Science.gov

Sample records for deuterium demonstrator cwdd

  1. Commissioning status of the Continuous Wave Deuterium Demonstrator

    SciTech Connect

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J. ); Carwardine, J.; Godden, D.; Pile, G. ); Yule, T.; Zinneman, T. )

    1993-01-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility are described, and current status and future plans are discussed.

  2. Commissioning status of the Continuous Wave Deuterium Demonstrator

    SciTech Connect

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J.; Carwardine, J.; Godden, D.; Pile, G.; Yule, T.; Zinneman, T.

    1993-06-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility are described, and current status and future plans are discussed.

  3. Demonstration of Symmetry Control of Infrared Heated Deuterium Layers in Hohlraums

    SciTech Connect

    Koziozieski, B J; London, R A; McEachern, R L; Bittner, D N

    2003-08-22

    Infrared smoothed deuterium ice layers inside capsules have been successfully demonstrated for capsules inside cylindrical hohlraums. Improved characterization methods and infrared illumination enables low mode control in both the axial and azimuthal directions. Experimental results agree well with computer models. Results of these experiments will be used to derive accuracy requirements for an infrared heating system for ice layers in hohlraums on NIF.

  4. Recommissioning and first operation of the CWDD injector at Argonne National Laboratory

    SciTech Connect

    Carwardine, J.A.; Godden, D.J.; Nightingale, M.P.S.; Pile, G.D.; Den Hartog, P.; Spence, D.

    1992-12-31

    The CWDD injector has been shipped to Argonne National Laboratory, installed, and recommissioned. Commissioning progress, operational status, and future plans are reported. Operational experience at ANL is compared with that obtained at Culham.

  5. Comparative pharmacokinetics of unlabeled and deuterium-labeled terbutaline: demonstration of a small isotope effect

    SciTech Connect

    Borgstroem, L.L.; Lindberg, C.; Joensson, S.S.; Svensson, K.

    1988-11-01

    An equimolar mixture of terbutaline and (/sup 2/H6)terbutaline was given as an oral solution to six healthy volunteers (three men and three women). Frequent blood samples were collected during a 24-h period and the plasma concentrations of unlabeled and deuterium-labeled terbutaline were measured by GC-MS. The overall geometric mean plasma concentration ratio of terbutaline to (/sup 2/H6)terbutaline (isotope ratio) was 1.04 and differed significantly from unity. The difference can be explained by a difference in lipophilicity between the analogues, affecting their absorption. No trend in isotope ratio over the experimental time was observed. For unknown reasons, the isotope ratio was higher for women (1.07) than for men (1.00). Deuterium-labeled terbutaline can be used, intravenously or orally, as an absolute reference in bioavailability studies on terbutaline. If deuterium-labeled terbutaline is given orally in a single-day relative bioavailability study, a correlation should be made for the observed isotope effect.

  6. Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D

    SciTech Connect

    Commaux, Nicolas JC; Baylor, Larry R; Jernigan, Thomas C; Hollmann, E. M.; Parks, P. B.; Humphreys, D A; Wesley, J. C.; Yu, J.H.

    2010-11-01

    A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m(3) of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.

  7. Demonstration of Rapid Shutdown Using Large Shattered Deuterium Pellet Injection in DIII-D

    SciTech Connect

    Commaux, Nicolas JC; Baylor, Larry R; Jernigan, Thomas C; Hollmann, E. M.; Parks, P. B.; Humphrey, D. A.; Wesley, J. C.; Yu, J.H.

    2010-01-01

    A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m3 of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.

  8. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    SciTech Connect

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; Dittrich, T. R.; Haan, S.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  9. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    PubMed

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  10. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H.-S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P.; Dewald, E. L.; Dittrich, T. R.; Haan, S. W.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H. F.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-01

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  11. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    PubMed

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel. PMID:26274424

  12. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE PAGES

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; et al

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  13. Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA

    SciTech Connect

    Goncharov, V.N.; Sangster, T.C.; Boehly, T.R.; Hu, S.X.; Igumenshchev, I.V.; Marshall, F.J.; McCrory, R.L.; Meyerhofer, D.D.; Radha, P.B.; Seka, W.; Skupsky, S.; Stoeckl, C.; Casey, D.T.; Frenje, J.A.; Petrasso, R.D.

    2010-04-21

    The performance of triple-picket deuterium-tritium cryogenic target designs on the OMEGA Laser System [T.R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reported. These designs facilitate control of shock heating in low-adiabat inertial confinement fusion targets. Areal densities up to 300 mg/cm^2 (the highest ever measured in cryogenic deuterium-tritium implosions) are inferred in the experiments with an implosion velocity ~3 x 10^7 cm/s driven at peak laser intensities of 8 x 10^14 W/cm^2. Extension of these designs to ignition on the National Ignition Facility [J. A. Paisner et al., Laser FocusWorld 30, 75 (1994)] is presented.

  14. Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Boehly, T. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Radha, P. B.; Seka, W.; Skupsky, S.; Stoeckl, C.; Casey, D. T; Frenje, J. A.; Petrasso, R. D.

    2010-04-23

    The performance of triple-picket deuterium-tritium cryogenic target designs on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reported. These designs facilitate control of shock heating in low-adiabat inertial confinement fusion targets. Areal densities up to 300 mg/cm{sup 2} (the highest ever measured in cryogenic deuterium-tritium implosions) are inferred in the experiments with an implosion velocity {approx}3x10{sup 7} cm/s driven at peak laser intensities of 8x10{sup 14} W/cm{sup 2}. Extension of these designs to ignition on the National Ignition Facility [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] is presented.

  15. Management of high current transients in the CWDD Injector 200 kV power system

    SciTech Connect

    Carwardine, J.A.; Pile, G.; Zinneman, T.E.

    1993-06-01

    The injector for the Continuous Wave Deuterium Demonstrator is designed to deliver a high current CW negative deuterium ion beam at an energy of 200 keV to a Radio Frequency Quadrupole. The injector comprises a volume ion source, triode accelerator, high-power electron traps and low-energy beam transport with a single focusing solenoid. Some 75 Joules of energy are stored in stray capacitance around the high voltage system and discharged in a few microseconds following an injector breakdown. In order to limit damage to the accelerator grids, a magnetic snubber is incorporated to absorb most of the energy. Nevertheless, large current transients flow around the system as a result of an injector breakdown; these have frequently damaged power components and caused spurious behavior in many of the supporting systems. The analytical and practical approaches taken to minimize the effects of these transients are described. Injector breakdowns were simulated using an air spark gap and measurements made using standard EMC test techniques. The power circuit was modeled using an electrical simulation code; good agreement was reached between the model and measured results.

  16. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R.W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  17. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium-tritium implosions on OMEGAa)

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R. W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ˜1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  18. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  19. Cometary deuterium.

    PubMed

    Meier, R; Owen, T C

    1999-01-01

    Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar (D/H)H2O ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 +/- 10) K. Similar numbers can he derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to

  20. Cometary deuterium.

    PubMed

    Meier, R; Owen, T C

    1999-01-01

    Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar (D/H)H2O ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 +/- 10) K. Similar numbers can he derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to

  1. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    PubMed

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-01

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  2. Hydrogen/Deuterium Exchange Kinetics Demonstrate Long Range Allosteric Effects of Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase.

    PubMed

    Deredge, Daniel; Li, Jiawen; Johnson, Kenneth A; Wintrode, Patrick L

    2016-05-01

    New nonnucleoside analogs are being developed as part of a multi-drug regimen to treat hepatitis C viral infections. Particularly promising are inhibitors that bind to the surface of the thumb domain of the viral RNA-dependent RNA polymerase (NS5B). Numerous crystal structures have been solved showing small molecule non-nucleoside inhibitors bound to the hepatitis C viral polymerase, but these structures alone do not define the mechanism of inhibition. Our prior kinetic analysis showed that nonnucleoside inhibitors binding to thumb site-2 (NNI2) do not block initiation or elongation of RNA synthesis; rather, they block the transition from the initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex. Here we have mapped the effect of three NNI2 inhibitors on the conformational dynamics of the enzyme using hydrogen/deuterium exchange kinetics. All three inhibitors rigidify an extensive allosteric network extending >40 Å from the binding site, thus providing a structural rationale for the observed disruption of the transition from distributive initiation to processive elongation. The two more potent inhibitors also suppress slow cooperative unfolding in the fingers extension-thumb interface and primer grip, which may contribute their stronger inhibition. These results establish that NNI2 inhibitors act through long range allosteric effects, reveal important conformational changes underlying normal polymerase function, and point the way to the design of more effective allosteric inhibitors that exploit this new information. PMID:27006396

  3. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    PubMed

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-01

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance. PMID:27447511

  4. Deuterium-incorporated gate oxide of MOS devices fabricated by using deuterium ion implantation

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Sung; Lear, Kevin L.

    2012-04-01

    In the aspect of metal-oxide-semiconductor (MOS) device reliability, deuterium-incorporated gate oxide could be utilized to suppress the wear-out that is combined with oxide trap generation. An alternative deuterium process for the passivation of oxide traps or defects in the gate oxide of MOS devices has been suggested in this study. The deuterium ion is delivered to the location where the gate oxide resides by using an implantation process and subsequent N2 annealing process at the back-end of metallization process. A conventional MOS field-effect transistor (MOSFET) with a 3-nm-thick gate oxide and poly-to-ploy capacitor sandwiched with 20-nm-thick SiO2 were fabricated in order to demonstrate the deuterium effect in our process. An optimum condition of ion implantation was necessary to account for the topography of the overlaying layers in the device structure and to minimize the physical damage due to the energy of the implanted ion. Device parameter variations, the gate leakage current, and the dielectric breakdown phenomenon were investigated in the deuterium-ion-implanted devices. We found the isotope effect between hydrogen- and deuterium-implanted devices and an improved electrical reliability in the deuterated gate oxide. This implies that deuterium bonds are generated effectively at the Si/SiO2 interface and in the SiO2 bulk.

  5. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  6. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  7. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  8. Wafer Mapping Using Deuterium Enhanced Defect Characterization

    NASA Astrophysics Data System (ADS)

    Hossain, K.; Holland, O. W.; Hellmer, R.; Vanmil, B.; Bubulac, L. O.; Golding, T. D.

    2010-07-01

    Deuterium (as well as other hydrogen isotopes) binds with a wide range of morphological defects in semiconductors and, as such, becomes distributed similarly to those defects. Thus, the deuterium profile within the sample serves as the basis of a technique for defect mapping known as amethyst wafer mapping (AWM). The efficiency of this technique has been demonstrated by evaluation of ion-induced damage in implanted Si, as well as as-grown defects in HgCdTe (MCT) epilayers. The defect tagging or decoration capability of deuterium is largely material independent and applicable to a wide range of defect morphologies. A number of analytical techniques including ion channeling and etch pit density measurements were used to evaluate the AWM results.

  9. Deuterium accumulation in beryllium oxide layer exposed to deuterium atoms

    NASA Astrophysics Data System (ADS)

    Sharapov, V. M.; Alimov, V. Kh.; Gavrilov, L. E.

    1998-10-01

    The interaction of deuterium atoms with beryllium TIP-30 was studied at temperatures of 340, 500 and 740 K. After D atom exposure, the depth distributions of deuterium atoms and molecules in Be were measured using combined Secondary Ion Mass Spectrometry (SIMS) and Residual Gas Analysis (RGA) methods. It was shown that deuterium is mainly accumulated in the oxide layer although long tails are also observed. Deuterium is retained in two states - atomic and molecular forms. The amount of trapped deuterium in samples decreases during the sample storage in vacuum or air at room temperature. The results were explained by the chemical bonding of D atoms in BeO oxide with beryllium hydroxide formation and the trapping of deuterium molecules in bubbles which are formed at growth defects in the oxide layer.

  10. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect

    C.N. Taylor; J. P. Allain; P. S. Krstic; J. Dadras; C. H. Skinner; K. E. Luitjohan

    2013-11-01

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  11. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect

    Taylor, C. N.; Allain, J. P.; Luitjohan, K. E.; Krstic, P. S.; Dadras, J.; Skinner, C. H.

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  12. Shock compression of precompressed deuterium

    SciTech Connect

    Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

    2011-07-31

    Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

  13. Deuterium pellet injector gun design

    SciTech Connect

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging.

  14. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    SciTech Connect

    Tomita, H.; Iwai, H.; Iguchi, T.; Kawarabayashi, J.; Isobe, M.; Konno, C.

    2010-10-15

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10{sup -7} count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  15. Deuterium Retention in NSTX with Lithium Conditioning

    SciTech Connect

    Skinner, C. H.; Allain, J. P.; Blanchard, W.; Kugel, H. W.; Maingi, Rajesh; Roquemore, L.; Soukhanovskii, V. A.; Taylor, C. N.

    2011-01-01

    High (approximate to 90%) deuterium retention was observed in NSTX gas balance measurements both with- and without lithiumization of the carbon plasma-facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gas-only pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis demonstrated that binding of D atoms in graphite is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix. This is in contrast to the strong ionic bonding that occurs between D and pure Li. (C) 2010 Elsevier B.V. All rights reserved.

  16. Laser spectroscopy of muonic deuterium.

    PubMed

    Pohl, Randolf; Nez, François; Fernandes, Luis M P; Amaro, Fernando D; Biraben, François; Cardoso, João M R; Covita, Daniel S; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L; Graf, Thomas; Hänsch, Theodor W; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A M; Ludhova, Livia; Monteiro, Cristina M B; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M F; Schaller, Lukas A; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F C A; Antognini, Aldo

    2016-08-12

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ(-). We measured three 2S-2P transitions in μd and obtain r(d) = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value r(d) = 2.1424(21) fm. The μd value is also 3.5σ smaller than the r(d) value from electronic deuterium spectroscopy. The smaller r(d), when combined with the electronic isotope shift, yields a "small" proton radius r(p), similar to the one from muonic hydrogen, amplifying the proton radius puzzle. PMID:27516595

  17. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ-. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  18. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  19. A Microfabricated Deuterium Ion Source for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Bargsten

    Active neutron interrogation is generally accepted as a reliable means of detecting the illicit transportation of special nuclear materials, in particular highly enriched uranium. The development of portable active neutron interrogation systems for field detection applications could be facilitated by the use of a new deuterium ion source which has the potential to advance many of the performance limiting aspects of exiting compact, accelerator-driven neutron generators. The ion source being investigated is a gated array of sharp metal tips that uses high electric fields to generate deuterium ion currents through the physical processes of field ionization and field desorption. The deuterium ions produced by the source are extracted and used to drive a D-D (or D-T) fusion reaction to create neutrons. The basic microstructure for the ion source array is derived from modern semiconductor microfabrication technology for field emitter arrays, though many structural modifications have been made in an attempt to reach the required operating fields of the ion generation processes. Pulsed (field desorption) and d.c. (field ionization) tests conducted with each array design type developed thus far indicate a steady improvement in array tip operating fields. Field ionization studies were conducted with arrays at source temperatures of 77 K and 293 K. Newly developed arrays have demonstrated field ionization currents upwards of ˜50 nA, which is roughly 50% of the maximum ion production possible, as presently fabricated. Neutron production by field ionization was demonstrated for the first time from the microfabricated arrays. A maximum neutron yield of 95 n/s (6300 n/s/cm2 of array active area) was observed from a 1.5 mm2 array using a D-D fusion reaction at -90 kV. Field desorption studies at 77 K and 293 K were conducted in parallel with field ionization testing. To date, the arrays have consistently demonstrated the field desorption of deuterium ions from array tip surfaces

  20. Deuterium Gas Analysis by Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shukla, R.; Das, R.; Shyam, A.; Rao, A. D. P.

    2012-11-01

    Hydrogen gas is generated by electrolysis method in a compact hydrogen generator. A simple procedure reduces handling and storage of hydrogen cylinders for laboratory applications. In such a system, we are producing deuterium gas from heavy water by electrolysis method. After production of the deuterium gas, we have checked the purity level of the outgoing deuterium from the electrolyser. The test was carried out in a high vacuum system in which one residual gas analyser (RGA) was mounted. The deuterium gas was inserted by one manual gas leak valve in to the vacuum system. In this study, the effect of the emission current of the RGA on the detection of the deuterium was performed. In this paper, we will discuss the detail analysis of the deuterium gas and the effect of the emission current on the partial pressure measurement.

  1. Effect of deuterium on polystyrene degradation

    SciTech Connect

    Korshak, V.V.; Pavlova, S.S.A.; Gribkova, P.N.; Kozyreva, N.M.; Balykova, T.N.; Kirilin, A.I.

    1988-01-01

    The effect of replacing hydrogen by deuterium in polystyrene was studied on resistance to oxidative and thermal degradation. Polystyrene, polydeutero-styrene-D/sub 8/ containing 98-99 at.% deuterium, and a series of their statistical copolymers containing various proportions of deuterated and undeuterated monomer units were synthesized. The replacement of hydrogen by deuterium in polystyrene caused some increase in its resistance to thermal and oxidative destruction. A table shows that at all test temperatures, an increase in the fraction of deuterated monomer units in copolymer decreases the amounts of absorbed oxygen and evolved carbon oxides which is evidence for retadation of polystyrene oxidation when hydrogen is replaced by deuterium.

  2. Preparation and characterization of planar deuterium cryotargets.

    PubMed

    Lei, Haile; Li, Jun; Tang, Yongjian; Liu, Yuanqiong

    2009-03-01

    Using a planar-cryotarget system with the cooling power provided by a Gifford-McMahon cryocooler, the deuterium vapor is condensed to form liquid in a cylinder target cell. The liquefaction processes of deuterium are examined by the Mach-Zehnder interference and infrared spectra. The infrared-absorption spectra of deuterium show a strong absorption peak around 3040 nm at 19 K. The thickness distribution of the condensed deuterium in the target cell is determined from Mach-Zehnder interference images by developing a new mathematical treatment method in combination with the digital-image processing technique.

  3. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  4. Deuterium retention after deuterium plasma implantation in tungsten pre-damaged by fast C+ ions

    NASA Astrophysics Data System (ADS)

    Efimov, V. S.; Gasparyan, Yu M.; Pisarev, A. A.; Khripunov, B. I.; Koidan, V. S.; Ryazanov, A. I.; Semenov, E. V.

    2016-09-01

    Thermal desorption of deuterium from W was investigated. Virgin samples and samples damaged by 10 MeV C 3+ ions were implanted from plasma in the LENTA facility at 370 K and 773 K. In comparison with the undamaged sample, deuterium retention in the damaged sample slightly increased in the case of deuterium implantation at RT, but decreased in the case of deuterium implantation at 773 K. At 773 K, deuterium was concluded to diffuse far behind the D ion range in the virgin sample, while C implantation region was concluded to be a barrier for D diffusion in the damaged sample.

  5. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  6. Dynamic deuterium recycling on tungsten under carbon-deuterium implantation circumstance

    NASA Astrophysics Data System (ADS)

    Taguchi, Tomohisa; Kobayashi, Makoto; Kawasaki, Kiyotaka; Miyahara, Yuto; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki; Miyamoto, Mitsutaka; Ono, Kotaro; Hatano, Yuji; Oya, Yasuhisa; Okuno, Kenji

    2013-07-01

    Dynamics of deuterium recycling, including retention and sputtering behaviors was studied for C+ implanted tungsten. The amount of deuterium trapped by irradiation damages was clearly increased in the C+ implantation sample because the irradiation damages in the C+ implanted sample were formed more than those in the only D2+ implanted one. In addition, the deuterium diffusion toward the bulk would be refrained by the formation of W-C mixed layer, which would work as the deuterium diffusion barrier. The in situ sputtered particle measurement system has been established and revealed that the formation of hydrocarbons such as CD4 was directly observed during D2+ implantation into the C+ implanted tungsten. In the lower deuterium fluence, the CD4 sputtering rate was enhanced with increasing the deuterium fluence. It was considered that the sputtering rate of CD4 would be controlled by the concentration of deuterium on the top surface of the W-C mixed layer.

  7. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  8. First observation of muonic hyperfine effects in pure deuterium

    SciTech Connect

    Kammel, P.; Breunlich, W.H.; Cargnelli, M.; Mahler, H.G.; Zmeskal, J.; Bertl, W.H.; Petitjean, C.

    1983-11-01

    We discovered a strong hyperfine dependence of the resonant formation process of d..mu..d mesomolecules, while detecting neutrons from muon-catalyzed fusion in pure deuterium gas at 34 K. This new effect enabled us to observe directly transitions between hyperfine states of the ..mu..d atom for the first time and to determine an accurate experimental value for this transition rate. Our analysis demonstrates the importance of hyperfine effects for the quantitative understanding of the mechanism of resonant d..mu..d formation. Moreover, this experiment indicates that the resonant formation process is a powerful tool for a refined spectroscopy of d..mu..d bound states. Finally, the detailed knowledge about mesoatomic and mesomolecular processes obtained in this work provides valuable information for the analysis of experiments on the elementary muon-capture process in deuterium.

  9. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  10. Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces

    NASA Astrophysics Data System (ADS)

    Taylor, Chase N.

    at a deuterium fluence of ˜ 2.9×10 17 cm-2. This implies that the NSTX deuterium flux of 1017 - 1018 cm-2 s-1 saturates the typical 10-100 nm lithium evaporations after a single plasma discharge. Atomistic simulations synergistically corroborate the above experimental findings. Experiments show significant influence of oxygen in retaining deuterium. Density functional theory simulations were updated to include oxygen and lithium in a carbon matrix at concentrations observed in experiments (˜20%). Results show that deuterium preferentially chooses to be near and bind with oxygen. Later experiments demonstrate the role of oxygen in retaining deuterium, but also show that lithium is required to attract sucient quantities of oxygen to the surface and to retain the oxygen. This dissertation conclusively demonstrates that the mechanism by which deuterium is retained in lithiated graphite is through a lithium-catalyzed oxygen-deuterium bond..

  11. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  12. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  13. Deuterium excess in the Rayleigh model

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Sodemann, Harald

    2016-04-01

    The deuterium excess is a useful quantity for measuring nonequilibrium effects of isotopic fractionation, and can therefore provide information about the meteorological conditions in evaporation regions (e.g., relative humidity over the ocean or the fraction of plant transpiration over land). In addition to nonequilibrium fractionation, there are two other effects that can change the deuterium excess during phase transitions. The first is the dependence of the equilibrium fractionation factors on temperature, the second is the nonlinearity of the delta scale, on which the deuterium excess is defined. We tested the impact of these three effects (nonequilibrium, temperature and delta scale) in a simple Rayleigh condensation model simulating the isotopic composition of an air parcel during a moist adiabatic ascent. The delta scale effect is important especially for depleted air parcels where it can change the sign of the deuterium excess in the remaining vapour from negative to positive. In this case the deuterium excess to a large extent reflects an artefact of its own definition, which overwrites both the nonequilibrium and the temperature effect. This problem can be solved by an alternative definition for the deuterium excess that is not based on the delta scale.

  14. Impurity reduction in a plasma by using the deuterium and helium glow discharge method

    NASA Astrophysics Data System (ADS)

    Lee, Sangyong; Kim, Jaeyong

    2015-02-01

    To reduce the levels of impurities such as water, oxygen and nitrogen in a plasma chamber, we evaporated and deposited carborane (C2B10H12) powders on a silicon substrate by using a glow discharge method, and investigated the effects of boronization as functions of the carborane temperature and the rates of the flowing gases between deuterium and helium. The reduced amount of impurities after boronization was estimated by measuring the partial pressures of the corresponding gases in the chamber and the concentrations of nitrogen and oxygen in a deposited carborane film. The ratio of deuterium to hydrogen in the deposited film was analyzed by using secondary ion mass spectrometry (SIMS). When carborane powders were evaporated under a deuterium atmosphere, the residual gas analyzer showed a significant decrease in the partial pressure of water while less change was noted from the partial pressures of nitrogen and oxygen. The most efficient removal rate for water was obtained when carborane powder was flown under deuterium atmosphere at 150 °C. The SIMS data showed higher concentrations of nitrogen and oxygen in the carborane films deposited on Si substrates under a deuterium atmosphere, demonstrating that boronization under a deuterium atmosphere is an effective method to remove impurities.

  15. Selective deuterium ion acceleration using the Vulcan petawatt laser

    SciTech Connect

    Krygier, A. G.; Morrison, J. T.; Kar, S. Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  16. Fluence dependence of deuterium retention in oxidized SS-316

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Suzuki, Sachiko; Matsuyama, Masao; Hayashi, Takumi; Yamanishi, Toshihiko; Asakura, Yamato; Okuno, Kenji

    2011-10-01

    The ion fluence dependence of deuterium retention in SS-316 during oxidation at a temperature of 673 K was studied to evaluate the dynamics of deuterium retention in the oxide layer of SS-316. The correlation between the chemical state of stainless steel and deuterium retention was evaluated using XPS and TDS. It was found that the major deuterium desorption temperatures were located at around 660 K and 935 K, which correspond to the desorption of deuterium trapped as hydroxide. The deuterium retention increased with increasing deuterium ion fluence, since the deuterium retention as hydroxide increased significantly. However, retention saturated at an ion fluence of ˜2.5 × 10 21 D + m -2. The XPS result showed that FeOOD was formed on the surface, although pure Fe also remained in the oxide layer. These facts indicate the nature of the oxide layer have a key role in deuterium trapping behavior.

  17. Deuterium enrichment of interstellar dusts

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  18. A novel technique to remove deuterium from CANDU pressure tubes

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhang, C.-S.; Griffiths, K.; Norton, P. R.

    2001-10-01

    Deuterium ingress into the pressure tubes of a Canada deuterium uranium (CANDU) nuclear reactor can cause the pressure tubes to crack prematurely. A novel technique, based on the rapid diffusion of deuterium in zirconium alloys, and subsequent preferential segregation of deuterium at the surface, has been developed to remove dissolved deuterium. This technique involves a simple continuous plasma treatment of the surface of a pressure tube, and can remove as much as 70% of the dissolved deuterium from the entire wall thickness of a pressure tube in realistic time scales. The proposed technique has considerable economic incentive: it may extend the life of pressure tubes without channel replacement.

  19. Argonne CW Linac (ACWL)—legacy from SDI and opportunities for the future

    NASA Astrophysics Data System (ADS)

    McMichael, G. E.; Yule, T. J.

    1995-09-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPB) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D- to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D- injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  20. An engineering upgrade of the CWDD injector

    SciTech Connect

    Pile, G.D.; Carwardine, J.A.; Cooke, M.B.

    1992-09-01

    The majority of injector operation at Culham was performed at voltages below the 2OOkV level required for Radio Frequency Quadrupole (RFQ) operation. Whilst many shots were obtained at 2OOkV, operation was considerably more difficult since the supporting subsystems were unable to withstand effects of high voltage breakdowns at this level. Additionally, there were some outstanding issues with regard to full commissioning of the beam transport system. This paper describes the strategy for upgrading the injecter system reliability to the levels required for commissioning and operation of the RFQ.

  1. An engineering upgrade of the CWDD injector

    SciTech Connect

    Pile, G.D.; Carwardine, J.A.; Cooke, M.B. )

    1992-01-01

    The majority of injector operation at Culham was performed at voltages below the 2OOkV level required for Radio Frequency Quadrupole (RFQ) operation. Whilst many shots were obtained at 2OOkV, operation was considerably more difficult since the supporting subsystems were unable to withstand effects of high voltage breakdowns at this level. Additionally, there were some outstanding issues with regard to full commissioning of the beam transport system. This paper describes the strategy for upgrading the injecter system reliability to the levels required for commissioning and operation of the RFQ.

  2. Bulk retention of deuterium in graphites exposed to deuterium plasma at high temperature

    NASA Astrophysics Data System (ADS)

    Arkhipov, I. I.; Gorodetsky, A. E.; Zakharov, A. P.; Khripunov, B. I.; Shapkin, V. V.; Petrov, V. B.; Pistunovich, V. I.; Negodaev, M. A.; Bagulya, A. V.

    1996-10-01

    A highly ionized deuterium plasma with a low residual gas pressure and a high intensity D 2+-ion beam were used for the study of deuterium retention in RG-Ti-91 and POCO AXF-5Q graphites. Deuterium retention in the samples was estimated by TDS during heating to 2000 K. Mechanical removal of a surface layer 100 μm thick was used to distinguish bulk and surface fractions of retained deuterium. The samples of RG-Ti and POCO graphites were exposed to a plasma with an ion flux of 3 × 10 17 D/cm 2 · s in the 'Lenta' plasma device for 10 to 10 4 s at residual deuterium pressure of 0.04 Pa at 1400 K. Under plasma exposure deuterium capture in RG-Ti graphite reached the saturation level at a fluence of 4 × 10 20 D/cm 2 while the bulk inventory was negligible. As for POCO graphite, deuterium retention increased with fluence and was equal to 18 appm in the bulk for a fluence of 7 × 10 21 D/cm 2. The same amount of deuterium in the bulk was obtained after gas exposure of POCO at an effective pressure of 0.8 Pa (1400 K, 6 h). With this result, the tritium concentration in the plasma-facing graphite materials can reach 1500 appm or 380 grams of tritium per ton of graphite. To understand the role of ion flux in generation of effective pressure, POCO was irradiated with 16 keV D 2+-ions at 1400 K for 4 h to 8 × 10 20 D/cm 2 (ion flux was 6 × 10 16 D/cm 2 · s, residual deuterium pressure was 0.004 Pa). The results are discussed on the basis of structural differences for POCO and RG-Ti graphites.

  3. Deuterium in crystalline and amorphous silicon

    SciTech Connect

    Borzi, R.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Boyce, J.B.; Johnson, N.M.; Ready, S.E.; Walker, J.

    1997-07-01

    The authors report deuteron magnetic resonance (DMR) measurements on aged deuterium-implanted single crystal n-type silicon and comparisons with amorphous silicon spectra. The sample film was prepared six years ago by deuteration from a-D{sub 2} plasma and evaluated by a variety of experimental methods. Deuterium has been evolving with time and the present DMR signal shows a smaller deuteron population. A doublet from Si-D configurations along (111) has decreased more than have central molecular DMR components, which include 47 and 12 kHz FWHM gaussians. Transient DMR magnetization recoveries indicate spin lattice relaxation to para-D{sub 2} relaxation centers.

  4. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  5. Deuterium microscopy using 17 MeV deuteron-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Reichart, Patrick; Moser, Marcus; Greubel, Christoph; Peeper, Katrin; Dollinger, Günther

    2016-03-01

    Using 17 MeV deuterons as a micrometer focused primary beam, we performed deuterium microscopy by using the deuteron-deuteron (dd) scattering reaction. We describe our new box like detector setup consisting of four double sided silicon strip detectors (DSSSD) with 16 strips on each side, each covering up to 0.5 sr solid angle for coincidence detection. This method becomes a valuable tool for studies of hydrogen incorporation or dynamic processes using deuterium tagging. The background from natural hydrocarbon or water contamination is reduced by the factor 150 ppm of natural abundance of deuterium in hydrogen. Deuterium energies of up to 25 MeV, available at the microprobe SNAKE, are ideal for the analysis of thin freestanding samples so that the scattered particles are transmitted to the detector. The differential cross section for the elastic scattering reaction is about the same as for pp-scattering (~100 mb/sr). The main background due to nuclear reactions is outside the energy window of interest. Deuteron-proton (dp) scattering events give an additional signal for hydrogen atoms, so the H/D-ratio can be monitored in parallel. A deuterium detection limit due to accidental coincidences of 3 at-ppm down to less than 1 at-ppm is demonstrated on deuterated polypropylen sheets as well as thick polycarbonate sheets after various stages of coincidence filtering that is possible with our granular detector.

  6. The primordial abundance of deuterium: ionization correction

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan; Pettini, Max

    2016-01-01

    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman α (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau background radiation of galaxies and quasars at redshift z ≃ 3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II)/N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2 per cent). However, the deuterium ionization correction may need to be applied when a larger sample of D/H measurements becomes available.

  7. Synthesis of deuterium-labeled prochlorperazine

    SciTech Connect

    Hawes, E.M.; Gurnsey, T.S.; Shetty, H.U.; Midha, K.K.

    1983-06-01

    The propylpiperazine side chain of prochlorperazine was labeled with two, four, or six deuterium atoms by lithium aluminum deuteride reduction of the appropriate amide. The isotopic purity of the products after correcting for chlorine isotopes was greater than 95.7%.

  8. The deuterium puzzle in the symmetric universe

    NASA Technical Reports Server (NTRS)

    Leroy, B.; Nicolle, J. P.; Schatzman, E.

    1973-01-01

    An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.

  9. Fourier Transform Infrared Spectroscopic Analysis Of Plastic Capsule Materials Exposed To Deuterium-Tritium (DT) Gas

    SciTech Connect

    Schoonover, J R; Steckle, Jr., W P; Elliot, N; Ebey, P S; Nobile, A; Nikroo, A; Cook, R C; Letts, S A

    2005-06-16

    Planar samples of varying thicknesses of both CH and CD glow discharge polymer have been measured with Fourier transform infrared (FTIR) spectroscopy before and after exposure to deuterium-tritium (DT) gas at elevated temperature and pressure. Planar samples of polyimide films made from both hydrogenated and deuterated precursors have also been examined by FTIR before and after DT exposure. The post-exposure FTIR spectra demonstrated no measurable exchange of hydrogen with deuterium or tritium for either polymer. Evidence for oxidation of the glow discharge polymer due to atmospheric oxygen was the only chemical change indicated by the FTIR data.

  10. Deuterium fractionation in the Ophiuchus molecular cloud

    NASA Astrophysics Data System (ADS)

    Punanova, A.; Caselli, P.; Pon, A.; Belloche, A.; André, Ph.

