphate (UMP) and 5-fluorouridine 5′-monophosphate (F-UMP) catalyzed by yeast orotidine 5′-monophosphate decarboxylase (ScOMPDC) at pD 6.5 – 9.3 and 25 °C was monitored by 1H NMR spectroscopy. Deuterium exchange proceeds by proton transfer from C-6 of the bound nucleotide to the deprotonated side chain of Lys-93 to give the enzyme-bound vinyl carbanion. The pD-rate profiles for kcat give turnover numbers for deuterium exchange into enzyme-bound UMP and F-UMP of 1.2 × 10−5 and 0.041 s−1, respectively, so that the 5-fluoro substituent results in a 3400-fold increase in the first-order rate constant for deuterium exchange. The binding of UMP and F-UMP to ScOMPDC results in 0.5 and 1.4 unit decreases, respectively, in the pKa of the side chain of the catalytic base Lys-93, showing that these nucleotides bind preferentially to the deprotonated enzyme. We also report the first carbon acid pKas for proton transfer from C-6 of uridine (pKCH = 28.8) and 5-fluorouridine (pKCH = 25.1) in aqueous solution. The stabilizing effects of the 5-fluoro substituent on C-6 carbanion formation in solution (5 kcal/mol) and at ScOMPDC (6 kcal/mol) are similar. The binding of UMP and F-UMP to ScOMPDC results in a greater than 5 × 109-fold increase in the equilibrium constant for proton transfer from C-6 so that ScOMPDC stabilizes the bound vinyl carbanions, relative to the bound nucleotides, by at least 13 kcal/mol. The pD-rate profile for kcat/Km for deuterium exchange into F-UMP gives the intrinsic second-order rate constant for exchange catalyzed by the deprotonated enzyme as 2300 M−1 s−1. This was used to calculate a total rate acceleration for ScOMPDC-catalyzed deuterium exchange of 3 × 1010 M−1, which corresponds to a transition state stabilization for deuterium exchange of 14 kcal/mol. We conclude that a large portion of the total transition state stabilization for the decarboxylation of orotidine 5′-monophosphate can be accounted for by stabilization of the enzyme-bound vinyl carbanion intermediate of the stepwise reaction. PMID:22812629
Detection of Deuterium in Icy Surfaces and the D/H Ratio of Icy Objects
NASA Astrophysics Data System (ADS)
Clark, Roger Nelson; Brown, Robert H.; Swayze, Gregg A.; Cruikshank, Dale P.
2017-10-01
Water ice in crystalline or amorphous form is orientationally disordered, which results in very broad absorptions. Deuterium in trace amounts goes into an ordered position, so is not broadened like H2O absorptions. The D-O stretch is located at 4.13 microns with a width of 0.027 micron. Laboratory spectral measurements on natural H2O and deuterium doped ice show the absorption is slightly asymmetric and in reflectance the band shifts from 4.132 to 4.137 microns as abundance decreases. We derive a preliminary absorption coefficient of ~ 80,000 cm^-1 for the D-O stretch compared to about 560 cm^-1 in H2O ice at 4.13 microns, enabling the detection of deuterium at levels less than Vienna Standard Mean Ocean Water (VSMOW), depending on S/N. How accurate the D/H ratios can be derived will require additional lab work and radiative transfer modeling to simultaneously derive the grain size distribution, the abundance of any contaminants, and deuterium abundance. To first order, the grain size distribution can be compensated by computing the D-O stretch band depth to 2-micron H2O ice band depth ratio, which we call Dratio. Colorado fresh water (~80% of VSMOW) has a Dratio of 0.036, at a D/H = 0.0005, the Dratio = 0.15, and at a D/H = 0.0025, the Dratio = 0.42. The VSMOW Dratio is ~ 0.045.We have used VIMS data from the Cassini spacecraft to compute large spectral averages to detect the deuterium in the rings and on the icy satellite surfaces. A B-ring, 21,882 pixel average, at 640 ms/pixel, or 3.89 hours of integration time, shows a 3.5% O-D stretch band depth and a Dratio = 0.045, indicating deuterium abundance equal to VSMOW. Rhea, using 1.89 hours of integration time shows Dratio = 0.052, or slightly higher than VSMOW. Phoebe has an unusually deep O-D stretch band of 1.85% considering the high abundance of dark material suppressing the ice absorptions. We measure a Dratio = 0.11, an enhancement of ~2.4 over VSMOW, but detailed radiative transfer modeling is needed to derive a more accurate ratio. The enhancement is consistent with previous studies that suggest Phoebe's origin might be external to the Saturn system. More satellites and radiative transfer modeling results will be shown at the meeting.
Long range lateral root activity by neo-tropical savanna trees.
Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian Scholz
2004-01-01
The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrondo, M.
We calculate the equilibrium configurations of a system of deuterium atoms absorbed in palladium. The interaction potential energy is taken as a sum of pair functionals including non-additive effects, which are crucial for this case. We conclude from our calculations that the most probable configuration for the deuterium in the {beta}-phase of PdD involves at least a partial occupation of the tetrahedral sites of the fcc palladium unit cell.
IUE observations of hydrogen and deuterium in the local interstellar medium
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.
1987-01-01
High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.
740,000-year Deuterium Record in an Ice Core from Dome C, Antarctica
Jouzel, Jean [Laboratoire des Sciences du Climat et de l'Environnement
2004-01-01
Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (2H) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic fraction of 18O or 2H in precipitation, it is possible to derive temperature records from the records of those isotopes in ice cores.
Deuterium velocity and temperature measurements on the DIII-D tokamak.
Grierson, B A; Burrell, K H; Solomon, W M; Pablant, N A
2010-10-01
Newly installed diagnostic capabilities on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 46, 6114 (2002)] enable the measurement of main ion (deuterium) velocity and temperature by charge exchange recombination spectroscopy. The uncertainty in atomic physics corrections for determining the velocity is overcome by exploiting the geometrical dependence of the apparent velocity on the viewing angle with respect to the neutral beam.
Farmer, A.; Cade, B.S.; Torres-Dowdall, J.
2008-01-01
Deuterium isotope analyses have revolutionized the study of migratory connectivity because global gradients of deuterium in precipitation (??DP) are expressed on a continental scale. Several authors have constructed continental scale base maps of ??DP to provide a spatial reference for studying the movement patterns of migratory species and, although they are very useful, these maps present a static, 40-year average view of the landscape that ignores much underlying inter-annual variation. To more fully understand the consequences of this underlying variation, we analyzed the GNIP deuterium data, the source for all current ??DP maps, to estimate the minimum separation in ??DP (and latitude) necessary to conclude with a given level of confidence that distinct ??DP values represent different geographic sites. Extending analyses of ??DP successfully to deuterium in tissues of living organisms, e.g., feathers in migratory birds (??DF), is dependent on the existence of geographic separation of ??DP, where every geographic location has a distribution of values associated with temporal variability in ??DP. Analyses were conducted for three distinct geographic regions: North America, eastern North America (east of longitude 100??W), and Argentina. At the 80% confidence level, the minimum separation values were 12, 7, and 14?? of latitude (equivalent to 53, 31, and 32???) for North America, eastern North America, and Argentina, respectively. Hence, in eastern North America, for example, one may not be able to accurately assign individual samples to sites separated by less than about 7?? of latitude as the distributions of ??DP were not distinct at latitudes <7?? apart. Moreover, two samples that differ by less than 31??? cannot be confidently said to originate from different latitudes. These estimates of minimum separation for ??DP do not include other known sources of variation in feather deuterium (??D F) and hence are a first order approximation that may be useful, in the absence of more specific information for the system of interest, for planning and interpreting the results of new stable isotope studies. ?? 2008 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.
Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50%more » of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.« less
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
Friedman, I.; Smith, G.I.; Hardcastle, Kenneth G.
1976-01-01
Owens Lake is an alkaline salt lake in a closed basin in southeast California. It is normally nearly dry, but in early 1969, an abnormal runoff from the Sierra Nevada flooded it to a maximum depth of 2??4 m. By late summer of 1971, the lake was again nearly dry and the dissolved salts recrystallized. Changes in the chemistry, pH, and deuterium content were monitored during desiccation. During flooding, salts (mostly trona, halite, and burkeite) dissolved slowly from the lake floor. Their concentration in the lake waters increased as evaporation removed water and salts again crystallized, but winter temperatures caused precipitation of some salts and the following summer warming caused their solution, resulting in seasonal variations in the concentration patterns of some ions. The pH values (9??4-10??4) changed with time but showed no detectable diurnal pattern. The deuterium concentration increased during evaporation and appeared to be in equilibrium with vapor leaving the lake according to the Rayleigh equation. The effective ??(D/H in liquid/D/H in vapor) decreased as salinity increased; the earliest measured value was 1??069 [as total dissolved solids (TDS) of lake waters changed from 136,200 to 250,400 mg/1]and the last value (calc.) was 1??025 (as TDS changed from 450,000 to 470,300 mg/1). Deuterium exchange with the atmosphere was apparently small except during late desiccation stages when the isotopic contrast became great. Eventually, atmospheric exchange, combined with decreasing ?? and lake size and increasing salinity, stopped further deuterium concentration in the lake. The maximum contrast between atmospheric vapor and lake deuterium contents was about 110%. ?? 1976.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.
2015-04-01
Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo
2017-03-01
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.
NASA Astrophysics Data System (ADS)
Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.
2015-07-01
If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.
Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho
The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period becausemore » graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.« less
Damgaard, S E
1981-09-29
The primary isotope effect upon V/K when ethanol stereospecifically labeled with deuterium or tritium is oxidized by liver alcohol dehydrogenase has been measured between pH 6 and 9. The deuterium isotope effect was obtained with high reproducibility by the use of two different radioactive tracers, viz. 14C and 3H, to follow the rate of acetaldehyde formation from deuterium-labeled ethanol and normal ethanol, respectively. Synthesis of the necessary labeled compounds is described in this and earlier work referred to. V/K isotope effects for both tritium and deuterium have been measured with three different coenzymes, NAD+, thio-NAD+, and acetyl-NAD+. With NAD+ at pH 7, D(V/K) was 3.0 and T(V/K) was 6.5. With increasing pH, these values decreased to 1.5 and 2.5 at pH 9. The intrinsic isotope effect evaluated by the method of Northrop [Northrop, D.B. (1977) in Isotope Effects on Enzyme-Catalyzed Reactions (Cleland, W. W., O'Leary, M, H., & Northrop, D. B., Eds.) pp 112-152, University Park Press, Baltimore] varies little with pH. It amounts to about 10 with NAD+ and about 5 with the coenzyme analogues. Commitment functions and their dependence upon pH calculated in this connection appear to be in agreement with known kinetic parameters of liver alcohol dehydrogenase. This assay method was also applied in vivo in the rat. Being a noninvasive method because only trace amounts of isotopes are needed, it may yield information about alternative routes of ethanol oxidation in vivo. In naive rats at low concentrations of ethanol, it confirms the discrete role of the non alcohol dehydrogenase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atsumi, H.; Tanabe, T.; Shikama, T.
Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less
Walker, Dillon K.; Thaden, John J.; Deutz, Nicolaas E.P.
2015-01-01
Incorporation of deuterium from deuterium oxide (2H2O) into biological components is a commonly used approach in metabolic studies. Determining the dilution of deuterium in the body water pool (BW) can be used to estimate body composition. We describe three sensitive GC-MS/MS methods to measure water enrichment in BW . Samples were reacted with NaOH and U-13C3-acetone in an autosampler vial to promote deuterium exchange with U-13C3-acetone hydrogens. Headspace injections were made of U-13C3-acetone-saturated air onto a 30m DB-1MS column in EI-mode. Subjects ingested 30ml 2H2O and plasma samples were collected. BW was determined by standard equation. DXA scans were performed to calculate body mass, body volume and bone mineral content. A 4 compartmental model was used to estimate body composition (fat and fat free mass). Full scan experiments generated a m/z 45 peak and to a lesser extent a m/z 61 peak. Product fragment ions further monitored included 45 and 46 using selected ion monitoring (SIM;Method1), the 61>45 and 62>46 transition using multiple reaction monitoring (MRM;Method2) and the Neutral Loss, 62>45, transition (Method3). MRM methods were optimized for collision energy (CE) and collision-induced dissociation (CID) argon gas pressure with 6eV CE and 1.5 mTorr CID gas being optimal. Method2 was used for finally determination of 2H2O enrichment of subjects due to lower natural background. We have developed a sensitive method to determine 2H2O enrichment in body water to enable measurement of FM and FFM. PMID:26169138
Modeling Insights into Deuterium Excess as an Indicator of Water Vapor Source Conditions
NASA Technical Reports Server (NTRS)
Lewis, Sophie C.; Legrande, Allegra Nicole; Kelley, Maxwell; Schmidt, Gavin A.
2013-01-01
Deuterium excess (d) is interpreted in conventional paleoclimate reconstructions as a tracer of oceanic source region conditions, such as temperature, where precipitation originates. Previous studies have adopted co-isotopic approaches to estimate past changes in both site and oceanic source temperatures for ice core sites using empirical relationships derived from conceptual distillation models, particularly Mixed Cloud Isotopic Models (MCIMs). However, the relationship between d and oceanic surface conditions remains unclear in past contexts. We investigate this climate-isotope relationship for sites in Greenland and Antarctica using multiple simulations of the water isotope-enabled Goddard Institute for Space Studies (GISS) ModelE-R general circulation model and apply a novel suite of model vapor source distribution (VSD) tracers to assess d as a proxy for source temperature variability under a range of climatic conditions. Simulated average source temperatures determined by the VSDs are compared to synthetic source temperature estimates calculated using MCIM equations linking d to source region conditions. We show that although deuterium excess is generally a faithful tracer of source temperatures as estimated by the MCIM approach, large discrepancies in the isotope-climate relationship occur around Greenland during the Last Glacial Maximum simulation, when precipitation seasonality and moisture source regions were notably different from present. This identified sensitivity in d as a source temperature proxy suggests that quantitative climate reconstructions from deuterium excess should be treated with caution for some sites when boundary conditions are significantly different from the present day. Also, the exclusion of the influence of humidity and other evaporative source changes in MCIM regressions may be a limitation of quantifying source temperature fluctuations from deuterium excess in some instances.
Nordøy, Erling S; Lager, Anne R; Schots, Pauke C
2017-12-01
The aim of this study was to monitor seasonal changes in stable isotopes of pool freshwater and harp seal ( Phoca groenlandica ) body water, and to study whether these potential seasonal changes might bias results obtained using the doubly labelled water (DLW) method when measuring energy expenditure in animals with access to freshwater. Seasonal changes in the background levels of deuterium and oxygen-18 in the body water of four captive harp seals and in the freshwater pool in which they were kept were measured over a time period of 1 year. The seals were offered daily amounts of capelin and kept under a seasonal photoperiod of 69°N. Large seasonal variations of deuterium and oxygen-18 in the pool water were measured, and the isotope abundance in the body water showed similar seasonal changes to the pool water. This shows that the seals were continuously equilibrating with the surrounding water as a result of significant daily water drinking. Variations in background levels of deuterium and oxygen-18 in freshwater sources may be due to seasonal changes in physical processes such as precipitation and evaporation that cause fractionation of isotopes. Rapid and abrupt changes in the background levels of deuterium and oxygen-18 may complicate calculation of energy expenditure by use of the DLW method. It is therefore strongly recommended that analysis of seasonal changes in background levels of isotopes is performed before the DLW method is applied on (free-ranging) animals, and to use a control group in order to correct for changes in background levels. © 2017. Published by The Company of Biologists Ltd.
Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere
NASA Astrophysics Data System (ADS)
Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.
2017-12-01
Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.
NASA Astrophysics Data System (ADS)
Eskandari, M. R.; Gheisari, R.; Kashian, S.
2006-02-01
This paper provides a theoretical complement to the experimental measurement of the population of excited dμ(2s) and dμ(1s) atoms in a deuterium. The population of these atoms plays an important role in a muon catalyzed fusion cycle. Symmetric and non-symmetric muonic molecular ions have been predicted to form in excited states in collisions between excited muonic atoms and hydrogen molecules. One example is the ddμ*, which is a muonic deuterium-deuterium symmetric ion in excited state and is initially produced in the interaction of dμ(2s) atoms with deuterium nuclei. Our calculations interpret the experimental findings in terms of the so-called side-path model. This model essentially deals with the interaction mentioned above in which the ddμ* ion undergoes Coulomb de-excitation where the excitation energy is shared between a dμ(1s) atom and one deuterium. The structure of ddμ* is studied here using the numerical, variational method and the given wavefunctions. Few resonance energies for ddμ* molecular states are calculated below the 2s threshold. For more precise assessment of the reliability of the given wavefunctions, the nucleus sizes and Coulomb decay rates for the zeroth, first and second vibrational meta-stable states of the mentioned ion are also calculated. The obtained results are close to those previously reported. The advantage of the given method over previous methods is that the used wavefunction has only two terms, which simplifies the calculations with the same results as those from the complicated coupled rearrangement channel method with a Gaussian basis set. These energies are the base data required for size, formation and decay rate calculations of the ddμ* ion.
The diffusivity and solubility of deuterium in a high chromium martensitic steel
NASA Astrophysics Data System (ADS)
Forcey, K. S.; Iordanova, I.; Yaneva, M.
1997-01-01
The permeability, diffusivity and solubility of deuterium in the martensitic stainless steel MANET II have been studied in the temperature range 194-465°C by applying a time dependent gas-phase permeation technique. It was found that the temperature dependence of diffusivity and solubility could not be described by a simple Arrhenius expression over the entire temperature range investigated. At lower temperatures (below about 330°C) the diffusivity was found to be greatly reduced by the effects of trapping. Oriani's model has been applied to obtain the trapping energy and number density of the traps as well as the relative amounts of deuterium dissolved at lattice and trap sites. It is suggested that the most likely sites for trapping are at interfaces between the martensitic laths and between second phase particles and the surrounding metal matrix.
Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds
Loh, Yong Yao; Nagao, Kazunori; Hoover, Andrew J.; Hesk, David; Rivera, Nelo R.; Colletti, Steven L.; Davies, Ian W.; MacMillan, David W. C.
2018-01-01
Deuterium- and tritium-labeled pharmaceutical compounds are pivotal diagnostic tools in drug discovery research, providing vital information about the biological fate of drugs and drug metabolites. Herein we demonstrate that a photoredox-mediated hydrogen atom transfer protocol can efficiently and selectively install deuterium (D) and tritium (T) at α-amino sp3 carbon-hydrogen bonds in a single step, using isotopically labeled water (D2O or T2O) as the source of hydrogen isotope. In this context, we also report a convenient synthesis of T2O from T2, providing access to high-specific-activity T2O. This protocol has been successfully applied to the high incorporation of deuterium and tritium in 18 drug molecules, which meet the requirements for use in ligand-binding assays and absorption, distribution, metabolism, and excretion studies. PMID:29123019
Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R
2013-08-09
The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.
Precision measures of the primordial deuterium abundance.
NASA Astrophysics Data System (ADS)
Cooke, R. J.; Pettini, M.; Jorgenson, R. A.; Murphy, M. T.; Steidel, C. C.
Near-pristine damped Lyman-alpha systems (DLAs) are the ideal environments to measure the primordial abundance of deuterium. In this conference report, I summarise our ongoing research programme to obtain the most precise determination of the primordial deuterium abundance from five high redshift DLAs. From this sample, we derive (D/H)_p = (2.53±0.04)×105, corresponding to a baryon density 100 Omega_b ,0 h2 = 2.202±0.046 assuming the standard model of Big Bang Nucleosynthesis. This value is in striking agreement with that measured from the temperature fluctuations imprinted on the cosmic microwave background. Although we find no strong evidence for new physics beyond the standard model, this line of research shows great promise in the near-future, when the next generation 30+ m telescopes equipped with echelle spectrographs come online.
NASA Astrophysics Data System (ADS)
Didyk, A. Yu.; Wisniewski, R.
2014-05-01
Metal samples were arranged inside a "finger-type" high-pressure chamber (DHPC-FT) filled by deuterium. They were two aluminum rods, a copper rod, two specimens of homogeneous YMn2 alloy, and a stainless steel wire. The pressure of molecular deuterium in DHPC-FT was about 2 kbar. The samples were irradiated by braking γ-quanta at a threshold energy of 23 MeV. All the samples were studied using scanning electron microscopy (SEM) and X-ray (roentgen) microelement probe analysis (RMPA). Considerable changes in the surface structure and elemental composition were found for the samples of copper, aluminum, YMn2 alloy, and stainless steel. Unusual results were analyzed in detail and compared with the earlier data.
Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas.
Glöggler, Stefan; Müller, Rafael; Colell, Johannes; Emondts, Meike; Dabrowski, Martin; Blümich, Bernhard; Appelt, Stephan
2011-08-14
Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).
D0 production in deep inelastic muon scattering on hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1986-01-01
Inclusive D0(D0) production in deep inelastic scattering of 280 GeV and 240 GeV muons on hydrogen and deuterium targets has been measured; differential cross sections are given and the total cross sections extrapolated to Q2 = 0. They are compared with the results of photoproduction experiments and with measurements of the muoproduction of charm detected indirectly by multimuon events.
Pioneer Venus large probe neutral mass spectrometer
NASA Technical Reports Server (NTRS)
Hoffman, J.
1982-01-01
The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.
Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Tzeng, Nianfeng; Liu, Yucheng; Junk, Thomas
2017-09-01
A combined experimental-computational study was conducted on the Raman spectrum of TNT-d5 in the present study. It was found that among the 24 hybrid density functional theory (DFT) methods, O3LYP, tHCTHhyb, and B3LYP simulations yielded the strongest Raman bands which were closest to those measured from experiments. Simulations of hybrid DFT methods did not show that deuterium replacements alter orientations of 2- and 6-nitro with respect to phenyl ring, considering a larger size of the methyl group. However, the deuterium replacements apparently changed the reduced masses for all deuterium related vibrations. Although no difference of structural parameters was shown between TNT and its deuterated analogue, discrepancy was indicated in vibrational zero energy from our simulations. O3LYP simulation exhibited 24 deuterium involved vibrations, which were coupled into seven Raman bands of TNT-d5. This phenomenon can account for the experimental Raman band shifts or split of TNT-d5 when compared with the corresponding bands of TNT. The present study and its outcomes provide in-depth microchemical insights of Raman characteristics of TNT and may facilitate the design of nano-structures of SERS substrates for detection of TNT and its degradation products. All intensities displayed in this study were calculated from numerical simulations.
Fast deuterium fractionation in magnetized and turbulent filaments
NASA Astrophysics Data System (ADS)
Körtgen, B.; Bovino, S.; Schleicher, D. R. G.; Stutz, A.; Banerjee, R.; Giannetti, A.; Leurini, S.
2018-04-01
Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magneto-hydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments, with a line-mass of Mlin = 42 M⊙ pc-1 within a radius of R = 0.1 pc, and their substructures. The filaments typically show widespread deuterium fractionation with average values ≳ 0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2 density and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order 0.01 - 0.1 may be reached within approximately 200 kyrs, corresponding to two free-fall times, as defined for cylindrical systems, of the filaments.
Fast deuterium fractionation in magnetized and turbulent filaments
NASA Astrophysics Data System (ADS)
Körtgen, B.; Bovino, S.; Schleicher, D. R. G.; Stutz, A.; Banerjee, R.; Giannetti, A.; Leurini, S.
2018-07-01
Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magnetohydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments, with a line-mass of Mlin = 42 M⊙ pc-1 within a radius of R= 0.1 pc, and their sub-structures. The filaments typically show widespread deuterium fractionation with average values ≳0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial, or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2 density, and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order of 0.01-0.1 may be reached within approximately 200 kyr, corresponding to two free-fall times, as defined for cylindrical systems, of the filaments.
PHYSIOLOGICAL EFFECTS OF DEUTERIUM ON DOGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czajka, D.M.; Finkel, A.J.; Fischer, C.S.
1961-08-01
The physiological consequences of the deuterium isotope effect in lange mammals were studied in two dogs, one of which was maintained at 20% concentration of D/sub 2/0 in the bcdy fluids for 50 days, and the other at the toxic range of 33-35% for a brief pericd. Deuteration of the dcgs was effected by replacement of ordinary water with deuterium oxide in both focd and drink. Hemoglobin, hematocrit, and red blood cell count dropped but the white blood cell count was essentially unaffected although there was a progressive lymphopenia and granulocytosis. Serum glucose was decreased, especially at higher deuterium levels.more » Total serum cholesterol values were also diminished although the esters were essentially unchanged. Serum sodium and both NPN and BUN were within normal limits except for a terminal elevation of the latter. Serum potassium was slightly lowered for a brief period after 3 weeks. Electrocardiograms showed ST segment coving and elevation and an increase in the QT ratio that suggested nonspecific myocardial damage; these changes reverted to normal while the dog was still deuterated at a level of 20%. Both dogs exhibited neuromuscular disturbances, in one case definite weakness of the hind legs and in the other, fine muscle tremors. (auth)« less
NASA Astrophysics Data System (ADS)
Zin, M. F. M.; Baijan, A. H.; Damideh, V.; Hashim, S. A.; Sabri, R. M.
2017-03-01
In this work, preliminary results of MNA-PF device as a Slow Focus Mode device are presented. Four different kinds of Rogowski Coils which have been designed and constructed for dI/dt signals measurements show that response frequency of Rogowski Coil can affect signal time resolution and delay which can change the discharge circuit inductance. Experimental results for 10 to 20 mbar Deuterium and 0.5 mbar to 6 mbar Argon which are captured by 630 MHz Rogowski coil in correlation with Lee Model Code are presented. Proper current fitting using Lee Model Code shows that the speed factor for MNA-PF device working with 13 mbar Deuterium is 30 kA/cm.torr1/2 at 14 kV which indicates that the device is operating at slow focus mode. Model parameters fm and fmr predicted by Lee Model Code during current fitting for 13 mbar Deuterium at 14kV were 0.025 and 0.31 respectively. Microspec-4 Neutron Detector was used to obtain the dose rate which was found to be maximum at 4.78 uSv/hr and also the maximum neutron yield calculated from Lee Model Code is 7.5E+03 neutron per shot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le
2015-06-15
High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less
DECOUPLING OF PROTEIN AND RNA SYNTHESIS DURING DEUTERIUM PARTHENOGENESIS IN SEA URCHIN EGGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, P.R.; Spindel, W.; Cousineau, G.H.
1963-10-29
The parthenogenetic activation of cell division and suppression of nucleic acid synthesis by deuterium in eggs of sea urchins was investigated. D/ sub 2/O treatment was found to evoke a high rate of protein synthesis in the eggs that was maintained for several hours. However, eggs whose protein synthesis was activated and that were making labeled cytasters showed no increment in RNA synthesis over controls. (P.C.H.)
Strategy for D/He-3 fusion development
NASA Technical Reports Server (NTRS)
Santarius, John F.
1988-01-01
It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.
Direct Fusion Drive for a Human Mars Orbital Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paluszek, Michael; Pajer, Gary; Razin, Yosef
2014-08-01
The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.
Effect of ELMs on deuterium-loaded-tungsten plasma facing components
NASA Astrophysics Data System (ADS)
Umstadter, K. R.; Rudakov, D. L.; Wampler, W.; Watkins, J. G.; Wong, C. P. C.
2011-08-01
Prior heat pulse testing of plasma facing components (PFCs) has been completed in vacuum environments without the presence of background plasma. Edge localized modes (ELMs) will not be this kind of isolated event and one should know the effect of a plasma background during these transients. Heat-pulse experiments have been conducted in the PISCES-A device utilizing laser heating in a divertor-like plasma background. Initial results indicate that the erosion of PFCs is enhanced as compared to heat pulse or plasma only tests. To determine if the enhanced erosion effect is a phenomena only witnessed in the laboratory PISCES device, tungsten and graphite samples were exposed to plasmas in the lower divertor of the DIII-D tokamak using the Divertor Material Evaluation System (DiMES). Mass loss analysis indicates that materials that contain significant deuterium prior to experiencing a transient heating event will erode faster than those that have no or little retained deuterium.
NASA Astrophysics Data System (ADS)
Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Klein, H.; Morrison, D. R. O.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Cooper-Sarkar, A. M.; Guy, J.; Venus, W.; Bullock, F. W.; Burke, S.
1994-12-01
Based on a QCD analysis of the parton momentum distributions in the proton, the ratio r v = d v / u v of the d and u valence quark distributions is determined as function of x in the range 0.01< x<0.7. The analysis uses data from neutrino and antineutrino charged current interactions on hydrogen and deuterium, obtained with BEBC in the (anti)neutrino wideband beam of the CERN SPS. Since v mainly depends on the deuterium/hydrogen ratios of the normalised x-y-Q 2-distributions many systematic effects cancel. It is found that r v decreases with increasing x, and drops below the naive SU(6) expectation of 0.5 for x≳0.3. An extrapolation of r v to x=1 is consistent with the hypothesis r v (1)=0.
NASA Astrophysics Data System (ADS)
Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.
2017-05-01
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators.
Bando, T; Ohdachi, S; Suzuki, Y
2016-11-01
Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.
Proton pinhole imaging on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Zylstra, A. B.; Park, H.-S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Séguin, F. H.; Turnbull, D.; Wilks, S. C.
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
NASA Technical Reports Server (NTRS)
Baker, C. R.
1977-01-01
An approach to the liquefaction of hydrogen was developed which permits the application of standard centrifugal compressors in place of reciprocating machines. A second fluid, such as propane, is added to the hydrogen prior to compression to form a mixture having a molecular weight much greater than that of hydrogen alone, so that a standard centrifugal compressor can be used. After compression, the mixture is cooled to cryogenic temperature levels where the propane condenses out of the mixture and is separated as a liquid. Since a small amount of deuterium is produced during hydrogen liquefaction, the potential of recovering deuterium and selling it as a co-product was investigated. Deuterium, in the form of heavy water, can be used in certain nuclear reactors as a neutron moderator to reduce the neutron velocity and enhance the probability of neutron collision with uranium nucleii.
Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bando, T., E-mail: bando.takahiro@nifs.ac.jp; Ohdachi, S.; Suzuki, Y.
2016-11-15
Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will bemore » covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.« less
The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.
The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for puremore » deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.« less
Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.
2016-11-15
In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less
The effect of deuteration on the structure of bacterial cellulose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bali, Garima; Foston, Marcus; O'Neill, Hugh Michael
2013-01-01
ABSTRACT In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and 2H and 1H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85 % deuterium incorporation. Acetylation and 1H and 2H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation there were no significant differences in the molecular and morphological properties were observedmore » for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.« less
COMPARISON OF EFFECTS OF DEUTERIUM OXIDE AND X-RAY IRRADIATION ON MULTIPLICATION OF POLIOVIRUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kritchevsky, D.; Manson, L.A.; Hartzell, R.W. Jr.
1963-01-01
An attenuated strain of poliomyelitis virus (CHAT) will not grow in monkey kidney cells at 40 un. Concent 85% C. When deuterium oxide (25 to 40%) is present in the medium, replication of CHAT virus will take place at 40 un. Concent 85% C. Since both deuterium oxide treatment and irradiation with x rays yield giant cells, the 2 treatments have been compared for their ability to support the growth of CHAT poliovirus at 40 un. Concent 85% C. At several levels of x irradiation, monkey kidney cells will not support the growth of CHAT virus at 40 un. Concentmore » 85% C. When D/sub 2/O is added to he medium of the x- irradiated cells at 40 un. Concent 85% C, replication of CHAT virus is observed. The effect is not due to cell size or number. (auth)« less
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B., E-mail: zylstra@lanl.gov; Park, H.-S.; Ross, J. S.
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; ...
2016-07-29
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Sound velocities in shocked liquid D2 to 28 GPa
NASA Astrophysics Data System (ADS)
Holmes, N. C.; Ross, M.; Nellis, W. J.
1999-06-01
Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.
Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof
Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff
2017-08-01
According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.
Friedman, M; Boyd, W A
1977-01-01
Studies were carried out on the effect of decoupling, deuterium labeling, concentration, temperature, and solvent media on the NMR parameters of the vinyl phosphonate adduct of phenylalanine, C6H5CH2CH(COO-)NH2+CH2CH2PO(OCH2CH2C1)2. The results permit assignments of chemical shifts and coupling constants to the various protons of this molecule which contains unique structural features. The NH2+-CH2-protons are deshielded by more than 1 ppm than the CH2-PO-protons. The -OCH2-protons are nonequivalent exhibiting a fine split. Possible sources of the fine split include NH...O=P hydrogen bonding. The deuterium-labeling method should be applicable for synthesizing deuterium-and tritium-labeled crosslinked amino acids such as lysinoalanine and lanthionine and demonstrating analgous dehydroalanine-alpha-amino group-crosslinking.
Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.
1978-01-01
High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterberg, F.
2006-03-15
It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less
Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.
Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A
2016-11-01
In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.
Proton pinhole imaging on the National Ignition Facility.
Zylstra, A B; Park, H-S; Ross, J S; Fiuza, F; Frenje, J A; Higginson, D P; Huntington, C; Li, C K; Petrasso, R D; Pollock, B; Remington, B; Rinderknecht, H G; Ryutov, D; Séguin, F H; Turnbull, D; Wilks, S C
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
Deuterium Enrichment in Stratospheric Molecular Hydrogen
NASA Astrophysics Data System (ADS)
Rahn, T.; Eiler, J.; McCarthy, M. C.; Boering, K. A.; Wennberg, P.; Atlas, E.; Donnelly, S.; Schauffler, S.
2002-12-01
Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~ 530 ppbv. Its largest source is believed to be photochemical oxidation of methane (C H4) and non-methane hydrocarbons (NMHCs); other recognized sources include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify various aspects of its production and destruction. The average deuterium content of H2 (expressed as δDH2) is enriched by ~110 ‰ relative to Vienna Standard Mean Ocean Water while CH4 in the troposphere, the precursor for photochemical H2 production, is depleted by ~ 90 ‰ relative to V-SMOW and similar values are expected for NMHCs. Both natural and anthropogenic combustion sources of H2 have been shown to be depleted in deuterium by 200 to 300 ‰ (Gerst and Quay, 2001; Rahn et al., 2002), and the ocean and N2 fixation sources are expected to be in near thermodynamic equilibrium with local H2O and should have deuterium levels of ~-700 ‰ (Rahn et al., 2002). In order to offset these deuterium depleted sources and account for the observed tropospheric δDH2, the balancing loss processes must discriminate against reaction with HD and/or the total fractionation associated with CH4 oxidation and the subsequent reactions leading to H2 must favor production of deuterated H2. We have analyzed a suite of stratospheric air samples in order to investigate the photochemical processes influencing the deuterium content of H2. While the mixing ratio of H2 is nearly constant, the deuterium content increases such that δD=440 ‰ in samples with a stratospheric mean age of ~6 years. The constant mixing ratio results from the fact that production due to CH4 oxidation and loss due to H2 oxidation are approximately equal. The observed trend in δD of stratospheric H2 can only be accounted for by an enrichment in the ratio of D to H of H2 relative to that in precursor CH4 in addition to the enrichment due to the slower oxidation of deuterated H2. We calculate the fractionation associated with this enrichment to be αTotal=1.54. As with other trace gases, in situ photochemical processes and the return flux of air from the stratosphere must be accounted for to explain tropospheric observations. Gerst, S., and P. Quay, J. Geophys. Res., 106, 5021-5031, 2001. Rahn, T., N. Kitchen, and J. M. Eiler, Geochim. Cosmochim. Acta, 66, 2475-2481, 2002.
Influence of Murchison Minerals on Hydrogen-Deuterium Exchange of Amino Acids
NASA Astrophysics Data System (ADS)
Lerner, N. R.
1993-07-01
The amino acids found on the Murchison meteorite are deuterium enriched. For the glycine-alanine fraction, delta D = +2448 per mil, and for the alpha-amino isobutyric acid fraction, delta D = +149 per mil [1]. In order to retain such levels of deuterium enrichment, the amino acids found in Murchison must have not only retained the deuterium enrichment of their interstellar precursors (delta D > +1500 per mil [2]) during synthesis, as has been recently shown [3], but they must have also retained their deuterium label during the aqueous alteration phase [4]. By measuring the rates of deuterium exchange of amino acids with D(sub)2O, limits can be set on the length of time and the conditions under which the Murchison parent body experienced an aqueous environment. The rates of hydrogen-deuterium exchange of nondeuterated glycine, alanine, alpha-amino isobutyric acid, and amino diacetic acid have been measured in D(sub)2O as a function of temperature, pH, and the presence of Murchison minerals. In addition to the amino and carboxylic hydrogens, only the alpha- hydrogens of glycine, alanine, and amino diacetic acid are found to exchange. Even for solutions maintained for weeks at temperatures as high as 120 degrees C, no exchange was observed with the hydrogens of the methyl groups of alanine or alpha-amino isobutyric acid. The rate of exchange for alpha-hydrogens of amino acids is first-order with respect to the amino acid concentration. Increasing the pH of the solution markedly increases the rate of exchange. For example, at 115 degrees C and pH 4.0, 7.0, and 10 the rates are 14, 30, and 125 yr^-1 respectively for glycine and 2.0, 3.5, and 14 yr^-1 respectively for alanine. In a pH-6.0 D(sub)2O solution of amino acids containing Murchison dust the rates are 135 yr^-1 for glycine and 32 yr^-1 for alanine, rates close to those for the pH 10 solution. Activation energies for exchange were obtained from Arrhenius plots constructed from measurements made between 70 degrees C and 155 degrees C in solutions containing Murchison dust. For both glycine and alanine the activation energy is -25 kcal/mole. Using this value, we have calculated the half-lives for complete exchange of the alpha-hydrogens of glycine and alanine for the temperature range thought to have existed on the parent body during aqueous alteration [5]. The half-lives at 0 degrees C and 20 degrees C are 7500 yr and 300 yr respectively for glycine and 55,000 yr and 2100 yr respectively for alanine. Murchison amino acid fraction IV [1] was known to contain impurities and hence the measured delta D value represents a lower limit for alpha-amino isobutyric acid. Assuming that all the deuterium recovered from fraction IV came from alpha-amino isobutryric acid, and that one atom of nitrogen is recovered for each molecule of alpha-amino isobutyric acid, a maximum delta D value of +2600 per mil can be calculated for this amino acid. This is comparable to delta D for the glycine-alanine fraction, which is mainly glycine [6]. In an aqueous environment glycine loses deuterium relatively rapidly while alpha-amino isobutyric acid does not undergo exchange. Hence the similarity in the delta D values of both fractions indicates that the period of aqueous alteration is less than the half-life for hydrogen-deuterium exchange of glycine. References: [1] Pizzarello S. et al. (1991) GCA, 55, 905-910. [2] Zinner E. (1988) In Meteorites and the Early Solar System (J. R. Kerridge and M. S. Matthews, eds.), 956-983, Univ. of Arizona. [3] Lerner N. R. et al. (1993) GCA, in press. [4] Bunch T. E. and Chang S. (1980) GCA, 44, 1543-1577. [5] Clayton R. N. and Mayeda T. K. (1984) EPSL, 67, 151-161. [6] Shock E. L. and Shulte M. D. (1990) GCA, 54, 3159-3173.
NASA Astrophysics Data System (ADS)
Khakinejad, Mahdiar
Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS measurements and gas-phase HDX studies at the amino acid residue level, for the first time a drift tube is connected to a linear ion trap (LIT) with electron transfer dissociation (ETD) capability[19, 20]. In this manner CCS and per-residue deuterium uptake measurements for a model peptide carried out successfully[19]. In this study, the gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined. Using ion structures obtained from molecular dynamics (MD) simulation and considering charge-site/exchange-site density the level of the maximum total deuterium uptake for the gas-phase ions is explained. Also a new hydrogen accessibility scoring (HAS) model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) is applied to the in-silico structures to describe the expected HDX behavior for these structures. Further investigation to improve the accuracy of the model is accomplished by a "per-residue" HDX kinetics study of the model peptide [21]. In this study, the ion residence time and the deuterium uptake of each residue is measured at different partial pressures of D2O. Subsequently the contribution each residue to the overall HDX rate of the intact peptide ion is calculated. These rate contributions of the residues exhibit a better fit to HAS than their maximum deuterium uptake. Proteins and peptides with very frequent acidic residue in their sequence provide very poor signal levels when employing positive polarity ESI. Also, the comparison of protonated and deprotonated ions of these biomolecules offers the potential to provide a better structural characterization [22]. Per-residue deuterium uptake values resulting from collision-induced dissociation (CID) of the model peptide KKDDDDIIKIIK were used to investigated the degree of hydrogen deuterium scrambling for deprotonated ions [23]. Remarkably, limited isotopic scrambling was observed in this study of this small model peptide. This data and the per-residue deuterium uptake of the triply-protonated model peptide Acetyl-PAAAAKAAAAKAAAAKAAAAK are exploited to propose a lemma to allocate protonation and deprotonation sites for peptide ions in the gas-phase. Insulin ions, as a small protein model system, are examined to investigate the relation of the maximum deuterium uptake value for each insulin chain to the exposed surface area of each insulin subunit [22]. The results show that the methodology can be applied on the protein complexes to provide information about the exposed surface area of each subunit.
Water drives the deuterium content of the methane emitted from plants
NASA Astrophysics Data System (ADS)
Vigano, I.; Holzinger, R.; Keppler, F.; Greule, M.; Brand, W. A.; Geilmann, H.; van Weelden, H.; Röckmann, T.
2010-07-01
The spatial distribution of the deuterium content of precipitation has a well-established latitudinal variation that is reflected in organic molecules in plants growing at different locations. Some laboratory and field studies have already shown that the deuterium content of methane emitted from methanogens can be partially related to δD variations of the water in the surrounding environment. Here we present a similar relation for the methane emitted from plant biomass under UV radiation. To show this relation, we determined the hydrogen isotopic composition of methane released from leaves of a range of plants grown with water of different deuterium content (δD = -130‰ to +115‰). The plant leaves were irradiated with UV light and the CH 4 isotopic composition was measured by continuous flow isotope ratio mass spectrometry (CF-IRMS). Furthermore, the deuterium content of bulk biomass and of the methoxyl (OCH 3) groups of the biomass was measured. The D/H ratio successively decreases from bulk biomass (δD = -106‰ to -50‰) via methoxyl groups (δD = -310‰ to -115‰) to the CH 4 emitted (δD = -581‰ to -196‰). The range of isotope ratios in bulk biomass and OCH 3 groups is smaller than in the water used to grow the plants. Methoxyl groups, which contain only non-exchangeable hydrogen, can be used to assess the fraction of external water that was incorporated before OCH 3 groups were formed. Surprisingly, the CH 4 formed under UV irradiation has a wider isotopic range than the OCH 3 groups. Although the precise production pathway cannot be fully determined, the presented experiments indicate that methoxyl groups are not the only source substrate for CH 4, but that other sources, including very depleted ones, must contribute. The main limitation to the interpretation of the data is the possible influence of exchangeable water, which could not be quantified. Future studies should include measurements of leaf water and avoid interaction between different plants via the gas phase. Despite these deficiencies, the results suggest that the deuterium content of the methane generated from plants under UV irradiation is closely linked to δD in precipitation. This dependency, which should also exist for other biogenic methane sources could be evaluated with global isotope models.
Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masashi Shimada; M. Hara; T. Otsuka
2014-05-01
Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recoverymore » mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, Matylda N., E-mail: Matylda.Guzik@ife.no; Physics Department, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller; Hauback, Bjorn C.
2012-02-15
La{sub 2-x}Mg{sub x}Ni{sub 7} and its hydrides/deuterides were investigated by high resolution synchrotron powder X-ray and neutron diffraction. Upon deuteration the single phase sample of the intermetallic compound with the refined composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7} (space group: P6{sub 3}/mmc) expands isotropically, in contrast to the Mg free phase. The hydrogen uptake, {approx}9 D/f.u., is higher than in La{sub 2}Ni{sub 7}D{sub 6.5}. The refined composition accounts for La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} (beta-phase). Rietveld refinements using the neutron and synchrotron diffraction data suggest that deuterium atoms occupy 5 different interstitial sites within both AB{sub 2} and AB{sub 5} slabs, eithermore » in an ordered or a disordered way. All determined D sites have an occupancy >50% and the shortest D-D contact is 1.96(3) A. It is supposed that a competition between the tendency to form directional bonds and repulsive D-D (H-H) interactions is the most important factor that influences the distribution of deuterium atoms in this structure. A hitherto unknown second, alpha-phase with composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 0.56}, crystallizing with the same hexagonal symmetry as La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}, has been discovered. The unit cell parameters for this D-poor phase differ slightly from those of the intermetallic. Alpha-phase displays only one D site (4f, space group: P6{sub 3}/mmc) occupied >50%, which is not populated in the D-rich beta-phase. This hydrogen/deuterium induced site depopulation can be explained by repulsive D-D (H-H) interactions that are likely to influence non-occupancy of certain interstices in metal lattice when absorbing hydrogen. - Graphical abstract: The detailed D atoms arrangement in La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} differs significantly from the previously reported La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The present model consists of only five deuterium sites as opposed to nine proposed for La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The reported four remaining deuterium atom positions in La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)} were not found in the investigated La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}. The five Ni atoms have deuterium among their nearest neighbors, which surround them in a way similar to configurations observed in some complex transition metal hydrides and already reported for metallic hydrides. In the presented deuterium-rich phase, deformed tetrahedron, rigid trigonal pyramids as well as disordered and deformed saddle-like configuration are observed. Highlights: Black-Right-Pointing-Pointer Alpha- and beta-phase for La{sub 2-x}Mg{sub x}Ni{sub 7}-H system have been characterized. Black-Right-Pointing-Pointer Five different interstitial sites are occupied by deuterium/hydrogen atoms in the beta-phase. Black-Right-Pointing-Pointer One D/H site has been determined in the alpha-phase. Black-Right-Pointing-Pointer Deuterium/hydrogen induced site depopulation during phase transformation is observed. Black-Right-Pointing-Pointer Ni atoms tend to have tetrahedral-like D/H atom coordination.« less
Some nuclear physics aspects of BBN
NASA Astrophysics Data System (ADS)
Coc, Alain
2017-09-01
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.