    2016-03-01

    Context. In cold (T< 25 K) and dense (nH> 104 cm-3) interstellar clouds, molecules such as CO are significantly frozen onto dust grain surfaces. Deuterium fractionation is known to be very efficient in these conditions as CO limits the abundance of H3+, which is the starting point of deuterium chemistry. In particular, N2D+ is an excellent tracer of dense and cold gas in star-forming regions. Aims: We measure the deuterium fraction, RD, and the CO depletion factor, fd, towards a number of starless and protostellar cores in the L1688 region of the Ophiuchus molecular cloud complex and search for variations based upon environmental differences across L1688. The kinematic properties of the dense gas traced by the N2H+ and N2D+ (1-0) lines are also discussed. Methods: Deuterium fraction has been measured via observations of the J = 1-0 transition of N2H+ and N2D+ towards 33 dense cores in different regions of L1688. We estimated the CO depletion factor using C17O(1-0) and 850 μm dust continuum emission from the SCUBA survey. We carried out all line observations with the IRAM 30 m antenna. Results: The dense cores show large (≃2-40%) deuterium fractions with significant variations between the sub-regions of L1688. The CO depletion factor also varies from one region to another (between ≃1 and 7). Two different correlations are found between deuterium fraction and CO depletion factor: cores in regions A, B2, and I show increasing RD with increasing fd, similar to previous studies of deuterium fraction in pre-stellar cores; cores in regions B1, B1B2, C, E, F, and H show a steeper RD - fd correlation with large deuterium fractions occurring in fairly quiescent gas with relatively low CO freeze-out factors. These are probably recently formed, centrally concentrated starless cores, which have not yet started the contraction phase towards protostellar formation. We also find that the deuterium fraction is affected by the amount of turbulence, dust temperature, and

  11. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    ERIC Educational Resources Information Center

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  12. Cosmic Deuterium and Social Networking Software

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Suer, T.-A.; Lubowich, D. A.; Glaisyer, T.

    2006-08-01

    For the education of newcomers to a scientific field and for the convenience of students and workers in the field, it is helpful to have all the basic scientific papers gathered. For the study of deuterium in the Universe, in 2004-5 we set up http://www.cosmicdeuterium.info with clickable links to all the historic and basic papers in the field and to many of the current papers. Cosmic deuterium is especially important because all deuterium in the Universe was formed in the epoch of nucleosynthesis in the first 1000 seconds after the Big Bang, so study of its relative abundance (D:H~1:100,000) gives us information about those first minutes of the Universe's life. Thus the understanding of cosmic deuterium is one of the pillars of modern cosmology, joining the cosmic expansion, the 3 degree cosmic background radiation, and the ripples in that background radiation. Studies of deuterium are also important for understanding Galactic chemical evolution, astrochemistry, interstellar processes, and planetary formation. Some papers had to be scanned while others are available at the Astrophysical Data System, adswww.harvard.edu, or to publishers' Websites. By 2006, social networking software (http:tinyurl.com/ zx5hk) had advanced with popular sites like facebook.com and MySpace.com; the Astrophysical Data System had even set up MyADS. Social tagging software sites like http://del.icio.us have made it easy to share sets of links to papers already available online. We have set up http://del.icio.us/deuterium to provide links to many of the papers on cosmicdeuterium.info, furthering previous del.icio.us work on /eclipses and /plutocharon. It is easy for the site owner to add links to a del.icio.us site; it takes merely clicking on a button on the browser screen once the site is opened and the desired link is viewed in a browser. Categorizing different topics by keywords allows subsets to be easily displayed. The opportunity to expose knowledge and build an ecosystem of web

  13. Fuel retention study in fusion reactor walls by micro-NRA deuterium mapping

    NASA Astrophysics Data System (ADS)

    Pelicon, P.; Vavpetič, P.; Grlj, N.; Čadež, I.; Markelj, S.; Brezinsek, S.; Kreter, A.; Dittmar, T.; Tsitrone, E.; Pégourié, B.; Languille, P.; Rubel, M.; Schwarz-Selinger, T.

    2011-10-01

    Nuclear Reaction Analysis (NRA) with a 3He ion beam is a powerful analytical technique for analysis of light elements in thin films. The main motivation for 3He focused beam applications is lateral mapping of deuterium using the nuclear reaction D(3He,p)4He in surfaces exposed to a tokamak plasma, where a lateral resolution in the μm-range provides unique information for fuel retention studies. At the microprobe at the Jožef Stefan Institute typical helium ion currents of 300 pA and beam dimensions of 4 × 4 μm2 can be obtained. This work is focused on micro-NRA studies of plasma-facing materials using a set-up consisting of a silicon partially depleted charge particle detector for NRA spectroscopy applied in parallel with a permanently installed X-ray detector, an RBS detector and a beam chopper for ion dose monitoring. A method for absolute deuterium quantification is described. In addition, plasma-deposited amorphous deuterated carbon thin films (a-C:D) with known D content were used as a reference. The method was used to study deuterium fuel retention in carbon fibre composite materials exposed to a deuterium plasma in the Tore Supra and TEXTOR tokamaks. The high lateral resolution of micro-NRA allowed us to make a detailed study of the influence of topography on the fuel retention process. We demonstrated that the surface topography plays a dominant role in the retention of deuterium. The deep surfaces inside the castellation gaps showed approximately two orders of magnitude lower deuterium concentrations than in areas close to the exposed surface.

  14. Deuterium content of the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Bertaux, Jean-Loup; Clarke, John T.

    1989-01-01

    The abundance of deuterium in the atmosphere of Venus is an important clue to the role of water in the planet's history, because ordinary and deuterated water escape the atmosphere at different rates. The high-resolution mode of the IUE was used to measure hydrogen Lyman-alpha emission from Venus, but only an upper limit on deuterium Lyman-alpha emission was found, from which was inferred a D/H ratio of less than 0.002-0.005. This is smaller by a factor of 3-8 than the D/H ratio derived from measurements by the Pioneer Venus Large Probe, and may indicate either a stratification of D/H ratio with altitude or a smaller overall ratio than previously thought.

  15. Deuterium Retention in NSTX with Lithium Conditioning

    SciTech Connect

    C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, L. Roquemore, V. Soukhanovskii, C.N. Taylor

    2010-06-02

    High (≈ 90%) deuterium retention was observed in NSTX gas balance measurements both withand without lithiumization of the carbon plasma facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gasonly pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in-vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis showed that the binding of D atoms is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix.

  16. Deuterium Abundance in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Ferlet, R.; Gry, C.; Vidal-Madjar, A.

    1984-01-01

    The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.

  17. Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Xiu-Li; Zhang, Ying; Cheng, Long; Yuan, Yue; De Temmerman, Gregory; Wang, Bao-Yi; Cao, Xing-Zhong; Lu, Guang-Hong

    2016-03-01

    Doppler broadening spectroscopy in the positron annihilation technique (DBS-PA) has been employed to investigate the defect properties in argon-damaged tungsten exposed to low-energy and high flux deuterium plasma. Argon ion irradiations with energy 500 keV are performed for tungsten samples with various levels of damage. The remarkable increment of the S parameter in DBS-PA indicates the introduction of vacancy-type defects in argon irradiated tungsten. An increase of ion fluence results in a continuous increase of the S parameter until saturation. Unexpectedly, a much higher fluence leads to a decrease of the S parameter in the near surface, and the (S,W) slope changes greatly. This should be associated with the formation of argon-vacancy complexes in the near surface produced by the excessive implanted argon ions. With deuterium plasma exposure, a significant decrease of the S parameter occurs in the pre-irradiated tungsten, suggesting the sharp reduction of the number and density of the vacancy-type defects. The thermal desorption spectroscopy results demonstrate that the argon-damaged tungsten, compared to the pristine one, exhibits an enhanced low-temperature desorption peak and an additional and broad high-temperature desorption peak, which indicates that deuterium atoms are trapped in both low-energy and high-energy sites. All these observations directly indicate the deuterium occupation of irradiation-induced vacancy defects in damaged tungsten, which is responsible for the remarkable increase of the deuterium retention in comparison with the pristine one.

  18. Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?

    NASA Astrophysics Data System (ADS)

    Shomer, Isaac

    2010-02-01

    The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )

  19. Deuterium-tritium experiments on TFTR

    NASA Astrophysics Data System (ADS)

    Bretz, N. L.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. W.; Arunasalam, V.; Ascione, G.; Barnes, C. W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Cheng, C.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S.; Daugert, R.; DeLooper, J.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evensen, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, R.; Fu, G.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Giola, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E.; Marsala, R.; Martin, A.; Martin, G.; Mauel, M.; Mazzucato, E.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McGuire, K. M.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O'Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftapoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmunsen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbaugh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stodiek, W.; Strachan, J. D.; Stratton, B. C.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; Von Halle, A.; Vannoy, C.; Viola, M.; Goeler, S. von; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K.-L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-09-01

    A peak fusion power production of 9.3±0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: Te(0)=11.5 keV, Ti(0)=44 keV, ne(0)=8.5×1019 m-3, and =2.2 giving τE=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m3 similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is not substantially different from that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2ΩT gave up to 80% of the ICRF energy to ions.

  20. Deuterium-tritium experiments on TFTR

    SciTech Connect

    Bretz, N.L.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Barnes, C.W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Brunkhorst, C.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Cheng, C.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P.C.; Ernst, D.; Evensen, H.; Fisch, N.; Fisher, R.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, R.; Fu, G.; Fujita, T.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Giola, J.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Loughlin, M.J.; Machuzak, J.; Majeski, R.; Mansfield, D.K.; Marmar, E.; Marsala, R.; Martin, A.; Martin, G.; Mauel, M.; Mazzucato, E.; McCarthy, M.P.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Norris, M.; OConnor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Parks, P.; Paul, S.F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A.L.; Raftapoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmunsen, D.A.; Redi, M.H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A.L.; Ruskov, E.; Sabbaugh, S.A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.L.; Scillia, R.; Scott, S.D.; Semenov, I.; Senko, T.

    1995-09-01

    A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}

  1. Evolution of dispersion in the cosmic deuterium abundance

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph; Petitjean, Patrick; Olive, Keith A.

    2016-05-01

    Deuterium is created during big bang nucleosynthesis, and, in contrast to the other light stable nuclei, can only be destroyed thereafter by fusion in stellar interiors. In this Letter, we study the cosmic evolution of the deuterium abundance in the interstellar medium (ISM) and its dispersion using realistic galaxy evolution models. We find that models that reproduce the observed metal abundance are compatible with observations of the deuterium abundance in the local ISM and z ˜ 3 absorption line systems. In particular, we reproduce the low astration factor which we attribute to a low global star formation efficiency. We calculate the dispersion in deuterium abundance arising from different structure formation histories in different parts of the Universe. Our model also predicts a tight correlation between deuterium and metal abundances which could be used to measure the primordial deuterium abundance.

  2. Deuterium incorporation in biomass cell wall components by NMR analysis

    SciTech Connect

    Foston, Marcus B; McGaughey, Joseph; O'Neill, Hugh Michael; Evans, Barbara R; Ragauskas, Arthur J

    2012-01-01

    A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

  3. Neutron production from puffing deuterium in plasma focus device

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Batobolotova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.; Surala, W.; Sadowski, M. J.; Scholz, M.; Karpinski, L.

    2014-08-15

    The current research has continued on the PF-1000 plasma focus device at the current of 2 MA by comparison of the shots with and without injected deuterium. The increase of the total neutron yield at the level of 10{sup 10}–10{sup 11} per shot was achieved after the compression of about 10 μg/cm of the deuterium from the gas-valve by about 46 μg/cm of the neon or deuterium plasma sheath. It increases five times at the decrease of the puffing deuterium mass to one-half. In shots with neon in the chamber and with puffing deuterium, a considerable decrease was confirmed of the soft X-ray emission in comparison with shots without deuterium injection. This decrease can be explained by the absence of the neon in the region of the compressed and hot plasma. The deuterium plasma from the gas-puff should then be confined in the internal structures both in the phase of implosion as well as during their formation and transformation. In shots with puffing deuterium, the evolution of instabilities in the plasma column was suppressed. The deuterium plasma has a higher conductance and better ability to form expressive and dense plasmoids and to transport the internal current in comparison with neon plasma. Neutrons were produced both at the initial phase of stagnation, as well as at a later time at the evolution of the constrictions and dense plasmoids.

  4. Fuel provision for nonbreeding deuterium-tritium fusion reactors

    SciTech Connect

    Jassby, D.L.; Katsurai, M.

    1980-01-01

    Nonbreeding D-T reactors have decisive advantages in minimum size, unit cost, variety of applications, and ease of heat removal over reactors using any other fusion cycle, and significant advantages in environmental and safety characteristics over breeding D-T reactors. Considerations of relative energy production demonstrate that the most favorable source of tritium for a widely deployed system of nonbreeding D-T reactors is the very large (approx. 10 GW thermal) semi-catalyzed-deuterium (SCD), or sub-SCD reactor, where none of the escaping /sup 3/He (> 95%) or tritium (< 25%) is reinjected for burn-up. Feasibility of the ignited SCD tokamak reactor requires spatially averaged betas of 15 to 20% with a magnetic field at the TF coils of 12 to 13 Tesla.

  5. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  6. Toward quantitative deuterium analysis with laser-induced breakdown spectroscopy using atmospheric-pressure helium gas

    SciTech Connect

    Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2010-01-15

    An experimental study has been carried out for the development of quantitative deuterium analysis using the neodymium doped yttrium aluminum garnet laser-induced breakdown spectroscopy (LIBS) with atmospheric pressure surrounding He gas by exploring the appropriate experimental condition and special sample cleaning technique. The result demonstrates the achievement of a full resolution between the D and H emission lines from zircaloy-4 samples, which is prerequisite for the desired quantitative analysis. Further, a linear calibration line with zero intercept was obtained for the emission intensity of deuterium from a number of zircaloy samples doped with predetermined concentrations of deuterium. The result is obtained by setting a +4 mm defocusing position for the laser beam, 6 {mu}s detection gating time, and 7 mm imaging position of the plasma for the detection, which is combined with a special procedure of repeated laser cleaning of the samples. This study has thus provided the basis for the development of practical quantitative deuterium analysis by LIBS.

  7. Nuclear Structure Corrections in Muonic Deuterium

    SciTech Connect

    Pachucki, Krzysztof

    2011-05-13

    The muonic hydrogen experiment measuring the 2P-2S transition energy [R. Pohl et al., Nature (London) 466, 213 (2010)] is significantly discrepant with theoretical predictions based on quantum electrodynamics. A possible approach to resolve this conundrum is to compare experimental values with theoretical predictions in another system, muonic deuterium {mu}D. The only correction which might be questioned in {mu}D is that due to the deuteron polarizability. We investigate this effect in detail and observe cancellation with the elastic contribution. The total value obtained for the deuteron structure correction in the 2P-2S transition is 1.680(16) meV.

  8. Cryotarget Control Software for Liquid Deuterium

    NASA Astrophysics Data System (ADS)

    Brakman, David; Gilfoyle, Gerard; Cuevas, Chris; Christo, Steve; CLAS Collaboration

    2015-10-01

    One of the experiments in Hall B at Jefferson Lab will measure the neutron elastic magnetic form factor with a 12 GeV electron beam striking a liquid deuterium target (LD2) and measuring the resulting debris in the CEBAF Large Acceptance Spectrometer (CLAS12). A program was created that acts as a control system for the LD2 target. It will monitor the deuterium target and send data to the main control system and the shift workers monitoring the experiment in real time. The data include measurements of pressure, temperature, and liquid level. The system will also control setpoints for temperature, heater power, and other parameters as well as download calibration curves. The program was written in LabVIEW, a graphical programming language noted for readily interfacing with lab equipment. This project has completed two stages so far. Simulated data were generated within LabVIEW and passed to subroutines that send, log, and display data on a PC. In the second stage, the PC was connected to a data acquisition board, and test signals were read and analyzed to simulate the target sensors. Work supported by the University of Richmond and the US Department of Energy.

  9. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  10. Thermal desorption of deuterium implanted into beryllium

    SciTech Connect

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-09-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, {Phi}, from 1x10{sup 20} D/m{sup 2} to 1x10{sup 21} D/m{sup 2} proceeds in one high temperature stage B, while at {Phi} {ge} 1.2x10{sup 21}D/m{sup 2} one more stage A is added. The desorption maximum A is narrow and consists of two peaks A{sub 1} and A{sub 2} at about 460 K and 490 K, respectively. Peak A{sub 1} is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak {sub A}2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences.

  11. Deuterium labeling of soil water movement in the Cuvelai-Etosha Basin, Namibia

    NASA Astrophysics Data System (ADS)

    Beyer, Matthias; Gaj, Marcel; Koeniger, Paul; Hamutoko, Josefina; Uugulu, Shoopi; Wanke, Heike; Lohe, Christoph; Himmelsbach, Thomas; Billib, Max

    2014-05-01

    and bulk density are determined in the lab. Results demonstrate how the artificially applied deuterium distributes after a rain event of 10 mm. Both up- and downward movement of the applied deuterium could be tracked analyzing the isotopic composition of the soil profiles. Whilst the deuterium front at the sand forest site travelled towards a depth of more than 1.5 m, the peak at the loamy sand/calcrete woodland site only reached the calcrete layer at 1.2 m. Deeper infiltration into the calcrete layer was not observed. Soil sampling will be repeated at the same plots to investigate the travel depth of the deuterium front after the rainy season to enable the quantification of groundwater recharge at a site level.

  12. Deuterium retention in codeposited layers and carbon materials exposed to high flux D-plasma

    NASA Astrophysics Data System (ADS)

    Arkhipov, I. I.; Gorodetsky, A. E.; Zalavutdinov, R. Kh; Zakharov, A. P.; Burtseva, T. A.; Mazul, I. V.; Khripunov, B. I.; Shapkin, V. V.; Petrov, V. B.

    A ceramic BCN target with samples of dense RG-Ti-91 without boron, RG-Ti-B with boron (0.1 at.%) and porous POCO AXF-5Q graphites was exposed in a stationary D-plasma of the `Lenta' device with an ion energy of 200 eV and an ion flux of (3 - 6) × 10 17 D/cm 2s at 1040 and 1400 K to a fluence of ˜1 × 10 22 D/cm 2. Codeposited layers were obtained for comparison on the target surface. Thermal desorption spectroscopy (TDS) showed that the amount of deuterium in RG-Ti after exposure at 1040 K was more than an order of magnitude higher than in POCO (9 × 10 17 and 7 × 10 16 D/cm 2, respectively). The retention took place preferentially in a surface layer about 100 μm thick. The bulk deuterium concentration in both RG-Ti and POCO was lower than 1 appm. The irradiated RG-Ti surface was subjected to strong erosion and consisted of `columnar' grains covered with TiC at their tips. The deuterium in RG-Ti irradiated at 1400 K was located in the surface layer (1.5 × 10 16 D/cm 2). The value of the bulk concentration did not exceed 0.1 appm while in POCO it was equal to about 20 appm. TDS for deuterium in RG-Ti demonstrated a spectrum similar to that for codeposited layers on a target surface. The differences in deuterium retention in the graphites are explained on the basis of structural differences. Considering tritium inventory assessment for ITER, dense graphites like RG-Ti are preferred for working divertor plates at high temperatures.

  13. (Un)true deuterium abundance in the Galactic disk

    NASA Astrophysics Data System (ADS)

    Prodanović, Tijana; Steigman, Gary; Fields, Brian D.

    2010-04-01

    Deuterium has a special place in cosmology, nuclear astrophysics, and galactic chemical evolution, because of its unique property that it is only created in the big bang nucleosynthesis while all other processes result in its net destruction. For this reason, among other things, deuterium abundance measurements in the interstellar medium (ISM) allow us to determine the fraction of interstellar gas that has been cycled through stars, and set constraints and learn about different Galactic chemical evolution (GCE) models. However, recent indications that deuterium might be preferentially depleted onto dust grains complicate our understanding about the meaning of measured ISM deuterium abundances. For this reason, recent estimates by Linsky et al. (2006) have yielded a lower bound to the “true”, undepleted, ISM deuterium abundance that is very close to the primordial abundance, indicating a small deuterium astration factor contrary to the demands of many GCE models. To avoid any prejudice about deuterium dust depletion along different lines of sight that are used to determine the “true” D abundance, we propose a model-independent, statistical Bayesian method to address this issue and determine in a model-independent manner the undepleted ISM D abundance. We find the best estimate for the gas-phase ISM deuterium abundance to be (D/H)ISM ≥ (2.0 ± 0.1) × 10-5. Presented are the results of Prodanović et al. (2009).

  14. High concentration of deuterium in palladium from plasma ion implantation

    SciTech Connect

    Uhm, H.S.; Lee, W.M. )

    1991-11-01

    Based on a theoretical calculation, a new scheme to increase deuterium density in palladium over its initial value is presented. This deuterium enrichment scheme makes use of plasma ion implantation. A cylindrical palladium rod (target) preloaded with deuterium atoms, coated with a diffusion-barrier material, is immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator which provides a series of negative-voltage pulses. During these negative pulses, deuterium ions fall into the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by present technology, it is found from theoretical calculations that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. Assuming an initial deuterium density, {ital n}{sub 0}=4{times}10{sup 22} cm{sup {minus}3}, it is also found that the deuterium density in palladium can triple its original value within a few days of the ion implantation for a reasonable target size. Because of the small diffusion coefficient in palladium, the incoming ions do not diffuse quickly inward, thereby accumulating near the target surface at the beginning of the implantation.

  15. Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound

    DOEpatents

    Marling, John B.; Herman, Irving P.

    1981-01-01

    A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.

  16. The biophysical effects of deuterium oxide on biomolecules and living cells through open notebook science

    NASA Astrophysics Data System (ADS)

    Salvagno, Anthony L.

    not possible. Molecular effects were examined using a variety of tools including: dynamic light spectroscopy, Fourier transform-infrared spectroscopy, cavity ring-down spectroscopy, and optical tweezers. Heat induced protein aggregation was possible in H2O, but prevented in the presence of D2O and analyzed via DLS. Deuterium exchange and replacement was observed and quantified using both FT-IR and CRDS. With FT-IR it was possible to identify differences between solvents, while the time-scale of hydrogen-deuterium exchange was quantified for bulk water with CRDS. Using optical tweezers, DNA was overstretched in both H2O and D2O. The average force for DNA overstretching was found to be ~2.5pN higher in D2O compared to H2O. Deuterium oxide has a stabilizing force on biomolecules, which prevents protein denaturing and can affect the timing for cellular processes. It is because of this molecular property that D2O is observed to affect organisms grown with D2O instead of H2O. Despite this, there seems to be an optimal concentration of deuterium which is above the natural concentration of 155.6ppm. In the presence of deuterium depleted water, cells exhibit signs of stress, further demonstrating that deuterium isn't merely tolerated in solution, but actually required as hypothesized by Gilbert N. Lewis in 1934.

  17. Access to uncombined titanium through an inhibiting film in sublimation pumping of deuterium.

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.

    1972-01-01

    In principle, titanium bulk sublimator pumping should be ideal for removing large quantities of deuterium from a vacuum system. In practice, much of the deposited titanium remains uncombined and is wasted. We have demonstrated, through a series of experiments, that it is possible (by the addition of a thin layer of titanium to an apparently occluded surface) to gain access to previously deposited sublayers of uncombined titanium in spite of the presence of an inhibiting film (such as an oxide) on the surface.

  18. Fusion-power demonstration

    NASA Astrophysics Data System (ADS)

    Henning, C. D.; Logan, B. G.; Carlson, G. A.; Neef, W. S.; Moir, R. W.; Campbell, R. B.; Botwin, R.; Clarkson, I. R.; Carpenter, T. J.

    1983-03-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  19. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  20. Ignition of deuterium-tritium fuel targets

    DOEpatents

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  1. Ignition of deuterium-trtium fuel targets

    DOEpatents

    Musinski, Donald L.; Mruzek, Michael T.

    1991-01-01

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  2. Depth distribution of deuterium atoms and molecules in beryllium oxide implanted with deuterium ions

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh; Chernikov, V. N.

    1999-08-01

    In-depth concentration profiles of deuterium (D) in beryllium oxide (BeO) films implanted with 3 keV D ions at 300 and 700 K have been determined using SIMS and RGA (residual gas analysis) measurements in the course of surface sputtering. The microstructure of implanted specimens was studied by TEM. Implanted D is found to be retained in the BeO matrix in the form of D atoms and D 2 molecules. At 300 and 700 K, the maximum concentration of deuterium in both states reaches values of 0.2 and 0.07 D/BeO, respectively. Irradiation with D ions at 300 and 700 K leads to the formation of tiny D 2 bubbles of 0.6-0.7 nm radius and of high volume density ≈(4-5) × 10 24 m -3. These bubbles together with the intercrystalline gaps are responsible for the accumulation of D 2 molecules. At both irradiation temperatures, D 2 concentration reaches in the ion stopping zone its maximum of 0.01 molecules/BeO. At 300 and 700 K, the major part of deuterium implanted in BeO films is present in the form of D atoms, probably chemically bound to O atoms. Maximum D atom concentration is 0.18 D atoms/BeO for 300 K and 0.05 D atoms/BeO for 700 K.

  3. The deuterium content of water in some volcanic glasses

    USGS Publications Warehouse

    Friedman, I.; Smith, R.L.

    1958-01-01

    The deuterium-hydrogen composition (relative to Lake Michigan water = 0.0) of water extractsd from coexisting perlite and obsidian from eleven different localities was determined. The water content of the obsidians is generally from 0.09 to 0.29 per cent by weight, though two samples from near Olancha, California, contain about 0.92 per cent. The relative deuterium concentration is from -4.6 to -12.3 per cent. The coexisting perlite contains from 2.0 to 3.8 per cent of water with a relative deuterium concentration of -3.1 to -16.6 per cent. The deuterium concentration in the perlites is not related to that in the enclosed obsidian. The deuterium concentration in the perlite water is related to the deuterium concentration of the modern meteoric water and the perlite water contains approximately 4 per cent less deuterium than does the groundwater of the area in which the perlites occur. The above relations hold true for perlites from northern New Mexico, east slope of the Sierra Nevada. California Coast Range, Yellowstone Park, Wyoming, and New Zealand. As the water in the obsidian is unrelated to meteoric water, but the enclosing perlite water is related, we believe that this is evidence for the secondary hydration of obsidian to form high water content perlitic glass. ?? 1958.

  4. Method for measuring deuterium in erbium deuteride films

    SciTech Connect

    Brangan, J.R.; Thornberg, S.M.; Keenan, M.R.

    1997-09-01

    Determining the quantity of deuterium in an erbium deuteride (ErD{sub 2}) film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950{degrees}C) and low temperature (25{degrees}C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This paper presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950{degrees}C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally a repeated pump-down approach yielded data that indicated approximately 10% of the deuterium is retained in the metal film at 950{degrees}C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by ICP/AES, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well.

  5. Method for measuring deuterium in erbium deuteride films

    SciTech Connect

    Brangan, J.R.; Thornberg, S.M.; Keenan, M.R.

    1999-07-01

    Determining the quantity of deuterium in an erbium deuteride film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950&hthinsp;{degree}C) and low temperature (25&hthinsp;{degree}C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This article presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950&hthinsp;{degree}C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally, a repeated pump-down approach yielded data that indicated approximately 10{percent} of the deuterium is retained in the metal film at 950&hthinsp;{degree}C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by inductively coupled argon plasma atomic emission spectroscopy, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well. {copyright} {ital 1999 American Vacuum Society.}

  6. Modelling the transport of deuterium and tritium neutral particles in a divertor plasma

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Kotov, V.

    2012-10-01

    A fluid model for transport of deuterium and tritium atoms in two-dimensional geometry of a poloidal divertor is elaborated by taking into account the coupling of both isotopes through the processes of cross-charge-exchange. Calculations are performed for the plasma parameters predicted with the code package B2-EIRENE (SOLPS4.3) for the divertor region in ITER. The results demonstrate that the transparency of the scrape-off layer for neutral particles generated by recycling on target plates and recombination of electrons and ions in the plasma volume can be significantly different for deuterium and tritium atoms. This difference has to be taken into account by considering the global particle balances in a reactor. The numerical approach applied for calculations is verified by comparing with an analytical model elaborated for the case of plasma parameters homogeneous in the divertor domain.

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Procedures for two demonstrations are presented. The first is a demonstration of chemiluminescence. The second is a demonstration using a secondary battery constructed from common household articles. (JN)

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents the following chemistry lecture demonstrations and experiments: (1) a versatile kinetic demonstration; (2) the Bakelite Demonstration; (3) applying Beer's law; and (4) entropy calculations. (HM)

  9. Computer experiments concerning palladium-deuterium and titanium-deuterium lattices - implications to phenomenon of low-energy nuclear reaction

    SciTech Connect

    Rao, K.R.; Chaplot, S.L.

    1996-12-01

    Short-lived large energy fluctuations (SLEFs) in solids, proposed by Khait, are known to be responsible for several anomalous properties in a variety of materials. The study of SLEFs in palladium-deuterium and titanium-deuterium lattices via computer experiments is reported. The relevance of these large energy fluctuations in penetrating coulombic barriers in these systems is discussed. Such dynamical effects arising from the phonon bath in solids may enhance nuclear reaction probabilities leading to cold fusion. Expected cold fusion reaction rates are reported taking into account the effective charges of the deuterium atoms in the solid and SLEF frequencies. 25 refs., 7 figs., 1 tab.

  10. Pion Induced Pion Production on Deuterium.

    NASA Astrophysics Data System (ADS)

    Sossi, Vesna

    This thesis describes measurements of the pion induced pion production reaction pi^+ d to pi^{+} pi^{-}p p performed with a 280 MeV incident pi^{+} beam at TRIUMF. The data are compared with an improved version of the Oset and Vicente-Vacas theoretical model (12). The goal of the experiment and of the analysis was to provide a larger body of data for the free reaction and to test the validity of theoretical models. In the process, the ability to determine the values of the coupling constants C, f_Delta, g _{N*Delta_tau} within such a model framework would be explored. The knowledge of the precise value of these coupling constants would constrain N^* decay branching ratios and other pion induced reaction mechanisms like Double Charge Exchange. A previous experiment (23) had indicated that the pion induced pion production on deuterium is essentially a quasifree process with the reaction occurring on the neutron leaving the proton merely a spectator. The main difference with respect to the free reaction is the effect of Fermi motion of the neutron. Although we were interested in studying the free reaction (pi^ {-}p to pi^ {+}pi^{-}n), we chose a deuterium target so that the experiment could be run with a pi^+beam, since the pi^- beam flux is about 6 times lower than the flux of the positive pion beam at 280 MeV, the energy at which our experiment was performed. Such a flux would have required a much longer running time for the experiment in order to achieve the same statistical accuracy. The quasifree nature of the process was also confirmed in our experiment. This experiment involved a coincidence measurement of the quasifree process and as such provided four-fold differential cross section spectra of the reaction thus allowing for a microscopic comparison between data and theoretical models. In the theoretical description we incorporated additional amplitudes for the N^* to N(pipi)_{p-wave} diagrams required to describe the reaction cross section at T_pi = 280 Me

  11. Calculations of ion-molecule deuterium fractionation reactions involving HD

    NASA Technical Reports Server (NTRS)

    Maluendes, Sergio A.; Mclean, A. D.; Herbst, Eric

    1992-01-01

    Gas-phase chemical models of deuterium fractionation in dense interstellar clouds utilize a small number of exothermic reactions to achieve fractionation. Although HD is a major repository of deuterium, it appears not to exchange deuterium with many molecular ions. Useful semiquantitative reasons have been given for the unusual lack of reactivity of exothermic ion-HD deuterium exchange systems, but quantum chemical studies are needed to understand these ideas in more detail and to determine if the lack of reactivity pertains at very low temperatures not studied in the laboratory, or whether tunneling can drive the reactions. Accordingly, the potential energy surfaces of three representative ion-molecule exchange reactions involving protonated ions and HD have been investigated with ab initio quantum chemical techniques. Our results generally confirm the semiquantitative picture as to which reactions are likely to occur and show that tunneling at low temperatures is unlikely to alter this picture.

  12. Calculations of ion-molecule deuterium fractionation reactions involving HD.

    PubMed

    Maluendes, S A; McLean, A D; Herbst, E

    1992-10-01

    Gas-phase chemical models of deuterium fractionation in dense interstellar clouds utilize a small number of exothermic reactions to achieve fractionation. Although HD is a major repository of deuterium, it appears not to exchange deuterium with many molecular ions. Useful semiquantitative reasons have been given for the unusual lack of reactivity of exothermic ion-HD deuterium exchange systems, but quantum chemical studies are needed to understand these ideas in more detail and to determine if the lack of reactivity pertains at very low temperatures not studied in the laboratory, or whether tunneling can drive the reactions. Accordingly, the potential energy surfaces of three representative ion-molecule exchange reactions involving protonated ions (H3+, CH3+, HCO+) and HD have been investigated with ab initio quantum chemical techniques. Our results generally confirm the semiquantitative picture as to which reactions are likely to occur and show that tunneling at low temperatures is unlikely to alter this picture.

  13. Cytology is advanced by studying effects of deuterium environment

    NASA Technical Reports Server (NTRS)

    Bose, S.; Crespi, H. L.; Flaumenhaft, E.; Katz, J. J.

    1967-01-01

    Research of deuterium effects on biological systems shows deuteriation is not incompatible with life. With the successful cultivation of deuteriated bacteria, work is now being done on extraction of deuterio-compounds from bacteria.

  14. The Primordial Deuterium Abundance: Current Status and Future Prospects

    NASA Astrophysics Data System (ADS)

    O'Meara, John

    2007-04-01

    Measurements of the abundances of the light nuclei (H, D, ^3He, ^4He, and ^7 Li) offer precise constraints on the cosmological parameters relevant to big bang nucleosynthesis (BBN). Deuterium is of particular interest, since, at the level of cosmological relevance, it is produced only during BBN. The advent of high resolution spectrographs on telescopes both on the ground and in space has enabled the measurement of the abundance of deuterium in a number of astrophysical environments, including those which give the primordial abundance, namely the absorption line systems seen toward distant quasars. In this talk, I will discuss the current state of the deuterium abundance, with a focus given to the primordial abundance, and will discuss the future roles deuterium can play in futher constraining physics during the epoch of BBN.

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two chemistry demonstrations including a demonstration of chemical inhibition and "The Rayleigh Fountain" which demonstrates the polarity of the water molecule. Provides instructions and explanations for each demonstration. (CW)

  17. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Muelle

    1994-05-30

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by [similar to]20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by [alpha] particles created by the D-T fusion reactions.

  18. Is deuterium in high-redshift Lyman limit systems primordial?

    SciTech Connect

    Jedamzik, K.; Fuller, G.M.