Z-Pinch Plasma Neutron Sources
2006-03-24
deuterium into 9 to 14 keV (around 10 keV), which is well in the fusion energy range we are interested in. To make plasma radiation sources work, we...showing the 1-D dynamics of the pinch plasma implosion, temperature, fusion energy production and deposition for the conditions of shot Z1422. The minimum...histories of ion and electron temperatures, fusion energy production and energy deposition in ID RMHD run modeling deuterium shot Z1422. In our simulations
Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian
2005-12-01
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).
NASA Astrophysics Data System (ADS)
Marchuk, Gurii I.; Imshennik, Vladimir S.; Basko, Mikhail M.
2009-03-01
The hydrodynamic problem of a thermonuclear explosion in a sphere of normal-density liquid deuterium was solved (Institute for Physics and Power Engineering, Obninsk) in 1952-1954 in the framework of the Soviet Atomic Project. The principal result was that the explosion shockwave in deuterium strongly decayed because of radiation energy loss and nonlocal energy release by fast neutrons. At that time, this negative result implied in essence that the straightforward approach to creating a thermonuclear weapon was in fact a blind alley. This paper describes a numerical solution to the stated problem, obtained with the modern DEIRA code developed for numerical modeling of inertially confined fusion. Detailed numerical calculations have confirmed the above 'historic' result and shed additional light on the physical causes of the detonation wave decay. The most pernicious factor is the radiation energy loss due to the combined effect of bremsstrahlung and the inverse Compton scattering of the emitted photons on the hot electrons. The impact of energy transfer by fast neutrons — which was already quite adequately accounted for in the above-cited historical work — is less significant. We present a more rigorous (compared to that of the 1950s) study of the role of inverse Compton scattering for which, in particular, an independent analytic estimate is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Ditmire; Zweiback, J; Cowan, T E
In conclusion, we have observed the production of 2.45 MeV deuterium fusion neutrons when a gas of deuterium clusters is irradiated with a 120 mJ, 35 fs laser pulse. When the focal position is optimized, we have observed as many as 10{sup 4} neutrons per laser shot. This yield is consistent with some simple estimates for the fusion yield. We also find that the fusion yield is a sensitive function of the deuterium cluster size in the target jet, a consequence of the Coulomb explosion origin of the fast deuterons. We also find that the neutron pulse duration is fast,more » with a characteristic burn time of well under 1 ns. This experiment may represent a means for producing a compact, table-top source of short pulse fusion neutrons for applications. Furthermore, we have measured hard x-ray yield from femtosecond laser interactions with both solid and micron scale droplet targets. Strong hard x-ray production is observed from both targets. However, the inferred electron temperature is somewhat higher in the case of irradiation of the droplets. These data are consistent with PIC simulations. This finding indicates that quite unique hot electron dynamics occur during the irradiation of wavelength scale particles by an intense laser field and likely warrants further study.« less
Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Barbara R; Bali, Garima; Reeves, David T
2014-01-01
In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings inmore » H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.« less
NASA Astrophysics Data System (ADS)
Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET
2018-05-01
ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.
TFTR neutral beam control and monitoring for DT operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Connor, T.; Kamperschroer, J.; Chu, J.
1995-12-31
Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were alsomore » added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.« less
NASA Astrophysics Data System (ADS)
Ullah, Saif; Zhang, Wei; Hansen, Poul Erik
2010-07-01
Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.
Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J
2017-05-01
Gas-phase hydrogen/deuterium exchange (HDX) using D 2 O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.
Deuterium fractionation and H2D+ evolution in turbulent and magnetized cloud cores
NASA Astrophysics Data System (ADS)
Körtgen, Bastian; Bovino, Stefano; Schleicher, Dominik R. G.; Giannetti, Andrea; Banerjee, Robi
2017-08-01
High-mass stars are expected to form from dense prestellar cores. Their precise formation conditions are widely discussed, including their virial condition, which results in slow collapse for supervirial cores with strong support by turbulence or magnetic fields, or fast collapse for subvirial sources. To disentangle their formation processes, measurements of the deuterium fractions are frequently employed to approximately estimate the ages of these cores and to obtain constraints on their dynamical evolution. We here present 3D magnetohydrodynamical simulations including for the first time an accurate non-equilibrium chemical network with 21 gas-phase species plus dust grains and 213 reactions. With this network we model the deuteration process in fully depleted prestellar cores in great detail and determine its response to variations in the initial conditions. We explore the dependence on the initial gas column density, the turbulent Mach number, the mass-to-magnetic flux ratio and the distribution of the magnetic field, as well as the initial ortho-to-para ratio (OPR) of H2. We find qualitatively good agreement with recent observations of deuterium fractions in quiescent sources. Our results show that deuteration is rather efficient, even when assuming a conservative OPR of 3 and highly subvirial initial conditions, leading to large deuterium fractions already within roughly a free-fall time. We discuss the implications of our results and give an outlook to relevant future investigations.
EFFECT OF DEUTERIUM OXIDE ON THE REPRODUCTIVE POTENTIAL OF MICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czajka, D.M.; Finkel, A.J.
1960-11-25
Replacement of hydrogen with deuterium by the administration of 25% D/ sub 2/O in the drinkng water resulted in certain alterations in the reproductive potential of female mice, These changes included an apparent decrease in the number of pregnancies carried close to term, an increase in the incidence of wholly nonviable litters, and a decrease in the survival of newborn mice. Examination of uterine contents late in pregnancy, however, revealed that neither the incidence of pregnancy nor the mean number of implanted embryos per pregnant female was correlated with the duration of deuteration. Reduction of the incidence of viable newbornmore » mice in part reflected the increase in nonviability of fetuses examined in utero late in gestation and in part may have been the result of maternal cannibalism. Reduction of fetal viability was greatest when the dams had been substantially deuterated at the time of implantation of the fetus, which occurred at about the fifth day after mating. When the administration of deuterium to female mice preceded mating by 1 week, the higher the level of deuteration, the lower was the total fetal viability. A critical level appeared to exist here between 25 and 30 at.% deuterium in the drinking water, above which fetal viability ceased. The reduction of mean litter size and of viability of the newbern was at least partly reversible by restoring the dams to ordinary drinking water. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, B.K.; Nicholls, K.M.; Sanders, J.K.
1985-07-16
Escherichia coli were grown on 14.3% uniformly TC-labeled glucose as the sole carbon source and challenged anaerobically with 90% TC-labeled formaldehyde. The major multiply labeled metabolites were identified by TC NMR spectroscopy to be glycerol and 1,2-propanediol, and a minor metabolite was shown to be 1,3-propanediol. In each case, formaldehyde is incorporated only into the C1 position. A novel form of TC NMR isotope dilution analysis of the major products reveals that all the 1,2-diol C1 is formaldehyde derived but that about 40% of the glycerol C1 is derived from bacterial sources. Glycerokinase converted the metabolite (1- TC)glycerol to equalmore » amounts of (3- TC)glycerol 3-phosphate and (1- TC)glycerol 3-phosphate, demonstrating that the metabolite is racemic. When ( TC)formaldehyde incubation was carried out in H2O/D2O mixtures, deuterium incorporation was detected by beta- and gamma-isotope shifts. The 1,3-diol is deuterium labeled only at C2 and only once, while the 1,2-diol and glycerol are each labeled independently at both C2 and C3; C3 is multiply labeled. Deuterium incorporation levels are different for each metabolite, indicating that the biosynthetic pathways probably diverge early.« less
Temperature dependence of deuterium retention mechanisms in tungsten
NASA Astrophysics Data System (ADS)
Roszell, J. P.; Davis, J. W.; Haasz, A. A.
2012-10-01
The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.
Thust, R; Mendel, J; Bach, B; Schwarz, H
1985-06-01
The genotoxicity of 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (C1-MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU) and their derivatives substituted by deuterium in different positions was studied using sister chromatid exchange (SCE) induction in Chinese hamster V79-E cells. Deuterium substitution in the 1-methyl group of MPNU (MPNU-d3) and C1-MPNU (C1-MPNU-d3) diminished the SCE-inducing capacity by 20-30% and by 30-40% in DMPNU (DMPNU-d3B). There was no altered SCE activity detected when the phenyl group of MPNU (MPNU-d5) or the 3-methyl group of DMPNU (DMPNU-d3A) was deuterium labeled. No isotope effect was detected in deuterated EPNU derivatives, presumably due to the instability of these compounds. It is surmised that the easier delocalization of the positive charge in the deuterated alkyl diazonium ion causes a diminished reactivity and therefore influences the type and amount of DNA alkylation. Furthermore, the experiments with DMPNU and its derivatives revealed that, in contrast to mono- and disubstituted nitrosoureas, the biological activities of these very stable trisubstituted nitrosoureas are strongly influenced by a serum factor in the culture fluid.
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures
NASA Astrophysics Data System (ADS)
Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.
2016-10-01
The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.
NASA Astrophysics Data System (ADS)
Borovitskaya, I. V.; Pimenov, V. N.; Gribkov, V. A.; Padukh, M.; Bondarenko, G. G.; Gaidar, A. I.; Paramonova, V. V.; Morozov, E. V.
2017-11-01
The structural changes in the vanadium sample surface are studied as functions of the conditions of irradiation by pulsed high-temperature deuterium plasma and deuterium ion fluxes in the Plasma Focus installation. It is found that processes of partial evaporation, melting, and crystallization of the surface layer of vanadium samples take place in the plasma flux power density range q = 108-1010 W/cm2 and the ion flux density range q = 1010-1012 W/cm2. The surface relief is wavelike. There are microcracks, gas-filled bubbles (blisters), and traces of fracture on the surface. The blisters are failed in the solid state. The character of blister fracture is similar to that observed during usual ion irradiation in accelerators. The samples irradiated at relatively low power density ( q = 107-108 W/cm2) demonstrate the ejection of microparticles (surface fragments) on the side facing plasma. This process is assumed to be due to the fact that the unloading wave formed in the sample-target volume reaches its irradiated surface. Under certain irradiation conditions (sample-anode distance, the number of plasma pulses), a block microstructure with block sizes of several tens of microns forms on the sample surfaces. This structure is likely to form via directional crack propagation upon cooling of a thin melted surface layer.
NASA Astrophysics Data System (ADS)
Sinyak, Y.; Turusov, V.; Grigroriev, A.; Yaridze, D.; Gaidadimov, V.; Antoshina, E.; Gorkova, T.; Truhanova, L.
The interplanetary space flights, Martian program as an example, will take place under conditions of increasing radiation level on crew. The search of methods for a decrease of oncologic risk produced by irradiation of astronauts, is one of the major factors of a successful implementation of a flight program. One of such methods is a usage by crew of potable water with the reduced concentrations of a heavy stable isotope of hydrogen - deuterium, which can be obtained in the regenerative life support systems. The heavy water (D2O) has toxic properties, distorting biochemical reactions in the cell, inhibiting process of DNA replication. It can be presumed that the replacement of deuterium in the water for protium will result in normalization of cell metabolism, reparation will take place and this will lead to the inhibition of tumour development. In this study the water with a decreased by 65% of deuterium was used. Antitumour properties of D 2-free water were studied with transplantable Lewis lung carcinoma in BDF1 strain of mice. First results show that average time of appearance of the first nodules at the site of transplantation was 14 % longer in mice fed D 2-free water as compared to control. The tumour volume in the experimental group (decreased content of D2 ) was always lower than in the control. Statistically significant differences in the tumour volume were registered at the 13, 15, 23, 26 and 28 -th days after transplantation. Inhibition of tumour growth was equal to 100% and 51% at the 5 th and 15-th days after- transplantation respectively. Increase of life span in the experimental group was 10%. The results indicate that the use by astronauts of water with decreased content of deuterium may decrease the risk of oncological diseases under conditions of high radiation level in the flight to Mars.
One Percent Determination of the Primordial Deuterium Abundance
NASA Astrophysics Data System (ADS)
Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.
2018-03-01
We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S
2014-09-01
Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.
Twin-Screw Extruder Development for the ITER Pellet Injection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk
The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pelletsmore » used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.« less
The pion nucleon scattering lengths from pionic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.
2001-07-01
This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.
NASA Astrophysics Data System (ADS)
Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.
Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.
Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W
2014-01-01
In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokhintseva, T.D.; Vasilenko, A.T.; Grebinnik, V.G.
1961-01-01
A design of an 8-liter hydrogen-deuterium bubble chamber is described, and its operating characteristics are given. The chamber is a metal-glass device with the vertical location of its working volume. The chamber is illuminated by means of a lens. In the expansion system the bellows are used. The magnetic field is 12000 oersted in the working volume. The operating cycle of the chamber does not exceed 2 secs. (auth)
Relativistically correct DD and DT neutron spectra
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2014-06-01
We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.
Experimental detection and investigation of muon catalyzed fusion of deuterium and tritium
NASA Astrophysics Data System (ADS)
Bystritsky, V. M.; Dzhelepov, V. P.; Ershova, Z. V.; Filchenkov, V. V.; Kapyshev, V. K.; Mukhamet-Galeeva, S. M.; Nadezhdin, V. S.; Rivkis, L. A.; Rudenko, A. I.; Satarov, V. I.; Sergeeva, N. V.; Somov, L. N.; Stolupin, V. A.; Zinov, V. G.
1980-08-01
Measurement of the neutron yield of the reaction dtμ → 4He + μ - + 17.6 MeV, induced by negative muons in a mixture of gaseous D 2 and T 2, has shown that the rate of muon transfer from deuterium to tritium is λdt = (2.7 ± 0.9) × 10 8s -1 and that the lower limit of the formation rate of dt μ molecules is λdtμ > 10 8s -1.
Phase change material for temperature control and material storage
NASA Technical Reports Server (NTRS)
Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)
2011-01-01
A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.
Monodeurated methane in the outer solar system. 2. Its detection on Uranus at 1.6 microns
NASA Technical Reports Server (NTRS)
Debergh, C.; Lutz, B. L.; Owen, T.; Brault, J.; Chauville, J.
1985-01-01
Deuterium in the atmosphere of Uranus has been studied only via measurements of the exceedingly weak dipole lines of hydrogen-deuteride (HD) seen in the visible region of the spectrum. The other sensitive indicator of deuterium in the outer solar system is monodeuterated methane (CH3D) but the two bands normally used ot study this molecule, NU sub 2 near 2200 1/cm and NU sub 6 near 1161 1/cm, have not been detected in Uranus.
Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds.
Loh, Yong Yao; Nagao, Kazunori; Hoover, Andrew J; Hesk, David; Rivera, Nelo R; Colletti, Steven L; Davies, Ian W; MacMillan, David W C
2017-12-01
Deuterium- and tritium-labeled pharmaceutical compounds are pivotal diagnostic tools in drug discovery research, providing vital information about the biological fate of drugs and drug metabolites. Herein we demonstrate that a photoredox-mediated hydrogen atom transfer protocol can efficiently and selectively install deuterium (D) and tritium (T) at α-amino sp 3 carbon-hydrogen bonds in a single step, using isotopically labeled water (D 2 O or T 2 O) as the source of hydrogen isotope. In this context, we also report a convenient synthesis of T 2 O from T 2 , providing access to high-specific-activity T 2 O. This protocol has been successfully applied to the high incorporation of deuterium and tritium in 18 drug molecules, which meet the requirements for use in ligand-binding assays and absorption, distribution, metabolism, and excretion studies. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Tvaskis, V.; Tvaskis, A.; Niculescu, I.; Abbott, D.; Adams, G. S.; Afanasev, A.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Avery, S.; Baker, O. K.; Benmouna, N.; Berman, B. L.; Biselli, A.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Brash, E.; Breuer, H.; Chang, G.; Chant, N.; Christy, M. E.; Connell, S. H.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dodario, T.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Ent, R.; Fenker, H. C.; Frolov, V. V.; Gaskell, D.; Garrow, K.; Gilman, R.; Gueye, P.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Jackson, H.; Jiang, X.; Jones, M. K.; Joo, K.; Kelly, J. J.; Keppel, C. E.; Kuhn, J.; Kinney, E.; Klein, A.; Kubarovsky, V.; Liang, Y.; Lolos, G.; Lung, A.; Mack, D.; Malace, S.; Markowitz, P.; Mbianda, G.; McGrath, E.; Mckee, D.; Meekins, D. G.; Mkrtchyan, H.; Napolitano, J.; Navasardyan, T.; Niculescu, G.; Nozar, M.; Ostapenko, T.; Papandreou, Z.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tadevosyan, V.; Tang, L.; Telfeyan, J.; Todor, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Warren, G.; Wesselmann, F.; Wojtsekhowski, B.; Wood, S. A.; Yan, C.; Zihlmann, B.
2018-04-01
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q2<1 GeV2 , and compare them with parton distribution parametrization and kT factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q2 scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R , than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.
Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion
NASA Astrophysics Data System (ADS)
Maksoed, Wh-
2016-11-01
Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (<<1 %/KwH). "The oceans contain enough deuterium to satisfy the Earth's energy needs for many millions of year" to keep "maria"/Latin name of seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.
Advances in NIF Shock Timing Experiments
NASA Astrophysics Data System (ADS)
Robey, Harry
2012-10-01
Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.
NASA Technical Reports Server (NTRS)
Hebrard, G.; Lemoine, M.; Vidal-Madjar, A.; Desert, J. M.; LecavelierdesEtangs, A.; Ferlet, R.; Wood, B. E.; Linsky, J. L.; Kruk, J. W.; Chayer, P.;
2002-01-01
We present a deuterium abundance analysis of the line of sight toward the white dwarf WD 2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A thorough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = 4.0 (+/-1.2) x 10(exp -2); D/N = 4.4 (+/-1.3) x 10(exp -1). In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.
Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment
NASA Astrophysics Data System (ADS)
Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael
Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.
Millot, M.; Celliers, P. M.; Sterne, P. A.; ...
2018-04-18
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less
Abrupt change of Antarctic moisture origin at the end of Termination II
Masson-Delmotte, V.; Stenni, B.; Blunier, T.; Cattani, O.; Chappellaz, J.; Cheng, H.; Dreyfus, G.; Edwards, R. L.; Falourd, S.; Govin, A.; Kawamura, K.; Johnsen, S. J.; Jouzel, J.; Landais, A.; Lemieux-Dudon, B.; Lourantou, A.; Marshall, G.; Minster, B.; Mudelsee, M.; Pol, K.; Röthlisberger, R.; Selmo, E.; Waelbroeck, C.
2010-01-01
The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north–south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO2 overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector. PMID:20566887
NASA Astrophysics Data System (ADS)
Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.
2017-10-01
In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.
Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T
2013-09-01
We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.
NASA Astrophysics Data System (ADS)
Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.
2018-04-01
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.
Limits in Proton Nuclear Singlet-State Lifetimes Measured with para-Hydrogen-Induced Polarization.
Zhang, Yuning; Duan, Xueyou; Soon, Pei Che; Sychrovský, Vladimír; Canary, James W; Jerschow, Alexej
2016-10-05
The synthesis of a hyperpolarized molecule was developed, where the polarization and the singlet state were preserved over two controlled chemical steps. Nuclear singlet-state lifetimes close to 6 min for protons are reported in dimethyl fumarate. Owing to the high symmetry (AA'X 3 X 3 ' and A 2 systems), the singlet-state readout requires either a chemical desymmetrization or a long and repeated spin lock. Using DFT calculations and relaxation models, we further determine nuclear spin singlet lifetime limiting factors, which include the intramolecular dipolar coupling mechanism (proton-proton and proton-deuterium), the chemical shift anisotropy mechanism (symmetric and antisymmetric), and the intermolecular dipolar coupling mechanism (to oxygen and deuterium). If the limit of paramagnetic relaxation caused by residual oxygen could be lifted, the intramolecular dipolar coupling to deuterium would become the limiting relaxation mechanism and proton lifetimes upwards of 26 min could become available in the molecules considered here (dimethyl maleate and dimethyl fumarate). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millot, M.; Celliers, P. M.; Sterne, P. A.
Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less
Deuterium retention and release from molybdenum exposed to a Penning discharge
NASA Astrophysics Data System (ADS)
Causey, R. A.; Kunz, C. L.; Cowgill, D. F.
2005-03-01
Both molybdenum and tungsten are candidate materials for plasma-facing applications in fusion reactors. While tungsten has a higher melting point and a higher threshold for sputtering, it is a brittle material that is difficult to machine into shapes required for fusion applications. For this reason, molybdenum is now receiving serious consideration as an alternative for tungsten. If molybdenum is to be used as a plasma-facing material, the hydrogen retention and recycling characteristics must be known. In this report, we present experimental results on deuterium retention in molybdenum after exposure to a Penning discharge at temperatures from 573 to 773 K. D2+ ions with energies of 1.2 keV were implanted into the 50 mm diameter molybdenum samples at fluxes of 10 20 D/m 2 s. Thermal desorption spectroscopy was used to determine both the amount of retained deuterium and the release kinetics. Low retention values similar to those measured previously for tungsten were observed.
Tvaskis, V.; Tvaskis, A.; Niculescu, I.; ...
2018-04-26
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvaskis, V.; Tvaskis, A.; Niculescu, I.
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less
NASA Astrophysics Data System (ADS)
Boris, D. R.; Emmert, G. A.
2007-11-01
The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.
Hoeffler, Jean-François; Hemmerlin, Andréa; Grosdemange-Billiard, Catherine; Bach, Thomas J; Rohmer, Michel
2002-01-01
In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-(2)H]deoxy-d-xylulose ([4-(2)H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-(2)H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase. PMID:12010124
Fuel gain exceeding unity in an inertially confined fusion implosion.
Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R
2014-02-20
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
Distribution of stable free radicals among amino acids of isolated soy proteins.
Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M
2010-09-01
Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.
NASA Astrophysics Data System (ADS)
Salewski, M.; Geiger, B.; Jacobsen, A. S.; Abramovic, I.; Korsholm, S. B.; Leipold, F.; Madsen, B.; Madsen, J.; McDermott, R. M.; Moseev, D.; Nielsen, S. K.; Nocente, M.; Rasmussen, J.; Stejner, M.; Weiland, M.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2018-03-01
We measure the deuterium density, the parallel drift velocity, and parallel and perpendicular temperatures (T_\\Vert , T_\\perp ) in non-Maxwellian plasmas at ASDEX Upgrade. This is done by taking moments of the ion velocity distribution function measured by tomographic inversion of five simultaneously acquired spectra of D_α -light. Alternatively, we fit the spectra using a bi-Maxwellian distribution function. The measured kinetic temperatures (T_\\Vert =9 keV, T_\\perp=11 keV) reveal the anisotropy of the plasma and are substantially higher than the measured boron temperature (7 keV). The Maxwellian deuterium temperature computed with TRANSP (6 keV) is not uniquely measurable due to the fast ions. Nevertheless, simulated kinetic temperatures accounting for fast ions based on TRANSP (T_\\Vert =8.3 keV, T_\\perp=10.4 keV) are in excellent agreement with the measurements. Similarly, the Maxwellian deuterium drift velocity computed with TRANSP (300 km s-1) is not uniquely measurable, but the simulated kinetic drift velocity accounting for fast ions agrees with the measurements (400 km s-1) and is substantially larger than the measured boron drift velocity (270 km s-1). We further find that ion cyclotron resonance heating elevates T_\\Vert and T_\\perp each by 2 keV without evidence for preferential heating in the D_α spectra. Lastly, we derive an expression for the 1D projection of an arbitrarily drifting bi-Maxwellian onto a diagnostic line-of-sight.
NASA Astrophysics Data System (ADS)
Cryar, Adam; Groves, Kate; Quaglia, Milena
2017-06-01
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. [Figure not available: see fulltext.
Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko
2013-06-01
To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferris, Thomas D.; Farrar, Thomas C.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.
Deuterium REDOR: Principles and Applications for Distance Measurements
NASA Astrophysics Data System (ADS)
Sack, I.; Goldbourt, A.; Vega, S.; Buntkowsky, G.
1999-05-01
The application of short composite pulse schemes ([figure] and [figure]) to the rotational echo double-resonance (REDOR) spectroscopy ofX-2H (X: spin{1}/{2}, observed) systems with large deuterium quadrupolar interactions has been studied experimentally and theoretically and compared with simple 180° pulse schemes. The basic properties of the composite pulses on the deuterium nuclei have been elucidated, using average Hamiltonian theory, and exact simulations of the experiments have been achieved by stepwise integration of the equation of motion of the density matrix. REDOR experiments were performed on15N-2H in doubly labeled acetanilide and on13C-2H in singly2H-labeled acetanilide. The most efficient REDOR dephasing was observed when [figure] composite pulses were used. It is found that the dephasing due to simple 180° deuterium pulses is about a factor of 2 less efficient than the dephasing due to the composite pulse sequences and thus the range of couplings observable byX-2H REDOR is enlarged toward weaker couplings, i.e., larger distances. From these experiments the2H-15N dipolar coupling between the amino deuteron and the amino nitrogen and the2H-13C dipolar couplings between the amino deuteron and the α and β carbons have been elucidated and the corresponding distances have been determined. The distance data from REDOR are in good agreement with data from X-ray and neutron diffraction, showing the power of the method.
The hydration ability of three commercially available sports drinks and water.
Hill, Rebecca J; Bluck, Leslie J C; Davies, Peter S W
2008-04-01
This paper compares the hydration ability of three commercially-available sports drinks with water under conditions of rest and exercise, using a deuterium dilution technique. For the rest group, 0.05g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with one of the test solutions and saliva samples were collected every five minutes for an hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled to describe the kinetics of hydration and the parameters obtained were compared across drinks using a basic Anova. At rest, significant differences were found for t(1), t(1/2), and the percent of drink absorbed at t(1). The differences between drinks were not significant for t(2) or the maximum absorption rate. For the exercise group, the only significant difference was found between water and the sports drinks at t(1). Therefore, we conclude that labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Because of the lack of differences found at t(2), which is indicative of the 100% absorption time, both at rest and during exercise, it may be speculated that, compared to water, the sports drinks studied in this paper did not hydrate the body at a faster rate.
First detection of ND in the solar-mass protostar IRAS16293-2422
NASA Astrophysics Data System (ADS)
Bacmann, A.; Caux, E.; Hily-Blant, P.; Parise, B.; Pagani, L.; Bottinelli, S.; Maret, S.; Vastel, C.; Ceccarelli, C.; Cernicharo, J.; Henning, T.; Castets, A.; Coutens, A.; Bergin, E. A.; Blake, G. A.; Crimier, N.; Demyk, K.; Dominik, C.; Gerin, M.; Hennebelle, P.; Kahane, C.; Klotz, A.; Melnick, G.; Schilke, P.; Wakelam, V.; Walters, A.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Goldsmith, P. F.; Helmich, F.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F. F. S.; van der Wiel, M. H. D.; Viti, S.; Wyrowski, F.; Yorke, H.; Faure, A.; Benz, A.; Coeur-Joly, O.; Cros, A.; Güsten, R.; Ravera, L.
2010-10-01
Context. In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Many of these light molecules however have their fundamental transitions in the submillimetre domain and their detection is hampered by the opacity of the atmosphere at these wavelengths. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of species not observable from the ground. Aims: We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. Methods: We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI in Bands 1a (480-560 GHz), 3b (858-961 GHz), and 4a (949-1061 GHz) as part of the Herschel key programme CHESS (Chemical HErschel Survey of Star forming regions). Results: The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition (N = 0-1) at 522.1 and 546.2 GHz, in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. The absorption arises from the cold envelope, where many deuterated species have been shown to be abundant. The estimated column densities are ~2 × 1014 cm-2 for NH and ~ 1.3 × 1014 cm-2 for ND. We derive a very high deuterium fractionation with an [ND]/[NH] ratio of between 30 and 100%. Conclusions: The deuterium fractionation of imidogen is of the same order of magnitude as that in other molecules, which suggests that an efficient deuterium fractionation mechanism is at play. We discuss two possible formation pathways for ND, by means of either the reaction of N+ with HD, or deuteron/proton exchange with NH. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers remove another section of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket
1999-06-19
NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite sits ready for the fairing installation at Launch Pad 17A, Cape Canaveral Air Station. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe
NASA Astrophysics Data System (ADS)
Wilson, D. C.; Spears, B. K.; Hatchett, S. P., Ii; Cerjan, C. J.; Springer, P. T.; Clark, D. S.; Edwards, M. J.; Salmonson, J. D.; Weber, S. V.; Hammel, B. A.; Grim, G. P.; Herrmann, H. W.; Wilke, M. D.
2010-08-01
Diagnostics such as neutron yield, ion temperature, image size and shape, and bang time in capsules with >~25 % deuterium fuel show changes due to burn product heating. The comparison of performance between a THD(2%) and THD(35%) can help predict ignition in a TD(50%) capsule. Surrogacy of THD capsules to TD(50%) is incomplete due to variations in fuel molecular vapour pressures. TD(25-35%) capsules might be preferred to study hot spot heating, but at the risk of increased fuel/ablator mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuto, J.M.; Kumagai, Y.; Cho, A.K.
1991-09-01
The mechanism of demethylenation of (methylenedioxy)benzene (MDB), (methylenedioxy)amphetamine (MDA), and (methylenedioxy)methamphetamine (MDMA) by purified rabbit liver cytochrome P450IIB4 has been investigated by using deuterium isotope effects. A comparison of the magnitude and direction of the observed kinetic isotope effects indicates that the three compounds are demethylenated by different mechanisms. The different mechanisms of demethylenation have been proposed on the basis of comparisons of the observed biochemical isotope effects with the isotope effects from purely chemical systems.
Diagnosing radiative shocks from deuterium and tritium implosions on NIF.
Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H
2012-10-01
During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.
Polarized hydrogen/deuterium molecules
NASA Astrophysics Data System (ADS)
Shestakov, Yu V.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh; Toporkov, D. K.; Yurchenko, A. V.; Zevakov, S. A.