    1997-07-01

    Detections of deuterium in high-redshift Lyman limit absorption systems along the line of sight to QSOs promise to reveal the primordial deuterium abundance. At present, the deuterium abundances (D/H) derived from the very few systems observed are significantly discordant. Assuming the validity of all the data, if this discordance does not reflect intrinsic primordial inhomogeneity, then it must arise from processes operating after the primordial nucleosynthesis epoch. We consider processes that might lead to significant deuterium production or destruction and yet allow the cloud to mimic a chemically unevolved system. These processes include, for example, anomalous/stochastic chemical evolution and D/{sup 4}He photodestruction. In general, we find it unlikely that these processes could have significantly altered D/H in Lyman limit clouds. We argue that chemical evolution scenarios, unless very finely tuned, cannot account for significant local deuterium depletion since they tend to overproduce {sup 12}C, even when allowance is made for possible outflow. Similarly, D/{sup 4}He photodestruction schemes engineered to locally produce or destroy deuterium founder on the necessity of requiring an improbably large {gamma}-ray source density. Future observations of D/H in Lyman limit systems may provide important insight into the initial conditions for the primordial nucleosynthesis process, early chemical evolution, and the galaxy formation process. {copyright} {ital 1997} {ital The American Astronomical Society}

  19. Advanced Deuterium Fusion Rocket Propulsion for Manned Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion can there be refuelled. To obtain a high thrust with high specific impulse favours the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of a propulsion system in space would be very high, but it can also be developed on Earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, making obsolete the ignition of deuterium-tritium with a laser, where 80% of the energy goes into neutrons, this would also mean a breakthrough in fusion research, and therefore would justify the large development costs.

  20. Changes in protein structure monitored by use of gas‐phase hydrogen/deuterium exchange

    PubMed Central

    Beeston, Helen S.; Ault, James R.; Pringle, Steven D.; Brown, Jeffery M.

    2015-01-01

    The study of protein conformation by solution‐phase hydrogen/deuterium exchange (HDX) coupled to MS is well documented. This involves monitoring the exchange of backbone amide protons with deuterium and provides details concerning the protein's tertiary structure. However, undesired back‐exchange during post‐HDX analyses can be difficult to control. Here, gas‐phase HDX‐MS, during which labile hydrogens on amino acid side chains are exchanged in sub‐millisecond time scales, has been employed to probe changes within protein structures. Addition of the solvent 2,2,2‐trifluoroethanol to a protein in solution can affect the structure of the protein, resulting in an increase in secondary and/or tertiary structure which is detected using circular dichroism. Using a Synapt G2‐S ESI‐mass spectrometer modified to allow deuterated ammonia into the transfer ion guide (situated between the ion mobility cell and the TOF analyser), gas‐phase HDX‐MS is shown to reflect minor structural changes experienced by the proteins β‐lactoglobulin and ubiquitin, as observed by the reduction in the level of deuterium incorporation. Additionally, the use of gas‐phase HDX‐MS to distinguish between co‐populated proteins conformers within a solution is demonstrated with the disordered protein calmodulin; the gas‐phase HDX‐MS results correspond directly with complementary data obtained by use of ion mobility spectrometry‐MS. PMID:25603979

  1. Deuterium isotope effects during HMX combustion: Chemical kinetic burn-rate control mechanism verified

    SciTech Connect

    Shackelford, S.A.; Goshgarian, B.B.; Chapman, R.D.; Askins, R.E.; Flanigan, D.A.

    1989-01-01

    The appearance of a significant deuterium isotope effect during the combustion of the solid HMX compound verifies that the chemical reaction kinetics is a major contributor in determining the experimentally observed or global burn rate. Burn rate comparison of HMX and its deuterium labeled HMX-d(8) analogue reveals a primary kinetic deuterium isotope effect (1 deg. KDIE) at 500 psig (3.55 MPa) and 1000 psig (6.99 MPa) pressure and selectively identifies covalent carbon-hydrogen bond rupture as the mechanistic step which ultimately controls the further HMX burn rate under the static combustion conditions of this experiment. The 1 deg. KDIE value further suggests the rate-limiting C-H bond rupture occurs during the solid state HMX decomposition/deflagration portion of the overall combustion event and is supported by other independently published studies. A possible anomalous KDIE result at 1500 psig (10.4 MPa) is addressed. This condensed phase KDIE approach illustrates a direct link between lower temperature/pressure thermal decomposition and deflagration processes and their potential applicability to the combustion regime. Most importantly, a new general method is demonstrated for mechanistic combustion investigations which selectively permits an in-situ identification of the compound's burn rate-controlling step.

  2. Neutron Production in Deuterium Gas-Puff Z-Pinch Implosions on Refurbished Z

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Velikovich, A. L.; Davis, J.; Giuliani, J. L.; Coverdale, C. A.; Flicker, D.

    2009-11-01

    Earlier experiments with deuterium gas puff implosions on Z [Coverdale et al., Phys. Plasmas 14, 022706 and 056309 (2007)] demonstrated reproducible production of high neutron yields, up to ˜3x10^13, a large part of which might be of thermonuclear origin. We report a scoping study for such experiments on refurbished Z which can implode deuterium gas-puff loads at high-current, longer pulse (˜250 ns) regime. Significantly higher thermal DD neutron yields are predicted for ZR. We discuss the relative roles of kinetic-to-thermal energy conversion and adiabatic compression in heating the central deuterium column to the fusion temperature. We quantify the effect on the thermal neutron yield produced by loading the outer shells of the multi-shell gas-puff with a heavier gas to improve matching of the implosion to the current pulse, by additional heating of the central jet area with a Z-Beamlet laser and by applying an axial magnetic field in order to stabilize the implosion from a large initial radius.

  3. Neutron Emission in Deuterium Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2013-10-01

    We present the results of a computational study of the deuterium dense plasma focus (DPF) carried out to improve understanding of the neutron production mechanism in the DPF. The device currents studied range from 70 kA to several MA. The complete evolution of the DPF is simulated in 3D from rundown through to neutron emission using a hybrid computational method. The rundown, pinching, stagnation and post-stagnation (pinch break-up) phases are simulated using the 3D MHD code Gorgon. Kinetic computational tools are used to model the formation and transport of non-thermal ion populations and neutron production during the stagnation and post-stagnation phases, resulting in the production of synthetic neutron spectra. It is observed that the break-up phase plays an important role in the formation of non-thermal ions. Large electric fields generated during pinch break-up cause ions to be accelerated from the edges of dense plasma regions. The dependence on current of the neutron yield, neutron spectra shape and isotropy is studied. The effect of magnetization of the non-thermal ions is evident as the anisotropy of the neutron spectra decreases at higher current.

  4. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  5. Deuterium enrichment of the interstellar grain mantle

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  6. Equations of state for hydrogen and deuterium.

    SciTech Connect

    Kerley, Gerald Irwin (Kerley Technical Services, Appomattox, VA)

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixture models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.

  7. Improving cryogenic deuterium-tritium implosion performance on OMEGAa)

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Radha, P. B.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu-Johnson, M.; Glebov, Y. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kingsley, C.; Kosc, T. Z.; Knauer, J. P.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R. W.; Shvydky, A.; Skupsky, S.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Versteeg, V.; Yaakobi, B.; Zuegel, J. D.

    2013-05-01

    A flexible direct-drive target platform is used to implode cryogenic deuterium-tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat-IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes three flame test demonstrations including "Student-Presented Demonstrations on the Colors of Transition Metal Complexes,""A Flame Test Demonstration Device," and "Vivid Flame Tests." Preparation and procedures are discussed. Included in the first demonstration is an evaluation scheme for grading student demonstrations. (CW)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) partition coefficients; (2) Rutherford simulation experiment; and (3) demonstration of the powerful oxidizing property of dimanganeseheptoxide. Background information, materials needed, and procedures are provided for each demonstration. (JN)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presented are three demonstrations for chemical education. The activities include: (1) demonstration of vapor pressure; (2) a multicolored luminol-based chemiluminescence demonstration; and (3) a Charles's Law/Vapor pressure apparatus. (RH)

  11. Reflectance Demonstration.

    ERIC Educational Resources Information Center

    Kowalski, Frank

    1993-01-01

    Presents a demonstration in which a mirror "disappears" upon rotation. The author has used the demonstration with students from fourth grade up through college. Suggestions are given for making the demonstration into a permanent hallway display. (MVL)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    This article details two demonstrations involving color changes. Included are "Manganese Color Reactions" and "Flame Colors Demonstration." Include a list of materials needed, procedures, cautions, and results. (CW)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information (including chemical reactions) and procedures used are provided for (1) three buffer demonstrations and (2) a demonstration of phase transfer catalysis and carbanion formation. (JN)

  15. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Three demonstrations are described: paramagnetic properties of Fe(11) and Fe(111), the preparation of polyurethane foam: a lecture demonstration and the electrolysis of water-fuel cell reactions. A small discussion of the concepts demonstrated is included in each demonstration's description. (MR)

  16. Chemical response of lithiated graphite with deuterium irradiation

    SciTech Connect

    Taylor, C. N.; Heim, B.; Allain, J. P.

    2011-03-01

    Lithium wall conditioning has been found to enhance plasma performance for graphite walled fusion devices such as TFTR, CDX-U, T-11M, TJ-II and NSTX. Among observed plasma enhancements is a reduction in edge density and reduced deuterium recycling. The mechanism by which lithiated graphite retains deuterium is largely unknown. Under controlled laboratory conditions, X-ray photoelectron spectroscopy (XPS) is used to observe the chemical changes that occur on ATJ graphite after lithium deposition. The chemical state of lithiated graphite is found to change upon deuterium irradiation indicating the formation Li-O-D, manifest at 532.9 {+-} 0.6 eV. Lithium-deuterium interactions are also manifest in the C 1s photoelectron energy range and show Li-C-D interactions at 291.2 {+-} 0.6 eV. Post-mortem NSTX tiles that have been exposed to air upon extraction are cleaned and examined, revealing the chemical archaeology that formed during NSTX operations. XPS spectra show strong correlation ({+-} 0.3 eV) in Li-O-D and Li-O peaks from post-mortem and control experiments, thus validating offline experiments. We report findings that show that deuterium is found to interact with lithium after lithium has already reacted with carbon and oxygen.

  17. Revealing water’s secrets: deuterium depleted water

    PubMed Central

    2013-01-01

    Background The anomalous properties of water have been of great interest for generations of scientists. However the impact of small amount of deuterium content which is always present in water has never been explored before. For the first time the fundamental properties of deuterium depleted (light) water at 4°C and 20°C are here presented. Results The obtained results show the important role of the deuterium in the properties of bulk water. At 4°C the lowest value of the kinematic viscosity (1.46 mm2/s) has been found for 96.5 ppm D/H ratio. The significant deviation in surface tension values has been observed in deuterium depleted water samples at the both temperature regimes. The experimental data provides direct evidence that density, surface tension and viscosity anomalies of water are caused by the presence of variable concentration of deuterium which leads to the formation of water clusters of different size and quantity. Conclusions The investigated properties of light water reveal the origin of the water anomalies. The new theoretical model of cluster formation with account of isotope effect is proposed. PMID:23773696

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for college level chemistry courses including: "Electrochemical Cells Using Sodium Silicate" and "A Simple, Vivid Demonstration of Selective Precipitation." Lists materials, preparation, procedures, and precautions. (CW)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Two demonstrations are described: (1) red cabbage and electrolysis of water to bring together acid/base and electrochemical concepts; and (2) a model to demonstrate acid/base conjugate pairs utilizing magnets. (SK)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Presents: (1) a simple demonstration which illustrates the driving force of entropy using the familiar effects of the negative thermal expansion coefficient of rubber; and (2) a demonstration of tetrahedral bonding using soap films. (CS)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two demonstrations including a variation of the iodine clock reaction, and a simple demonstration of refractive index. The materials, procedures, and a discussion of probable results are given for each. (CW)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are two demonstrations; "Heat of Solution and Colligative Properties: An Illustration of Enthalpy and Entropy," and "A Vapor Pressure Demonstration." Included are lists of materials and experimental procedures. Apparatus needed are illustrated. (CW)

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents two demonstrations; one on Boyle's Law, to illustrate the gas law and serve as a challenging problem for the students; the other is a modified Color Blind Traffic Light demonstration in which the oscillating reactions were speeded up. (GA)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Provides instructions on conducting four demonstrations for the chemistry classroom. Outlines procedures for demonstrations dealing with coupled oscillations, the evaporation of liquids, thioxanthone sulfone radical anion, and the control of variables and conservation of matter. (TW)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Two demonstrations are described which are suitable for introductory chemistry classes. The first involves the precipitation of silver, and the second is a demonstration of the relationship between rate constants and equilibrium constants using water and beakers. (BB)

  6. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes a demonstration involving the controlled combustion of a mixture of metals with black and smokeless powder in a small Erlenmeyer flask. Also describes demonstrations using a device that precludes breathing of hazardous vapors during class demonstrations; the device is easy to transport and use in rooms without sinks. (JN)

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations used in laboratory chemistry courses. Discusses a "pH-activated" display used to chemically and visually supplement lecture demonstrations. Outlines another demonstration designed to show that copper(II) chloride is made of two ions, blue and yellow, which are combined to produce green. (TW)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Sands, Robert; And Others

    1982-01-01

    Procedures for two demonstrations are provided. The solubility of ammonia gas in water is demonstrated by introducing water into a closed can filled with the gas, collapsing the can. The second demonstration relates scale of standard reduction potentials to observed behavior of metals in reactions with hydrogen to produce hydrogen gas. (Author/JN)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two classroom chemistry demonstrations which focus on the descriptive chemistry of bromine and iodine. Outlines the chemicals and equipment needed, experimental procedures, and discussion of one demonstration of the oxidation states of bromine and iodine, and another demonstration of the oxidation states of iodine. (TW)

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    List of materials needed, procedures used, and results obtained are provided for two demonstrations. The first is an inexpensive and quick method for demonstrating column chromatography of plant pigments of spinach extract. The second is a demonstration of cathodic protection by impressed current. (JN)

  12. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population. PMID:26509624

  13. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  14. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  15. Gas swelling and deuterium distribution in beryllium implanted with deuterium ions

    SciTech Connect

    Chernikov, V.N.; Alimov, V.Kh.; Zakharov, A.P.

    1995-09-01

    An extensive TEM study of the microstructure of Be TIP-30 irradiated with 3 and 10 keV D ions up to fluences, {Phi}, in the range from 3 x 10{sup 20} to 8 x 10{sup 21} D/m{sup 2} at temperatures T{sub irr} = 300 K, 500 K and 700 K has been carried out. Depth distributions of deuterium in the form of separate D atoms and D{sub 2} molecules have been investigated by means of SIMS and RGA methods, correspondingly. D ion irradiation is accompanied by blistering and gives rise to different kind of destructions depending mainly on the irradiation temperature. Irradiation with D ions at 300 K leads to the formation of tiny highly pressurized D{sub 2} bubbles reminiscent of He bubbles in Be. Under 3 keV D ion irradiation D{sub 2} bubbles ({bar r}{sub b} {approx} 0.7 nm) appear at a fluence as low as 3x10{sup 20} D/m{sup 2}. Irradiation at 500 K results in the development, along with relatively small facetted bubbles, of larger oblate gas-filled cavities accumulating most of injected D atoms and providing for much higher gas swelling values as compared to irradiation at 300 K. The increase of D and/or T{sub irr}, to 700 K causes the further coarsening of large cavities which are transformed into sub-surface labyrinth structures. D and He ion implantation leads to the enhanced growth of porous microcrystalline layers of c.p.h.-BeO oxide with a microstructure which differs considerably from that of oxide layers on electropolished surfaces of Be. Based on the analysis of experimental data questions of deuterium reemission, thermal desorption and trapping in Be have been discussed in detail.

  16. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  17. Large deuterium isotope effects and their use: a historical review.

    PubMed

    Krumbiegel, Peter

    2011-03-01

    Isotope effects are differences in the properties of the isotopes of an element resulting in different reaction rates of a corresponding compound, in equilibrium constants and in the spectra. Shortly after the discovery of stable isotopes of hydrogen, oxygen, and carbon, Jacob Bigeleisen formulated a theory of isotope effects and calculated possible maximum values. Large isotope effects of (2)H (deuterium) against (1)H (protium) were seen to possibly influence interpretations of reaction mechanisms if corresponding labelling is used. Much work was invested to ensure the safety of deuterium use in men in spite of the large isotope effect. On the other hand, large deuterium isotope effects gave rise to several practical applications. Examples are the enhancement of the stability of some technical products against oxidative and against hydrolytic degradation (oils, pharmaceuticals) as well as alterations of the detoxification metabolism of pharmaceuticals in vivo. PMID:21390986

  18. Ion beam technique for the measurement of deuterium diffusion coefficients

    SciTech Connect

    Lewis, M.B.; Farrell, K.

    1980-05-15

    This letter describes how a combination of the techniques of nuclear microanalysis and cathodic hydrogenation has been used to determine the diffusion coefficient of dueterium in austenitic stainless steel at room temperature. Samples charged in deuterated acid solutions to levels of about 20 at. % deuterium were quickly transferred to a scattering chamber where a depth profile of the near-surface deuterium was measured. For charging times much longer than the transfer plus anlyzing time, the deuterium profile could be described by an error function at the specimen surface. A diffusion coefficient was determined by a chi-squared test fitting procedure and shown to be consistent with values reported for other methods measured at higher temperatures.

  19. Core Deuterium Fusion and Radius Inflation in Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Jaikumar, Prashanth; Rachid Ouyed

    2016-06-01

    Several laboratory-based studies have shown that the Deuterium fusion cross-section is enhanced in a solid deuterated target as compared to a gas target, attributable to enhanced mobility of deuterons in a metal lattice. As an application, we propose that, for core temperatures and compositions characterizing hot Jupiters, screened Deuterium fusion can occur deep in the interior, and show that the amount of radius inflation from this effect can be important if there is sufficient rock-ice in the core. The mechanism of screened Deuterium fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature. We also explore the trend with planetary mass using a simple analytic model.

  20. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  1. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B. Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  2. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 1015 neutrons, 40% of the 1D simulated yield.

  3. Laser-driven polarized hydrogen and deuterium internal targets

    SciTech Connect

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-08-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy {sup 3}H(d,n){sup 4}He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration.

  4. COMPARISON OF AIR AND DEUTERIUM ON PINCH WELD BOND APPEARANCE

    SciTech Connect

    Korinko, P

    2005-10-11

    The effect that air and deuterium internal atmospheres have on the pinch weld bond quality was evaluated by conducting a scoping study using type 304L stainless steel LF-7 test stems that were fabricated for an associated study. Welds were made under cool, yet nominal conditions to exacerbate the influence of the atmosphere. The bond quality of the welds was directly related to the internal atmosphere with the air atmosphere welds being of lower quality than the deuterium atmosphere welds for nominally identical welding conditions.

  5. Synthesis of deuterium labeled 17-methyl-testosterone

    SciTech Connect

    Shinohara, Y.; Baba, S.; Kasuya, Y.

    1984-09-01

    The synthesis of two forms of selectively deuterated 17-methyl-testosterone is described. 17-Methyl-d3-testosterone was prepared by the Grignard reaction of dehydroepiandrosterone with deuterium labeled methyl magnesium iodide followed by an Oppenauer oxidation. 17-Methyl-d3-testosterone-19,19,19-d3 was prepared by treating 3,3-ethylenedioxy-5,10-epoxy-5 alpha, 10 alpha-estran-17-one with deuterium labeled methyl magnesium bromide followed by hydrolysis and dehydration of the 5 alpha-hydroxyandrostane derivative.

  6. Deuterium: Natural variations used as a biological tracer

    USGS Publications Warehouse

    Gleason, J.D.; Friedman, I.

    1970-01-01

    The suggestion is made that isotope tracing be carried out by monitoring the natural variations in deuterium concentrations. As an example, the natural variations in deuterium concentrations between food and water collected in Illinois and food and water collected in Colorado were used to determine the residence time of water in the blood and urine of rats. We observed not only a 51/2-day turnover time of water in the blood and urine, but also evidence for the influx of water vapor from the atmosphere through the lungs into the blood.

  7. Liquid deuterium cold source in graphite thermal column

    NASA Astrophysics Data System (ADS)

    Utsuro, M.; Kawai, T.; Maeda, Y.; Yamaoka, H.; Akiyoshi, T.; Okamoto, S.

    1989-01-01

    A liquid deuterium cold source with a non-spherical moderator chamber of about 4 litres was installed into the graphite thermal column of 5 MW Kyoto University Reactor (KUR). Three cold neutron holes and one very cold neutron hole are provided in the graphite for beam extractions. The operation tests with hydrogen liquefied in the condenser showed satisfactory performances and high gain factors of cold and very cold neutrons of more than 20 and 10, respectively. Neutron measurements with the deuterium moderator are now in progress.

  8. Calculation of Shock Hugoniot Curves of Precompressed Liquid Deuterium

    SciTech Connect

    Militzer, B

    2002-11-18

    Path integral Monte Carlo simulations have been used to study deuterium at high pressure and temperature. The equation of state has been derived in the temperature and density region of 10,000 {le} T {le} 1,000,000 and 0.6 {le} {rho} {le} 2.5 g cm{sup -3}. A series of shock Hugoniot curves is computed for different initial compressions in order to compare with current and future shock wave experiments using liquid deuterium samples precompressed in diamond anvil cells.

  9. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Free radical chlorination of methane is used in organic chemistry to introduce free radical/chain reactions. In spite of its common occurrence, demonstrations of the reaction are uncommon. Therefore, such a demonstration is provided, including background information, preparation of reactants/reaction vessel, introduction of reactants, irradiation,…

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Provides three descriptions of demonstrations used in various chemistry courses. Includes the use of a simple demonstration model to illustrate principles of chromatography, techniques for using balloons to teach about the behavior of gases, and the use of small concentrations of synthetic polyelectrolytes to induce the flocculation hydrophobic…

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Outlines a simple, inexpensive way of demonstrating electroplating using the reaction between nickel ions and copper metal. Explains how to conduct a demonstration of the electrolysis of water by using a colored Na2SO4 solution as the electrolyte so that students can observe the pH changes. (TW)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are three demonstrations: "The Construction and Use of Commercial Voltaic Cell Displays in Freshman Chemistry"; Dramatizing Isotopes: Deuterated Ice Cubes Sink"; and "A Simple Apparatus to Demonstrate Differing Gas Diffusion Rates (Graham's Law)." Materials, procedures, and safety considerations are discussed. (CW)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Described is a demonstration utilized to measure the heat of vaporization using the Clausius-Clapeyron equation. Explained is that when measurement is made as part of a demonstration, it raises student's consciousness that chemistry is experimentally based. (Author/DS)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) modification of copper catalysis demonstration apparatus; (2) experiments in gas-liquid chromatography with simple gas chromatography at room temperature; and (3) equilibria in silver arsenate-arsenic acid and silver phosphate-phosphoric acid systems. Procedures and materials needed are provided.…

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two chemistry demonstrations: (1) an alternative method for the demonstration of the properties of alkali metals, water is added to small amounts of metal; (2) an exploration of the properties of hydrogen, helium, propane, and carbon dioxide using an open trough and candle. (MVL)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Described are demonstrations designed to reveal the important "nonsolvent" properties of water through its interaction with a toy called "Magic Sand" and other synthetic silica derivatives, especially those bonded with organic moities. The procedures for seven demonstrations along with a discussion of the effects are presented. (CW)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Two demonstrations are described: (1) a variant of preparing purple benzene by phase transfer catalysis with quaternary ammonium salts and potassium permanganate in which crown ethers are used; (2) a corridor or "hallway" demonstration in which unknown molecular models are displayed and prizes awarded to students correctly identifying the…

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides directions for setup and performance of two demonstrations. The first demonstrates the principles of Raoult's Law; using a simple apparatus designed to measure vapor pressure. The second illustrates the energy available from alcohol combustion (includes safety precautions) using an alcohol-fueled missile. (JM)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents two demonstrations for classroom use related to precipitation of ferrous hydroxide and to variation of vapor pressure with temperature. The former demonstration is simple and useful when discussing solubility of ionic compounds electrode potential of transition elements, and mixed valence compounds. (Author/SA)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Discusses a supplement to the "water to rose" demonstration in which a pink color is produced. Also discusses blood buffer demonstrations, including hydrolysis of sodium bicarbonate, simulated blood buffer, metabolic acidosis, natural compensation of metabolic acidosis, metabolic alkalosis, acidosis treatment, and alkalosis treatment. Procedures…

  3. Complete Demonstration.

    ERIC Educational Resources Information Center

    Yelon, Stephen; Maddocks, Peg

    1986-01-01

    Describes four-step approach to educational demonstration: tell learners they will have to perform; what they should notice; describe each step before doing it; and require memorization of steps. Examples illustrate use of this process to demonstrate a general mental strategy, and industrial design, supervisory, fine motor, and specific…

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two laboratory demonstrations in chemistry. One uses dry ice, freon, and freezer bags to demonstrate volume changes, vapor-liquid equilibrium, a simulation of a rain forest, and vaporization. The other uses the clock reaction technique to illustrate fast reactions and kinetic problems in releasing carbon dioxide during respiration. (TW)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Background information and procedures are provided for a second part to the dichromate volcano demonstration. The green ash produced during the demonstration is reduced to metal using aluminothermy (Goldschmide process). Also describes suitable light sources and spectroscopes for student observation of emission spectra in lecture halls. (JN)

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations designed to help chemistry students visualize certain chemical properties. One experiment uses balloons to illustrate the behavior of gases under varying temperatures and pressures. The other uses a makeshift pea shooter and a commercial model to demonstrate atomic structure and the behavior of high-speed particles.…

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Provided are two demonstrations for an introductory course in chemistry. The first one emphasizes the observation and the interpretation of facts to form hypotheses during the heating of a beaker of water. The second demonstration shows the liquid phase of carbon dioxide using dry ice and a pressure gauge. (YP)

  8. 78 FR 79021 - Request for a License To Export; Deuterium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... COMMISSION Request for a License To Export; Deuterium Pursuant to 10 CFR 110.70 (b) ``Public Notice of....gov/reading-rm.html at the NRC Homepage. A request for a hearing or petition for leave to intervene... Secretary, U.S. Department of State, Washington, DC 20520. A request for a hearing or petition for leave...

  9. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  10. URBAN STORMWATER TRACING WITH THE NATURALLY OCCURRING DEUTERIUM ISOTOPE

    EPA Science Inventory

    Measurements of the naturally-occurring deuterium isotope assist the tracing of water components during wet-weather flows in an urban watershed. A transect of installations in the vadose and saturated zones was completed in the vicinity of a small stream and storm sewer. High-r...

  11. Defect trapping of ion-implanted deuterium in nickel

    SciTech Connect

    Besenbacher, F.; Bottiger, J.; Myers, S.M.

    1982-05-01

    Trapping of ion-implanted deuterium by lattice defects in nickel has been studied by ion-beam-analysis techniques in the temperature range between 30 and 380 K. The deuterium-depth profiles were determined by measuring either the ..cap alpha.. particles or the protons from the /sup 3/He-excited nuclear reaction D(/sup 3/He,..cap alpha..)p, and the deuterium lattice location was obtained by means of ion channeling. Linear-ramp annealing (1 K/min) following a 10-keV D/sup +/ implantation in nickel produced two annealing stages at 275 and 320 K, respectively. The release-vs-temperature data were analyzed by solving the diffusion equation with appropriate trapping terms, yielding 0.24 and 0.43 eV for the trap-binding enthalpies associated with the two stages, referred to as an untrapped solution site. The 0.24-eV trap corresponds to deuterium close to the octahedral interstitial site where it is believed to be trapped at a vacancy, whereas it is suggested that the defect correlated with the 0.43-eV trap is a multiple-vacancy defect. The previously air-exposed and electropolished nickel surface was essentially permeable; the surface-recombination coefficient was determined to be K> or approx. =10/sup -19/ cm/sup 4//s at 350 K.

  12. Deuterium Fractionation and Ion-Molecule Reactions at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Schlemmer, Stephan; Asvany, Oskar; Hugo, Edouard; Gerlich, Dieter

    2005-08-01

    Understanding deuterium fractionation is currently one of the greatest challenges in astrochemistry. In this contribution deuteration experiments of the series CH_n^+, n=2-5, in a low temperature 22-pole ion trap are used to systematically test a simple chemical rule predicting which molecular ion undergoes deuterium exchange in collisions with HD. CH_4^+ turns out to be a problem case, where prediction fails. The method of laser induced reaction (LIR) is used to determine the population ratio of the lowest ortho-to-para states of H_2D^+ relaxed in collisions with H_2. Preliminary results indicate that the ortho-to-para ratio of H_2D^+ is substantially reduced in para-H_2. This points at the important role of nuclear spin in deuterium fractionation, in particular at the destruction of ortho-H_2D^+ in collisions with ortho-H_2. More systematic LIR experiments are needed for a chemical model of deuterium fractionation including state-to-state modifications of the species involved.

  13. Gas-induced swelling of beryllium implanted with deuterium ions

    NASA Astrophysics Data System (ADS)

    Chernikov, V. N.; Alimov, V. Kh.; Markin, A. V.; Gorodetsky, A. E.; Kanashenko, S. L.; Zakharov, A. P.; Kupriyanov, I. B.

    1996-10-01

    An extensive TEM study of the microstructure of Be TIP-30 irradiated with 3 and 10 keV D ions up to fluences, Φ, in the range from 3 × 10 20 to 8 × 10 21 D/m 2 at temperatures, Tirr = 300, 500 and 700 K has been carried out. Depth distributions of deuterium in a form of separate D atoms and D 2 molecules have been investigated by means of SIMS (secondary ion mass spectrometry) and RGA (residual gas analysis) methods, correspondingly. D ion implantation is accompanied by blistering and gives rise to processes of gas-induced cavitation which are very sensitive to the irradiation temperature. At Tirr = 300 K tiny gas bubbles (about 1 nm in size) pressurized with molecular deuterium are developed with parameters resembling those of helium bubbles in Be. Irradiation at Tirr ≥ 500 K leads to the appearance of coarse deuterium-filled cavities which can form in sub-surface layers different kinds of oblate labyrinth structures. Questions of reemission, thermal desorption and trapping of deuterium in Be have been discussed.

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents a recipe for the Nylon Rope Trick, which is considered to be one of the most spectacular demonstrations in chemistry. Materials for growing the polymer and some safety precautions are given. (SA)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1990-01-01

    Included are three demonstrations that include the phase change of ice when under pressure, viscoelasticity and colloid systems, and flame tests for metal ions. The materials, procedures, probable results, and applications to real life situations are included. (KR)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations suitable for chemistry instruction. One involves fractal structures obtained by electrodeposition of silver at an air-water interface and the other deals with molecular weights and music. (TW)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Background information, list of materials needed, and procedures used are provided for a demonstration involving the transformation of a hydrophobic liquid to a partially hydrophobic semisolid. Safety considerations are noted. (JN)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Reports two electrochemical demonstrations. Uses a hydrogen-oxygen fuel cell to power a clock. Includes description of methods and materials. Investigates the "potato clock" used with different fruits. Lists emf and current for various fruit and electrode combinations. (ML)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Rehfeld, D. W.; And Others

    1988-01-01

    Describes two demonstrations (1) a dust explosion using a coffee can, candle, rubber tubing, and cornstarch and (2) forming a silicate-polyvinyl alcohol polymer which can be pressed into plastic sheets or molded. Gives specific instructions. (MVL)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Two demonstrations are presented: a verification of the discontinuity of matter based on the law of definite proportions, and a series of consecutive chemical reactions featuring reversible equilibria. (BB)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presents three demonstrations suitable for undergraduate chemistry classes. Focuses on experiments with calcium carbide, the induction by iron of the oxidation of iodide by dichromate, and the classical iodine clock reaction. (ML)

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1982-01-01

    Two demonstrations are described: (1) a sunset effect using a gooseneck lamp and 20 sheets of paper and (2) the preparation and determination of structural features of dimethyl sulfoxide (DMSO) by infrared spectroscopy. (SK)

  4. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Describes a room-temperature method for demonstrating phosphorescence by including samples in a polymer matrix. Also discusses the Old Nassau Reaction, a clock reaction which turns orange then black. (MLH)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for use in college chemistry classes. Includes "Spectroscopy in Large Lecture Halls" and "The Endothermic Dissolution of Ammonium Nitrate." Gives materials lists and procedures as well as a discussion of the results. (CW)

  6. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  7. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  8. Tritium production from a low voltage deuterium discharge on palladium and other metals

    SciTech Connect

    Claytor, T.N.; Jackson, D.D.; Tuggle, D.G.

    1995-09-01

    Over the past year the authors have been able to demonstrate that a plasma loading method produces an exciting and unexpected amount of tritium from small palladium wires. In contrast to electrochemical hydrogen or deuterium loading of palladium, this method yields a reproducible tritium generation rate when various electrical and physical conditions are met. Small diameter wires (100--250 microns) have been used with gas pressures above 200 torr at voltages and currents of about 2,000 V at 3--5 A. By carefully controlling the sputtering rate of the wire, runs have been extended to hundreds of hours allowing a significant amount (> 10`s nCi) of tritium to accumulate. they show tritium generation rates for deuterium-palladium foreground runs that are up to 25 times larger than hydrogen-palladium control experiments using materials from the same batch. They illustrate the difference between batches of annealed palladium and as received palladium from several batches as well as the effect of other metals (Pt, Ni, Nb, Zr, V, W, Hf) to demonstrate that the tritium generation rate can vary greatly from batch to batch.

  9. Development of Approaches for Deuterium Incorporation in Plants

    SciTech Connect

    Evans, Barbara R

    2015-01-01

    Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium (2H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40 50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. 1H2H-NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30 40 % deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.

  10. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  11. [Isotopic effects of low concentration of deuterium in water on biological systems].

    PubMed

    Kirkina, A A; Lobyshev, V I; Lopina, O D; Doronin, Yu K; Burdeinaya, T N; Chernopyatko, A S

    2014-01-01

    Isotopic effects of deuterium in water are studied in a broad range of concentrations on a number of biological objects of different organization levels. The results obtained show that biological objects are sensitive to variations of isotope composition in water. A decrease or increase in deuterium concentrations in water may cause activation or inhibition of biological functions. The values of biological isotopic effects of low deuterium concentration may even be higher than those of high deuterium concentration. No regularity in response for all the objects studied failed to find out in a range of deuterium concentration in water from 4 ppm to 1%. PMID:25702494

  12. Deuterium removal from radiation damage in tungsten by isotopic exchange with hydrogen atomic beam

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Markelj, S.; Efimov, V. S.; Gasparyan, Yu M.