2017-12-01
The prototype of a polarized molecular hydrogen/deuterium source which is based on the classical Stern-Gerlach separation scheme has been tested at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. It consists of the circular slit nozzle cooled down to 6.5 K and the two superconducting sextupole magnets. The flux of polarized hydrogen molecules of 3·1012 mol/s was measured for a total gas flow through the nozzle of 5·10-2 Torr·l/s. The obtained results will be used to develop a much more intense source of polarized molecules.
Bykov, M I; Dzhimak, S S; Basov, A A; Arcybasheva, O M; Shashkov, D; Baryshev, M G
2015-01-01
Data presented in this paper reflect changes in antioxidant activity, the content of prooxidant factors and deuterium concentration in freshly squeezed juices from fruits and vegetables grown in different climatic regions (10 samples of juices from wholesale and retail trade network of 8 kinds of vegetables and fruits, 28 manufacturers from 14 countries). Determination of the concentration of deuterium was performed using a nuclear magnetic resonance spectrometer. Total antioxidant activity of fresh juices was determined amperometrically after dilution in 2.2 mM H3PO4 in a ratio of 1:100. Prooxidant performance was evaluated by a maximum and area of flash of chemiluminescence induced by the introduction of 0.3% hydrogen peroxide. It was found that the antioxidant activity of fresh juice from fruits and vegetables grown within the same climatic region can differ by several times. In this case, most of the fruits and vegetables of russian producers were not inferior, than antioxidant activity of the fresh juices from the same plant products grown abroad. It should be noted that the indicators of the antioxidant activity of fresh juice from Russian pears exceeded this indicator of all fresh juices from pears, imported from Argentina, South Africa and the United States of America by 21.1, 30.4 and 32.7%, respectively. In assessing the prooxidant properties of fresh juices should be noted the almost complete absence of factors with prooxidant nature only in 36% of the studied fresh juices, whose maximum performance and area of flash of chemiluminescence were less than 0.1%, including a pear and apple juices from the russian production. It should be noted that the area of chemiluminescence of the juice from potatoes, grown in Russia, was at 103.1 and 115.2% lower than in juice obtained respectively from potatoes produced in Israel and Egypt (p<0.05), indicating a higher safety of consumption of potatoes produced in Russia. When studying--the isotopic D/H composition of fresh juices it was found that the highest deuterium content was in the juice from the pears, imported from Argentina (deltaD = -72% per hundred), while the lowest concentration of deuterium was observed in the juice from the Egyptian potatoes (delta = -358% per hundred). In general, significantly lower deuterium content was determined in fresh juices made from potatoes and cabbage grown in different countries, in comparison with other fresh juices from fruits and vegetables. The smallest range of differences in the isotopic D/H was composed in freshjuices from tomato, pomegranate and oranges of Turkish manufacturers (deuterium concentration ranged in them from -221 to -214% per hundred), that can be used to confirm the geographical origin of fruits and vegetables grown in Turkey. The data reflecting the antioxidant activity, the content of prooxidant factors and deuterium concentration in the juices, allow us to recommend the latter as additional criteria when assessing the quality of food products.
The effects of deuterium on static posture control
NASA Technical Reports Server (NTRS)
Layne, Charles S.
1990-01-01
A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While functionally significant static postural problems were not commonly observed, subjects in both the medium and high dosage groups displayed significant, and in some cases, severe voluntary movement problems.
NASA Astrophysics Data System (ADS)
Remusat, L.; Robert, F.; Meibom, A.; Mostefaoui, S.; Delpoux, O.; Binet, L.; Gourier, D.; Derenne, S.
2007-12-01
Insoluble organic matter (IOM) in primitive carbonaceous chondrites is known to be enriched in deuterium, with D/H ratios > 300×10 -6. It is also characterized by a high degree of isotopic heterogeneity, as demonstrated by the observation of D-rich "hot spots" in NanoSIMS ion microprobe images [1] and by GC-irMS studies [2]. Understanding the origin of this heterogeneity represents a fundamental challenge with implications for the origin and distribution of organics in the interstellar medium and in the protoplanetary disk from which our planetary system formed. We have determined the carrier of the isotopically anomalous hydrogen in IOM isolated from the carbonaceous chondrite Orgueil. Electron Paramagnetic Resonance spectroscopy has shown that hydrogen in the benzylic bond of organic radicals has a deuterium to hydrogen (D/H) ratio of 1.5±0.5×10-2 in Orgueil IOM, which is the highest solar system D/H ratio ever reported [3]. By combining these data with quantitative image analysis recorded at a high spatial resolution with the NanoSIMS, we are able to prove that the organic radicals can account for the deuterium excess in the IOM D-rich "hot spots". Furthermore, the radicals fall on a well-defined trend between D/H ratio and C-H bond energy [2], consistent with a new interpretation of the hydrogen isotopic variations in solar system organics according to which pre-existing organics exchange their D with highly deuterated gaseous molecules, such as H2D+ or HD2+. The distributions of these deuterated species has been theoritically mapped in protostellar disks [4]. This conclusion runs contrary to previous interpretations, according to which the IOM is an interstellar product reprocessed in the protosolar gas and deuterium-rich "hot spot" relics of pristine interstellar organic matter, which escaped solar nebula or parent body processes. [1] Busemann et al (2006) Science 312, 727-730; [2] Remusat L. et al. (2006) Earth Planet. Sci. Let. 243, 15-25 ; [3] Delpoux O. et al. (2007) 38th LPSC, #1138. [4] Ceccarelli C. and Dominik C. (2005) A&A 440, 583-593.
Extending the application of deuterium excess as a tracer in surface and groundwaters
NASA Astrophysics Data System (ADS)
Hurst, S.; Krishnamurthy, R. V.
2017-12-01
Stable isotopes of surface and ground waters provide invaluable information on the processes involved in their genesis. A starting point in these applications is the relationship between hydrogen (δ2H) and oxygen (δ18O), exemplified in the so-called Global Meteoric Water Line where δ2H=8δ18O+10 [1]. From this line Dansgaard [2] defined the parameter deuterium excess where d=δ2H-8δ18O. Generally, the d-excess value is fixed at the source, predominantly the equatorial oceans and retained. At an average humidity of about 85% the expected d-excess value is 10. Deviations indicate secondary changes in the air mass or a water body thus making d-excess a useful geophysical tracer. For instance, evaporation results in a higher d-excess in the vapor. Mixing of this water vapor with overhead air mass results in precipitation exhibiting d-excess values higher than Global Meteoric Water Line [3]. Alternatively, the fraction of liquid remaining will have low d-excess and in extreme cases negative d-excess. In this case a plot of d-excess-δ2H will give a straight line with a negative slope. This can be demonstrated from pan evaporation experiments [4]. Deviation from a perfect straight line on the d-excess-δ2H plot indicates a combination of mixing from various source waters and evaporation. This study will discuss various case studies from multiple environments applying this approach using d-excess. References [1] Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science 133, 1833-1834 (1961). [2] Dansgaard, W. Stable isotopes in precipitation. Tellus A 16: 436-468 (1964). [3] Machavaram, M. &, Krishnamurthy, R.V. Earth surface evaporative process: a case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim. et Cosmochem. Acta 59, 4279-4283 (1995). [4] Simpson, H.J., Hamza, M.S., & White, J.W.C. Evaporative enrichment of deuterium and 18O in arid zone irrigation. IAEA, 241-256 (1987).
The interaction of molecular hydrogen with α-radiolytic oxidants on a (U,Pu)O2 surface
NASA Astrophysics Data System (ADS)
Bauhn, Lovisa; Hansson, Niklas; Ekberg, Christian; Fors, Patrik; Delville, Rémi; Spahiu, Kastriot
2018-07-01
In order to assess the impact of α-radiolysis of water on the oxidative dissolution of spent fuel, an un-irradiated, annealed MOX fuel pellet with high content of Pu (∼24 wt%), and a specific α-activity of 4.96 GBq/gMOX, was leached in carbonate-containing solutions of low ionic strength. The high Pu content in the pellet stabilizes the (U,Pu)O2(s) matrix towards oxidative dissolution, whereas the α-decays emitted from the surface are expected to produce ∼3.6 × 10-7 mol H2O2/day, contributing to the oxidative dissolution of the pellet. Two sets of leaching tests were conducted under different redox conditions: Ar gas atmosphere and deuterium gas atmosphere. A relatively slow increase of the U and Pu concentrations was observed in the Ar case, with U concentrations increasing from 1·10-6 M after 1 h to ∼7 × 10-5 M after 58 days. Leaching under an atmosphere starting at 1 MPa deuterium gas was undertaken in order to evaluate any effect of dissolved hydrogen on the radiolytic dissolution of the pellet, as well as to investigate any potential recombination of the α-radiolytic products with dissolved deuterium. For the latter purpose, isotopic analysis of the D/H content was carried out on solution samples taken during the leaching. Despite the continuous production of radiolytic oxidants, the concentrations of U and Pu remained quite constant at the level of ∼3 × 10-8 M during the first 30 days, i.e. as long as the deuterium pressure remained higher than 0.8 MPa. These data rule out any oxidative dissolution of the pellet during the first month. The un-irradiated MOX fuel does not contain metallic ε-particles, hence it is mainly the interaction of radiolytic oxidants and dissolved deuterium with the surface of the mixed actinide oxide that causes the neutralization of the oxidants. This conclusion is supported by the steadily increasing levels of HDO measured in the leachate samples.
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Pintsuk, G.; Gasparyan, Yu.; Efimov, V.
2017-03-01
The reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20-200 eV per D) deuterium (D) plasma up to a fluence of 2.9 × 1025 D m-2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion.
The effect of the isotope on the H-mode density limit
NASA Astrophysics Data System (ADS)
Huber, A.; Wiesen, S.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Abreu, P.; Boboc, A.; Brix, M.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Guillemaut, C.; Jachmich, S.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; contributors, JET; ASDEX Upgrade Team
2017-08-01
In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW. The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase. The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL. By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions. The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium-tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back transition is increased.
Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; ...
2015-08-17
We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 10 22 m -2 s -1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached amore » maximum at 230 °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from being extended to a broader range of systems where precipitation of insoluble gases in ion beam or plasma-exposed metals is of interest.« less
Tritium pellet injector for the tokamak fusion test reactor
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Baylor, L. R.; Combs, S. K.; Fisher, P. W.; Foust, C. R.; Milora, S. L.
The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the FY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability.
Hydrogen/deuterium exchange in mass spectrometry.
Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene
2018-03-30
The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.
Kopylov, Arthur T; Myasoedov, Nikolay F; Dadayan, Alexander K; Zgoda, Victor G; Medvedev, Alexei E; Zolotarev, Yurii A
2016-06-15
Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rice, Karen C.; Hornberger, George M.
1998-01-01
Three-component (throughfall, soil water, groundwater) hydrograph separations at peak flow were performed on 10 storms over a 2-year period in a small forested catchment in north-central Maryland using an iterative and an exact solution. Seven pairs of tracers (deuterium and oxygen 18, deuterium and chloride, deuterium and sodium, deuterium and silica, chloride and silica, chloride and sodium, and sodium and silica) were used for three-component hydrograph separation for each storm at peak flow to determine whether or not the assumptions of hydrograph separation routinely can be met, to assess the adequacy of some commonly used tracers, to identify patterns in hydrograph-separation results, and to develop conceptual models for the patterns observed. Results of the three-component separations were not always physically meaningful, suggesting that assumptions of hydrograph separation had been violated. Uncertainties in solutions to equations for hydrograph separations were large, partly as a result of violations of assumptions used in deriving the separation equations and partly as a result of improper identification of chemical compositions of end-members. Results of three-component separations using commonly used tracers were widely variable. Consistent patterns in the amount of subsurface water contributing to peak flow (45-100%) were observed, no matter which separation method or combination of tracers was used. A general conceptual model for the sequence of contributions from the three end-members could be developed for 9 of the 10 storms. Overall results indicated that hydrochemical and hydrometric measurements need to be coupled in order to perform meaningful hydrograph separations.
Pan, Jingxi; Zhang, Suping; Borchers, Christoph H
2016-12-01
Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is a powerful technique for higher-order structural characterization of antibodies. Although the peptide-based bottom-up HDX approach and the protein-based top-down HDX approach have complementary advantages, the work done so far on biosimilars has involved only one or the other approach. Herein we have characterized the structures of two bevacizumab (BEV) biosimilars and compared them to the reference BEV using both methods. A sequence coverage of 87% was obtained for the heavy chain and 74% for the light chain in the bottom-up approach. The deuterium incorporation behavior of the peptic peptides from the three BEVs were compared side by side and showed no differences at various HDX time points. Top-down experiments were carried out using subzero temperature LC-MS, and the deuterium incorporation of the intact light chain and heavy chain were obtained. Top-down ETD was also performed to obtain amino acid-level HDX information that covered 100% of the light chain, but only 50% coverage is possible for the heavy chain. Consistent with the intact subunit level data, no differences were observed in the amino acid level HDX data. All these results indicate that there are no differences between the three BEV samples with respect to their high-order structures. The peptide level information from the bottom-up approach, and the residue level and intact subunit level information from the top-down approach were complementary and covered the entire antibody. Copyright © 2016 Elsevier B.V. All rights reserved.
Backward-forward reaction asymmetry of neutron elastic scattering on deuterium
NASA Astrophysics Data System (ADS)
Pirovano, E.; Beyer, R.; Junghans, A. R.; Nankov, N.; Nolte, R.; Nyman, M.; Plompen, A. J. M.
2017-02-01
A new measurement of the angular distribution of neutron elastic scattering on deuterium was carried out at the neutron time-of-flight facility nELBE. The backward-forward asymmetry of the reaction was investigated via the direct detection of neutrons scattered at the laboratory angle of 15∘ and 165∘ from a polyethylene sample enriched with deuterium. In order to extend the measurement to neutron energies below 1 MeV, 6Li glass scintillators were employed. The data were corrected for the background and the multiple scattering in the target, the events due to scattering on deuterium were separated from those due to carbon, and the ratio of the differential cross section at 15∘ and 165∘ was determined. The results, covering the energy range from 200 keV to 2 MeV, were found to be in agreement with the theoretical predictions calculated by Canton et al. [Eur. Phys. J. A 14, 225 (2002)], 10.1140/epja/i2001-10122-3 and by Golak et al. [Eur. Phys. J. A 50, 177 (2014)], 10.1140/epja/i2014-14177-7. The comparison with the evaluated nuclear data libraries indicated CENDL-3.1, JEFF-3.2, and JENDL-4.0 as the evaluations that best describe the asymmetry of n -d scattering. ENDF/B-VII.1 is compatible with the data for energies below 700 keV, but above the backward to forward ratio is higher than measured. ROSFOND-2010 and BROND-2.2 resulted to have little compatibility with the data.
Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek
2010-11-01
Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
NASA Astrophysics Data System (ADS)
Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.
2018-05-01
We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.
Analysis of the interaction of deuterium plasmas with tungsten in the Fuego-Nuevo II device
NASA Astrophysics Data System (ADS)
Ramos, Gonzalo; Castillo, Fermín; Nieto, Martín; Martínez, Marco; Rangel, José; Herrera-Velázquez, Julio
2012-10-01
Tungsten is one of the main candidate materials for plasma-facing components in future fusion power plants. The Fuego-Nuevo II, a plasma focus device, which can produce dense magnetized helium and deuterium plasmas, has been adapted to address plasma-facing materials questions. In this paper we present results of tungsten targets exposed to deuterium plasmas in the Fuego Nuevo II device, using different experimental conditions. The plasma generated and accelerated in the coaxial gun is expected to have, before the pinch, energies of the order of hundreds eV and velocities of the order of 40,000 m s-1. At the pinch, the ions are reported to have energies of the order of 1.5 keV at most. The samples, analysed with a scanning electron microscope (SEM) in cross section show a damage profile to depths of the order of 580 nm, which are larger than those expected for ions with 1.5 keV, and may be evidence of ion acceleration. An analysis with the SRIM (Stopping Range of Ions in Matter) package calculations is shown.
High-Energy Deuteron Measurement with the CAPRICE98 Experiment
NASA Astrophysics Data System (ADS)
Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C. N.; Bartalucci, S.; Ricci, M.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bravar, U.; Stochaj, S. J.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Suffert, M.
2004-11-01
We report the first measurement of the deuterium abundance in cosmic rays above 10 GeV nucleon-1 of kinetic energy. The data were collected by the balloon-borne experiment CAPRICE98, which was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The detector configuration included the NMSU-WiZard/CAPRICE superconducting magnet spectrometer equipped with a gas RICH detector, a silicon-tungsten calorimeter, and a time-of-flight system. By combining the information from the spectrometer and the RICH detector, it was possible to separate deuterons from protons in the kinetic energy range from 12 to 22 GeV nucleon-1. In order to estimate the proton background and the deuteron selection efficiency, we developed an empirical model for the response of the instrument, based on the data collected in this experiment. The analysis procedure is described in this paper, and the result on the absolute flux of deuterium is presented. We found that the deuterium abundance at high energy is consistent with the hypothesis that the propagation mechanism of light nuclei is the same as that of heavier secondary components.
NASA Astrophysics Data System (ADS)
Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence
2017-09-01
Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.
Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM
2012-06-12
The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##
Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS
NASA Astrophysics Data System (ADS)
Efthimion, Phillip; Gentile, Charles
2011-10-01
The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, W. R.; Allen, S. L.; Brooks, N. H.
An experiment was conducted in DIII-D to examine carbon deposition when a secondary separatrix is near the wall. The magnetic configuration for this experiment was a biased double-null, similar to that foreseen for ITER. C-13 methane was injected toroidally symmetrically near the secondary separatrix into ELMy H-mode deuterium plasmas. The resulting deposition of C-13 was determined by nuclear reaction analysis. These results show that very little of the injected C-13 was deposited at the primary separatrix, whereas a large fraction of injected C-13 was deposited close to the point of injection near the secondary separatrix. Six of the tiles weremore » put back into DIII-D, where they were baked at 350-360 degrees C for 2 h at similar to 1 kPa in a 20% O-2/80% He gas mixture. Subsequent ion beam analysis of these tiles showed that about 21% of the C-13 and 54% of the deuterium were removed by the bake.« less
Canik, John M.; Briesemeister, Alexis R.; McLean, Adam G.; ...
2017-05-10
Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. Modeling of these experiments shows that the full divertor radiation can be accounted for, but only if measures are taken to ensure that the model reproduces the measured divertor density. Relying on upstream measurements instead results in amore » lower divertor density and radiation than is measured, indicating a need for improved modeling of the connection between the diverter and the upstream scrape-off layer. Furthermore, these results show that fluid models are able to quantitatively describe the divertor-region plasma, including radiative losses, and indicate that efforts to improve the fidelity of the molecular deuterium models are likely to help resolve the discrepancy in radiation for deuterium plasmas.« less
Synthesis of deuterium-labelled analogues of NLRP3 inflammasome inhibitor MCC950.
Salla, Manohar; Butler, Mark S; Massey, Nicholas L; Reid, Janet C; Cooper, Matthew A; Robertson, Avril A B
2018-02-15
This study describes the syntheses of di, tetra and hexa deuterated analogues of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome inhibitor MCC950. In di and tetra deuterated analogues, deuteriums were incorporated into the 1,2,3,5,6,7-hexahydro-s-indacene moiety, whereas in the hexa deuterated MCC950 deuteriums were incorporated into the 2-(furan-3-yl)propan-2-ol moiety. The di deuterated MCC950 analogue was synthesised from 4-amino-3,5,6,7-tetrahydro-s-indacen-1(2H)-one 5. Tetra deuterated analogues were synthesised in 10 chemical steps starting with 5-bromo-2,3-dihydro-1H-inden-1-one 9, whereas the hexa deuterated analogue was synthesised in four chemical steps starting with ethyl-3-furoate 24. All of the compounds exhibited similar activity to MCC950 (IC 50 = 8 nM). These deuterated analogues are useful as internal standards in LC-MS analyses of biological samples from in vivo studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Molecule-assisted ferromagnetic atomic chain formation
NASA Astrophysics Data System (ADS)
Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.
2015-06-01
One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.
NASA Astrophysics Data System (ADS)
Alimov, V. Kh; Ogorodnikova, O. V.; Hatano, Y.; Gasparyan, YuM.; Efimov, V. S.; Mayer, M.; Zhou, Z.; Oyaizu, M.; Isobe, K.; Nakamura, H.; Hayashi, T.
2018-04-01
Surface topography of and deuterium (D) retention in reduced activation ferritic-martensitic Eurofer'97 and ferritic oxide dispersion strengthening ODS-16Cr steels have been studied after exposure at 600 K to low-energy (70 and 200 eV), high-flux (∼1022 D/m2s) pure D and D-10%He plasmas with D fluence of 2 × 1025 D/m2. The methods used were scanning electron microscopy, energy-scanning D(3He,p)4He nuclear reaction, and thermal desorption spectroscopy. As a result of the plasma exposures, nano-sized structures are formed on the steel surfaces. After exposure to pure D plasmas, a significant fraction of D is accumulated in the bulk, at depths larger than 8 μm. After exposures to D-He plasmas, D is retained mainly in the near-surface layers. In spite of the fact that the He fluence was lower than the D fluence, the He retention in the steels is one order of magnitude higher than the D retention.
A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.
Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H
2016-06-30
3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. Copyright © 2016 John Wiley & Sons, Ltd.
Nuclear imaging of the fuel assembly in ignition experimentsa)
NASA Astrophysics Data System (ADS)
Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Séguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.
2013-05-01
First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium-tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%-25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.
NASA Astrophysics Data System (ADS)
European Muon Collaboration; Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calén, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; d'Agostini, G.; Dahlgren, S.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; de la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1990-03-01
Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F2 extracted from deuterium does not show a significant x dependence in the measured range of Q2 and its Q2 dependence is linear in logQ2. For calcium, a depletion of F2 is observed at low x by 30% as compared with the values at x = 0.1 where F2(Ca) and F2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q2. The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.
The Production of Amino Acids in Interstellar Ices: Implications for Meteoritic Organics
NASA Technical Reports Server (NTRS)
Sandford, A.; Bernstein, M. P.; Dworkin, J. P.; Cooper, G. W.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Indigenous amino acids have been detected in a number of meteorites, over 70 in the Murchison meteorite alone. It has been generally accepted that the amino acids in meteorites formed in liquid water on an asteroid or comet parent-body. However, the water in the Murchison meteorite, for example, was depleted of deuterium, making the distribution of deuterium in organic acids in Murchison difficult to explain. Similarly, occasional but consistent meteoritic biases for non-terrestrial L amino acids cannot be reasonably rationalized by liquid water parent-body reactions. We will present the results of a laboratory demonstration showing that the amino acids glycine, alanine, and serine should result from the UV (ultraviolet) photolysis of interstellar ice grains. This suggests that some meteoritic amino acids may be the result of interstellar ice photochemistry, rather than having formed by reactions in liquid water. We will describe some of the potential implications of these findings for the organic materials found in primitive meteorites, in particular how interstellar ice synthesis might more easily accommodate the presence and distribution of deuterium, and the meteoritic bias for L amino acids.
Mazur, Sharlyn J.; Weber, Daniel P.
2018-01-01
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides information about protein conformational mobility under native conditions. The area between exchange curves, Abec, a functional data analysis concept, was adapted to the interpretation of HDX-MS data and provides a useful measure of exchange curve dissimilarity for tests of significance. Importantly, for most globular proteins under native conditions, Abec values provide an estimate of the log ratio of exchange-competent fractions in the two states, and thus are related to differences in the free energy of microdomain unfolding. PMID:28236290
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check out the protective cover placed over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin removing the lower sections of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers oversee the removal of the canister from the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin to remove the canister around the top of the NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket
1999-06-17
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers look over NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite after sections of the canister have been removed. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe
Concept of a charged fusion product diagnostic for NSTX.
Boeglin, W U; Valenzuela Perez, R; Darrow, D S
2010-10-01
The concept of a new diagnostic for NSTX to determine the time dependent charged fusion product emission profile using an array of semiconductor detectors is presented. The expected time resolution of 1-2 ms should make it possible to study the effect of magnetohydrodynamics and other plasma activities (toroidal Alfvén eigenmodes (TAE), neoclassical tearing modes (NTM), edge localized modes (ELM), etc.) on the radial transport of neutral beam ions. First simulation results of deuterium-deuterium (DD) fusion proton yields for different detector arrangements and methods for inverting the simulated data to obtain the emission profile are discussed.
NASA Technical Reports Server (NTRS)
Plummer, E. W.; Bell, A. E.
1972-01-01
Total energy distributions of field emitted electrons from the tungsten (110) and (100) planes as a function of coverage by hydrogen and deuterium have been recorded utilizing a spherical deflection energy analyzer. The elastic tunneling resonance spectrum gives a plot of the 'local density of states' in the adsorbate. The inelastic tunneling spectrum reveals those discrete excitation energies available in the adsorbate-substrate complex. These spectroscopic data have been used to infer the chemical nature of the binding states which have been observed in the flash desorption spectrum of hydrogen from tungsten.
NASA Astrophysics Data System (ADS)
Tsvetkov, S. A.; Filatov, E. S.; Khokhlov, V. A.
2005-12-01
The electrochemical cell and a technique for precision calorimetric measurements has been developed. Experiments with molten salts containing lithium deuteride were carried out. Calorimetric measurements made on the titanium electrode during experiments. Measurements were made in an inert atmosphere of helium and in an atmosphere of deuterium at various density of an electrolysis current. Excess heat was obtained on the titanium electrode in a deuterium atmosphere during electrolysis. An x-ray diffraction analysis was made on the used titanium electrode. The analysis of the results obtained is discussed.
Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids
NASA Technical Reports Server (NTRS)
Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood
1997-01-01
Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.
Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source
NASA Astrophysics Data System (ADS)
Hu, Rui; Kan, Wentao; Xiong, Xiaoling; Wei, Hongyuan
2017-08-01
The preparation of a deuterated polymer was performed in order to simulate the production of the corresponding tritiated polymer as a solid tritium radioactive source. Substitution and addition reaction were used to introduce deuterium into the polymer. Proton nuclear magnetic resonance and FT-IR spectroscopy were used to investigate the extent and location of deuterium in the polymer, indicating an effectively deuterated polymer was produced. The thermal analysis showed that the final polymer product could tolerate the environmental temperature below 125 °C in its application. This research provides a prosperous method to prepare solid tritium radioactive source.
NASA Technical Reports Server (NTRS)
Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.
1976-01-01
Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.
Dynamics of the plasma current sheath in plasma focus discharges in different gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.
2016-12-15
The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.
Shadowing in deep inelastic muon scattering from nuclear targets
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Brüll, A.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Foster, J.; Ftacnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kaiser, R.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Seidel, A.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.; European Muon Collaboration
1988-09-01
Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003-0.1) and low Q2 (0.3-3.2 GeV 2) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.
DOE R&D Accomplishments Database
Continetti, R. E.; Balko, B. A.; Lee, Y. T.
1989-02-01
A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.
Parkin, Gerard
2009-02-17
Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) < 1) values. The transition between a normal and inverse EIE indicates that these systems do not demonstrate the typical monotonic variation predicted by the van't Hoff relationship. Instead, the calculated EIEs in these systems are 0 at 0 K, increase to a value greater than 1, and then decrease to unity at infinite temperature. This unusual behavior may be rationalized by considering the individual factors that contribute to the EIE. Specifically, the EIE may be expressed in the form EIE = SYM x MMI x EXC x ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component results from deuterium substitution having a larger impact on the moment of inertia of the smaller molecule.
Lattice strain measurements of deuteride phase formation in epitaxial niobium on sapphire
NASA Astrophysics Data System (ADS)
Allain, Monica Marie Cortez
Deuteride phase formation in epitaxial niobium on sapphire was investigated for two film thicknesses (200 and 1200A). A palladium cap of approximately 40A facilitated deuterium absorption from the gas phase and each exposure condition ensured that the film passed through the miscibility gap. In situ resistivity and x-ray diffraction (XRD) provided a correlation between the film resistance and each of the phases. This correlation was used during helium-3 nuclear reaction analysis to determine the deuterium concentration at the beginning and end of the miscibility gap providing a closer look at the strain behavior vs. deuterium concentration within the single and two-phase region. Three orthogonal reciprocal lattice points, the out-of-plane (1--10), the in-plane (002), and the in-plane (110), were monitored with XRD during deuterium absorption to saturation. Cycling effects on the 1200A Nb film were analyzed and found not to influence the strain behavior. The strain was anisotropic for both films, giving an enhanced out-of-plane expansion relative to the two in-plane directions. This is consistent with a clamping force inhibiting in-plane expansion. The observed out-of-plane strain can be used to estimate the in-plane clamping stress; the result is approximately 1 and 2 GPa for the 1200 and 200A Nb films respectively. The volumetric expansion determined from in situ XRD measurements demonstrate that the know value of the specific volume of deuterium, Deltanu/O, in bulk Nb (Deltanu/O = 0.174) does not hold for thin-film, epitaxial geometry (Deltanu/O ≈ 1). Further, the behavior of the specific volume shows a discontinuity at the phase boundary that does not exist in bulk. Lattice strain and overall film expansion from simultaneous XRD and x-ray reflectivity (XRR) measurements, respectively, were performed on both films. These results demonstrate a larger out-of-plane film expansion compared to the out-of-plane lattice strain for the 1200A Nb film compared to the 200A Nb film. It is believe that this is a consequence of greater plasticity within the 1200A film and associated dislocation generation. The enhance plasticity is also confirmed by a greater loss in structural coherence for the 1200A film and the fact that the in-plane clamping stress is greater for the 200A film. Evidence of significant dislocation formation has been confirmed with high-resolution electron microscopy (HREM) for the 1200A Nb film. The HREM images were used to estimate a dislocation density of 1012 cm-2 after repeated cycling. A residual out-of-plane compressive strain was observed in the 1200A Nb film after complete deuterium evolution. This observation can be explained by irreversible interstitial dislocation loop formation.
Isotopic tracing of the outflow during artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav
2016-10-01
The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.
The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water
NASA Astrophysics Data System (ADS)
Gray, T. M.; Troch, P. A. A.
2016-12-01
Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.
Moorthy, Balakrishnan S; Schultz, Steven G; Kim, Sherry G; Topp, Elizabeth M
2014-06-02
Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.