    2016-09-01

    The tungsten samples were pre-irradiated with self-ions to create radiation-induced defects and then exposed to the deuterium atomic beam. The deuterium removal was studied by isotopic exchange with atomic hydrogen beam. Modification of the deuterium depth profile in self-ion irradiated tungsten under isotopic exchange up to a depth of 6 μm was measured in- situ by nuclear reaction analysis. The total deuterium retention after isotopic exchange was measured by thermal desorption spectroscopy. It is shown that the efficiency of the deuterium removal increases with increasing of the hydrogen incident flux, incident energy and temperature of the tungsten sample.

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations for use in chemistry instruction. The first illustrates the preparation of a less common oxide of iron, showing why this oxide is rare. The second is an explosion reaction of hydrogen and oxygen that is recommended for use as an attention-getting device. (TW)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides instructions and a list of materials needed to demonstrate: (1) a model of the quantum mechanical atom; (2) principles involved in metal corrosion and in the prevention of this destructive process by electrochemical means; and (3) a Thermit reaction, modified to make it more dramatic and interesting for students. (SK)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Cliche, Jean-Marie; And Others

    1988-01-01

    Describes two demonstrations: 1) the effect of polarity on solubility using sodium dichromate, TTE, ligroin, and water to form nonpolar-polar-nonpolar layers with the polar layer being colored; 2) determination of egg whites to be yellow by determining the content of yellow colored riboflavin in the egg white. (MVL)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  18. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1976-01-01

    Describes two demonstrations: one that illustrates the attainment of equilibrium in first-order reactions by changing the volumes of two beakers of water at a specified rate, and another that illustrates the role of indicators in showing pH changes in buffer solutions. (MLH)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Describes two demonstrations that require almost no preparation time, are visually stimulating, and present a variety of material for class discussion (with sample questions provided). The first involves a sodium bicarbonate hydrochloric acid volcano; the second involves a dissolving polystyrene cup. Procedures used and information on…

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Two demonstrations are described. The first shows the effect of polarity on solubility. The second is based on the unexpected formation of a precipitate of barium nitrate when barium carbonate or barium phosphate is treated with dilute nitric acid. List of materials needed and procedures used are included. (JN)

  2. A constellation of deuterium-labeled silanes as a simple mechanistic probe not requiring absolute configuration determination.

    PubMed

    Fallon, Thomas; Oestreich, Martin

    2015-10-12

    A new stereochemical probe for mechanisms at the silicon atom that is based on a deuterium-labeled silolane is synthesized and evaluated. The key synthetic step involves the hydrogenation of a 2,5-dihydrosilole with deuterium gas, giving a complex mixture of isochronic stereoisotopologues. The overall stereochemical imbalance of this mixture is evident in its (2) H NMR spectrum, which provides a good qualitative measure of changes in the configuration at the silicon atom. The technique is rapid, easy to use, and overcomes limitations and biases of traditional methods. The utility of this new procedure is demonstrated by tracking the stereochemical course of several classical reactions as well as contemporary catalytic transformations involving bond formation at the silicon atom.

  3. The ratio of deuterium to hydrogen in interstellar space. III - The lines of sight to Zeta Puppis and Gamma Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Vidal-Madjar, A.; Laurent, C.; Bonnet, R. M.; York, D. G.

    1977-01-01

    An extensive set of measurements of the ratio of deuterium to hydrogen in the interstellar medium has been undertaken. The general observing program is described along with the data reduction techniques used to separate the complex deuterium and hydrogen profiles, and the results of the measurements for two stars, Zeta Pup and Gamma Cas. For Gamma Cas, log N(D)/N(H) is found to be approximately -4.8, in agreement with previous measurements. For Zeta Pup, a complicated structure of absorbing clouds in the interstellar medium is inferred. The best value of log N(D)/N(H) is about -4.6 for each of two components. One component is probably more complex than can be demonstrated directly at the resolution employed, and log N(D)N(H) could be -4.0 or larger in this component.

  4. Deuterium excess in precipitation of Alpine regions - moisture recycling.

    PubMed

    Froehlich, Klaus; Kralik, Martin; Papesch, Wolfgang; Rank, Dieter; Scheifinger, Helfried; Stichler, Willibald

    2008-03-01

    The paper evaluates long-term seasonal variations of the deuterium excess (d-excess = delta(2)H - 8. delta(18)O) in precipitation of stations located north and south of the main ridge of the Austrian Alps. It demonstrates that sub-cloud evaporation during precipitation and continental moisture recycling are local, respectively, regional processes controlling these variations. In general, sub-cloud evaporation decreases and moisture recycling increases the d-excess. Therefore, evaluation of d-excess variations in terms of moisture recycling, the main aim of this paper, includes determination of the effect of sub-cloud evaporation. Since sub-cloud evaporation is governed by saturation deficit and distance between cloud base and the ground, its effect on the d-excess is expected to be lower at mountain than at lowland/valley stations. To determine quantitatively this difference, we examined long-term seasonal d-excess variations measured at three selected mountain and adjoining valley stations. The altitude differences between mountain and valley stations ranged from 470 to 1665 m. Adapting the 'falling water drop' model by Stewart [J. Geophys. Res., 80(9), 1133-1146 (1975).], we estimated that the long-term average of sub-cloud evaporation at the selected mountain stations (altitudes between about 1600 and 2250 m.a.s.l.) is less than 1 % of the precipitation and causes a decrease of the d-excess of less than 2 per thousand. For the selected valley stations, the corresponding evaporated fraction is at maximum 7 % and the difference in d-excess ranges up to 8 per thousand. The estimated d-excess differences have been used to correct the measured long-term d-excess values at the selected stations. Finally, the corresponding fraction of water vapour has been estimated that recycled by evaporation of surface water including soil water from the ground. For the two mountain stations Patscherkofel and Feuerkogel, which are located north of the main ridge of the Alps, the

  5. Multiphoton absorption and decomposition of fluoroform-d: Laser isotope separation of deuterium

    SciTech Connect

    Evans, D.K.; McAlpine, R.D.; Adams, H.M.

    1982-10-01

    Multiphoton absorption (MPA) studies of fluoroform-d, a molecule of interest for potential laser based hydrogen isotope separation processes, are reported for CDF/sub 3/ pressures 0.2--1.3 kPa, and for a variety of 10 ..mu..m CO/sub 2/ laser lines with pulse widths of 2 or 6 ns and fluences within the range 10/sup -3/--70 J/cm/sup 2/. Unlike SF/sub 6/, no red shift of the MPA spectrum relative to the small signal spectrum was observed at high fluence. Selective multiphoton decomposition (MPD) experiments using the 10R(26) line, 6 ns pulse to excite the CDF/sub 3/ component in natural-abundance CHF/sub 3/ (approx. 150 ppm D/H) at a pressure of 13.3 kPa resulted in the recovery of water enriched up to 30% in deuterium: a measured isotope enrichment of > or =2000 fold. This demonstrates that a product, highly enriched in deuterium, can be recovered from the selective MPD of fluoroform.

  6. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    SciTech Connect

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D{sub 2}O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ({sup 13}C-({sup 1}H)) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of (1-{sup 13}C)glucose. Label flux was directed primarily into newly-synthesized {sup 13}C-labeled glycogen. A multiple resonance ({sup 1}H, {sup 13}C, {sup 31}P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the {sup 13}C-({sup 1}H)/{sup 31}P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed.

  7. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes.

    PubMed

    Jensen, Pernille Foged; Jørgensen, Thomas J D; Koefoed, Klaus; Nygaard, Frank; Sen, Jette Wagtberg

    2013-08-01

    Characterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads prior to the HDX-MS experiment. However, when studying protein complexes of more than two proteins, immobilization can possibly introduce steric limitations to the interactions. Here, we present a method based on the high affinity biotin-streptavidin interaction that allows selective capture of biotinylated proteins even under the extreme conditions for hydrogen/deuterium exchange quenching i.e. pH 2.5 and 0 °C. This biotin-streptavidin capture strategy allows hydrogen/deuterium exchange to occur in proteins in solution and enables characterization of specific proteins in heteromultimeric protein complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor receptor (EGFR). We present a workflow for biotinylation and characterization of recombinant antibodies and demonstrate affinity capture of biotinylated antibodies under hydrogen/deuterium exchange quench conditions by the biotin-streptavidin strategy.

  8. Detection of atomic deuterium in the upper atmosphere of Mars.

    PubMed

    Krasnopolsky, V A; Mumma, M J; Gladstone, G R

    1998-06-01

    High-resolution spectroscopy of Mars' atmosphere with the Hubble Space Telescope revealed the deuterium Lyman alpha line at an intensity of 23 +/- 6 rayleighs. This measured intensity corresponds to HD/H2 = 1.5 +/- 0.6 x 10(-4), which is smaller by a factor of 11 than HDO/H2O. This indicates that fractionation of HD/H2 relative to that of HDO/H2O is not kinetically controlled by the rates of formation and destruction of H2 and HD but is thermodynamically controlled by the isotope exchange HD + H2O left and right arrow HDO + H2. Molecular hydrogen is strongly depleted in deuterium relative to water on Mars because of the very long lifetime of H2 (1200 years). The derived isotope fractionation corresponds to an estimate of a planetwide reservoir of water ice about 5 meters thick that is exchangeable with the atmosphere.

  9. Results from deuterium-tritium tokamak confinement experiments

    SciTech Connect

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues.

  10. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    SciTech Connect

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; Doeppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  11. Detection of atomic deuterium in the upper atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Mumma, M. J.; Gladstone, G. R.

    1998-01-01

    High-resolution spectroscopy of Mars' atmosphere with the Hubble Space Telescope revealed the deuterium Lyman alpha line at an intensity of 23 +/- 6 rayleighs. This measured intensity corresponds to HD/H2 = 1.5 +/- 0.6 x 10(-4), which is smaller by a factor of 11 than HDO/H2O. This indicates that fractionation of HD/H2 relative to that of HDO/H2O is not kinetically controlled by the rates of formation and destruction of H2 and HD but is thermodynamically controlled by the isotope exchange HD + H2O left and right arrow HDO + H2. Molecular hydrogen is strongly depleted in deuterium relative to water on Mars because of the very long lifetime of H2 (1200 years). The derived isotope fractionation corresponds to an estimate of a planetwide reservoir of water ice about 5 meters thick that is exchangeable with the atmosphere.

  12. Multiple spherically converging shock waves in liquid deuterium

    SciTech Connect

    Boehly, T. R.; Goncharov, V. N.; Seka, W.; Hu, S. X.; Marozas, J. A.; Meyerhofer, D. D.; Celliers, P. M.; Hicks, D. G.; Barrios, M. A.; Fratanduono, D.; Collins, G. W.

    2011-09-15

    To achieve ignition, inertial confinement fusion target designs use a sequence of shocks to compress the target before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of these shocks will be precisely set during a series of tuning experiments that adjust the laser pulse to achieve optimal conditions. We report measurements of the velocity and timing of multiple, converging shock waves inside spherical targets filled with liquid (cryogenic) deuterium. These experiments produced the highest reported shock velocity observed in liquid deuterium (U{sub s} = 135 km/s at {approx}25 Mb) and observed an increase in shock velocity due to spherical convergence. These direct-drive experiments are best simulated when hydrodynamic codes use a nonlocal model for the transport of absorbed laser energy from the coronal plasma to the ablation surface.

  13. Effects of Low-Level Deuterium Enrichment on Bacterial Growth

    PubMed Central

    Xie, Xueshu; Zubarev, Roman A.

    2014-01-01

    Using very precise (±0.05%) measurements of the growth parameters for bacteria E. coli grown on minimal media, we aimed to determine the lowest deuterium concentration at which the adverse effects that are prominent at higher enrichments start to become noticeable. Such a threshold was found at 0.5% D, a surprisingly high value, while the ultralow deuterium concentrations (≤0.25% D) showed signs of the opposite trend. Bacterial adaptation for 400 generations in isotopically different environment confirmed preference for ultralow (≤0.25% D) enrichment. This effect appears to be similar to those described in sporadic but multiple earlier reports. Possible explanations include hormesis and isotopic resonance phenomena, with the latter explanation being favored. PMID:25033078

  14. Techniques for determining total body water using deuterium oxide

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.

    1990-01-01

    The measurement of total body water (TBW) is fundamental to the study of body fluid changes consequent to microgravity exposure or treatment with microgravity countermeasures. Often, the use of radioactive isotopes is prohibited for safety or other reasons. It was selected and implemented for use by some Johnson Space Center (JCS) laboratories, which permitted serial measurements over a 14 day period which was accurate enough to serve as a criterion method for validating new techniques. These requirements resulted in the selection of deuterium oxide dilution as the method of choice for TBW measurement. The development of this technique at JSC is reviewed. The recommended dosage, body fluid sampling techniques, and deuterium assay options are described.

  15. Detection of atomic deuterium in the upper atmosphere of Mars.

    PubMed

    Krasnopolsky, V A; Mumma, M J; Gladstone, G R

    1998-06-01

    High-resolution spectroscopy of Mars' atmosphere with the Hubble Space Telescope revealed the deuterium Lyman alpha line at an intensity of 23 +/- 6 rayleighs. This measured intensity corresponds to HD/H2 = 1.5 +/- 0.6 x 10(-4), which is smaller by a factor of 11 than HDO/H2O. This indicates that fractionation of HD/H2 relative to that of HDO/H2O is not kinetically controlled by the rates of formation and destruction of H2 and HD but is thermodynamically controlled by the isotope exchange HD + H2O left and right arrow HDO + H2. Molecular hydrogen is strongly depleted in deuterium relative to water on Mars because of the very long lifetime of H2 (1200 years). The derived isotope fractionation corresponds to an estimate of a planetwide reservoir of water ice about 5 meters thick that is exchangeable with the atmosphere. PMID:9616115

  16. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE PAGES

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  17. Three-dimensional microscopy of deuterium in tungsten

    NASA Astrophysics Data System (ADS)

    Peeper, K.; Moser, M.; Reichart, P.; Markina, E.; Elgeti (Lindig, S.; Balden, M.; Schwarz-Selinger, Th; Mayer, M.; Dollinger, G.

    2014-04-01

    The hydrogen isotope retention in tungsten is an important issue for fusion devices. In this paper we study the possibility of using a μm-focused deuterium beam in order to quantify deuterium distributions in microscopic dimensions. Due to the lack of cross-section data for deuteron-deuteron-scattering (dd-scattering) a validated reference sample is needed. For this purpose we used a 15 μm thick aluminum foil covered by a-C:D-layers that have been deposited in a CD4 plasma discharge from both sides. At the SNAKE facility of the Munich tandem accelerator we already established a three-dimensional microscopy of hydrogen using protons within an energy range between 17 and 25 MeV. Now, we have tested the possibility for deuteron microscopy. As a first application we analyzed a 25 μm foil implanted with 2.0 × 1020 atom cm-2 deuterons.

  18. Deuterium Retention in Pure and Mixed Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.

    Depth profiles of D atoms and D2 molecules in beryllium (Be), beryllium oxide (BeO), tungsten (W), chemically vapor deposited (CVD) tungsten carbide WC, and tungsten trioxide (WO3) both implanted with D ions at energies in the range of several keV and exposed to a low energy (30–200 eV) D plasma have been determined using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA) measurements in the course of surface sputtering. Additionally, the deuterium retention in carbon (C) and tungsten-carbon (W-C) mixed films deposited by reactive magnetron sputtering in D2 atmosphere has been investigated. Mechanisms of the deuterium trapping in these materials are discussed.

  19. Deuterium enhancement in H3+ in pre-stellar cores.

    PubMed

    Vastel, Charlotte; Phillips, T G; Caselli, P; Ceccarelli, C; Pagani, L

    2006-11-15

    Deuterium enhancement of monodeuterated species has been recognized for more than 30 years as a result of chemical fractionation that results from the difference in zero-point energies of deuterated and hydrogenated molecules. The key reaction is the deuteron exchange in the reaction between HD, the reservoir of deuterium in dark interstellar clouds, and the H3+ molecular ion, leading to the production of H2D+ molecule, and the low temperature in dark interstellar clouds favours this production. Furthermore, the presence of multiply deuterated species have incited our group to proceed further and consider the subsequent reaction of H2D+ with HD, leading to D2H+, which can further react with HD to produce D3+. In pre-stellar cores, where CO was found to be depleted, this production should be increased as CO would normally destroy H3+. The first model including D2H+ and D3+ predicted that these molecules should be as abundant as H2D+. The first detection of the D2H+ was made possible by the recent laboratory measurement for the frequency of the fundamental line of para-D2H+. Here, we present observations of H2D+ and D2H+ towards a sample of dark clouds and pre-stellar cores and show how the distribution of ortho-H2D+ (1(1,0)-1(1,1)) can trace the deuterium factory in pre-stellar cores. We also present how future instrumentation will improve our knowledge concerning the deuterium enhancement of H3+.

  20. Deuterium hyperfine structure in interstellar C3HD.

    PubMed

    Bell, M B; Watson, J K; Feldman, P A; Matthews, H E; Madden, S C; Irvine, W M

    1987-05-22

    The deuterium nuclear quadrupole hyperfine structure of the transition 1(10)-1(01) of the ring molecule cyclopropenylidene-d1 (C3HD) has been observed in emission from interstellar molecular clouds. The narrowest linewidths (approximately 7 kHz) so far observed are in the cloud L1498. The derived D coupling constants Xzz = 186.9(1.4) kHz, eta=0.063(18) agree well with correlations based on other molecules.

  1. Nucleon structure at large x: nuclear effects in deuterium

    SciTech Connect

    Wally Melnitchouk

    2010-07-01

    I review quark momentum distributions in the nucleon at large momentum fractions x. Particular attention is paid to the impact of nuclear effects in deuterium on the d/u quark distribution ratio as x -> 1. A new global study of parton distributions, using less restrictive kinematic cuts in Q^2 and W^2, finds strong suppression of the d quark distribution once nuclear corrections are accounted for.

  2. Kinetic isotope effects for fast deuterium and proton exchange rates

    PubMed Central

    Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-01-01

    By monitoring the effect of deuterium decoupling on the decay of transverse 15N magnetization in D–15N spin pairs during multiple-refocusing echo sequences, we have determined fast D–D exchange rates k D and compared them with fast H–H exchange rates k H in tryptophan to determine the kinetic isotope effect as a function of pH and temperature. PMID:27009684

  3. Cryogenic distillation facility for isotopic purification of protium and deuterium

    SciTech Connect

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.; Fedorchenko, O.; Ganzha, V.; Ivshin, K.; Kravtsov, P. Trofimov, V.; Vasilyev, A.; Vasyanina, T.; Vorobyov, A.; Vznuzdaev, M.; Kammel, P.; Petitjean, C.

    2015-12-15

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  4. Measurement of the deuterium Balmer series line emission on EAST

    NASA Astrophysics Data System (ADS)

    Wu, C. R.; Huang, J.; Gao, W.; Gao, W.; Xu, Z.; Chang, J. F.; Hou, Y. M.; Jin, Z.; Xu, J. C.; Duan, Y. M.; Zhang, P. F.; Chen, Y. J.; Zhang, L.; Wu, Z. W.; Li, J. G.

    2016-11-01

    Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ˜0.0049 nm with 2400 gr/mm grating to measure the Dα(Hα) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissions and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (Te, ne) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.

  5. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; O'D. Alexander, Conel M.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2016-03-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH3+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ˜20-40 au, CH4 can reach {{D}}/{{H}}˜ 2× {10}-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.

  6. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  7. Deuterium REDOR: Principles and Applications for Distance Measurements

    NASA Astrophysics Data System (ADS)

    Sack, I.; Goldbourt, A.; Vega, S.; Buntkowsky, G.

    1999-05-01

    The application of short composite pulse schemes ([figure] and [figure]) to the rotational echo double-resonance (REDOR) spectroscopy ofX-2H (X: spin{1}/{2}, observed) systems with large deuterium quadrupolar interactions has been studied experimentally and theoretically and compared with simple 180° pulse schemes. The basic properties of the composite pulses on the deuterium nuclei have been elucidated, using average Hamiltonian theory, and exact simulations of the experiments have been achieved by stepwise integration of the equation of motion of the density matrix. REDOR experiments were performed on15N-2H in doubly labeled acetanilide and on13C-2H in singly2H-labeled acetanilide. The most efficient REDOR dephasing was observed when [figure] composite pulses were used. It is found that the dephasing due to simple 180° deuterium pulses is about a factor of 2 less efficient than the dephasing due to the composite pulse sequences and thus the range of couplings observable byX-2H REDOR is enlarged toward weaker couplings, i.e., larger distances. From these experiments the2H-15N dipolar coupling between the amino deuteron and the amino nitrogen and the2H-13C dipolar couplings between the amino deuteron and the α and β carbons have been elucidated and the corresponding distances have been determined. The distance data from REDOR are in good agreement with data from X-ray and neutron diffraction, showing the power of the method.

  8. Cryogenic distillation facility for isotopic purification of protium and deuterium

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.; Fedorchenko, O.; Ganzha, V.; Ivshin, K.; Kammel, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vasyanina, T.; Vorobyov, A.; Vznuzdaev, M.

    2015-12-01

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  9. Cryogenic distillation facility for isotopic purification of protium and deuterium.

    PubMed

    Alekseev, I; Arkhipov, Ev; Bondarenko, S; Fedorchenko, O; Ganzha, V; Ivshin, K; Kammel, P; Kravtsov, P; Petitjean, C; Trofimov, V; Vasilyev, A; Vasyanina, T; Vorobyov, A; Vznuzdaev, M

    2015-12-01

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogen isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.

  10. The water, deuterium, gas and uranium content of tektites

    USGS Publications Warehouse

    Friedman, I.

    1958-01-01

    The water content, deuterium concentration of the water, total gas and uranium contents were determined on tektite samples and other glass samples from Texas, Australia, Philippine Islands, Java, French Indo-China, Czechoslovakia, Libyan Desert, Billiton Island, Thailand, French West Africa, Peru, and New Mexico. The water content ranges from 0.24 per cent for the Peru tektite, to 0.0002 per cent for a moldavite. The majority of the tektites have less than 0.05 per cent water, and average 0.005 per cent H2O by weight. No other gases were detected, the lower detection limit being about 1 p.p.m. by weight. The deuterium content of the water in tektites is in the same range as that in terrestrial waters, and varies from 0.010 mole per cent to 0.0166 mole per cent deuterium. The uranium content is about from 1 to 3 p.p.m. The possible origin of tektites is discussed. The experimental data presented favour their being originally terrestrial, but produced by some catastrophic event. An extra-terrestrial source is not ruled out. ?? 1958.

  11. Vicinal deuterium perturbations on hydrogen NMR chemical shifts in cyclohexanes.

    PubMed

    O'Leary, Daniel J; Allis, Damian G; Hudson, Bruce S; James, Shelly; Morgera, Katherine B; Baldwin, John E

    2008-10-15

    The substitution of a deuterium for a hydrogen is known to perturb the NMR chemical shift of a neighboring hydrogen atom. The magnitude of such a perturbation may depend on the specifics of bonding and stereochemical relationships within a molecule. For deuterium-labeled cyclohexanes held in a chair conformation at -80 degrees C or lower, all four possible perturbations of H by D as H-C-C-H is changed to D-C-C-H have been determined experimentally, and the variations seen, ranging from 6.9 to 10.4 ppb, have been calculated from theory and computational methods. The predominant physical origins of the NMR chemical shift perturbations in deuterium-labeled cyclohexanes have been identified and quantified. The trends defined by the Delta delta perturbation values obtained through spectroscopic experiments and by theory agree satisfactorily. They do not match the variations typically observed in vicinal J(H-H) coupling constants as a function of dihedral angles.

  12. Deuterium thermal desorption from vacancy clusters in tungsten

    NASA Astrophysics Data System (ADS)

    Ryabtsev, S.; Gasparyan, Yu.; Zibrov, M.; Shubina, A.; Pisarev, A.

    2016-09-01

    Deuterium interaction with vacancy clusters in tungsten was studied by means of thermal desorption spectroscopy (TDS). A recrystallized W foil was used as a sample, and the vacancy clusters were formed in the bulk by irradiation with 10 keV/D ions to the fluence of 3 × 1019 D/m2 and subsequent annealing at the temperature of 800 K. Then the sample was loaded with deuterium (0.67 keV/D ions with a fluence of 1 × 1019 D/m2), and TDS measurements with varying heating rates β in the range of 0.25-4 K/s were performed. The high temperature peak with the maximum at around 700 K was attributed to deuterium desorption from vacancy clusters and the detrapping energy for this type of defects was determined from the slope of the Arrhenius-like plot ln (β / Tm2) versus 1 /Tm , where Tm is the peak position. The detrapping energy calculated this way is 2.10 ± 0.02 eV.

  13. Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation.

    PubMed

    Wei, Hui; Ahn, Joomi; Yu, Ying Qing; Tymiak, Adrienne; Engen, John R; Chen, Guodong

    2012-03-01

    PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.

  14. GASIS demonstration

    SciTech Connect

    Vidas, E.H.

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  15. Concentration and removal of tritium and/or deuterium from water contaminated with tritium and/or deuterium

    DOEpatents

    Meyer, Thomas J.; Narula, Poonam M.

    2001-01-01

    Concentration of tritium and/or deuterium that is a contaminant in H.sub.2 O, followed by separation of the concentrate from the H.sub.2 O. Employed are certain metal oxo complexes, preferably with a metal from Group VIII. For instance, [Ru.sup.IV (2,2',6',2"-terpyridine)(2,2'-bipyridine)(O)](ClO.sub.4).sub.2 is very suitable.

  16. On the abundance of deuterium in celestial objects

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard; Kero, Johan; Liszka, Ludwik

    2016-04-01

    The deuterium hydrogen ratio (D/H) is the subject of conflicting ideas about the origin of water on the Earth. The present D/H ratio in the Earth oceans (≈1.5x10-4) is substantially lower than most, if not all potential cosmic sources. Furthermore, other celestial bodies, including interstellar space, display a fairly wide range of D/H ratios superseding the terrestrial one. Escape processes may in part explain higher D/H ratios on Mars and Venus, but cannot explain the Earth's low ratio compared to that of the potential sources (e.g. comets and meteors), unless a deuterium "removal" process can be inferred that reduces the D/H ratio. Alternatively, the D/H ratio in the Earth's ocean represents a time capsule of a yet to be identified cosmic source. It is here hypothesized that the former is the cause, a "removal" of deuterium in matter (carbohydrates, water etc.) having high (pristine) D/H ratios. By "removal" is here meant an isotope transmutation, i.e. deuterium is transmuted to hydrogen plus a thermal neutron, a process requiring >2.25 MeV (≈3.6·10-13 J). However, once released a thermal neutron will eventually fuse with another heavier element by thermal neutron capture, a process that may lead to energy in excess of the spallation energy. The energy gain differs for different isotopes, but if exceeding unity it will induce more heat/power than the input power, maintaining power production over time. A gain less than unity will still result in deuterium removal, but also isotope transmutation, and/or element transmutation via β± decay. This report gives a theoretical background for the plasma forcing that can lead to thermal neutron spallation, a process that changes/decrease the D/H ratio in celestial objects. The applicability of the theory will be tested on celestial objects subjected to strong dynamic, and electromagnetic forcing, by the Sun or during the entry of high-speed objects into the Earth's atmosphere.

  17. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The

  18. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K.

    PubMed

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-12-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 10(14) to 2.7 × 10(18) D/cm(2). The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I-the linear region of low implantation doses (up to 1 × 10(17) D/cm(2)); II-the nonlinear region of medium implantation doses (1 × 10(17) to 8 × 10(17) D/cm(2)); III-the linear region of high implantation doses (8 × 10(17) to 2.7 × 10(18) D/cm(2)). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The

  19. Structural Transformations in Austenitic Stainless Steel Induced by Deuterium Implantation: Irradiation at 295 K

    NASA Astrophysics Data System (ADS)

    Morozov, Oleksandr; Zhurba, Volodymir; Neklyudov, Ivan; Mats, Oleksandr; Progolaieva, Viktoria; Boshko, Valerian

    2016-02-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic steel 18Cr10NiTi pre-implanted at 295 K with deuterium ions in the dose range from 8 × 1014 to 2.7 × 1018 D/cm2. The kinetics of structural transformation development in the steel layer was traced from deuterium thermodesorption spectra as a function of deuterium concentration. Three characteristic regions with different low rates of deuterium amount desorption as the implantation dose increases were revealed: I—the linear region of low implantation doses (up to 1 × 1017 D/cm2); II—the nonlinear region of medium implantation doses (1 × 1017 to 8 × 1017 D/cm2); III—the linear region of high implantation doses (8 × 1017 to 2.7 × 1018 D/cm2). During the process of deuterium ion irradiation, the coefficient of deuterium retention in steel varies in discrete steps. Each of the discrete regions of deuterium retention coefficient variation corresponds to different implanted-matter states formed during deuterium ion implantation. The low-dose region is characterized by formation of deuterium-vacancy complexes and solid-solution phase state of deuterium in the steel. The total concentration of the accumulated deuterium in this region varies between 2.5 and 3 at.%. The medium-dose region is characterized by the radiation-induced action on the steel in the presence of deuterium with the resulting formation of the energy-stable nanosized crystalline structure of steel, having a developed network of intercrystalline boundaries. The basis for this developed network of intercrystalline boundaries is provided by the amorphous state, which manifests itself in the thermodesorption spectra as a widely temperature-scale extended region of deuterium desorption (structure formation with a varying activation energy). The total concentration of the accumulated deuterium in the region of medium implantation doses makes 7 to 8 at.%. The resulting structure shows stability against the action of

  20. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection.

  1. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

    NASA Astrophysics Data System (ADS)

    `t Hoen, M. H. J.; Dellasega, D.; Pezzoli, A.; Passoni, M.; Kleyn, A. W.; Zeijlmans van Emmichoven, P. A.

    2015-08-01

    Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

  2. Lattice location of deuterium in plasma and gas charged Mg doped GaN

    SciTech Connect

    Wampler, W.R.; Barbour, J.C.; Seager, C.H.; Myers, S.M. Jr.; Wright, A.F.; Han, J.

    1999-12-02

    The authors have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced both by exposure to deuterium gas and to ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Computer simulations of channeling yields were used to compare results of channeling measurements with calculated yields for various predicted deuterium lattice configurations.

  3. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  4. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    SciTech Connect

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10/sup 15/ atoms/cm/sup 2/) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures.

  5. Long Term Retention of Deuterium and Tritium in Alcator C-Mod

    SciTech Connect

    FIORE,C.; LABOMBARD,B.; LIPSCHULTZ,B.; PITCHER,C.S.; SKINNER,C.H.; WAMPLER,WILLIAM R.

    1999-11-03

    We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo.

  6. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1981-01-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and RF heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreased rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (less than or equal to 10/sup 16/D/cm/sup 2/s) at the positions sampled.

  7. Deuterium flux measurements in the edge plasmas of PLT and PDX during auxiliary heating experiments

    SciTech Connect

    Wampler, W.R.; Cohen, S.A.; Dylla, H.F.; Manos, D.M.; Magee, C.W.

    1982-04-01

    The flux of deuterium in the plasma edge several centimeters outside the limiter has been measured using collector probes during neutral beam heating experiments on the PDX tokamak and rf heating experiments on the PLT tokamak. The dependence of the flux on the distance from the plasma was determined, and the time dependence of the flux was measured with a time resolution of 90 ms. In PDX the deuterium flux decreases rapidly with increasing distance from the plasma. The deuterium flux increased strongly when the beams came on and decreased when they turned off. The depth distribution of the deuterium in the samples, measured using SIMS, shows that when the beams are on, about 30% of the deuterium incident on the probe is superthermal deuterium from the beams. In PLT the deuterium flux decreased only slightly with increasing distance from the plasma. The ICRH heating in PLT caused an increase of about 30% in the flux of deuterium to the samples and in the plasma density. In both machines the deuterium fluxes were fairly low (< or approx. =10/sup 16/ D/cm/sup 2/s) at the positions sampled.

  8. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process.

  9. Photoproduction of neutral kaons on a liquid deuterium target in the threshold region

    SciTech Connect

    Tsukada, K.; Takahashi, T.; Watanabe, T.; Fujii, Y.; Futatsukawa, K.; Hashimoto, O.; Hirose, K.; Ito, K.; Kameoka, S.; Kanda, H.; Maeda, K.; Matsumura, A.; Miura, Y.; Miyase, H.; Nakamura, S. N.; Nomura, H.; Nonaka, K.; Osaka, T.; Okayasu, Y.; Tamura, H.

    2008-07-15

    The photoproduction process of neutral kaons on a liquid deuterium target is investigated near the threshold region, E{sub {gamma}}=0.8-1.1 GeV. K{sup 0} events are reconstructed from positive and negative pions, and differential cross sections are derived. Experimental momentum spectra are compared with those calculated in the spectator model using a realistic deuteron wave function. Elementary amplitudes as given by recent isobar models and a simple phenomenological model are used to study the effect of the new data on the angular behavior of the elementary cross section. The data favor a backward-peaked angular distribution of the elementary n({gamma},K{sup 0}){lambda} process, which provides additional constraints on current models of kaon photoproduction. The present study demonstrates that the n({gamma},K{sup 0}){lambda} reaction can provide key information on the mechanism of the photoproduction of strangeness.

  10. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  11. Precision measurement of antiprotonic hydrogen and deuterium X-rays

    NASA Astrophysics Data System (ADS)

    Heitlinger, K.; Bacher, R.; Badertscher, A.; Blüm, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Morenzoni, E.; Simons, L. M.

    1992-09-01

    X-rays from antiprotonic hydrogen and deuterium have been measured at low pressures. Using the cyclotron trap, a 105 MeV/c antiproton beam from LEAR was stopped with an efficiency of 86% in 30 mbar hydrogen gas in a volume of only 100 cm3. The X-rays were measured with Si(Li) detectors and a Xe-CH4 drift chamber. The strong interaction shift and broadening of the Lyman α transition and the spin-averaged 2p width in antiprotonic hydrogen was measured with unprecedented accuracy. The triplet component of the ground state in antiprotonic hydrogen was determined for the first time.