NASA Astrophysics Data System (ADS)
Salamatin, Andrey N.; Lipenkov, Vladimir Y.; Barkov, Nartsiss I.; Jouzel, Jean; Petit, Jean Robert; Raynaud, Dominique
1998-04-01
An interpretation of the deuterium profile measured along the Vostok (East Antarctica) ice core down to 2755 m has been attempted on the basis of the borehole temperature analysis. An inverse problem is solved to infer a local "geophysical metronome," the orbital signal in the surface temperature oscillations expressed as a sum of harmonics of Milankovich periods. By correlating the smoothed isotopic temperature record to the metronome, a chronostratigraphy of the Vostok ice core is derived with an accuracy of ±3.0-4.5 kyr. The developed timescale predicts an age of 241 kyr at a depth of 2760 m. The ratio δD/δTi between deuterium content and cloud temperature fluctuations (at the top of the inversion layer) is examined by fitting simulated and measured borehole temperature profiles. The conventional estimate of the deuterium-temperature slope corresponding to the present-day spatial ratio (9 per mil/°C) is confirmed in general. However, the mismatch between modeled and measured borehole temperatures decreases noticeably if we allow surface temperature, responsible for the thermal state of the ice sheet, to undergo more intensive precession oscillations than those of the inversion temperature traced by isotope record. With this assumption, we obtain the long-term temporal deuterium-temperature slope to be 5.8-6.5 per mil/°C which implies that the glacial-interglacial temperature increase over central Antarctica was about 15°C in the surface temperature and 10°C in the inversion temperature. Past variations of the accumulation rate and the corresponding changes in the ice-sheet surface elevation are simultaneously simulated.
Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H
2015-12-01
A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.
NASA Astrophysics Data System (ADS)
Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.
2016-12-01
Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.
Electron scattering from high-momentum neutrons in deuterium
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Kuhn, S. E.; Butuceanu, C.; Egiyan, K. S.; Griffioen, K. A.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; Dashyan, N. B.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.
2006-03-01
We report results from an experiment measuring the semiinclusive reaction H2(e,e'ps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p→s, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” F2neff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps>0.4GeV/c, where the neutron is far off-shell, the model overestimates the value of F2neff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's “off-shell-ness” is one possible effect that can cause the observed deviation.
Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd
2015-05-15
Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M
2011-10-01
The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.
The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burm, A.G.; Van Kleef, J.W.; Vermeulen, N.P.
1988-10-01
The pharmacokinetics of lidocaine and bupivacaine following subarachnoid administration were studied in 12 surgical patients using a stable isotope method. After subarachnoid administration of the agent to be evaluated, a deuterium-labelled analogue was administered intravenously. Blood samples were collected for 24 h. Plasma concentrations of the unlabelled and the deuterium-labelled local anesthetics were determined using a combination of capillary gas chromatography and mass fragmentography. Bi-exponential functions were fitted to the plasma concentration-time data of the deuterium-labelled local anesthetics. The progression of the absorption was evaluated using deconvolution. Mono- and bi-exponential functions were then fitted to the fraction absorbed versus timemore » data. The distribution and elimination half-lives of the deuterium-labelled analogues were 25 +/- 13 min (mean +/- SD) and 121 +/- 31 min for lidocaine and 19 +/- 10 min and 131 +/- 33 min for bupivacaine. The volumes of the central compartment and steady-state volumes of distribution were: lidocaine 57 +/- 10 l and 105 +/- 25 l, bupivacaine 25 +/- 6 l and 63 +/- 22 l. Total plasma clearance values averaged 0.97 +/- 0.21 l/min for lidocaine and 0.56 +/- 0.14 l/min for bupivacaine. The absorption of lidocaine could be described by a single first order absorption process, characterized by a half-life of 71 +/- 17 min in five out of six patients. The absorption of bupivacaine could be described adequately assuming two parallel first order absorption processes in all six patients. The half-lives, characterizing the fast and slow absorption processes of bupivacaine, were 50 +/- 27 min and 408 +/- 275 min, respectively. The fractions of the dose, absorbed in the fast and slow processes, were 0.35 +/- 0.17 and 0.61 +/- 0.16, respectively.« less
Hydrogen isotope exchanges between water and methanol in interstellar ices
NASA Astrophysics Data System (ADS)
Faure, A.; Faure, M.; Theulé, P.; Quirico, E.; Schmitt, B.
2015-12-01
The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorporated using laboratory data. The [CH2DOH]/[CH3OD] ratio is found to scale inversely with the D/H ratio of water, owing to the H/D exchange equilibrium between the hydroxyl (-OH) functional groups of methanol and water. Our model is able to reproduce the observed [CH2DOH]/[CH3OD] ratios provided that the primitive fractionation of water ice [HDO]/[H2O] is ~2% in IRAS 16293-2422 and ~0.6% in Orion KL. We conclude that the molecular D/H ratios measured in hot cores may not be representative of the original mantles because molecules with exchangeable deuterium atoms can equilibrate with water ice during the warm-up phase.
The nature of water within bacterial spores: protecting life in extreme environments
NASA Astrophysics Data System (ADS)
Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III
2011-10-01
The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.
NASA Astrophysics Data System (ADS)
Rakov, D. V.; Fedorenko, B. S.; Sinyak, Yu. E.
begin table htbp begin center begin tabular p 442pt hline As the duration of space missions increases the problem of durability of space crews and their resistivity to space flight factors becomes more important The purpose of the present work was to study the radioprotective effects of lowered deuterium content water in experimental animals after repeated exposures to low doses of gamma radiation Both male and female adult mice of NAAoN57Al6 F1 and BALB c lines were exposed to 0 25 0 5 and 1 0 Gy of 60 Co gamma rays by multiple fractions The dose rate was 0 32 Gy min Starting from one month prior to the first irradiation fraction till the end of the experiment the animals were only supplied with lowered deuterium content water ad libitum The control group of mice consumed tap water only The mice were sacrificed by means of cervical dislocation within one month after finishing the last irradiation fraction The following parameters were registered the weight of body thymus and spleen number of leucocytes blood formula number of caryocytes in femur bone marrow cytogenetic lesions in nucleated bone marrow cells The water with lowered deuterium content was produced by means of electrolysis with a special device in the Institute for Biomedical Problems par A long-term consumption of water with lowered deuterium content by irradiated mice was found to result in lower levels of depletion of peripheral blood leucocytes and bone marrow cells in a decrease in the yield of cytogenetic aberrations and in a less intensive reduction of the mass
Casey, Charles P; Martins, Susie C; Fagan, Maureen A
2004-05-05
Deuterioformylation of styrene catalyzed by [(2S,4S)-BDPP]Pt(SnCl(3))Cl at 39 degrees C gave 3-phenylpropanal (3) and 2-phenylpropanal (2) (n:i = 1.8, 71% ee (S)-2) with deuterium only beta to the aldehyde carbonyl and in the formyl group. Small amounts of deuterium were also found in the internal (2.8%), cis terminal (1.4%), and trans terminal (1.3%) vinyl positions of the recovered styrene. Deuterioformylation of styrene at 98 degrees C gave 3- (3) and 2-phenylpropanal (2) (n:i = 2.3, 10% ee (R)-2) with deuterium both alpha and beta to the aldehyde carbonyl and in the formyl group. Deuterium was also found in the internal (20%), cis terminal (12%), and trans terminal (12%) vinyl positions of the recovered styrene. These deuterioformylation results establish that platinum hydride addition to styrene is largely irreversible at 39 degrees C but reversible at 98 degrees C. Hydroformylation of (E)- and (Z)-beta-deuteriostyrene at 40 degrees C, followed by oxidation of the aldehydes to acids, and subsequent derivitization to the (S)-mandelate esters confirmed that 84% of 2-phenylpropanal (2) arises from platinum hydride addition to the si-face of styrene, while 73% of 3-phenylpropanal (3) arises from platinum hydride addition to the re-face of styrene. At 100 degrees C, the effect of variable H(2) and CO pressure on n:i, % ee, and TOF of hydroformylation of styrene was investigated. The results are consistent with enantioselectivity not being fully determined until the final hydrogenolysis of a platinum acyl intermediate.
Liu, Lan; Michelsen, Klaus; Kitova, Elena N; Schnier, Paul D; Brown, Alex; Klassen, John S
2012-04-04
Deuterium kinetic isotope effects (KIEs) are reported for the first time for the dissociation of a protein-ligand complex in the gas phase. Temperature-dependent rate constants were measured for the loss of neutral ligand from the deprotonated ions of the 1:1 complex of bovine β-lactoglobulin (Lg) and palmitic acid (PA), (Lg + PA)(n-) → Lg(n-) + PA, at the 6- and 7- charge states. At 25 °C, partial or complete deuteration of the acyl chain of PA results in a measurable inverse KIE for both charge states. The magnitude of the KIEs is temperature dependent, and Arrhenius analysis of the rate constants reveals that deuteration of PA results in a decrease in activation energy. In contrast, there is no measurable deuterium KIE for the dissociation of the (Lg + PA) complex in aqueous solution at pH 8. Deuterium KIEs were calculated using conventional transition-state theory with an assumption of a late dissociative transition state (TS), in which the ligand is free of the binding pocket. The vibrational frequencies of deuterated and non-deuterated PA in the gas phase and in various solvents (n-hexane, 1-chlorohexane, acetone, and water) were established computationally. The KIEs calculated from the corresponding differences in zero-point energies account qualitatively for the observation of an inverse KIE but do not account for the magnitude of the KIEs nor their temperature dependence. It is proposed that the dissociation of the (Lg + PA) complex in aqueous solution also proceeds through a late TS in which the acyl chain is extensively hydrated such that there is no significant differential change in the vibrational frequencies along the reaction coordinate and, consequently, no significant KIE.
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.
1999-01-01
Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A
2014-11-01
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.
Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R
2003-01-24
A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.
1999-06-19
At Launch Pad 17A, Cape Canaveral Air Station, workers oversee the lifting of the fairing (right) into the tower. At left is NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite around which the fairing will be fitted. The satellite is scheduled for launch June 24 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe
1999-06-19
A camera is shown mounted on the second stage of the Boeing Delta II rocket scheduled to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite June 24 from Launch Pad 17A, Cape Canaveral Air Station. The camera will record the separation of the fairing encircling the satellite, which should occur several minutes after launch. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
Foster, J.S. Jr.
1960-04-19
A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.
Determination of hydrogen/deuterium ratio with neutron measurements on MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimek, I., E-mail: iwona.klimek@physics.uu.se; Cecconello, M.; Ericsson, G.
2014-11-15
On MAST, compressional Alfvén eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio n{sub H}/n{sub D} using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of n{sub H}/n{sub D} were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soter, J.; Bhike, M.; Finch, S. W.
Measurements of the 169Tm(n,2n) 168Tm cross section have been performed via the activation technique at 13 energies between 8.5 and 15.0 MeV. The purpose of this comprehensive data set is to provide an alternative diagnostic tool for obtaining subtle information on the neutron energy distribution produced in inertial confinement deuterium-tritium fusion experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. In conclusion, the 169Tm(n,2n) 168Tm reaction not only provides the primary 14-MeV neutron fluence, but also the important down-scattered neutron fluence, the latter providing information on the density achieved in the deuterium-tritium plasma during a laser shot.
The canister around the FUSE satellite is removed on the pad at CCAS.
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin to remove the canister around the top of the NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket.
The canister around the FUSE satellite is removed on the pad at CCAS.
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers oversee the removal of the canister from the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket.
The canister around the FUSE satellite is removed on the pad at CCAS.
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check out the protective cover placed over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe.
A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium.
Hone, Tyler D; Voth, Gregory A
2004-10-01
Centroid molecular dynamics (CMD) is applied to the study of collective and single-particle dynamics in liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point. The CMD results are compared with the results of classical molecular dynamics, quantum mode coupling theory, a maximum entropy analytic continuation approach, pair-product forward- backward semiclassical dynamics, and available experimental results. The self-diffusion constants are in excellent agreement with the experimental measurements for all systems studied. Furthermore, it is shown that the method is able to adequately describe both the single-particle and collective dynamics of quantum liquids. (c) 2004 American Institute of Physics
Ion-driven deuterium permeation through tungsten at high temperatures
NASA Astrophysics Data System (ADS)
Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.
2009-06-01
The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.
Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.
1994-11-01
Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.
Tunneling in hydrogen and deuterium atom addition to CO at low temperatures
NASA Astrophysics Data System (ADS)
Andersson, Stefan; Goumans, T. P. M.; Arnaldsson, Andri
2011-09-01
The hydrogen and deuterium atom addition reactions of CO to form HCO and DCO are addressed by Harmonic Quantum Transition State Theory calculations. Special attention is paid to the reactions at very low temperatures (5-20 K) where it is found that quantum tunneling leads to substantial rates of reaction. This supports experiments in the solid phase, which conclude that these reactions are driven by tunneling at low temperatures. The calculated kinetic isotope effect of kD/ kH = 1/250 is found to be lower than the experimentally deduced value of 0.08 for the surface reaction. Possible reasons for this discrepancy are discussed.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
Structural phase transition at high temperatures in solid molecular hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.
2001-07-01
We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.
Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons.
Cazzaniga, C; Nocente, M; Tardocchi, M; Croci, G; Giacomelli, L; Angelone, M; Pillon, M; Villari, S; Weller, A; Petrizzi, L; Gorini, G
2013-12-01
Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on (79)Br, (81)Br, and (139)La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.
Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics.
Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian
2004-02-01
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.
Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at DAΦNE.
Bazzi, M; Beer, G; Berucci, C; Bombelli, L; Bragadireanu, A M; Cargnelli, M; Curceanu Petrascu, C; Dʼuffizi, A; Fiorini, C; Frizzi, T; Ghio, F; Guaraldo, C; Hayano, R; Iliescu, M; Ishiwatari, T; Iwasaki, M; Kienle, P; Levi Sandri, P; Longoni, A; Marton, J; Okada, S; Pietreanu, D; Ponta, T; Romero Vidal, A; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Tudorache, A; Tudorache, V; Vazquez Doce, O; Widmann, E; Zmeskal, J
2013-06-03
The study of the [Formula: see text] system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAΦNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaonic atoms with [Formula: see text] and [Formula: see text], taking advantage of the low-energy charged kaons from Φ -mesons decaying nearly at rest. The SIDDHARTA experiment used X-ray spectroscopy of the kaonic atoms to determine the transition yields and the strong interaction induced shift and width of the lowest experimentally accessible level (1s for H and D and 2p for He). Shift and width are connected to the real and imaginary part of the scattering length. To disentangle the isospin dependent scattering lengths of the antikaon-nucleon interaction, measurements of [Formula: see text] and of [Formula: see text] are needed. We report here on an exploratory deuterium measurement, from which a limit for the yield of the K-series transitions was derived: [Formula: see text] and [Formula: see text] (CL 90%). Also, the upcoming SIDDHARTA-2 kaonic deuterium experiment is introduced.
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas
NASA Astrophysics Data System (ADS)
Girardo, Jean-Baptiste; Sharapov, Sergei; Boom, Jurrian; Dumont, Rémi; Eriksson, Jacob; Fitzgerald, Michael; Garbet, Xavier; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan; Mantsinen, Mervi; Sarazin, Yanick; Schneider, Mireille
2016-01-01
Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.
A high deuterium abundance at redshift z = 0.7.
Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V
1997-07-17
Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.