  12. Hydrogen--deuterium exchange in KD2PO4

    SciTech Connect

    Kucheyev, S O; Felter, T E; Siekhaus, W J; Nelson, A J; Hamza, A V

    2003-11-04

    Depth profiles of {sup 1}H and {sup 2}D in rapidly-grown KD{sub 2x}H{sub 2(1-x)}PO{sub 4} (DKDP) single crystals are studied by elastic recoil detection analysis. Results show that, at ambient conditions, deuteration in the first {approx} 500 nm from the sample surface significantly decreases within the first several days after D{sub 2}O surface polishing. This effect is attributed to the deuterium-hydrogen exchange. The effective diffusion coefficient of this process is strongly dependent on both the degree of deuteration and sample growth conditions. Physical mechanisms of the D/H exchange are discussed.

  13. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  14. The effects of deuterium on static posture control

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.

    1990-01-01

    A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While

  15. Hot muonic deuterium and tritium from cold targets

    SciTech Connect

    Marshall, G.M.; Beveridge, J.L. ); Bailey, J.M. ); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. ); Brewer, J.H.; Forster, B.M. ); Huber, T.M.; Pippitt, B. ); Jacot-Guillarmod, R.; Schellenberg, L. (Fribourg U

    1992-01-01

    Experiments are described which use a solid hydrogen layer to form muonic hydrogen isotopes in vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to study the energy dependence of transfer and muon molecular formation.

  16. Hot muonic deuterium and tritium from cold targets

    SciTech Connect

    Marshall, G.M.; Beveridge, J.L.; Bailey, J.M.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Pippitt, B.; Jacot-Guillarmod, R.; Schellenberg, L.; Kammel, P.; Zmeskal, J.; Kunselman, A.R.; Martoff, C.J.; Petitjean, C.

    1992-12-31

    Experiments are described which use a solid hydrogen layer to form muonic hydrogen isotopes in vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to study the energy dependence of transfer and muon molecular formation.

  17. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  18. UCN Production With a Single Crystal of Ortho-Deuterium.

    PubMed

    Utsuro, M; Tanaka, M; Mishima, K; Nagai, Y; Shima, T; Fukuda, Y; Kohmoto, T; Momose, T; Moriai, A; Okumura, K; Yoshino, H

    2005-01-01

    The present paper reports on the preliminary experimental results concerning a new concept of ultracold neutron production with a single crystal converter of ortho-deuterium lying in the ground rotational state at the low temperature of about 10 K, which should make it possible to utilize a guided cold neutron beam instead of irradiating the converter material in the inside of high radiation fields. The successful observation of the clear Bragg scattering pattern from the single crystal converter and the reasonable results from the first experimental trial of the ultracold neutron production with the single crystal are shown.

  19. Diagnosing radiative shocks from deuterium and tritium implosions on NIF

    SciTech Connect

    Pak, A.; Divol, L.; Weber, S.; Doeppner, T.; Izumi, N.; Glenn, S.; Ma, T.; Town, R. P.; Bradley, D. K.; Glenzer, S. H.; Kyrala, G. A.; Kilne, J.

    2012-10-15

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above {approx}8 keV. On multiple implosions, {approx}200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  20. Dislocation mechanism of deuterium retention in tungsten under plasma implantation.

    PubMed

    Dubinko, V I; Grigorev, P; Bakaev, A; Terentyev, D; van Oost, G; Gao, F; Van Neck, D; Zhurkin, E E

    2014-10-01

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented.

  1. Internal dynamics of DNA - a solid state deuterium NMR study

    SciTech Connect

    Huang, Wen-Chang.

    1989-01-01

    In this dissertation, solid state {sup 2}H NMR spectroscopy has been used to investigate the dynamics of the sodium salt oligonucleotide, (d(CGCGAATTCGCG)){sub 2}, which contains the Eco R1 binding site. Deuterium quadrupole echo line shape and spin-lattice relaxation times were obtained as a function of hydration on three different deuterated samples. In the first sample, (d{sub 12}-(d(CG*CG*A*A*TTCG*CG*)){sub 2}), the C8 proton of all purine in the self-complementary dodecamer were exchanged for deuterons. Specifically labeled thymidine (C6 deuterated) was also synthetically incorporated at the seventh position (counting 5{prime} to 3{prime}) in the sequence (d{sub 2}-(d(CGCGAAT*TCGCG)){sub 2}). In the third sample the C2{double prime} position of the furanose ring of adenosine at the fifth and sixth positions in the same sequence (d{sub 4}-(d(CGCGA*A*TTCGCG)){sub 2}) was deuterium labeled. The static quadrupole coupling constant (e{sup 2}qQ/h) and asymmetry parameter ({eta}) were obtained through the analysis of appropriative motional models from the corresponding monomers studies.

  2. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  3. Understanding neutron production in the deuterium dense plasma focus

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2014-12-01

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  4. Effect of deuterium oxide on junctional membrane channel permeability

    SciTech Connect

    Brink, P.R.

    1983-01-01

    The effect of deuterium oxide on junctional membrane permeability to dichlorofluorescein was examined to determine the mode of transfer of the dye from one cell interior to another in the septate giant axon of earthworm. Dichlorofluorescein was shown to diffuse through the nexus passively and in a hydrated form. Additionally, evidence suggested an alteration of the cell-to-cell channel structure by deuterium/hydrogen exchange. Dichlorofluorescein was rendered impermeant at 6 degrees C in D/sub 2/O and 4 degrees C in H/sub 2/O. Action potentials, however, were capable of propagation from cell to cell at 4 degrees C in D/sub 2/O and H/sub 2/O. The results are consistent with a hydrophilic channel where solute molecules diffuse through the junction (nexus) in a hydrated form. The temperature blocks are presumably brought about by increasing hydration shells around solute and channel proteins with cooling until the solute is rendered too large to diffuse.

  5. Electron Scattering Experiments with Polarized Hydrogen/Deuterium Internal Targets

    SciTech Connect

    van Buuren, L.D.; 97-01 Collaboration

    2000-12-31

    A high-density polarized hydrogen/deuterium internal gas target is presented. The target is based on a setup previously used in electron scattering experiments with tensor-polarized deuterium. To increase the target thickness, new state-of-the-art permanent sextupole magnets and a more powerful pumping system were installed together with a longer (60 cm) and colder ({approximately}70 K) cylindrical storage cell. Electro-nuclear spin observables were measured by scattering longitudinally polarized electrons stored in the AmPS ring (NIFHEF) from the target gas. The product of electron beam and target polarization was determined from the known e{prime}p (quasi) elastic asymmetries. A target thickness of 1.1 {times} 10{sup 14} atoms/cm{sup 2} was achieved which with typical beam currents of 110 mA corresponds to a luminosity of about 7.5 {times} 10{sup 31} cm{sup {minus}2}s{sup {minus}1}. Target and beam polarizations up to 0.7 and 0.65, respectively, were obtained.

  6. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  7. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  8. Preparation and characterization of deuterium-labeled glycosaminoglycans.

    PubMed

    Naggi, A; Casu, B; Crippa, B; Magnaghi, S; Silvestro, L; Torri, G

    1994-01-01

    Heparin, NAcHep, DS, and CS were labeled with deuterium by N-reacetylating, with the deuterated acetic anhydride (CD3CO)2O, GAGs previously N-deacetylated (by hydrazinolysis) to the desired extent. Degrees of deuteration of the present preparations, as determined by 2H- and 1H-NMR were 15%, 51%, 49%, and 79% for heparin, NAcHep, DS, and CS, respectively. The NMR analysis (including the 13C spectra) of the labeled products indicated that deuterium labeling did not involve any substantial modification of the GAG structures. Also NMR signals associated with specific sequences of heparin for antithrombin and of DS for heparin cofactor II were essentially the same in the unlabeled and in the deuterated GAGs. The substantial retention of the original structure was confirmed by data on the degree of sulfation (by conductimetry) and on the electrophoretic mobility in acid buffer. On the other hand, HPLC/SEC data indicated some depolymerization of heparin and DS in the N-deacetylation step of the labeling reactions. HPLC/MS spectrometry permitted a clear identification of disaccharide and tetrasaccharide fragments obtained from deuterated GAGs by enzymic (heparinase, chondroitinase ABC) or chemical depolymerization (deaminative cleavage, Smith degradation), opening new prospects for studies of human pharmacokinetics, with differentiation of exogenous from endogenous GAGs.

  9. EVIDENCE FOR MULTIPLE PATHWAYS TO DEUTERIUM ENHANCEMENTS IN PROTOPLANETARY DISKS

    SciTech Connect

    Oeberg, Karin I.; Qi, Chunhua; Wilner, David J.; Hogerheijde, Michiel R.

    2012-04-20

    The distributions of deuterated molecules in protoplanetary disks are expected to depend on the molecular formation pathways. We use observations of spatially resolved DCN emission from the disk around TW Hya, acquired during ALMA science verification with a {approx}3'' synthesized beam, together with comparable DCO{sup +} observations from the Submillimeter Array, to investigate differences in the radial distributions of these species and hence differences in their formation chemistry. In contrast to DCO{sup +}, which shows an increasing column density with radius, DCN is better fit by a model that is centrally peaked. We infer that DCN forms at a smaller radii and thus at higher temperatures than DCO{sup +}. This is consistent with chemical network model predictions of DCO{sup +} formation from H{sub 2}D{sup +} at T < 30 K and DCN formation from additional pathways involving CH{sub 2}D{sup +} at higher temperatures. We estimate a DCN/HCN abundance ratio of {approx}0.017, similar to the DCO{sup +}/HCO{sup +} abundance ratio. Deuterium fractionation appears to be efficient at a range of temperatures in this protoplanetary disk. These results suggest caution in interpreting the range of deuterium fractions observed in solar system bodies, as multiple formation pathways should be taken into account.

  10. Phototransformation and dark reversion of phytochrome in deuterium oxide.

    PubMed

    Sarkar, H K; Song, P S

    1981-07-21

    The photostationary equilibrium between the Pr and Pfr forms of phytochrome shows a strong solvent deuterium isotope effect. Phytochrome transformation from the Pr to the Pfr form exhibits a small deuterium isotope effect, in Tris-D2O upon irradiation with red light, only after a photocycling of the phytochrome. In contrast, both the photoreversion and dark reversion of Pfr show an enhanced rate in D2O. In addition to the shift in the photostationary equilibrium in D2O, another pronounced effect of D2O on phytochrome is reflected in a significant enhancement of the fluorescence quantum yield of phytochrome (Pr). This result is interpreted in terms of the primary reaction involving an intramolecular proton transfer and its consequence in the phototransformation of phytochrome. It is further proposed that a tyrosyl residue acts as a general acid catalyst in the Pr to Pfr phototransformation, which is slower in D2O than in H2O. The D2O solvent isotope effect on the photoreversion and dark reversion of Pfr is explained on the basis of acid catalysis, probably a specific acid catalysis by deuteronium ion.

  11. A high deuterium abundance at redshift z = 0.7.

    PubMed

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  12. A high deuterium abundance at redshift z = 0.7.

    PubMed

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten. PMID:9230433

  13. The Abundance and Distribution of Deuterium on Saturn

    NASA Astrophysics Data System (ADS)

    Ben Jaffel, Lotfi

    1996-07-01

    We propose to obtain high resolution profiles of the D Lymanalpha line emitted by the limb of the upper atmosphere Saturn,using the GHRS Echelle A and the LSA. Ourtechnique consists in a radial drift of the LSA slit acrossthe limb of the planet. This is much like the very efficientoccultation technique although we record reflected instead oftransmitted light. As the deuterium emission is opticallythin, the analysis of the resulting profiles will provide,through our photochemistry models and radiative transfercalculations, the possibility for the first time to retrievethe deuterium scale height and abundance at least in four locationsof the upper atmosphere of Saturn. Scale heights at differentlocations derived from the D Ly-alpha emission, and the analysis of theH Ly-alpha profile, obtained with each limb observation, will accuratelyprovide the H total column density. A precise estimate of theD/H ratio will therefore be inferred. Recently, wesuccessfully applied the technique to observe the limb ofJupiter with the medium resolution grating G160M. The inferredD/H ratio ~ 6+/- 1 * 10^-5 seems to support the measurementsmade through HD/H2 rather than CH3D/CH4. The uncertainty onthis value could be reduced if high resolution observationswith Echelle A are conducted. This should confirm the newlyderived ratio and check the D/H ratio for Saturn.Ultimately, this will help to refine the scenario on theformation and the evolution our Solar System 4.5 billionsyears ago.

  14. The Deuterium Fraction in Massive Starless Cores and Dynamical Implications

    NASA Astrophysics Data System (ADS)

    Kong, Shuo; Tan, Jonathan C.; Caselli, Paola; Fontani, Francesco; Pillai, Thushara; Butler, Michael J.; Shimajiri, Yoshito; Nakamura, Fumitaka; Sakai, Takeshi

    2016-04-01

    We study deuterium fractionation in two massive starless/early-stage cores, C1-N and C1-S, in Infrared Dark Cloud G028.37+00.07, which was first identified by Tan et al. with ALMA. Line emission from multiple transitions of N2H+ and N2D+ were observed with the ALMA, CARMA, SMA, JCMT, NRO 45 m, and IRAM 30 m telescopes. By simultaneously fitting the spectra, we estimate the excitation conditions and deuterium fraction, {D}{frac}{{{N}}2{{{H}}}+} \\equiv \\quad [{{{N}}}2{{{D}}}+]/[{{{N}}}2{{{H}}}+], with values of {D}{frac}{{{N}}2{{{H}}}+} ≃ 0.2-0.7, several orders of magnitude above the cosmic [D]/[H] ratio. Additional observations of o-H2D+ are also presented that help constrain the ortho-to-para ratio of H2, which is a key quantity affecting the degree of deuteration. We then present chemodynamical modeling of the two cores, especially exploring the implications for the collapse rate relative to free-fall, αff. In order to reach the high level of observed deuteration of {{{N}}}2{{{H}}}+, we find that the most likely evolutionary history of the cores involves collapse at a relatively slow rate, ≲ one-tenth of free-fall.

  15. Water behavior in bacterial spores by deuterium NMR spectroscopy.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Johnson, Karen; Thomas, Kieth J; Middaugh, Amy N; Garimella, Ravindranath; Powell, Douglas R; Vaishampayan, Parag A; Rice, Charles V

    2014-07-31

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium-hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water.

  16. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  17. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  18. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy.

    PubMed

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10(-6)-5.0 × 10(-2) Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P(D2)) and helium partial pressure (P(He)) could be obtained. The result shows that deuterium partial pressure could be measured if P(D2) > 10(-6) Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P(He)/P(D2) > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  19. Measurement of deuterium-labeled phylloquinone in plasma by LC-APCI-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deuterium-labeled vegetables were fed to humans for the measurement of both unlabeled and deuterium-labeled phylloquinone in plasma. We developed a technique to determine the quantities of these compounds using liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization (LC...

  20. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…

  1. Surface Modification and Chemical Sputtering of Graphite Induced by Low Energy Atomic and Molecular Deuterium Ions

    SciTech Connect

    Zhang, Hengda; Meyer, Fred W; Meyer III, Harry M; Lance, Michael J

    2008-01-01

    The surface morphology, and chemical/structural modifications induced during chemical sputtering of ATJ graphite by low-energy (<200 eV/D) deuterium atomic and molecular ions are explored by Scanning Electron Microscopy (SEM), Raman and Auger Electron Spectroscopy (AES) diagnostics. At the lowest impact energies, the ion range may become less than the probe depth of Raman and AES spectroscopy diagnostics. We show that such diagnostics are still useful probes at these energies. As demonstration, we used these surface diagnostics to confirm the characteristic changes of surface texture, increased amorphization, enhanced surface reactivity to impurity species, and increased sp{sup 3} content that low-energy deuterium ion bombardment to steady-state chemical sputtering conditions produces. To put these studies into proper context, we also present new chemical sputtering yields for methane production of ATJ graphite at room temperature by impact of D{sub 2}{sup +} in the energy range 10-250 eV/D, and by impact of D{sup +} and D{sub 3}{sup +} at 30 eV/D and 125 eV/D, obtained using a Quadrupole Mass Spectroscopy (QMS) approach. Below 100 eV/D, the methane production in ATJ graphite is larger than that in HOPG by a factor of {approx} 2. In the energy range 10-60 eV/D, the methane production yield is almost independent of energy and then decreases with increasing ion energies. The results are in good agreement with recent molecular dynamics simulations.

  2. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  3. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  4. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    SciTech Connect

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-03-15

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means.

  5. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described.

  6. Deuterium Retention and Release from Highly Irradiated Annealed Tungsten After Exposure to a Deuterium DC Glow Discharge

    SciTech Connect

    Oliver, Brian M.; Causey, Rion; Maloy, S A.

    2004-08-01

    Samples taken from tungsten rods irradiated by 800 MeV protons in the Los Alamos Neutron Science Center beam line have been used in experiments to study the effects of radiation damage and subsequent annealing on the retention of hydrogen isotopes. The tungsten samples had been originally irradiated to proton doses of approximately 0.3 and 8 dpa. These samples were first annealed and then exposed to energetic deuterium ions using a DC glow discharge. Following exposure, the samples were subjected to a linear temperature ramp from {approx}300 K to {approx}1500 K, and the offgas analyzed by mass spectrometry. The results indicate that annealing to a temperature of only 1273 K for 6 hours effectively removed all irradiation-produced traps, and also indicated that hydrogen trapping at voids is not as prevalent as had been assumed. Modeling the deuterium release suggests that most of the trapping occurred in a combination of near-surface 1.4 eV traps, a low concentration of uniform 1.4 eV traps, and 0.95 eV traps likely resulting from oxygen diffusion from the original water-cooled irradiation environment.

  7. Application of a pyroprobe–deuterium NMR system: Deuterium tracing and mechanistic study of upgrading process for lignin model compounds

    DOE PAGES

    Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.; Gjersing, Erica L.; Sturgeon, Matthew R.; Foust, Thomas D.; Ragauskas, Arthur J.; Biddy, Mary J.

    2016-03-03

    In this study, a pyroprobe–deuterium (2H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ringmore » opening of catechol on Ir/γ-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. As a result, benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products.« less

  8. Precision measures of the primordial abundance of deuterium

    SciTech Connect

    Cooke, Ryan J.; Jorgenson, Regina A.; Murphy, Michael T.; Steidel, Charles C.

    2014-01-20

    We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = –2.88) damped Lyα system at z {sub abs} = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H){sub p} = (2.53 ± 0.04) × 10{sup –5}, corresponding to a universal baryon density 100 Ω{sub b,} {sub 0} h {sup 2} = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H){sub p} with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N {sub eff} = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N {sub eff} = 4.046) at 99.3% confidence (2.7σ), provided that the values of N {sub eff} and of the baryon-to-photon ratio (η{sub 10}) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the {sup 4}He primordial mass fraction, Y {sub P}: ξ{sub D} = +0.05 ± 0.13 based only on the CMB+(D/H){sub p} observations. Combining this value of ξ{sub D} with the current best literature measure of Y {sub P}, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| ≤ +0.062.

  9. Chemical erosion of atomically dispersed doped hydrocarbon layers by deuterium

    NASA Astrophysics Data System (ADS)

    Balden, M.; Roth, J.; Pardo, E. de Juan; Wiltner, A.

    2003-03-01

    The chemical erosion of atomically dispersed Ti-doped (˜10 at.%) amorphous hydrocarbon layers (a-C:H:Ti) was investigated in the temperature range of 300-800 K for 30 eV deuterium impact. Compared to pyrolytic graphite, the methane production yield is strongly reduced at elevated temperatures. This reduction starts from temperatures just above room temperature and is even larger than for B-doped graphite. The reduction of the activation energy for hydrogen release may be the dominant interpretation for the decreased hydrocarbon formation. The ratio of emitted CD 3 to CD 4 increases with temperature for pyrolytic graphite and even stronger for the doped layers. The fluence dependence of the chemical erosion yield was determined, which is explained by enrichment of the dopant due to the preferential erosion of C.

  10. Efficient synthesis of deuterium labeled hydroxyzine and aripiprazole.

    PubMed

    Vohra, Mohit; Sandbhor, Mahendra; Wozniak, Andrew

    2015-06-15

    Hydroxyzine and aripiprazole are active pharmaceutical ingredients that have been largely acknowledged for their antipsychotic properties. Deuterium labeled isotopes of hydroxyzine and aripiprazole are internal standards that can aid in the further research of non-isotopic forms via quantification analysis using HPLC-MS/MS. The synthesis of hydroxyzine-d8 was accomplished by coupling piperazine-d8 with 4-chlorobenzhydryl chloride followed by the reaction of the first intermediate with 2-(2-chloroethoxy) ethanol to afford 11.7% of hydroxyzine-d8 with 99.5% purity. The synthesis of aripiprazole-d8 was also achieved in two steps. 1,4-Dibromobutane-d8 reacted with 7-hydroxy-3,4-dihydro-2(1H)-quinolinone. The first intermediate was then coupled with 1-(2, 3-dichlorophenyl)piperazine hydrochloride to produce 33.4% of aripiprazole-d8 with 99.93% purity.

  11. DEUTERIUM CHEMISTRY IN PROTOPLANETARY DISKS. II. THE INNER 30 AU

    SciTech Connect

    Willacy, K.; Woods, P. M. E-mail: Paul.Woods@manchester.ac.u

    2009-09-20

    We present the results of models of the chemistry, including deuterium, in the inner regions of protostellar disks. We find good agreement with recent gas-phase observations of several (non-deuterated) species. We also compare our results with observations of comets and find that in the absence of other processing, e.g., in the accretion shock at the surface of the disk, or by mixing in the disk, the calculated D/H ratios in ices are higher than measured and reflect the D/H ratio set in the molecular cloud phase. Our models give quite different abundances and molecular distributions to other inner disk models because of the differences in physical conditions in the model disk. This emphasizes how changes in the assumptions about the density and temperature distribution can radically affect the results of chemical models.

  12. Diffusion of hydrogen, deuterium, and tritium in niobium

    SciTech Connect

    Matusiewicz, Gerald Robert

    1981-01-01

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium.

  13. Pion Electroproduction form Helium 3, Deuterium, and Hydrogen

    SciTech Connect

    S. Avery

    2002-05-01

    A series of measurements for pion electroproduction from helium-3, deuterium, and hydrogen were completed at the Thomas Jefferson National Accelerator Facility by the NucPi Collaboration. E91003 began taking data in February 1998 and was completed in April 1998. The longitudinal and transverse parts of the differential cross section were extracted, by means of a Rosenbluth type separation, in the direction parallel to the virtual photon, at Q 2 = 0.4 GeV 2 , for W = 1.15 and W = 1.6 GeV. The mass dependence of the longitudinal cross section should provide insight into the surprising apparent absence of any significant cross section enhancement due to excess pions in the nuclear medium.

  14. Kinetic studies of reactions of cobalt clusters with deuterium

    SciTech Connect

    Ho, J.; Zhu, L.; Parks, E.K.; Riley, S.J.

    1992-10-01

    The kinetics of chemical reactions of cobalt clusters Co{sub n} with deuterium are described. Absolute rate constants have been measured in the cluster range n = 7--68 at 293 K. The rate constants are found to be a strong function of cluster size, varying by up to three orders of magnitude. This size , dependence is most prominent in the n = 7--25 size range: CO{sub 15} is the most reactive cluster, and CO{sub 7-9} and CO{sub 19--20} are particularly unreactive. Abrupt changes in the rate constants from one cluster size to the next are observed. For the clusters above n = 25, the rate constants show several less prominent maxima and minima superimposed on a slow, nearly monotonic increase with cluster size.

  15. Near-threshold photoproduction of Φ mesons from deuterium

    DOE PAGES

    Qian, X.; Chen, W.; Gao, H.; Hicks, K.; Kramer, K.; Laget, J. M.; Mibe, T.; Qiang, Y.; Stepanyan, S.; Tedeschi, D. J.; et al

    2011-01-05

    In this report, we measure the differential cross section onmore » $$\\phi$$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. Moreover, the extracted differential cross sections $$\\frac{d\\sigma}{dt}$$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Ultimately, this experiment establishes a baseline for a future experimental search for an exotic $$\\phi$$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $$\\phi$$ mesons.« less

  16. Interstellar Processes Leading to Molecular Deuterium Enrichment and Their Detection

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Kliss, Mark (Technical Monitor)

    2001-01-01

    Large deuterium (D) enrichments in meteoritic materials indicate that interstellar organic materials survived incorporation into parent bodies within the forming Solar System. These enrichments are likelier due to one or more of four distinct astrochemical processes. These are (1) low temperature gas phase ion-molecule reactions; (2) low temperature gas-grain reactions; (3) gas phase unimolecular photodissociation, and (4) ultraviolet photolysis in D-enriched ice mantles. Each of these processes should be associated with molecular carriers having, distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.). These processes are reviewed and specific spectroscopic signatures for the detection of these processes in space are identified and described.

  17. Near-threshold photoproduction of Φ mesons from deuterium

    SciTech Connect

    Qian, X.; Chen, W.; Gao, H.; Hicks, K.; Kramer, K.; Laget, J. M.; Mibe, T.; Qiang, Y.; Stepanyan, S.; Tedeschi, D. J.; Xu, W.; Adhikari, K. P.; Amaryan, M.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Eugenio, P.; Fegan, S.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Konczykowski, P.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Martinez, D.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mikhailov, K.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, I.; Niroula, M. R.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Park, S.; Pereira, S. Anefalos; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voutier, E.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2011-01-05

    In this report, we measure the differential cross section on $\\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. Moreover, the extracted differential cross sections $\\frac{d\\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Ultimately, this experiment establishes a baseline for a future experimental search for an exotic $\\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\\phi$ mesons.

  18. Theoretical predictions of deuterium abundances in the Jovian planets

    SciTech Connect

    Hubbard, W.B.; MacFarlane, J.J.

    1980-01-01

    Current concepts for the origin of the Jovian planets and current constraints on their interior structure are used to support the argument that the presence of large amounts of 'ice' (H2O, CH4, and NH3) in Uranus and Neptune indicates temperature low enough to condense these species at the time Uranus and Neptune formed. Such low temperatures, however, imply orders-of-magnitude fractionation effects for deuterium into the 'ice' component if isotopic equilibration can occur. The present models thus imply that Uranus and Neptune should have D/H ratio at least four times primordial, contrary to observation for Uranus. It is found that the Jovian and Saturnian D/H should be close to primordial regardless of formation scenario.

  19. Calculation of deuterium isotope effects in proton transfer reactions

    NASA Astrophysics Data System (ADS)

    Scheiner, Steve

    1994-05-01

    Various levels of theory are tested for the purpose of computing the rate constant for proton transfer reactions. Standard transition state theory is applied to a series of molecules with a progressively more bent intramolecular hydrogen bond. The systems all display similar deuterium isotope effects (DIEs); the larger DIE at low temperature is attributed to zero-point vibrational effects. However, when tunneling is incorporated via a microcanonical approach, a dramatically enhanced effect is observed for the most distorted H-bond. The energy barrier for proton transfer between carbon atoms involved in triple bonds is smaller than for carbons with lesser multiplicity. The DIE displays a sensitivity to temperature that is least for the carbon atoms with the greatest multiplicity of bonding. The tunneling obtained by following the minimum energy reaction path along the potential energy surface is similar to that when the potential is approximated by an Eckart barrier. However, significant discrepancies are observed at temperatures below about 250 K.

  20. Deuterium Abundance in the Local ISM and Possible Spatial Variations

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1998-01-01

    Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-(alpha) absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 +/- 0.10) x 10(exp -5) with all data points lying within +/- l(delta) of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.

  1. Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow.

    PubMed

    Duprat, J; Dobrică, E; Engrand, C; Aléon, J; Marrocchi, Y; Mostefaoui, S; Meibom, A; Leroux, H; Rouzaud, J-N; Gounelle, M; Robert, F

    2010-05-01

    Primitive interplanetary dust is expected to contain the earliest solar system components, including minerals and organic matter. We have recovered, from central Antarctic snow, ultracarbonaceous micrometeorites whose organic matter contains extreme deuterium (D) excesses (10 to 30 times terrestrial values), extending over hundreds of square micrometers. We identified crystalline minerals embedded in the micrometeorite organic matter, which suggests that this organic matter reservoir could have formed within the solar system itself rather than having direct interstellar heritage. The high D/H ratios, the high organic matter content, and the associated minerals favor an origin from the cold regions of the protoplanetary disk. The masses of the particles range from a few tenths of a microgram to a few micrograms, exceeding by more than an order of magnitude those of the dust fragments from comet 81P/Wild 2 returned by the Stardust mission. PMID:20448182

  2. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages.

    PubMed

    Currell, Kevin; Urch, Joanna; Cerri, Erika; Jentjens, Roy L P; Blannin, Andy K; Jeukendrup, Asker E

    2008-12-01

    Optimal fluid delivery from carbohydrate solutions such as oral rehydration solutions or sports drinks is essential. The aim of the study was to investigate whether a beverage containing glucose and fructose would result in greater fluid delivery than a beverage containing glucose alone. Six male subjects were recruited (average age (+/-SD): 22 +/- 2 y). Subjects entered the laboratory between 0700 h and 0900 h after an overnight fast. A 600 mL bolus of 1 of the 3 experimental beverages was then given. The experimental beverages were water (W), 75 g glucose (G), or 50 g glucose and 25 g fructose (GF); each beverage also contained 3.00 g of D2O. Following administration of the experimental beverage subjects remained in a seated position for 180 min. Blood and saliva samples were then taken every 5 min in the first hour and every 15 min thereafter. Plasma and saliva samples were analyzed for deuterium enrichment by isotope ratio mass spectrometry. Deuterium oxide enrichments were compared using a 2-way repeated measures analysis of variance. The water trial (33 +/- 3 min) showed a significantly shorter time to peak than either G (82 +/- 40 min) or GF (59 +/- 25 min), but the difference between G and GF did not reach statistical significance. There was a significantly greater AUC for GF (55 673 +/- 10 020 delta per thousand vs. Vienna Standard Mean Ocean Water (VSMOW).180 min) and W (60 497 +/- 9864 delta per thousand vs. VSMOW.180 min) compared with G (46 290 +/- 9622 delta per thousand vs. VSMOW.180 min); W and GF were not significantly different from each other. These data suggest that a 12.5% carbohydrate beverage containing glucose and fructose results in more rapid fluid delivery in the first 75 min than a beverage containing glucose alone.

  3. Does Deuterium Enable the Formation of Primordial Brown Dwarfs?

    PubMed

    Uehara; Inutsuka

    2000-03-10

    We investigate thermal and dynamical evolution of a primordial gas cloud with an updated deuterium chemistry. We consider a fragment of a postshock-cooled sheet that is expected to form by collapse of a massive cloud ( greater, similar108 M middle dot in circle) and by blast waves due to supernova explosions. At first we investigate molecule formation in a primordial shock. We show that almost all deuterium can be converted to HD within the age of the universe at the collapsed redshift in the case of a cloud that has a virial temperature of approximately 106 K and collapses at z>1. When the postshock sheet fragments owing to gravitational instability, the fractional H2 and HD abundances become approximately 10-2 and approximately 10-5, respectively, which are 103-104 times higher than the result of molecule formation in the expanding universe after recombination. To study the subsequent evolution of a fragment, we performed one-dimensional simulations of a spherical/cylindrical cloud, of which initial conditions (e.g., fractional abundances of chemical composition, temperature) are derived from the result of the shock. It is found that, in case of a cylindrical collapse, the cooling by HD molecules keeps the temperature of the cloud less than 100 K and the cloud evolves almost isothermally. When the cloud becomes optically thick to the HD line emission ( approximately 1010 cm-3) and the gravitational fragmentation of the cylindrical cloud becomes effective, the Jeans mass becomes comparable to 0.1 M middle dot in circle. This series of processes enables the formation of primordial low-mass stars, and possibly brown dwarfs, in primordial gas clouds.

  4. Retention mechanisms and binding states of deuterium implanted into beryllium

    NASA Astrophysics Data System (ADS)

    Reinelt, M.; Allouche, A.; Oberkofler, M.; Linsmeier, Ch

    2009-04-01

    The retention of 1 keV D+ ions implanted into clean and oxidized single crystalline Be at room and elevated temperatures is investigated by a combination of in situ analytical techniques including temperature programmed desorption (TPD), nuclear reaction analysis, low-energy ion spectroscopy (LEIS) and x-ray photoelectron spectroscopy. For the first time, the whole temperature regime for deuterium release and the influence of thin oxide films on the release processes are clarified. The cleaned and annealed Be sample has residual oxygen concentration equivalent to 0.2 monolayer (ML) BeO in the near-surface region as the only contamination. LEIS shows that Be from the volume covers thin BeO surface layers above an annealing temperature of 1000 K by segregation, forming a pure Be-terminated surface, which is stable at lower temperatures until again oxidized by residual gas. No deuterium is retained in the sample above 950 K. By analyzing TPD spectra, active retention mechanisms and six energetically different binding states are identified. Activation energies (EA) for the release of D from binding states in Be are obtained by modelling the experimental data. Two ion-induced trap sites with release temperatures between 770 and 840 K (EA= 1.88 and 2.05 eV, respectively) and two trap sites (release between 440 and 470 K) due to supersaturation of the bulk above the steady state fluence of 2×1017 cm-2 are identified. None of the release steps shows a surface recombination limit. A thin BeO surface layer introduces an additional binding state with a release temperature of 680 K. Implantation at elevated temperatures (up to 530 K) changes the retention mechanism above the saturation limit and populates a binding state with a release temperature of 570 K.

  5. Cosmological and astrophysical consequences of a high primordial deuterium abundance

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, Elisabeth; Casse, Michel

    1995-03-01

    We explore the consequences of the first detection of deuterium in a high-redshift, very metal-poor absorbing cloud complex, D/H = (1.9-2.5) x 10-4, by Songaila et al. and Carswell et al., obtained with the Keck telescope. This value reflects closely the primordial abundance ratio provided that the observed spectral features are not due to the corruption of the signal by an errant hydrogen cloud of misfortunate velocity. Assuming that the measured D abundance is free from contamination, the baryon/photon ratio is now confined to the range 1.3-2 (instead of 3-4 and more), in both the classical and inhomogeneous big bangs. Other light elements (He-3, He-4 and Li-7) are consistent with these figures. The low baryonic density of the universe that ensues leaves no room for baryonic matter in the extended halos of elliptical galaxies, especially if the Hubble parameter is close to 100 km/s/Mpc. Nonbaryonic matter clearly dominates the gravitating mass of clusters of galaxies. The upper limit of the gas density at high redshift (before bulk galaxy formation) is now consistent with the baryonic one. A massive destruction of deuterium, in the course of the evolution of the galaxy (say, by a factor of 10-25) is required to match the D/H ratio observed in the local interstellar medium. The higher D destruction proposed up to now corresponds to galactic evolutionary models devised by Vangioni-Flam & Audouze (1988) and Vangioni-Flam, Olive, & Prantzos (1994). We discuss the virtues and the limits of this class of models and propose an alternative based on mass related to a galactic wind.

  6. Does Deuterium Enable the Formation of Primordial Brown Dwarfs?

    PubMed

    Uehara; Inutsuka

    2000-03-10

    We investigate thermal and dynamical evolution of a primordial gas cloud with an updated deuterium chemistry. We consider a fragment of a postshock-cooled sheet that is expected to form by collapse of a massive cloud ( greater, similar108 M middle dot in circle) and by blast waves due to supernova explosions. At first we investigate molecule formation in a primordial shock. We show that almost all deuterium can be converted to HD within the age of the universe at the collapsed redshift in the case of a cloud that has a virial temperature of approximately 106 K and collapses at z>1. When the postshock sheet fragments owing to gravitational instability, the fractional H2 and HD abundances become approximately 10-2 and approximately 10-5, respectively, which are 103-104 times higher than the result of molecule formation in the expanding universe after recombination. To study the subsequent evolution of a fragment, we performed one-dimensional simulations of a spherical/cylindrical cloud, of which initial conditions (e.g., fractional abundances of chemical composition, temperature) are derived from the result of the shock. It is found that, in case of a cylindrical collapse, the cooling by HD molecules keeps the temperature of the cloud less than 100 K and the cloud evolves almost isothermally. When the cloud becomes optically thick to the HD line emission ( approximately 1010 cm-3) and the gravitational fragmentation of the cylindrical cloud becomes effective, the Jeans mass becomes comparable to 0.1 M middle dot in circle. This series of processes enables the formation of primordial low-mass stars, and possibly brown dwarfs, in primordial gas clouds. PMID:10688760

  7. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure

    SciTech Connect

    Ogorodnikova, O. V.

    2015-08-21

    An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical “adsorption model,” it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.

  8. The effect of deuterium oxide (D sub 2 O) on in vitro vascular smooth muscle contraction

    SciTech Connect

    McWilliam, T.M.; Liepins, A.; Rankin, A.J. )

    1990-02-26

    Deuterium oxide (D{sub 2}O), a stable nonradioactive isotope of water, has been demonstrated to reduce L-type calcium channel conductance in isolated myocytes. Since the concentration of intracellular free calcium has been implicated in the mechanism of vascular smooth muscle contraction, the authors investigated whether it inhibits contraction of vascular smooth muscle. Phenylephrine concentration-contraction curves were carried out in the rat aortic ring preparation to determine whether D{sub 2}O inhibits contraction of rat aorta induced through activation of receptor-operated calcium channels. D{sub 2}O depressed these response curves in a concentration dependent manner with 50% inhibition of maximum contraction observed with 60% D{sub 2}O; this effect proved to be reversible and non-toxic. D{sub 2}O also depressed potassium chloride curves, demonstrating an effect on voltage-operated calcium channels. Since vascular endothelium releases endothelium-derived relaxing factor (EDRF) when stimulated by a range of pharmacological agents, it was examined whether the endothelium has a role in these actions of D{sub 2}O on vascular contraction. Mechanical disruption of the endothelium had no effect.

  9. Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase.

    PubMed

    Turowski, Maciej; Yamakawa, Naoki; Meller, Jaroslaw; Kimata, Kazuhiro; Ikegami, Tohru; Hosoya, Ken; Tanaka, Nobuo; Thornton, Edward R

    2003-11-12

    Hydrogen/deuterium isotope effects on hydrophobic binding were examined by means of reversed-phase chromatographic separation of protiated and deuterated isotopologue pairs for a set of 10 nonpolar and low-polarity compounds with 10 stationary phases having alkyl and aryl groups bonded to the silica surface. It was found that protiated compounds bind to nonpolar moieties attached to silica more strongly than deuterated ones, demonstrating that the CH/CD bonds of the solutes are weakened or have less restricted motions when bound in the stationary phase compared with the aqueous solvent (mobile phase). The interactions responsible for binding have been further characterized by studies of the effects of changes in mobile phase composition, temperature dependence of binding, and QSRR (quantitative structure-chromatographic retention relationship) analysis, demonstrating the importance of enthalpic effects in binding and differentiation between the isotopologues. To explain our results showing the active role of the hydrophobic (stationary) phase we propose a plausible model that includes specific contributions from aromatic edge-to-face attractive interactions and attractive interactions of aliphatic groups with the pi clouds of aromatic groups present as the solute or in the stationary phase.

  10. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry.

    PubMed

    Cardozo, Karina H M; Carvalho, Valdemir M; Pinto, Ernani; Colepicolo, Pio

    2006-01-01

    The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.

  11. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    PubMed

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  12. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF

    SciTech Connect

    Moran, M. J.; Bond, E. J.; Clancy, T. J.; Eckart, M. J.; Khater, H. Y.; Glebov, V. Yu.

    2012-10-15

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y{sub n}) measurements from below 10{sup 9} (DD) to nearly 10{sup 15} (DT). The detectors initially demonstrated detector-to-detector Y{sub n} precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of {+-}10% and precision of {+-}1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y{sub n} measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  13. Retention property of deuterium for fuel recovery in divertor by using hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Mera, Saori; Tonegawa, Akira; Matsumura, Yoshihito; Sato, Kohnosuke; Kawamura, Kazutaka

    2014-10-01

    Magnetic confinement fusion reactor by using Deuterium and Tritium of hydrogen isotope as fuels is suggested as one of the future energy source. Most fuels don't react and are exhausted out of fusion reactor. Especially, Tritium is radioisotope and rarely exists in nature, so fuels recovery is necessary. This poster presentation will explain about research new fuel recovery method by using hydrogen storage materials in divertor simulator TPD-Sheet IV. Samples are tungsten coated with titanium; tungsten of various thickness, and titanium films deposited by ion plating on tungsten substrates. The sample surface temperature is measured by radiation thermometer. Retention property of deuterium after deuterium plasma irradiation was examined with thermal desorption spectroscopy (TDS). As a result, the TDS measurement shows that deuterium is retained in titanium. Therefore, Titanium as a hydrogen storage material expects to be possible to use separating and recovering fuel particles in divertor.

  14. Investigations of chemical erosion of carbon materials in hydrogen and deuterium low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Starke, P.; Fantz, U.; Balden, M.

    2005-03-01

    Investigations on chemical erosion of pure and carbide-doped graphite materials were carried out in inductively coupled RF plasmas containing hydrogen, deuterium or a mixture of both in helium. For extrapolations of erosion yields to future fusion devices the relevant particle fluxes have to be known precisely. This was done by several diagnostic techniques. In particular the ion fluxes are determined by an energy mass analyzer. An isotope effect of the ion composition is measured resulting in an enhanced erosion of graphite in deuterium plasmas. Since in fusion plasmas a mixture of deuterium and tritium will interact with the surface, a mixture of hydrogen and deuterium on graphite was investigated as well. In order to reduce erosion yields doping of carbon is under discussion. Therefore, fluence dependent erosion yields of several W-, Ti-, V- and Zr-doped graphite materials are measured and compared with pure graphite.

  15. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  16. Geographic origin determination of heroin and cocaine using site-specific isotopic ratio deuterium NMR

    PubMed

    Hays; Remaud; Jamin; Martin

    2000-05-01

    SNIF-NMR (Site-specific natural isotopic fractionation measured by deuterium NMR) was employed on 36 heroin samples from seven different known origins, and two cocaine samples from two different known origins. Heroin has two "synthetic" deuterium labeled sites (the two acetyls from acetic anhydride, each representing three equivalent nuclei) and 15 "natural" deuterium labeled sites (originating from the morphine produced in the opium plant). The "natural" sites have the potential for determining geographic location of the original opium plant, while the "synthetic" sites could assist in giving information about the commercial source of acetic anhydride used to convert morphine to heroin. Cocaine has 15 "natural" deuterium labeled sites. This study shows that SNIF-NMR has some use in determining the geographic origin of heroin and also has good potential for determining the geographical origin of cocaine.

  17. An Effective Deuterium Exchange Method for Neutron Crystal Structure Analysis with Unfolding-Refolding Processes.

    PubMed

    Kita, Akiko; Morimoto, Yukio

    2016-02-01

    A method of hydrogen/deuterium (H/D) exchange with an unfolding-refolding process has been applied to hen egg-white lysozyme (HWL), and accurate evaluation of its deuteration was carried out by time-of-flight mass spectroscopy. Neutron crystallography requires a suitable crystal with enough deuterium exchanged in the protein to decrease incoherent scattering from hydrogens. It is very expensive to prepare a fully deuterated protein, and therefore a simple H/D exchange technique is desirable for this purpose. Acid or base addition to protein solutions with heating effectively increased the number of deuterium up to more than 20 % of that of all hydrogen atoms, and refolded structures were determined by X-ray structure analysis at 1.8 Å resolution. Refolded HWL had increased deuterium content in its protein core and its native structure, determined at atomic resolution, was fully preserved. PMID:26718545

  18. Deuterium retention and lattice damage in tungsten irradiated with D ions

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.; Ertl, K.; Roth, J.

    2001-03-01

    Depth profiles of D atoms and D 2 molecules in a W single crystal implanted with 6 keV D ions at 300 K have been determined using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA) measurements in the course of surface sputtering. Profiles of deuterium and lattice damage in a W single crystal irradiated with 10 keV D ions at 300 K have been investigated by means of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry combined with ion channelling techniques (RBS/C). There are at least two types of ion-induced defects which are responsible for trapping of deuterium: (i) D 2-filled microvoids (deuterium bubbles) localised in the implantation zone; and (ii) dislocations which are distributed from the surface to depths far beyond 1 μm and which capture deuterium in the form of D atoms.

  19. Deuterium and helium release and microstructure of tungsten deposition layers formed by RF plasma sputtering

    SciTech Connect

    Katayama, K.; Imaoka, K.; Tokitani, M.; Miyamoto, M.; Nishikawa, M.; Fukada, S.; Yoshida, N.

    2008-07-15

    It is important to evaluate tritium behavior in tungsten deposition layers considering a long-term plasma operation. In this study, tungsten deposition layers were formed by deuterium or helium RF plasma sputtering. The release behavior of deuterium or helium from the layers were observed by a thermal desorption method. When a tungsten deposition layer does not contain oxygen, the retained deuterium is mainly released as D{sub 2}. When oxygen exists in the layer, the majority of deuterium is released as water vapor. Tungsten deposition layers have an amorphous structure and consist offline grain with size of 2-3 nm. Numerous bubbles are observed in the layers. A formation of tungsten deposition layer in a fusion reactor may make tritium control more difficult. (authors)

  20. Parity-violating neutron spin rotation in hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Grießhammer, H. W.; Schindler, M. R.; Springer, R. P.

    2012-01-01

    We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is frac{1} {ρ }frac{{d\\varphi _{PV}^{np} }} {{dl}} = left[ {4.5 ± 0.5} right] rad MeV^{ - frac{1} {2}} left( {2g^{left( {^3 S_1 - ^3 P_1 } right)} + g^{left( {^3 S_1 - ^3 P_1 } right)} } right) - left[ {18.5 ± 1.9} right] rad MeV^{ - frac{1} {2}} left( {g_{left( {Δ I = 0} right)}^{left( {^1 S_0 - ^3 P_0 } right)} - 2g_{left( {Δ I = 2} right)}^{left( {^1 S_0 - ^3 P_0 } right)} } right), while for nd spin rotation we obtain frac{1} {ρ }frac{{d\\varphi _{PV}^{nd} }} {{dl}} = left[ {8.0 ± 0.8} right] rad MeV^{ - frac{1} {2}} g^{left( {^3 S_1 - ^1 P_1 } right)} + left[ {17.0 ± 1.7} right] rad MeV^{ - frac{1} {2}} g^{left( {^3 S_1 - ^3 P_1 } right)} + left[ {2.3 ± 0.5} right] rad MeV^{ - frac{1} {2}} left( {3g_{left( {Δ I = 0} right)}^{left( {^1 S_0 - ^3 P_0 } right)} - 2g_{left( {Δ I = 1} right)}^{left( {^1 S_0 - ^3 P_0 } right)} } right), where the g (X-Y), in units of MeV^{ - frac{3} {2}}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be left| {frac{{d\\varphi _{PV} }} {{dl}}} right| ≈ left[ {10^{ - 7} ldots 10^{ - 6} } right]frac{{rad}} {m} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations

  1. Venus was wet: a measurement of the ratio of deuterium to hydrogen

    SciTech Connect

    Donahue, T.M.; Hoffman, J.H.; Hodges, R.R. Jr.; Watson, A.J.

    1982-05-07

    The deuterium-hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 +- 0.2) x 10/sup -2/. The hundredfold enrichment of deuterium means that at least 0.3% of a terrestrial ocean was outgassed on Venus, but is consistent with a much greater production. 2 figures.

  2. LETTER: H-mode threshold and confinement in helium and deuterium in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ryter, F.; Pütterich, T.; Reich, M.; Scarabosio, A.; Wolfrum, E.; Fischer, R.; Gemisic Adamov, M.; Hicks, N.; Kurzan, B.; Maggi, C.; Neu, R.; Rohde, V.; Tardini, G.; ASDEX Upgrade TEAM

    2009-06-01

    In 2008, experiments have been carried out in ASDEX Upgrade to compare H-mode power threshold and confinement time in helium and deuterium. A scan in magnetic field and a wide density variation indicate that the threshold power in the two gases is very similar. The density dependence of the threshold exhibits a clear minimum. Confinement in helium is about 30% lower than in deuterium, mainly due to the reduction in the ion density caused by Z = 2 in helium.

  3. Venus was wet: a measurement of the ratio of deuterium to hydrogen.

    PubMed

    Donahue, T M; Hoffman, J H; Hodges, R R; Watson, A J

    1982-05-01

    The deuterium-hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 +/- 0.2) x 10(-2). The hundredfold enrichment of deuterium means that at least 0.3 percent of a terrestrial ocean was outgassed on Venus, but is consistent with a much greater production.

  4. Hydrogen-deuterium exchange of aromatic amines and amides using deuterated trifluoroacetic acid

    PubMed Central

    Giles, Richard; Lee, Amy; Jung, Erica; Kang, Aaron; Jung, Kyung Woon

    2014-01-01

    The H-D exchange of aromatic amines and amides, including pharmaceutically relevant compounds such as acetaminophen and diclofenac, was investigated using CF3COOD as both the sole reaction solvent and source of deuterium label. The described method is amenable to efficient deuterium incorporation for a wide variety of substrates possessing both electron-donating and electron-withdrawing substituents. Best results were seen with less basic anilines and highly activated acetanilides, reflecting the likelihood of different mechanistic pathways. PMID:25641994

  5. Effect of plastic deformation on deuterium retention and release in tungsten

    SciTech Connect

    Terentyev, D. Lambrinou, K.; Minov, B.; De Temmerman, G.; Morgan, T. W.; Zayachuk, Y.; Bystrov, K.; Dubinko, A.; Van Oost, G.

    2015-02-28

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼ 10{sup 24 }D/m{sup 2}/s, energy ∼ 50 eV, and fluence up to 3 × 10{sup 26 }D/m{sup 2}) at the plasma generator Pilot-PSI was studied by thermal desorption spectroscopy and scanning electron microscopy. The desorption spectra in both reference and plastically deformed samples were deconvolved into three contributions attributed to the detrapping from dislocations, deuterium-vacancy clusters, and pores, respectively. The plastically induced deformation, resulting in high dislocation density, does not change the positions of the three peaks, but alters their amplitudes as compared to the reference material. The appearance of blisters detected by scanning electron microscopy and the desorption peak attributed to the release from pores (i.e., deuterium bubbles) were suppressed in the plastically deformed samples but only up to a certain fluence. Beyond 5 × 10{sup 25 }D/m{sup 2}, the release from the bubbles in the deformed material is essentially higher than in the reference material. Based on the presented results, we suggest that a dense dislocation network increases the incubation dose needed for the appearance of blisters, associated with deuterium bubbles, by offering numerous nucleation sites for deuterium clusters eventually transforming into deuterium-vacancy clusters by punching out jogs on dislocation lines.

  6. In-ESI source hydrogen/deuterium exchange of carbohydrate ions.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2014-03-01

    We present the investigation of hydrogen/deuterium (H/D) exchange of carbohydrates ions occurring in the electrospray ion source. The shape of the deuterium distribution was observed to be considerably dependent on the temperature of the ion transfer tube and the solvent used. If deuterated alcohol (EtOD or MeOD) or D2O/deuterated alcohol is used as an electrospray solvent, then for high temperatures (>350 °C), intensive back exchange is observed, resulting in ∼30% depth of the deuterium exchange. At low temperatures (<150 °C), the back exchange is weaker and the depth of the deuterium exchange is ∼70%. In the intermediate temperature region (∼250 °C), the deuterium distribution is unusually wide for methanol and bimodal for ethanol. The addition of 1% formic acid results in low (∼30%) depth of the deuterium exchange for any temperature in the operating region. The bimodal distribution for the ethanol can be possibly explained by the presence of differently folded gas-phase ions of carbohydrates.

  7. Body composition of lactating and dry Holstein cows estimated by deuterium dilution

    SciTech Connect

    Martin, R.A.; Ehle, F.R.

    1986-01-01

    In three experiments patterns of water turnover and body composition estimated by deuterium oxide were studied in Holstein cows. In the first experiment, four lactating cows were infused with deuterium oxide, and blood samples were taken during 4-d collection. Milking was stopped; cows were reinfused with deuterium oxide and resampled. Slopes of deuterium oxide dilution curves indicated lactating cows turned water over more rapidly than nonlactating cows. In the second experiment with the same four cows, during 4-d collection, deuterium oxide concentrations in milk, urine, and feces showed dilution patterns similar to deuterium oxide in blood. Sampling milk may be an alternative to sampling blood. In the third experiment, 36 Holstein cows were fed 55, 65, or 75% alfalfa, smooth bromegrass, or equal parts of each forage as total mixed rations; remaining portions of rations were a grain mixture. Body composition was estimated at -1, 1, 2, 3, 4, and 5 mo postpartum. Empty body water, protein, mineral, fat, and fat percentage decreased from prepartum to postpartum. First calf heifers contained less empty body water, protein, and mineral than older cows. Cows fed diets with 55% forage had more body fat than those fed diets with 75% forage. Cows fed alfalfa-based diets had more gastrointestinal fill regardless of grain than cows fed diets that contained alfalfa and smooth bromegrass. Gastrointestinal fill of cows increased from prepartum to 5 mo postpartum.

  8. Body composition in Mexican adults by air displacement plethysmography (ADP) with the BOD-POD and deuterium oxide dilution using infrared spectroscopy (IRS-DOD).

    PubMed

    Macías, Nayeli; Calderón de la Barca, Ana María; Bolaños, Adriana V; Alemán, Heliodoro; Esparza, Julián; Valencia, Mauro E

    2002-09-01

    Thirty four subjects (13 men and 21 women), 24 to 70 years old from northern Mexico, were measured for body density by air displacement plethysmography (ADP) with the BOD-POD, and for total body water by deuterium oxide dilution and infrared spectroscopy (IRS-DOD). Subjects were given a 30 g dose of deuterium oxide. Saliva samples were filtered, sublimated, and deuterium was measured using a Miran 1 FF, IRS. Linear regression of the fat mass (FM) derived from both methods showed that the intercept (0.071) was not different from zero (p = .96) and the slope was 0.96 (p < .0001) demonstrating the techniques to be equivalent. Further, mean FM was 26.7 +/- 12.4 and 25.6 +/- 12.4 kg, for IRS-DOD and ADP techniques, respectively (p = .08). Precision analysis by the model R2 showed that 92.3% of the variability was explained (SEM = 3.4 kg). Bland-Altman analysis showed no significant bias (r = 0.017; p = .93). Mean difference between methods was -1.08 (CI: -2.3 to + 0.13) kg FM.

  9. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  10. Deuterium Fractionation in Analogs of Interstellar Ices: Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A question of key interest in the field of Astrobiology is the extent to which organic compounds made in space may play a role in the origin of life in planetary systems. In general, the best proof that at least some interstellar materials survive incorporation into forming stellar/planetary systems is their identification in extraterrestrial samples through detection of the isotopic anomalies they may carry. In the case of organic compounds, the chief isotopic anomalies that might be expected are the enrichment of D and 15N. and such enrichments are seen in primitive extraterrestrial materials, for example, in the organics in carbonaceous chondrites and interplanetary dust particles. In my talk I will review the various astrochemical processes by which deuterium can become enriched in organic compounds and will discuss some recent laboratory experiments that examine one of these processes in particular. name]y the UV photolysis of interstellar ices. Finally, I will review the current state of our knowledge of D enrichments in primitive solar system materials and discuss the constraints these data place on the relative importance of the various possible interstellar D enrichment processes.

  11. A high deuterium abundance in the early Universe.

    PubMed

    Songaila, A; Wampler, E J; Cowie, L L

    1997-01-01

    Intergalactic gas clouds at high redshifts have element abundances that are close to primordial. The ratio of deuterium to hydrogen (D/H) within such clouds-which is determined from absorption lines in the spectra of more distant quasars that lie along the same line of sight-provides the best estimate of the density of baryons (omegaB) in the Universe. Previous estimates of D/H in the early Universe have yielded values that differ by about an order of magnitude, with the lower values implying a high density of baryons that may be difficult to reconcile with both estimates of the primordial abundances of other light elements (especially 4He) and the known number of light neutrinos. The accuracy of such D/H determinations is heavily dependent on the inferred column density of neutral hydrogen in the absorbing clouds. Here we report an independent measurement of the neutral hydrogen column density in the cloud towards the quasar Q1937 - 1009, for which one of the low D/H values was derived. Our measurement requires a substantial revision to the D/H value reported previously; we obtain a lower limit of D/H > 4 x 10(-5) for this cloud, which implies omegaB < 0.016 for a Hubble constant of 100 km s(-1) Mpc(-1). This reduced upper limit for the baryon density relieves any conflict with standard Big Bang nucleosynthesis.

  12. Surface chemistry and physics of deuterium retention in lithiated graphite

    SciTech Connect

    Taylor, C. N.; Krstic, Predrag S; Allain, J. P.; Heim, B.; Skinner, C. H.; Kugel, H.

    2011-01-01

    Lithium wall conditioning in TFTR, CDX-U, T-11M, TJ-II and NSTX is found to yield enhanced plasma performance manifest, in part, through improved deuterium particle control. X-ray photoelectron spectroscopy (XPS) experiments examine the affect of D irradiation on lithiated graphite and show that the surface chemistry of lithiated graphite after D ion bombardment (500 eV/amu) is fundamentally different from that of non-Li conditioned graphite. Instead of simple LiD bonding seen in pure liquid Li, graphite introduces additional complexities. XPS spectra show that Li-O-D (533.0 {+-} 0.6 eV) and Li-C-D (291.4 {+-} 0.6 eV) bonds, for a nominal Li dose of 2 {micro}m, become 'saturated' with D at fluences between 3.8 and 5.2 x 10{sup 17} cm{sup -2}. Atomistic modeling indicate that Li-O-D-C interactions may be a result of multibody effects as opposed to molecular bonding.

  13. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  14. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Yang, Menglin; Hoeppner, Morgan; Rey, Martial; Kadek, Alan; Man, Petr; Schriemer, David C

    2015-07-01

    The pitcher secretions of the Nepenthes genus of carnivorous plants contain a proteolytic activity that is very useful for hydrogen/deuterium exchange mass spectrometry (HX-MS). Our efforts to reconstitute pitcher fluid activity using recombinant nepenthesin I (one of two known aspartic proteases in the fluid) revealed a partial cleavage profile and reduced enzymatic stability in certain HX-MS applications. We produced and characterized recombinant nepenthesin II to determine if it complemented nepenthesin I in HX-MS applications. Nepenthesin II shares many properties with nepenthesin I, such as fast digestion at reduced temperature and pH, and broad cleavage specificity, but in addition, it cleaves C-terminal to tryptophan. Neither enzyme reproduces the C-terminal proline cleavage we observed in the natural extract. Nepenthesin II is considerably more resistant to chemical denaturants and reducing agents than nepenthesin I, and it possesses a stability profile that is similar to that of pepsin. Higher stability combined with the slightly broader cleavage specificity makes nepenthesin II a useful alternative to pepsin and a more complete replacement for pitcher fluid in HX-MS applications. PMID:25993527

  15. Condensed Matter Deuterium Cluster Target for Study of Pycnonuclear Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; George, Miley

    2009-11-01

    Fusion reactions have two main classes: thermonuclear and the pycnonuclear. Thermonuclear fusion occurs in low density high temperature plasmas, and is very sensitive to the ion temperature due to Columbic repulsion effects. As the density increases, the Columbic potential barrier is depressed by increased electron screening, allowing fusion at lower temperatures. This type of nuclear reaction is termed a pycnonuclear fusion and is the basis for astrophysical fusion. Ichimarua [1] proposed a laboratory study of this process using explosive mechanical compression of H/D to metallic densities, which would be extremely difficult to implement. Instead, our recent research suggests that metallic-like H/D ``clusters'' can be formed in dislocation loops of thin Palladium foils through electrochemical processes. [2] If this technique is used as a laser compression target, the compressed cluster density would allow study of pycnonuclear reactions. This provides a means of studying astrophysical fusion process, and could also lead to an important non-cryogenic ICF target. [2] [4pt] [1] S. Ichimaru, H. Kitamura. Phys. Plasmas, 6, 2649 (1999) [0pt] [2] G. Miley and X. Yang, Deuterium Cluster Target for Ultra-High Density, 18TH TOFE, San Francisco, CA Sep. 28 -- Oct. 2, 2008

  16. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    SciTech Connect

    Ning, Cheng; Xue, Chuang; Li, Baiwen; Feng, Zhixing

    2015-02-15

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation

  17. Ignition of deuterium based fuel cycles in a high beta system

    NASA Astrophysics Data System (ADS)

    Hirano, K.

    1987-01-01

    A steady state self-consistent plasma modeling applied to a system having less than Beta greater than close to unity, such as Field Reverse Configuration (FRC) or like, is found to be quite effective in solving the problems independently of any anomalous process and proves the existence of the ignited state of deuterium based fuel cycles. It was found that the pure DD cycle will not ignite so that He-3 and/or tritium must be added as a catalyzer to achieve ignition. The superiority of the complex composed of the master reactor of He-3-Cat.D cycle and the satellite reactor of He-3 enriched DHe-3 cycle was confirmed in constructing a cleaner system yielding smaller amounts of 14 MeV neutrons and to burn the fuel in steady state for long periods of time. In case storage of tritium for He-3 Beta(-) decay, which turned out not to be allowed experimentally, the catalyzed DD cycle was utilized conventionally, although 14 MeV neutron yields will be increased by 35% over the complex. It is demonstrated that advanced fuel cycle reactors can be very simple in construction and compact in size, so that the field strength and the plasma volume of the order of JT-60's may be enough for a 1000 MW power plant.

  18. Deuterium analysis in zircaloy using ps laser-induced low pressure plasma

    SciTech Connect

    Marpaung, Alion Mangasi; Lie, Zener Sukra; Niki, Hideaki; Kagawa, Kiichiro; Fukumoto, Ken-ichi; Ramli, Muliadi; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Hedwig, Rinda; Tjia, May On; Pardede, Marincan; Suliyanti, Maria Margaretha; Jobiliong, Eric; Kurniawan, Koo Hendrik

    2011-09-15

    An experimental study on picosecond laser induced plasma spectroscopy of a zircaloy sample with low-pressure surrounding helium gas has been carried out to demonstrate its potential applicability to three-dimensional quantitative micro-analysis of deuterium impurities in zircaloy. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified as 7 mJ laser energy, 1.3 kPa helium pressure, and 50 {mu}s measurement window, and which was found to result in consistent D emission enhancement. Employing these operational parameters, a linear calibration line exhibiting a zero intercept was obtained from zircaloy-4 samples doped with various concentrations of D impurity, regarded as surrogates for H impurity. An additional measurement also yielded a detection limit of about 10 {mu}g/g for D impurity, well below the acceptable threshold of damaging H concentration in zircaloy. Each of these measurements was found to produce a crater size of only 25 {mu}m in diameter, promising its application for performing less-destructive measurements. The result of this study has thus paved the way for conducting a further experiment with hydrogen-doped zircaloy samples and the further technical development of a three-dimensional quantitative micro-analysis of detrimental hydrogen impurity in zircaloy vessels used in nuclear power plants.

  19. Assessment of the Interstellar Processes Leading to Deuterium Enrichment in Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason P.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low temperature gas phase ion-molecule reactions, low temperature gas-grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D-enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, 0, and N in the same compounds.

  20. Deuterium NMR of Raft Model Membranes Reveals Domain-Specific Order Profiles and Compositional Distribution

    PubMed Central

    Yasuda, Tomokazu; Tsuchikawa, Hiroshi; Murata, Michio; Matsumori, Nobuaki

    2015-01-01

    In this report, we applied site-specifically deuterated N-stearoylsphingomyelins (SSMs) to raft-exhibiting ternary mixtures containing SSM, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol) and successfully acquired deuterium quadrupole coupling profiles of SSM from liquid-ordered (Lo) and liquid-disordered (Ld) domains. To our knowledge, this is the first report that shows detailed lipid chain dynamics separately and simultaneously obtained from coexisting Lo and Ld domains. We also found that the quadrupole profile of the Lo phase in the ternary system was almost identical to that in the SSM-Chol binary mixture, suggesting that the order profile of the binary system is essentially applicable to more complicated membrane systems in terms of the acyl chain order. We also demonstrated that 2H NMR spectroscopy, in combination with organic synthesis of deuterated components, could be used to reveal the accurate mole fractions of each component distributed in the Lo and Ld domains. As compared with the reported tie-line analysis of phase diagrams, the merit of our 2H NMR analysis is that the domain-specific compositional fractions are directly attainable without experimental complexity and ambiguity. The accurate compositional distributions as well as lipid order profiles in ternary mixtures are relevant to understanding the molecular mechanism of lipid raft formation. PMID:25992728

  1. Detailed Comparison of Deuterium Quadrupole Profiles between Sphingomyelin and Phosphatidylcholine Bilayers

    PubMed Central

    Yasuda, Tomokazu; Kinoshita, Masanao; Murata, Michio; Matsumori, Nobuaki

    2014-01-01

    Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles. PMID:24507603

  2. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry.

    PubMed

    Mysling, Simon; Salbo, Rune; Ploug, Michael; Jørgensen, Thomas J D

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically requires a high concentration (>200 mM) of the chemical reducing agent Tris(2-carboxyethyl)phosphine (TCEP) as its reduction rate constant is decreased at low pH and temperature. Serious adverse effects on chromatographic and mass spectrometric performances have been reported when using high concentrations of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions. PMID:24251601

  3. Deuterium off-resonance rotating frame spin-lattice relaxation of macromolecular bound ligands.

    PubMed Central

    Rydzewski, J M; Schleich, T

    1996-01-01

    Deuterated 3-trimethylsilylpropionic acid binding to bovine serum albumin was used as a model system to examine the feasibility and limitations of using the deuterium off-resonance rotating frame spin-lattice relaxation experiment for the study of equilibrium ligand-binding behavior to proteins. The results of this study demonstrate that the rotational-diffusion behavior of the bound species can be monitored directly, i.e., the observed correlation time of the ligand in the presence of a protein is approximately equal to the correlation time of the ligand in the bound state, provided that the fraction of bound ligand is at least 0.20. The presence of local ligand motion and/or chemical exchange contributions to relaxation in the bound state was inferred from the observation that the correlation time of the bound ligand was somewhat smaller than the correlation time characterizing the overall tumbling of the protein. An approximate value for the fraction of bound ligand was obtained from off-resonance relaxation experiments when supplemental spin-lattice or transverse relaxation times were employed in the analysis. Incorporation of local motion effects for the bound species into the theoretical relaxation formalism enabled the evaluation of an order parameter and an effective correlation time, which in conjunction with a wobbling in a cone model, provided additional information about ligand motion in the bound state. PMID:8785304

  4. Combining size-exclusion chromatography with differential hydrogen-deuterium exchange to study protein conformational changes.

    PubMed

    Makarov, Alexey A; Helmy, Roy

    2016-01-29

    Methods for protein characterization are being actively developed based on the growing importance of protein therapies and applications. The goal of this study was to demonstrate the use of size-exclusion chromatography (SEC) in combination with differential hydrogen-deuterium exchange (HDX) to compare protein global conformational changes at different solution conditions. Using chaotropic mobile phase additive, differential HDX was used to detect a number of solvent accessible labile protons of protein on-column at pH and temperature conditions which provided unrestricted intrinsic H/D exchange (all-or-nothing approach). Varying SEC on-column conditions allowed for protein conformational changes to be observed. Temperature and pressure were independently studied with regards to their effect on the proteins' (insulin, cytochrome C, ubiquitin, and myoglobin) conformational changes in the solution. The obtained ΔHDX profiles revealed protein conformational changes in solution under varied conditions manifested as the difference in the number of protons exchanged to deuterons, or vice-versa. The approach described in this manuscript could prove useful for protein batch-to-batch comparisons, for optimization of chemical reactions with enzyme as catalyst or for protein chemical modification reactions. PMID:26763301

  5. Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers.

    PubMed

    Yasuda, Tomokazu; Kinoshita, Masanao; Murata, Michio; Matsumori, Nobuaki

    2014-02-01

    Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles. PMID:24507603

  6. Feasibility of an experiment to measure stopping powers in solid-density deuterium plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Rinderknecht, H. G.; Zylstra, A. B.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Regan, S.; Sangster, C.; Graziani, F.; Collins, G. W.; Rygg, J. R.; Grabowski, P.; Glenzer, S.; Keiter, P.

    2014-10-01

    An experimental design to measure the stopping powers of charged-particles through solid-density, fully-ionized deuterium plasmas at temperatures around 10 eV is investigated. Stopping power in this regime is crucial to the understanding of alpha-heating and burn in Internal Confinement Fusion. Recent work by A.B. Zylstra et al. on the OMEGA laser facility has demonstrated such measurements of stopping power in partially ionized Be plasmas, by measuring the downshift of D3He-protons in an isochorically heated sample. As noted in their work, the effects of partial ionization are not well understood; however such effects are not applicable to hydrogenic fuels, for which the plasmas are expected to be fully ionized. This study will consider the viability of isochorically or shock heating a target to Warm Dense Matter conditions using a platform similar to the planar cryogenic system described by S.P. Regan et al. Plasma properties will be determined by x-ray Thomson scattering while stopping powers will be inferred through measuring downshift of either DD-protons, D3He-protons or D3He-alphas, the latter of which is directly applicable to the stopping of DT-alphas in ignition experiments. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  7. Cryogenic Implosion Performance Using High-Purity Deuterium-Tritium Fuel

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Radha, P. B.; Earley, R.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McKenty, P. W.; Shmayda, W. T.; Shoup, M. J., III; Michel, D. T.; Stoeckl, C.; Seka, W.; Frenje, J. A.; Gatu Johnson, M.

    2014-10-01

    Demonstrating hydrodynamic equivalence between symmetric implosions on OMEGA and National Ignition Facility ignition designs will require a number of facility enhancements that include dynamic bandwidth reduction, a set of higher-order super-Gaussian phase plates, high-spatial-resolution gated-core imaging, high-bandwidth neutron burnwidth measurements, improved power balance, and contaminant-free deuterium-tritium (DT) fuel. The historic DT fuel supply was contaminated with ~6 atm% of 1H, leading to significant fractionation of the fuel during the layering process (the triple points of H:D and H:T are significantly colder than DD, DT, and TT). The fractionation leads to a drop in the potential yield because the D and T number densities are lower in the void than they would be with a pure-DT mixture). An isotope separation system has been developed to remove the 1H from the DT fuel supply. This talk will discuss the first results with the purified fuel, conclusions from recent implosions to test cross-beam energy transfer mitigation, and the status of the remaining facility enhancements. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Theoretical study of deuterium kinetic isotope effect in peroxidation of phenol and toluene

    NASA Astrophysics Data System (ADS)

    Luzhkov, Victor B.

    2005-12-01

    Reaction mechanisms of hydrogen abstraction from phenol and toluene by the hydroperoxyl radical are probed by theoretical calculations of deuterium kinetic isotope effect (KIE). In experiment the given free-radical reactions have nearly equal reaction heats and rates differing by 6 orders of magnitudes, yet demonstrate high H/D KIEs. The mechanism of phenol-peroxyl reaction is described by the proton-coupled electron transfer (PCET), while the toluene-peroxyl reaction follows the non-polar H-atom transfer (HAT). In present work, the H/D KIEs are assessed for several isotopomers of phenol and toluene using the DFT B3LYP/6-311+G(2d,2p) calculations and the post-processing Bigeleisen treatment with one-dimensional tunnel corrections. Differing patterns of bending vibrations are noted for the PCET and HAT TSs considered. The computed KIEs are 10.7 and 17.0 (at 65 °C) for the phenol and toluene reactions, respectively, that agrees with the available experimental results. The corresponding semi-classical contributions are 4.5 and 5.1, whereas the tunnel correction computed for unsymmetrical Eckart function yields the factors of 2.4 and 3.3 for phenol and toluene, respectively. The advantage of using Bigeleisen formula for reaction intermediates with low-frequency internal rotation modes is discussed.

  9. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  10. Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target

    NASA Astrophysics Data System (ADS)

    Santarius, J. F.

    2012-07-01

    Converging plasma jets may be able to reach the regime of high energy density plasmas (HEDP). The successful application of plasma jets to magneto-inertial fusion (MIF) would heat the plasma by fusion products and should increase the plasma energy density. This paper reports the results of using the University of Wisconsin's 1-D Lagrangian, radiation-hydrodynamics, fusion code BUCKY to investigate two MIF converging plasma jet test cases originally analyzed by Samulyak et al. [Physics of Plasmas 17, 092702 (2010)]. In these cases, 15 cm or 5 cm radially thick deuterium-tritium (DT) plasma jets merge at 60 cm from the origin and converge radially onto a DT target magnetized to 2 T and of radius 5 cm. The BUCKY calculations reported here model these cases, starting from the time of initial contact of the jets and target. Compared to the one-temperature Samulyak et al. calculations, the one-temperature BUCKY results show similar behavior, except that the plasma radius remains about twice as long near maximum compression. One-temperature and two-temperature BUCKY results differ, reflecting the sensitivity of the calculations to timing and plasma parameter details, with the two-temperature case giving a more sustained compression.

  11. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    SciTech Connect

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-01-01

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  12. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    NASA Astrophysics Data System (ADS)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  13. Natural abundance deuterium nuclear magnetic resonance spectroscopy: Study of the biosynthesis of monoterpenes

    SciTech Connect

    Leopold, M.F.

    1990-01-01

    Deuterium NMR spectroscopy at natural abundance (D NMR-na) is a new technique for exploring the biosynthesis of small molecules such as monoterpenes. The analysis of relative site-specific deuterium integration values is an effective means of measuring isotope effects, and examining the regio- and stereochemistry of biosynthetic reactions. The deuterium integration values of linalyl acetate and limonene isolated from the same source were consistent and showed that proton abstraction from the postulated {alpha}-terpinyl cation intermediate to form limonene is regioselective from the methyl derived from the Cs methyl of the precursor, geranyl diphosphate. This regiochemistry was observed in limonene samples from different sources and the measured primary kinetic isotope effect ranged from 0.25 to in excess of 100 (no deuterium was removed within experimental error). Various {alpha}- and {beta}-pinene samples were isolated and D NMR-na analysis showed evidence of isotopically sensitive partitioning of the pinylcation in the formation of these products. This spectral analysis supported published radiolabeling studies but did not require synthesis of substrates or enzyme purification. The formation of 3-carene occurs without isomerization of the double bond which was previously postulated. The olefinic deuterium of the bicyclic compound was traced to the depleted deuterium at C{sub 2} of isopentyl diphosphate by D NMR-na data and this supported unpublished radiolabeling studies. Study of irregular monoterpenes, chrysanthemyl acetate and lyratyl acetate, showed partitioning of dimethylallyl diphosphate (DMAPP) by chrysanthemyl cyclase. The {alpha}-secondary kinetic isotope effect of 1.06-1.12, obtained from relative deuterium integration values, suggested that S{sub N}1 ionization of one molecule of DMAPP is the first step in the condensation reaction.

  14. Retention and release mechanisms of deuterium implanted into beryllium

    NASA Astrophysics Data System (ADS)

    Oberkofler, M.; Reinelt, M.; Linsmeier, Ch.

    2011-06-01

    The fraction of deuterium (D) that is retained upon irradiation of beryllium (Be) as well as the temperatures at which implanted D is released are of importance for the international fusion experiment ITER, where Be will be used as an armor material. The influence of single parameters on retention and release is investigated in laboratory experiments performed under well defined conditions with the aim to identify dominant underlying mechanisms and thus be able to predict the behavior of the Be wall in ITER. Recent progress in the quantification of retained fractions and release temperatures as well as in the understanding of the governing mechanisms is presented. The retained fraction upon implantation of D at 1 keV into Be(1 1 2¯ 0) to fluences far below the saturation threshold of 10 21 m -2 is almost 95%, the remaining 5% being attributed to reflection at the surface. At these low fluences, no dependence of the retained fractions on implantation energy is observed. At fluences of the order of 10 21 m -2 and higher, saturation of the irradiated material affects the retention, leading to lower retained fractions. Furthermore, at these fluences the retained fractions decrease with decreasing implantation energies. Differences in the retained fractions from implanted Be(1 1 2¯ 0) and polycrystalline Be are explained by anisotropic diffusion of interstitials during implantation, leading to an amount of surviving D-trap complexes that depends on surface-orientation. Temperature-programmed desorption (TPD) spectra are recorded after implantation of fluences of the order of 10 19 m -2 at various energies and simulated by means of a newly developed code based on coupled reaction-diffusion systems (CRDS). The asymmetric shape of the TPD peaks is reproduced by introducing a local D accumulation process into the model.

  15. Experimental results of hydrogen distillation at the low power cryogenic column for the production of deuterium depleted hydrogen

    SciTech Connect

    Alekseev, I.; Fedorchenko, O.; Kravtsov, P.; Vasilyev, A.; Vznuzdaev, M.

    2008-07-15

    The Deuterium Removal Unit (DRU) has been designed and built at the Petersburg Nuclear Physics Inst. (PNPI) to produce isotopically pure hydrogen with deuterium content less than 1 ppm. The cryogenic distillation column of 2.2 cm inner diameter and 155 cm packing height is the main element of the DRU. Column performances at different hydrogen distillation operating modes have been measured. The height equivalent to theoretical plate (HETP) for the column is 2.2 cm and almost constant over a wide range of vapour flow rates. Deuterium depleted hydrogen with a deuterium content of less than 0.1 ppm was produced in required quantity. (authors)

  16. Shock-tuned cryogenic-deuterium-tritium implosion performance on Omegaa)

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fletcher, K. A.; Frenje, J. A.; Glebov, Y. Yu.; Harding, D. R.; Hu, S. X.; Igumenschev, I. V.; Knauer, J. P.; Loucks, S. J.; Li, C. K.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Nilson, P. M.; Padalino, S. P.; Petrasso, R. D.; Radha, P. B.; Regan, S. P.; Seguin, F. H.; Seka, W.; Short, R. W.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.

    2010-05-01

    Cryogenic-deuterium-tritium (DT) target compression experiments with low-adiabat (α), multiple-shock drive pulses have been performed on the Omega Laser Facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to demonstrate hydrodynamic-equivalent ignition performance. The multiple-shock drive pulse facilitates experimental shock tuning using an established cone-in-shell target platform [T. R. Boehly, R. Betti, T. R. Boehly et al., Phys. Plasmas 16, 056301 (2009)]. These shock-tuned drive pulses have been used to implode cryogenic-DT targets with peak implosion velocities of 3×107 cm/s at peak drive intensities of 8×1014 W/cm2. During a recent series of α ˜2 implosions, one of the two necessary conditions for initiating a thermonuclear burn wave in a DT plasma was achieved: an areal density of approximately 300 mg/cm2 was inferred using the magnetic recoil spectrometer [J. A. Frenje, C. K. Li, F. H. Séguin et al., Phys. Plasmas 16, 042704 (2009)]. The other condition—a burn-averaged ion temperature ⟨Ti⟩n of 8-10 keV—cannot be achieved on Omega because of the limited laser energy; the kinetic energy of the imploding shell is insufficient to heat the plasma to these temperatures. A ⟨Ti⟩n of approximately 3.4 keV would be required to demonstrate ignition hydrodynamic equivalence [Betti et al., Phys. Plasmas17, 058102 (2010)]. The ⟨Ti⟩n reached during the recent series of α ˜2 implosions was approximately 2 keV, limited primarily by laser-drive and target nonuniformities. Work is underway to improve drive and target symmetry for future experiments.

  17. Synthesis of deuterium-labelled halogen derivatives of L-tryptophan catalysed by tryptophanase.

    PubMed

    Winnicka, Elżbieta; Szymańska, Jolanta; Kańska, Marianna

    2016-06-01

    The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4'-F-, 7'-F-, 5'-Cl- and 7'-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in (2)H2O, catalysed by enzyme tryptophanase (EC 4.1.99.1). The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using (1)H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (∼30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium.

  18. Influence of Murchison or Allende minerals on hydrogen-deuterium exchange of amino acids.

    PubMed

    Lerner, N R

    1995-04-01

    Deuterium-enriched amino acids occur in the Murchison carbonaceous chrondrite. This meteorite underwent a period of aqueous alteration with isotopically light water. With the objective of setting limits on the conditions of aqueous alteration, the exchange of the carbon-bonded hydrogen atoms of amino acids with D2O has been studied from 295 to 380 K as a function of time and meteorite/heavy water ratio. The amount of Murchison or Allende dust present has a significant effect on the rate and amount of hydrogen-deuterium exchange observed. At elevated temperatures, the alpha-hydrogens of all the amino acids studied were found to exchange with deuterium. In glycine and aspartic acid, this process resulted in total exchange of the carbon-bonded hydrogen. A completely deuterated isotopomer of alanine was produced in significant quantities only when the rock/water ratio was greater than 0.5. No exchange of carbon-bonded hydrogens was observed in the case of amino acids which do not possess an alpha-hydrogen atom. The rates of H/D exchange for amino acids observed here did not correspond to deuterium enrichment of the amino acids in the Murchison meteorite. These results suggest that H/D exchange with water had a negligible effect on the observed deuterium enrichment of amino acids found in Murchison and that the temperature at which the amino acids were exposed to liquid water was close to 273 K.

  19. Observation of oversaturation-induced defect formation in tungsten irradiated by low energy deuterium ion

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Song, Jae-Min; Roh, Ki-Baek; Kim, Nam-Kyun; Roh, Hyun-Joon; Jang, Yunchang; Ryu, Sangwon; Bae, Byeongjun; Kim, Gon-Ho

    2016-08-01

    The type of induced material damage in the tungsten irradiated by using deuterium ions was investigated for various value of the fluence at low energy. Experiments were carried out in an electron cyclotron resonance (ECR) plasma source that provided an ion flux of 2.8 × 1021 D 2 + /m2s and a sheath energy of 100 eV/ D 2 + on the tungsten target. The energy of irradiated ions was much smaller than the threshold energy for generating cascade collisional damage (˜ 250 eV) in tungsten and was similar of the plasma at the first wall of KSTAR. The target temperature was kept as 700 - 800 K by using an active cooling system. Secondary ion mass spectroscopy (SIMS) was employed to observe the depth profiles of deuterium. The peak of the trapped deuterium concentration in the irradiated tungsten was located near 16 - 17 nm for 2.0 - 4.0 × 1025 D 2/m2, which is far deeper than the 1.6 nm for ion implantation at 100 eV/ D 2 + ions. Thermal desorption spectroscopy (TDS) data were analyzed to determine the binding energy ( E b = 1.45 eV) of trapped deuterium, which corresponded to an oversaturation-induced vacancy. This observation is very important for understanding the refueling property of the retained deuterium during steady-state fusion plasma operation.

  20. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    SciTech Connect

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A. )

    1990-02-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake.

  1. Site occupancy of interstitial deuterium atoms in face-centred cubic iron

    PubMed Central

    Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi

    2014-01-01

    Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789

  2. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50-70 °C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5 × 1025 m-2 to reach the total ion fluence of 1 × 1026 m-2 in order to investigate the near-surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate the irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near-surface (<5 µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near-surface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.3 dpa) at 500 °C cases even in the relatively low ion fluence of 1026 m-2.

  3. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    PubMed

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  4. Deuterium Retention and Lattice Damage in Tungsten Irradiated with D Ions

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.; Alimov, V. Kh.; Ertl, K.; Roth, J.; Schmid, K.

    The depth profiles of D atoms and D2 molecules in W single crystals and hot-rolled W implanted with 6 keV D ions at 300 and 650 K were determined by means of secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA) measurements in the course of surface sputtering. Retention of deuterium and lattice damage in W single crystal irradiated with 10 keV D ions at 300 K were investigated by means of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry and ion channelling techniques (RBS/C). There are at least two types of ion-induced defects which are responsible for trapping of deuterium: (i) D2-filled microvoids (deuterium bubbles) localised in the implantation zone and (ii) dislocations distributed from the surface to depths far beyond 1 μm which capture deuterium in the form of D atoms. Additionally, D atoms can be trapped by vacancies and adsorbed on bubble walls. At 650 K, deuterium is retained as D atoms only.

  5. Deuterium enrichment of interstellar methanol explained by atom tunneling.

    PubMed

    Goumans, T P M; Kästner, Johannes

    2011-10-01

    We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H(3)COH → H(2) + CH(2)OH/CH(3)O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH(2)DOH can be almost as abundant as CH(3)OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H(3)COH → HD + CH(2)OH has a lower vibrationally adiabatic barrier than H + H(3)COH → H(2) + CH(2)OH, giving rise to an inverse KIE (k(H)/k(D) < 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ~135 K, with a KIE k(H)/k(D) of 11.2 at 30 K. The H + D(3)COD → HD + CD(2)OD reaction is calculated to be much slower than the D + H(3)COH → HD + CH(2)OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.

  6. Study of the two pion final state photoproduction on deuterium

    SciTech Connect

    Graham, Lewis; Gothe, Ralf; Park, Kijun; Smith, Elton

    2010-08-05

    Spectrometer (CLAS) to study the two pion channel from the EG3 data set, for {Delta}{sup ++}(1232) production. We look to investigate the exclusive reaction of {gamma}d{yields}p{pi}{sup +{pi}-}(n), extracting the relevant cross sections to comparable data sets. This reaction is produced using a high intensity photon beam incident on a deuterium target. These measurements provide unique and coherent results from tagged photons over a broad range of energy, and represent the only pion production data above 5 GeV at this present time.

  7. Study of the two pion final state photoproduction on deuterium

    SciTech Connect

    Lewis Graham, Kijun Park, Ralf Gothe, Elton Smith

    2010-08-01

    Spectrometer (CLAS) to study the two pion channel from the EG3 data set, for Delta++ (1232) production. We look to investigate the exclusive reaction of gammad-->ppi+pi-(n), extracting the relevant cross sections to comparable data sets. This reaction is produced using a high intensity photon beam incident on a deuterium target. These measurements provide unique and coherent results from tagged photons over a broad range of energy, and represent the only pion production data above 5 GeV at this present time.

  8. a Study of Orientational Ordering in Solid Deuterium

    NASA Astrophysics Data System (ADS)

    Calkins, Myron Eugene, Jr.

    Nuclear magnetic resonance (NMR) studies were performed on samples of solid Deuterium with para concentrations X in the range 0.05 < X < 0.07 at temperatures between 0.032K and 3.0K and at a Larmor frequency of 5.88 MHz. This range of temperatures and concentrations includes the first order transition to the long range orientational ordered state. The spin-lattice relaxation times for both ortho (I = 2) and para (I = 1) D(,2) species were measured by the intensity of solid echos generated by the pulse sequence 90(,0)-t-90(,0)-150(mu)s-90(,90). In addition, the solid echoes themselves were digitized which, through the use of the fast Fourier transform, provided both the lineshapes of the two species, and the secondmoments M(,2) of their absorption lines. The secondmoments and relaxation times for both species are reported as functions of temperature at concentrations X = 0.05, 0.33, 0.46, 0.56 in the disordered phase, and for concentrations X = 0.65 and 0.70 which are above the concentration at which the long range order transition is observed. The results are discussed in terms of existing models (Washburn, 1983b) of spin-lattice relaxation in solid H(,2). At all concentrations below which the transition to a long range ordered phase does not occur (X < 0.58), the temperature dependence of the lineshape, secondmoment, and spin-lattice relaxation times is quite smooth. This finding is in agreement with the results of Candela (1983) and does not support the contention of some investigators (Sullivan, 1978, 1979) (Cochran, 1980) that at low temperatures in this concentration range D(,2) undergoes a phase transition to a "quadrupolar glass" phase. The relaxation times for T < 0.5K in the long range ordered phase (X > 0.59) seem to suggest the emergence of a mechanism providing intrinsic spin-lattice relaxation for the ortho molecules. Previous measurements in the cubic phase have been confined to higher temperatures, and measurements at comparable temperatures have

  9. Effects of non-equilibrium particle distributions in deuterium-tritium burning

    SciTech Connect

    Michta, D; Graziani, F; Pruet, J; Luu, T

    2009-08-18

    We investigate the effects of non-equilibrium particle distributions resulting from rapid deuterium-tritium burning in plasmas using a Fokker-Planck code that incorporates small-angle Coulomb scattering, Brehmsstrahlung, Compton scattering, and thermal-nuclear burning. We find that in inertial confinement fusion environments, deviations away from Maxwellian distributions for either deuterium or tritium ions are small and result in 1% changes in the energy production rates. The deuterium and tritium effective temperatures are not equal, but differ by only about 2.5% near the time of peak burn rate. Simulations with high Z (Xe) dopants show that the dopant temperature closely tracks that of the fuel. On the other hand, fusion product ion distributions are highly non-Maxwellian, and careful treatments of energy-exchange between these ions and other particles is important for determining burn rates.

  10. Comparison between the radial density buildup in the TARA plugs using hydrogen versus deuterium neutral beams

    SciTech Connect

    Blackfield, D.T.

    1983-11-01

    The WOLF code is used to compare the beam divergences from a TARA source using hydrogen and deuterium. Factors which influence the divergence which are investigated are the electron temperature, initial ion energy, electrode positions and ion beam current density. The beam divergence for 20 keV hydrogen is found to be only 20% smaller than for 25 keV deuterium for the same electrode positions. Since the optimal positioning of the electrodes is found to be independent of mesh spacing, a large parameter study is undertaken using little computer time. A time-dependent radial Fokker-Planck code is next used to examine the radial density buildup in a plug of the TARA tandem mirror. For both hydrogen and deuterium neutral beams, the influences of beam positioning, current and energy, edge neutral pressure and assumed electron temperature are studied.

  11. The role of deuterium in optical activity: The CD spectrum of (S,S)-dideuteriooxirane

    SciTech Connect

    Ben-Tzur, S.; Basil, A.; Gedanken, A.

    1992-07-01

    The circular dichroism of (S,S)-[2,3-{sup 2}H{sub 2}]oxirane has been investigated in the gas phase over the 1800-1500-{angstrom} region. While the absorption spectrum reveals only two allowed transitions, the circular dichroism (CD) spectrum shows a third transition which is magnetic dipole allowed and electric dipole forbidden. The CD sign of the first excited state complies with a quadrant rule which was formulated for the oxirane chromophore. This consignate behavior is contrary to the role of deuterium in carbonyl compounds, where an antioctant behavior is observed. The signs of the CD signals of the first excited state for oxiranes with methyl or deuterium substituents located in the same quadrant are the same, in contrast to the antioctant behavior of deuterium in carbonyls. This leaves the chirality rule formulated for substituted oxiranes without any exceptions. 33 refs., 1 fig.

  12. Potential measurements of neutrino-deuterium interactions with the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Mahn, Kendall; T2K Collaboration

    2015-04-01

    Uncertainties on neutrino interactions with matter are important for current and future generation neutrino long baseline experiments, which infer neutrino mixing parameters. Measurements of neutrinos on deuterium constrain neutrino-nucleon interaction models, such as axial form factors, and are relatively free of complicating nuclear effects. Existing measurements of neutrino interaction using deuterium bubble chambers suffer from low statistics and significant systematic uncertainty on neutrino flux production. This talk describes the possibility of modern neutrino-deuterium cross section measurements using modifications to the existing T2K experiment near detector complex. A comparison of data taken with deuterated water and normal water would provide a measurement of neutrino-deuteron interactions with high-intensity neutrino beam. T2K is supported by the Department of Energy.

  13. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  14. An Analysis of the Deuterium Fractionation of Star-forming Cores in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Friesen, R. K.; Kirk, H. M.; Shirley, Y. L.

    2013-03-01

    We have performed a pointed survey of N2D+ 2-1 and N2D+ 3-2 emission toward 64 N2H+-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N2H+, RD = N(N2D+)/N(N2H+), of 0.08, with a maximum RD = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N2H+ with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H2 column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between RD and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H2 ratio across the cloud, or a range in core evolution timescales.

  15. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Yung, Yuk L.

    1993-01-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  16. Longitudinal Lelectroproduction of Charged Pions on Hydrogen, Deuterium, and Helium 3

    SciTech Connect

    David Gaskell

    2001-05-01

    Conventional pictures of nuclear interactions, in which the pion mediates the long/medium range part of the nuclear force, predict an enhancement of the virtual pion cloud in nuclei relative to that in the free nucleon. Jefferson Lab Experiment E91003 measured charged pion electroproduction from Hydrogen, Deuterium, and Helium-3. The longitudinal cross section, which in the limit of pole dominance can be viewed as the quasifree knockout of a virtual pion, was extracted via a Rosenbluth separation. The longitudinal cross sections from Deuterium and Helium-3 were compared to Hydrogen to look for signatures of the nuclear pions.

  17. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  18. Research on laser-removal of a deuterium deposit from a graphite sample

    NASA Astrophysics Data System (ADS)

    Kubkowska, M.; Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Rosinski, M.; Gasior, P.

    2014-04-01

    The paper presents experimental results of investigation of a removal of deuterium deposits from a graphite target by means of pulsed laser beams. The sample was a part of the TEXTOR limiter with a deuterium-deposited layer. That target was located in the vacuum chamber, pumped out to 5×10-5 Torr, and it was irradiated with a Nd:YAG laser, which generated 3.5-ns pulses of energy of 0.5 J at λ1 = 1063 nm, or 0.1 J at λ3 = 355 nm.

  19. Properties of Fluid Deuterium under Double-Shock Compression to Several Mbar

    SciTech Connect

    Vianello, E; Celliers, P M; Hicks, D G; Boehly, T R; Collins, T B; Moon, S J; Eggert, J H; Collins, G W; Meyerhofer, D D

    2004-02-03

    The compressibility of fluid deuterium up to several Mbar has been probed using laser-driven shock waves reflected from a quartz anvil. Combining high-precision ({approx} 1 %) shock velocity measurements with the double-shock technique, where differences in equation of state (EOS) models are magnified, has allowed us to accurately discriminate between various theoretical predictions. Our data are consistent with EOS models that show approximately fourfold compression on the principal Hugoniot from 0.7 to 1 Mbar; however, our results indicate that deuterium has a higher compressibility than predicted by these models for single shock pressures between 1 and 2.5 Mbar.

  20. Deuterium in the Dead Sea: Remeasurement and implications for the isotopic activity correction in brines

    SciTech Connect

    Juske Horita Tokyo Institute of Technology ); Gat, J.R. )

    1989-01-01

    Remeasurement of {delta}D in Dead Sea waters, using improved analytical techniques for handling concentrated brines, removed most of the scatter in previous data and showed close parallelism in the enrichment of both {sup 18}O and deuterium as a function of salinity. The {delta}D values for a brine whose salinity is {sigma}{sub 25} = 232{per thousand} is close to +9{per thousand} relative to SMOW. It was further established that the concentration to activity correction (for deuterium) for the above mentioned Dead Sea brine was 17.8{per thousand}.

  1. Nuclear structure corrections in the energy spectra of electronic and muonic deuterium

    SciTech Connect

    Faustov, R.N.; Martynenko, A.P.

    2003-05-01

    The one-loop nuclear structure corrections of order (Z{alpha}){sup 5} to the Lamb shift and hyperfine splitting of deuterium are calculated. The contribution of the deuteron structure effects to the isotope shifts (ep)-(ed) and ({mu}p)-({mu}d) in the interval 1S-2S is obtained on the basis of modern experimental data on the deuteron electromagnetic form factors. Comparison with similar contributions to the Lamb shift for electronic and muonic hydrogen shows that the relative contribution due to the nuclear structure increases on passing from hydrogen to deuterium.

  2. Computation of hyperfine energies of hydrogen, deuterium and tritium quantum dots

    NASA Astrophysics Data System (ADS)

    Çakır, Bekir; Özmen, Ayhan; Yakar, Yusuf

    2016-01-01

    The hyperfine energies and hyperfine constants of the ground and excited states of hydrogen, deuterium and tritium quantum dots(QDs) are calculated. Quantum genetic algorithm (QGA) and Hartree-Fock-Roothaan (HFR) methods are employed to calculate the unperturbed wave functions and energy eigenvalues. The results show that in the medium and strong confinement regions the hyperfine energy and hyperfine constant are strongly affected by dot radius, impurity charge, electron spin orientation, impurity spin and impurity magnetic moment. Besides, in all dot radii, the hyperfine splitting and hyperfine constant of the confined hydrogen and tritium atoms are approximately equivalent to each other and they are greater than the confined deuterium atom.

  3. Breakdown in hydrogen and deuterium gases in static and radio-frequency fields

    SciTech Connect

    Korolov, I. Donkó, Z.

    2015-09-15

    We report the results of a combined experimental and modeling study of the electrical breakdown of hydrogen and deuterium in static (DC) and radio-frequency (RF) (13.56 MHz) electric fields. For the simulations of the breakdown events, simplified models are used and only electrons are traced by Monte Carlo simulation. The experimental DC Paschen curve of hydrogen is used for the determination of the effective secondary electron emission coefficient. A very good agreement between the experimental and the calculated RF breakdown characteristics for hydrogen is found. For deuterium, on the other hand, presently available cross section sets do not allow a reproduction of RF breakdown characteristics.

  4. Coulomb explosions of deuterium clusters studied by compact design of Nomarski interferometer

    NASA Astrophysics Data System (ADS)

    Martinkova, Michaela; Kalal, Milan; Rhee, Yong Joo

    2010-08-01

    Interactions of high-intensity femtosecond lasers with deuterium clusters leading to Coulombic explosions and subsequent production of fusion neutrons attracted in recent years considerable attention. In order to maximize the neutron yield finding a dependence of clusters size and their spatial distribution on experimental conditions became very important. In this paper a possibility to measure the deuterium clusters spatial distributions experimentally was analyzed. In combination with experiments recently performed in the Laboratory of Quantum Optics at the Korea Atomic Energy Research Institute (KAERI) interferometry was identified as the diagnostics suitable for such measurements.

  5. Enhancement of mite antigen-induced histamine release by deuterium oxide from leucocytes of chronic urticarial patients

    SciTech Connect

    Numata, T.; Yamamoto, S.; Yamura, T.

    1981-09-01

    The mite antigen-induced histamine release from leucocytes of chronic urticarial patients was enhanced in the presence of deuterium oxide, which stabilizes microtubules. This enhancing effect of deuterium oxide on the histamine release from leucocytes may provide a useful means for the detection of allergens in vitro in chronic urticaria.

  6. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE PAGES

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; et al

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  7. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; Bonasera, A.; Natowitz, J. B.; Albright, B. J.; Fernández, J. C.; Ditmire, T.

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

  8. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.

    1988-12-01

    The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.

  9. Use of pressure in reversed-phase liquid chromatography to study protein conformational changes by differential deuterium exchange.

    PubMed

    Makarov, Alexey A; Schafer, Wes A; Helmy, Roy

    2015-02-17

    The market of protein therapeutics is exploding, and characterization methods for proteins are being further developed to understand and explore conformational structures with regards to function and activity. There are several spectroscopic techniques that allow for analyzing protein secondary structure in solution. However, a majority of these techniques need to use purified protein, concentrated enough in the solution to produce a relevant spectrum. In this study, we describe a novel approach which uses ultrahigh pressure liquid chromatography (UHPLC) coupled with mass-spectrometry (MS) to explore compressibility of the secondary structure of proteins under increasing pressure detected by hydrogen-deuterium exchange (HDX). Several model proteins were used for these studies. The studies were conducted with UHPLC in isocratic mode at constant flow rate and temperature. The pressure was modified by a backpressure regulator up to about 1200 bar. It was found that the increase of retention factors upon pressure increase, at constant flow rate and temperature, was based on reduction of the proteins' molecular molar volume. The change in the proteins' molecular molar volume was caused by changes in protein folding, as was revealed by differential deuterium exchange. The degree of protein folding under certain UHPLC conditions can be controlled by pressure, at constant temperature and flow rate. By modifying pressure during UHPLC separation, it was possible to achieve changes in protein folding, which were manifested as changes in the number of labile protons exchanged to deuterons, or vice versa. Moreover, it was demonstrated with bovine insulin that a small difference in the number of protons exchanged to deuterons (based on protein folding under pressure) could be observed between batches obtained from different sources. The use of HDX during UHPLC separation allowed one to examine protein folding by pressure at constant flow rate and temperature in a mixture of

  10. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    SciTech Connect

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.

  11. Nuclear magnetic resonance analysis of the solution and solvolysis of sulfur mustard in deuterium oxide.

    PubMed

    Logan, Thomas P; Sartori, David A

    2003-01-01

    Our laboratory performs in vitro experiments in which cell cultures are exposed to sulfur mustard (HD) to investigate the toxicity of this agent of chemical warfare. To perform these experiments, it is important to know the rate of hydrolysis of HD in order to calculate the concentrations of HD and its hydrolysis products during the experiment. Researchers have previously investigated the kinetics and mechanism of the hydrolysis of HD using a variety of methods. In the present study, we used nuclear magnetic resonance (NMR) spectroscopy and gas chromatography/mass spectrometry (GC/MS) to investigate HD's dissolution and solvolysis in deuterium oxide (D 2 O) at 2 mM. We followed activity in proton spectrums and determined the half-life (t 1/2) of HD to be 7.0 +/- 0.5 min in four experiments performed at 22 degrees C. In addition, we determined the t 1/2 of HD in D 2 O containing 0.17 M sodium chloride to be 24 +/- 1 min in three experiments performed at 22 degrees C. As further proof of the existence of HD dissolved into D 2 O, deutero-hexane was used to extract the D 2 O HD solution. The resulting deutero-hexane solution was studied by 1 H NMR and GC/MS. The results obtained match those received from a standard deutero-hexane HD solution. These results demonstrate that HD can be identified in D 2 O with proton NMR and that proton NMR data can be used to monitor the subsequent solvolysis of HD. PMID:20021164

  12. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Welp, Lisa R.; Lee, Xuhui; Griffis, Timothy J.; Wen, Xue-Fa; Xiao, Wei; Li, Shenggong; Sun, Xiaomin; Hu, Zhongmin; Val Martin, Maria; Huang, Jianping

    2012-09-01

    Deuterium-excess (d) in water is a combination of the oxygen (δ18O) and hydrogen (δD) isotope ratios, and its variability is thought to indicate the location and environmental conditions of the marine moisture source. In this study, we analyze d of water vapor (dv) from six sites, all between 37 and 44°N to examine patterns in the atmospheric surface layer and identify the main drivers of variability. Two sites are in urban settings (New Haven, CT, USA and Beijing, China), two sites are in agricultural settings (Rosemount, MN, USA and Luancheng, China), and two sites are in natural ecosystems, a forest (Borden Forest, Ontario, Canada) and a grassland (Duolun, China). We found a robust diurnal cycle in dvat all sites with maximum values during mid-day. Isotopic land surface model simulations suggest that plant transpiration is one mechanism underlying the diurnal pattern. An isotopic large-eddy simulation model shows that entrainment of the free atmosphere into the boundary layer can also produce highdvvalues in mid-day. Daily mid-day means ofdvwere negatively correlated with local mid-day relative humidity and positively correlated with planetary boundary layer height at the North American sites, but not the Chinese sites. The mechanism for these differences is still undetermined. These results demonstrate that within the diurnal time scale,dv of the surface air at continental locations can be significantly altered by local processes, and is therefore not a conserved tracer of humidity from the marine moisture source region as has previously been assumed.

  13. Review of deuterium--tritium results from the Tokamak Fusion Test Reactor*

    SciTech Connect

    McGuire, K. M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Anderson, J W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, C. W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C. S.; Cheng, C. Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E. S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O`Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; Halle, A. Von; Vannoy, C.; Viola, M.; Goeler, S. Von; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K. L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-01-01

    The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≈ 2.8 MW m₋3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni (0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

  14. A Deuterium NMR Study of Bent-Core Liquid Crystals. 1; Synthesis and Characterization of Deuterium-Labeled Oxadiazole-Containing Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo J.; Madsen, Louis A.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We have synthesized two deuterated boomerang-shaped liquid crystals based on 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (ODBP). Deuterium was introduced in the rigid 2,5-diphenyl-1,3,4-oxadiazole core and in the aromatic ring of the terminal 4-dodecyloxyphenyl moiety using standard acid catalyzed deuterium exchange conditions. Both compounds, ([4,4'(1,3,4-oxadiazole-2,5-diyl-d4)] di-4-dodecyloxybenzoate: ODBP-d4-Ph-O-C12) and ([4,4'(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxy-benzoate-d4; ODBP-Ph-d4-O-C12) were investigated by nuclear magnetic resonance, optical microscopy and differential scanning calorimetry. The optical textures and thermal behavior of both compounds were found to be identical to the non-deuterated analog [4,4(1,3,4-oxadiazole-2,5-diyl)] di-4-dodecyloxybenzoate (ODBP-Ph-O-C12) which we reported earlier. These compounds exhibit behavior indicative of a biaxial nematic liquid crystal phase, which we hope to confirm using deuterium NMR spectroscopy in the next phase of this study.

  15. Retention of deuterium implanted into B 4C-overlaid isotropic graphites and hot-pressed B 4C

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Saidoh, M.; Ogiwara, N.; Ando, T.; Morita, K.; Muto, Y.

    1992-12-01

    Retention characteristics of two kinds of B 4C-overlaid graphites and hot-pressed B 4C were investigated. An ion beam of 3 keV D 2+ was implanted into the specimens at room temperature. The amount of retained deuteriums was measured as function of the implantation fluence and temperature by elastic recoil detection analysis. Thermal release behavior of implanted deuteriums was also measured by isochronal annealing. The concentration of retained deuterium reaches saturation similarly in three kinds of B 4C-overlaid specimens at the fluences over 10 18 D +/cm 2 as in isotropic graphite. The release temperature, at which the number of retained deuterium decreases to one half in isochronal annealing, are about 250 K lower for three kinds of B 4C specimens than for graphite. The release temperature of deuterium from unsaturated hot-pressed B 4C in isochronal annealing is about 500 K higher than that from saturated one.

  16. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  17. ORION II bus demonstration. Demonstration report (Final)

    SciTech Connect

    Shanley, J.

    1989-02-01

    The Central New York Regional Transportation Authority conducted an 18-month demonstration to determine how the ORION II bus operates in actual service. The ORION II vehicle is a small low floor, accessible heavy duty, diesel-powered transit bus designed to meet the needs of the elderly and handicapped. It has the capacity to seat 26 passengers with 4 wheelchair lockdowns. Side and rear doors are equipped with electrically powered ramps. Eight Thomas vehicles (22-foot, 11,500 lbs, wheelchair equipped, gasoline fueled) were also tested during the demonstration period. Operations (fuel and oil usage) and maintenance (scheduled and unscheduled) data were collected and charted-out in the report as well as driver, passenger, and maintenance surveys. This report provides descriptions, photographs, and comparison charts of both the diesel-fueled ORION II transit bus and the gasoline-fueled Thomas vehicles along with the demonstration test plan, evaluations, conclusions, and survey results.

  18. Herschel's Interference Demonstration.

    ERIC Educational Resources Information Center

    Perkalskis, Benjamin S.; Freeman, J. Reuben

    2000-01-01

    Describes Herschel's demonstration of interference arising from many coherent rays. Presents a method for students to reproduce this demonstration and obtain beautiful multiple-beam interference patterns. (CCM)

  19. Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Crespi, H. L.; Harkness, L.; Katz, J. J.; Norman, G.; Saur, W.

    1969-01-01

    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location.

  20. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  1. Residual Nuclei Production in the reaction {sup 136}Xe+ deuterium at 500 A MeV

    SciTech Connect

    Alcantara-Nunez, J. A.; Benlliure, J.; Perez-Loureiro, D.; Casarejos, E.; Fernandez Ordonez, M.; Pereira, J.; Armbruster, P.; Enqvist, T.; Henzl, V.; Henzlova, D.; Kelic, A.; Pleskac, R.; Ricciardi, M. V.; Schmidt, K.-H.; Schmitt, C.; Yordanov, O.; Audouin, L.; Bernas, M.; Lafriaskh, A.; Stephan, C.

    2010-04-26

    More than six hundred nuclei produced in the fragmentation of {sup 136}Xe projectiles at 500 A MeV on a liquid deuterium target were identified using inverse kinematics at the GSI Fragment Separator (FRS). These data are relevant for understanding of spallation reactions.

  2. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  3. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  4. Hadronic deuteron polarizability contribution to the Lamb shift in muonic deuterium

    NASA Astrophysics Data System (ADS)

    Eskin, A. V.; Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.

    2016-06-01

    Hadronic deuteron polarizability correction to the Lamb shift of muonic deuterium is calculated on the basis of unitary isobar model and modern experimental data on the structure functions of deep inelastic lepton-deuteron scattering and their parametrizations in the resonance and nonresonance regions.

  5. Property of THGEM in Low-Pressure Deuterium for a Low-Pressure Gaseous Active Target

    NASA Astrophysics Data System (ADS)

    Lee, CheongSoo; Ota, Shinsuke; Tokieda, Hiroshi; Kojima, Reiko; Watanabe, Yuni; Saiseau, Raphael; Uesaka, Tomohiro

    A low-pressure gaseous active target called CNS Active Target (CAT) has been developed for a deuteron inelastic scattering off exotic nuclei. The CAT consists of a combination of Gas Electron Multiplier (GEM) and Time Projection Chamber (TPC) as a vertex tracker, and Si detectors as a total kinetic energy detector for a high momentum recoil particles. In order to operate CAT in low-pressure deuterium, a 400 µm-thick Thick Gas Electron Multiplier (THGEM) is used for the amplification of the TPC in low-pressure deuterium gas to achieve a gas gain of 104 at 0.4-atm. We used a triple THGEM configuration at 0.18-0.5 atm deuterium gas and the effective gas gain of more than 104 was achieved at 0.4-atm. In addition, a long-term stability at 0.4-atm deuterium was also investigated and a relaxation time of about 2-hours was observed, which is significantly shorter than our previous study.

  6. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  7. 10 CFR 110.24 - General license for the export of deuterium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... any person to export deuterium in individual shipments of 10 kilograms or less (50 kilograms of heavy water) to any country not listed in § 110.28 or § 110.29. No person may export more than 200 kilograms (1000 kilograms of heavy water) per year to any one country. (b) A general license is issued to...

  8. Measurement of {phi}- and {omega}-meson production in antiproton annihilation at rest on deuterium

    SciTech Connect

    Ableev, V.G.; Denisov, O.Yu.; Gorchakov, O.E.

    1994-10-01

    The branching ratios of {phi}{pi}{sup {minus}} and {omega}{pi}{sup {minus}} final states were measured for the antiproton annihilation at rest on gaseous deuterium. Significant deviation from the OZI-rule prediction was found from the value of the {phi}/{omega} ratio. 25 refs., 4 figs., 1 tab.

  9. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  10. Hydrogen fluoride and deuterium fluoride lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Research cited from the international literature adresses various aspects of hydrogen fluoride and deuterium fluoride lasers. Topics covered include flows, laser outputs, molecular relaxation, molecular rotation, energy conversion efficiency, reaction kinetics, and laser materials. Continous wave and pulsed laser are considered. This updated bibliography contains 283 citations, 53 of which are new additions to the previous edition.

  11. Spontaneous versus induced hydrogen and deuterium helical shaped plasmas with electron internal transport barriers

    NASA Astrophysics Data System (ADS)

    Gobbin, M.; Franz, P.; Auriemma, F.; Lorenzini, R.; Marrelli, L.

    2015-09-01

    Electron internal transport barriers (eITBs) in high current plasmas with helical equilibria of the reversed field pinch experiment RFX-mod are analyzed and characterized in detail thanks to a high time resolution double filter diagnostic for the electron temperature spatial profile determination. The large amount of data provided by this diagnostic has required the development of dedicated algorithms and the identification of suitable parameters, reported and described in this paper, in order to perform automatic statistical studies. These numerical tools have been used to examine the effect of three dimensional (3D) magnetic fields applied by the RFX-mod 192 active coils in deuterium and hydrogen discharges with the aim to improve the sustainment and control of helical equilibria with eITBs. It is shown that 3D fields partially increase the occurring of helical states but with only a moderate effect on the eITBs duration; moreover, they have a different impact on the confinement properties in hydrogen and deuterium discharges. Numerical simulations, by the Hamiltonian guiding center code ORBIT, investigate the effect of magnetic topology in plasmas with and without the application of 3D fields on deuterium and hydrogen test ions transport. Results from numerical studies are in agreement with estimates of the particle confinement times showing that particle transport is reduced in deuterium plasmas but not significantly affected by the application of helical boundary conditions.

  12. Why Demonstrations Matter

    ERIC Educational Resources Information Center

    Black, Richard

    2005-01-01

    With the current focus on constructivist perspectives, science demonstrations have fallen out of favor in some circles. Demonstrations are easy to do and offer many benefits and unique opportunities in the constructivist classroom. With careful use, demonstrations can be powerful teaching tools. A wonderful quality of a demonstration (or a series…

  13. What is the Total Deuterium Abundance in the Local Galactic Disk?

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Draine, B. T.; Moos, H. W.; Jenkins, E. B.; Wood, B. E.; Oliveira, C.; Blair, W. P.; Friedman, S. D.; Gry, C.; Knauth, D.; Kruk, J. W.; Lacour, S.; Lehner, N.; Redfield, S.; Shull, J. M.; Sonneborn, G.; Williger, G. M.

    2005-12-01

    Analyses of spectra obtained with the FUSE satellite, together with spectra from the Copernicus and IMAPS instruments, reveal a very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble (the region of space extending to roughly 100 pc from the Sun). For gas located beyond the Local Bubble but within several hundred parsecs, the observed D/H ratios differ by a factor of 4--5, which is difficult to explain solely on the basis of either: (i) small-scale spatial variations in stellar nuclear processes that convert deuterium to heavier elements; or (ii) the infall of deuterium-rich gas from the Galactic halo and the IGM. We argue instead that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I) = 19.2--20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We test the deuterium depletion hypothesis by: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with HD in heavily reddened lines of sight. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the total (gas plus dust) D/H ratio within 1 kpc of the Sun has a much larger value than D/H in the gas phase in the Local Bubble, indicating that over the lifetime of the Galaxy there has been a relatively small decrease in the total D/H ratio from its primordial value. This work is based on observations made with the NASA-CNES-CSA FUSE satellite, which is operated for NASA by

  14. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  15. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  16. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².

  17. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  18. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Zhang, Jingjing; Kitova, Elena N; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  19. Deuterium-depleted water has stimulating effects on long-term memory in rats.

    PubMed

    Mladin, Cristian; Ciobica, Alin; Lefter, Radu; Popescu, Alexandru; Bild, Walther

    2014-11-01

    Deuterium-depleted water (DDW) is a water which has a 6-7-fold less concentration of the naturally occurring deuterium (20-25ppm vs. 150ppm). While administrated for a longer period, it may reduce the concentration of deuterium throughout the body, thus activating cellular mechanisms which are depending on protons (channels, pumps, enzyme proteins). The aim of the present work was to study, for the first time in our knowledge, the possible influence of deuterium-depleted water (DDW) chronic administration in normal Wistar rats, as compared to a control group which received distilled water, on spatial working memory and the locomotor activity (as studied through Y-maze) or both short-term and long-term spatial memory (assed in radial 8 arms-maze task). Our results presented here showed no significant modifications in terms of spatial working memory (assessed through spontaneous alternation percentage) and locomotor activity (expressed through the number of arm entries) in Y-maze, as a result of DDW ingestion. Also, no significant differences between the DDW and control group were found in terms of the number of working memory errors in the eight-arm radial maze, as a parameter of short-term memory. Still, we observed a significant decrease for the number of reference memory errors in the DDW rats. In this way, we could speculate that the administration of DDW may generate an improvement of the reference memory, as an index of long-term memory. Thus, we can reach the conclusion that the change between the deuterium/hydrogen balance may have important consequences for the mechanisms that govern long-term memory, as showed here especially in the behavioral parameters from the eight-arm radial maze task.

  20. Fundamental limits to the accuracy of deuterium isotopes for identifying the spatial origin of migratory animals

    USGS Publications Warehouse

    Farmer, A.; Cade, B.S.; Torres-Dowdall, J.

    2008-01-01

    Deuterium isotope analyses have revolutionized the study of migratory connectivity because global gradients of deuterium in precipitation (??DP) are expressed on a continental scale. Several authors have constructed continental scale base maps of ??DP to provide a spatial reference for studying the movement patterns of migratory species and, although they are very useful, these maps present a static, 40-year average view of the landscape that ignores much underlying inter-annual variation. To more fully understand the consequences of this underlying variation, we analyzed the GNIP deuterium data, the source for all current ??DP maps, to estimate the minimum separation in ??DP (and latitude) necessary to conclude with a given level of confidence that distinct ??DP values represent different geographic sites. Extending analyses of ??DP successfully to deuterium in tissues of living organisms, e.g., feathers in migratory birds (??DF), is dependent on the existence of geographic separation of ??DP, where every geographic location has a distribution of values associated with temporal variability in ??DP. Analyses were conducted for three distinct geographic regions: North America, eastern North America (east of longitude 100??W), and Argentina. At the 80% confidence level, the minimum separation values were 12, 7, and 14?? of latitude (equivalent to 53, 31, and 32???) for North America, eastern North America, and Argentina, respectively. Hence, in eastern North America, for example, one may not be able to accurately assign individual samples to sites separated by less than about 7?? of latitude as the distributions of ??DP were not distinct at latitudes <7?? apart. Moreover, two samples that differ by less than 31??? cannot be confidently said to originate from different latitudes. These estimates of minimum separation for ??DP do not include other known sources of variation in feather deuterium (??D F) and hence are a first order approximation that may be useful, in

  1. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  2. Thermal behavior of deuterium implanted into nuclear graphite studied by NRA

    NASA Astrophysics Data System (ADS)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Bérerd, N.; Perrat-Mabilon, A.; Rapegno, R.

    2014-08-01

    This paper focuses on the thermal behavior of deuterium, simulating tritium, implanted into virgin nuclear graphite of French gas-cooled reactors, which are being decommissioned. Deuterium ions D+ were implanted into graphite (around 3 at.% at the projected range Rp) at two different depths (around 670 nm and 2.8 μm) and annealed up to about 300 h in a temperature range from 200 °C to 1200 °C under vacuum or argon flow. Before and after heat treatments, D distribution profiles in the samples were followed using the nuclear reaction D(3He,p)4He, with a millimetric beam at the 4 MV Van de Graaff accelerator of IPNL (Institut de Physique Nucléaire de Lyon, France). The results show that the deuterium release becomes significant at temperatures higher than 600 °C and is almost totally completed at 1200 °C. The comparison of the results, obtained for both implantation depths, points out the role of the porosity with respect to deuterium permeation. The release follows two stages: a rapid step where it occurs within a few hours, followed by a much slower step during which the release of deuterium saturates. The initial stage is characterized by an activation energy of 1.3 eV and might correspond to detrapping of D located at crystallite edges and its diffusion at the crystallite surfaces. We assume that the second stage kinetics corresponds to a very slow diffusion of D located inside the crystallites and chemisorbed to carbon atoms through sp2 or sp3 bonds.

  3. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Song-Sheng; He, Ming; Wu, Shao-Yong; Qi, Bu-Jia

    2012-01-01

    Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4 × 10-1, much greater than the values (<=10-4) in natural objects. Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out, but no anomalous 3He/4He values are observed. In addition, anomalous tritium in deuterium-loaded titanium samples are also observed. To explain the excess 3He and tritium in the deuterium-loaded titanium samples, it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.

  4. Transferring Fungi to a Deuterium-Enriched Medium Results in Assorted, Conditional Changes in Secondary Metabolite Production.

    PubMed

    Wang, Bin; Park, Elizabeth M; King, Jarrod B; Mattes, Allison O; Nimmo, Susan L; Clendinen, Chaevien; Edison, Arthur S; Anklin, Clemens; Cichewicz, Robert H

    2015-06-26

    Deuterium is one of the few stable isotopes that have the capacity to significantly alter a compound's chemical and biological properties. The addition of a single neutron to a protium atom results in the near doubling of its mass, which gives rise to deuterium's characteristic isotope effects. Since the incorporation of deuterium into organic substrates is known to alter enzyme/protein-substrate interactions, we tested the extent to which deuterium enrichment would modify fungal secondary metabolite production. Several fungal cultures were tested, and in all cases their secondary metabolomes were marked by changes in natural product production. Workup of one Aspergillus sp. grown under deuterium-enrichment conditions resulted in the production of several secondary metabolites not previously detected from the fungus. Bioassay testing revealed that in comparison to the inactive crude fungal extract derived from growing the fungus under non-deuterium-enriched conditions, an extract derived from the same isolate cultured in a deuterium-enriched medium inhibited methicillin-resistant Staphylococcus aureus. Using an assortment of NMR and mass spectrometry experiments, we were able to identify the bacterial inhibitor as an isotope-labeled version of pigmentosin A (6). Five additional isotopically labeled metabolites were also obtained from the fungus including brevianamide F (1), stephacidin A (2), notoamide D (3), notoamide L (4), and notoamide C (5). Given the assorted changes observed in the secondary metabolite profiles of this and other fungi grown in deuterium-enriched environments, as well as the fact that 1 and 3-6 had not been previously observed from the Aspergillus sp. isolate used in this study, we propose that deuterium enrichment might offer an effective method for further expanding a fungus's chemical diversity potential. PMID:26061478

  5. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1987-01-01

    Describes several chemistry demonstrations that use an overhead projector. Some of the demonstrations deal with electrochemistry, and another deals with the reactions of nonvolatile immiscible liquid in water. (TW)

  6. Traveling Wave Demonstration.

    ERIC Educational Resources Information Center

    Kluger-Bell, Barry

    1995-01-01

    Describes a traveling-wave demonstration that uses inexpensive materials (crepe-paper streamers) and is simple to assemble and perform. Explains how the properties of light waves are illustrated using the demonstration apparatus. (LZ)

  7. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  8. Adolescents' Demonstrative Behavior Research

    ERIC Educational Resources Information Center

    Parfilova, Gulfiya G.; Karimova, Lilia Sh.

    2016-01-01

    The problem of demonstrative behavior is very topical among teenagers and this issue has become the subject of systematic scientific research. Demonstrative manifestations in adolescents disrupt the favorable socialization; therefore, understanding, prevention and correction of demonstrative behavior at this age is relevant and requires special…

  9. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1988-01-01

    Details two demonstrations for use with an overhead projector in a chemistry lecture. Includes "A Very Rapidly Growing Silicate Crystal" and "A Colorful Demonstration to Simulate Orbital Hybridization." The materials and directions for each demonstration are included as well as a brief explanation of the essential learning involved. (CW)

  10. A Boyle's Law Demonstrator.

    ERIC Educational Resources Information Center

    Sathe, Dileep V.

    1984-01-01

    The usual apparatus for demonstrating Boyle's law produces reasonably accurate results, but is not impressive as a demonstration because students cannot easily appreciate the change in pressure. An apparatus designed to produce a more effective demonstration is described. Procedures employed are also described. (JN)

  11. Classroom Demonstrations: Individual Differences.

    ERIC Educational Resources Information Center

    Singer, Sandra M.

    These demonstrations stress individual differences, a concept becoming increasingly important in psychological research. Intended for use in undergraduate psychology courses, four demonstrations that illustrate common examples of human variation are described. The demonstrations deal with the following individual differences: taste blindness,…

  12. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.

    PubMed

    Rand, Kasper D; Zehl, Martin; Jørgensen, Thomas J D

    2014-10-21

    Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold

  13. Edible Astronomy Demonstrations

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.

    2006-08-01

    By using astronomy demonstrations with edible ingredients, I have been able to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students. I will present some of the edible demonstrations I have created including using popcorn to simulate radioactivity; using chocolate, nuts, and marshmallows to illustrate density and differentiation during the formation of the planets; and making big-bang brownies or chocolate chip-cookies to illustrate the expansion of the Universe. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and the students remember these demonstrations after they are presented.

  14. Strategy Guideline. Demonstration Home

    SciTech Connect

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  15. Strategy Guideline: Demonstration Home

    SciTech Connect

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  16. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    SciTech Connect

    Clarkson, I.R.; Neef, W.S.

    1983-11-30

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones.

  17. Effects of protein-ligand interactions on hydrogen/deuterium exchange kinetics: canonical and noncanonical scenarios.

    PubMed

    Sowole, Modupeola A; Konermann, Lars

    2014-07-01

    Hydrogen/deuterium exchange (HDX) methods are widely used for monitoring protein-ligand interactions. This approach relies on the fact that ligand binding can modulate the extent of protein structural fluctuations that transiently disrupt hydrogen bonds and expose backbone amides to the solvent. It is commonly observed that ligand binding causes a reduction of HDX rates. This reduction can be restricted to elements adjacent to the binding site, but other regions can be affected as well. Qualitatively, ligand-induced HDX protection can be rationalized on the basis of two-state models that equate structural dynamics with global unfolding/refolding. Unfortunately, such models tend to be unrealistic because the dynamics of native proteins are dominated by subglobal transitions and local fluctuations. Ligand binding lowers the ground-state free energy. It is not obvious why this should necessarily be accompanied by a depletion of excited-state occupancies, which would be required for a reduction of HDX rates. Here, we propose a framework that implies that ligand binding can either slow or accelerate amide deuteration throughout the protein. These scenarios are referred to as "type 1" and "type 2", respectively. Evidence for type 1 binding is abundant in the literature, whereas the viability of type 2 interactions is less clear. Using HDX mass spectrometry (MS), we demonstrate that the oxygenation of hemoglobin (Hb) provides a dramatic example of a type 2 scenario. The observed behavior is consistent with cooperative T → R switching, where part of the intrinsic O2 binding energy is reinvested for destabilization of the ground state. This destabilization increases the Boltzmann occupancy of unfolded conformers, thereby enhancing HDX rates. Surprisingly, O2 binding to myoglobin (Mb) also induces elevated HDX rates. These Mb data reveal that type 2 behavior is not limited to cooperative multisubunit systems. Although enhanced protection from deuteration is widely

  18. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function.

    PubMed

    Reinis, S; Landolt, J P; Weiss, D S; Money, K E

    1984-03-01

    /he spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent (14)--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique (19). Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. In cats with intact labyrinths, D2O changed the optimal length of the light bar that was able to stimulate the cortical cell as well as the path on which it evoked the response of the cell. Both values, which constitute the receptive field of the cell, changed approximately proportionately. This effect usually lasts for less than 4.5 h. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells (and the other cellular characteristics studied) did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease

  19. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.

    PubMed

    Cho, Kyu Taek; Mench, Matthew M

    2012-03-28

    In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated.

  20. Exploration Technology Development & Demonstration

    NASA Video Gallery

    Chris Moore delivers a presentation from the Exploration Technology Development & Demonstration (ETDD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX....

  1. LIMB demonstration project extension

    SciTech Connect

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  2. Demonstrating Bacterial Flagella.

    ERIC Educational Resources Information Center

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  3. Substituent effects in heterogeneous catalysis. VIII. Reactions of 2-methyl- and 2-ethylcyclohexanone with deuterium catalyzed by platinum metals

    SciTech Connect

    Teratani, S.; Tanaka, K.; Ogawa, H.; Taya, K.

    1981-08-01

    2-Methyl and 2-ethyl derivatives of cyclohexanone were allowed to react with deuterium in t-BuOD using platinum group metals as catalysts. The product alcohols and the remaining ketone were examined by mass spectrometry. Over Ru, Os, and Ir, the simple addition of two deuterium atoms to the carbonyl linkage was predominant, accompanied by little isotopic exchange. Over Pt, however, isotopic exchange was significant and over Rh and Pd quite extensive. The samples obtained over Rh and Pd were further analyzed by NMR spectroscopy to determine the loci of the incorporated deuterium atoms. Deuterium exchange over Pd was almost entirely confined to the C(2) and C(6) positions, while that over Rh was smeared beyond these positions. These results can be accounted for by assuming the intermediacy of ..pi..-absorbed ..pi..-oxaallylic species on Pd and of ..beta..-diadsorbed species on Rh.

  4. An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulse-labelling reveals allosteric effects in enzyme inhibition.

    PubMed

    Rob, Tamanna; Gill, Preet Kamal; Golemi-Kotra, Dasantila; Wilson, Derek J

    2013-07-01

    In this work, we introduce an integrated, electrospray mass spectrometry-coupled microfluidic chip that supports the complete workflow for 'bottom up' hydrogen/deuterium exchange (HDX) pulse labelling experiments. HDX pulse labelling is used to measure structural changes in proteins that occur after the initiation of a reaction, most commonly folding. In the present case, we demonstrate the device on the β-lactamase enzyme TEM-1, identifying active site changes that occur upon acylation by a covalent inhibitor and subtle changes in conformational dynamics that occur away from the active site over a period of several second after the inhibitor is bound. Our results demonstrate the power of microfluidics-enabled sub-second HDX pulse labelling as a tool for studying allostery and show some intriguing correlations with mutagenesis studies.

  5. Scaling of confinement with isotopic content in deuterium and tritium plasmas

    SciTech Connect

    Phillips, C.K.; Scott, S.D.; Bell, M.

    1997-01-01

    The scaling of the electron thermal diffusivity, {chi}{sub e}, with relative gyro radius, {rho}*, has been measured on TFTR by comparing nearly identical ICRF-heated discharges which differ only in hydrogenic isotopic content. Contrary to the gyro-Bohm scaling ({chi}{sub e} {approximately} {chi}{sub B}{rho}*, where {chi}{sub B} is the Bohm diffusivity) observed on DIII-D when {rho}* was varied through a scan of magnetic field strength, {chi}{sub e} is found to scale inversely with {rho}*. Hence, global energy confinement is 8--11% higher in deuterium-tritium plasmas than in deuterium only plasmas, with the higher stored energy attributed almost entirely to the electrons.

  6. Deuterium isotope effect on the compatibility between polystyrene and polybutadiene. Technical report

    SciTech Connect

    Lin, J.L.; Rigby, D.; Roe, R.J.

    1984-11-20

    The effect of deuteration of polystyrene on the miscibility behavior of polystyrene-polybutadiene blend systems was studied. A polystyrene having its aromatic hydrogens replaced by deuterium was prepared by starting from an ordinary polystyrene and treating it with deuterated benzene in the presence of an organometallic catalyst. A hydrogeneous polystyrene of closely similar structure was also prepared as a control by repeating the same procedure except that this time ordinary, rather than deuterated, benzene was used. These matching pairs of hydrogeneous and deuterous polystyrenes, when mixed with a polybutadiene or a styrene-butadiene random copolymer, were shown to give practically identical cloud point curves, thus indicating that the deuterium isotope effect is negligible.

  7. Relationship among polymer-polymer interaction energy densities and the deuterium isotope effect. Technical report

    SciTech Connect

    Lin, J.L.; Roe, R.J.

    1987-02-20

    Cloud points for the mixtures of polystyrene and poly-alpha-methylstyrene and of polybutadiene and poly-alpha-methylstyrene were measured, and the data were analyzed to determine the interaction energy densities for these two pairs of polymers. In conjunction with the value for the pair polystyrene-polybutadiene previously determined, it is shown that the relationship is obeyed fairly well. To study the deuterium isotope effect on polymer miscibility, a matching pair of deuterated and hydrogeneous polystyrenes of closely similar structure were prepared by reacting a pre-formed polystyrene with either deuterated benzene or ordinary benzene. It was found that cloud points for the mixtures of polystyrene and poly-alpha-methylstene were not affected by the deuteration of polystyrene but the mixtures of polystyrene and poly(vinyl methyl ether) showed an appreciable deuterium isotope effect.

  8. Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium.

    PubMed

    Falk, K; Regan, S P; Vorberger, J; Crowley, B J B; Glenzer, S H; Hu, S X; Murphy, C D; Radha, P B; Jephcoat, A P; Wark, J S; Gericke, D O; Gregori, G

    2013-04-01

    The equation of state of light elements is essential to understand the structure of Jovian planets and inertial confinement fusion research. The Omega laser was used to drive a planar shock wave in the cryogenically cooled deuterium, creating warm dense matter conditions. X-ray scattering was used to determine the spectrum near the boundary of the collective and noncollective scattering regimes using a narrow band x-ray source in backscattering geometry. Our scattering spectra are thus sensitive to the individual electron motion as well as the collective plasma behavior and provide a measurement of the electron density, temperature, and ionization state. Our data are consistent with velocity-interferometry measurements previously taken on the same shocked deuterium conditions and presented by K. Falk et al. [High Energy Density Phys. 8, 76 (2012)]. This work presents a comparison of the two diagnostic systems and offers a detailed discussion of challenges encountered. PMID:23679534

  9. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  10. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    NASA Astrophysics Data System (ADS)

    Karch, J.; Sobolev, Yu.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M.

    2014-04-01

    The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of cm3 (8mol), which is exposed to a thermal neutron fluence of n/cm2, delivers up to 240000 UCN ( m/s) per pulse outside the biological shield at the experimental area. UCN densities of 10 cm3 are obtained in stainless-steel bottles of 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  11. Catalytic behavior of Group VIII transition metals in the deuterium-acrolein reaction

    SciTech Connect

    Touroude, R.

    1980-09-01

    The catalytic reactions between acrolein and deuterium over all the Group VIII transition metals were studied by microwave spectrometry. A high catalyst selectivity in the exchange reaction, in which hydrogen is replaced by deuterium in acrolein, was found. Over Rh, Pd, Ir, Ru, and Ni, hydrogens situated on the ..beta.. carbon were quasi-selectively exchanged while over Pt, Os, and especially Co, an additional exchange of the aldehydic hydrogen took place. Over Fe, the hydrogen situated on the ..cap alpha.. carbon and the aldehydic hydrogen were exchanged equally. An attempt is made to relate the nature of the exchange to hydrogenation, decarbonylation, and hydrogenolysis and several reaction mechanisms are proposed in addition to the classical Horiuti-Polanyi mechanism, which is restricted to hydrogenation of the C-C double bond.

  12. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  13. The influence of the nitrogen admixture on the evolution of a deuterium pinch column

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardtova, B.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Kortanek, J.; Zielinska, E.; Sadowski, M. J.; Tomaszewski, K.

    2016-08-01

    The application of a mixture of nitrogen and deuterium for the gas-puffing along the anode axis in deuterium plasma-focus discharges, as carried out at megaampere-level currents, enabled observations of the filamentary structure, and the decrease in the transformation velocity of the plasma column to be performed. It made possible to investigate the instability evolution during the production of hard X-rays and fast neutrons in more detail. The constriction of a plasma column transforms itself during the final phase of the compression into one or more small dense plasmoid-like structures which are separated by narrow necks. During the next phase, these structures start to decay by an expansion, in which a part of the plasma volume maintains its compactness. This evolution is explained by an increase and later decrease in the internal poloidal current component by reconnections of the associated magnetic lines, which are responsible for the acceleration of electron and ion beams.

  14. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  15. Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR

    PubMed Central

    Sun, Cheng; Boutis, Gregory S.

    2010-01-01

    The anisotropic motion of tightly bound waters of hydration in bovine nuchal ligament elastin has been studied by deuterium Double Quantum Filtered (DQF) NMR. The experiments have allowed for a direct measurement of the degree of anisotropy within pores of elastin over a time scale ranging from 100 μs to 30 ms, corresponding to a tortuous spatial displacement ranging from 0.2 to 7 μm. We studied the anisotropic motion of deuterium nuclei in D2O hydrated elastin over a temperature of −15 °C to 37 °C and in solvents with varying dielectric constants. Our experimental measurements of the residual quadrupolar interaction as a function of temperature are correlated to the existing notion of hydrophobic collapse near 20 °C. PMID:20452263

  16. Molecular dynamics studies of sticking and reflection of low-energy deuterium on single crystal tungsten

    NASA Astrophysics Data System (ADS)

    Maya, P. N.

    2016-11-01

    Molecular dynamics simulations have been performed to study deuterium sticking and reflection properties of single crystal tungsten surfaces using two different Tersoff-type tungsten-hydrogen potentials. Single crystal tungsten surfaces of (001) and (110) orientations were bombarded with deuterium atoms up to 100 eV energy at 300 K sample temperature. The potentials show differences in the nature of sticking as well as in the sticking coefficient. In order to understand the variation in the observed sticking coefficient, detailed potential energy analysis has been carried out using both the potentials. The analysis is able to explain the nature of the sticking for various surfaces as well as the observed minima in sticking coefficient in both the potentials. The variation in the sticking and reflection coefficients with energy can be explained from the local variation of the repulsive and attractive potential energy in the near-surface region which are considerably different in both the potentials.

  17. Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.

    1978-01-01

    High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected

  18. The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel

    NASA Astrophysics Data System (ADS)

    Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.

    2016-08-01

    The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for pure deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.

  19. Filamentary structure of plasma produced by compression of puffing deuterium by deuterium or neon plasma sheath on plasma-focus discharge

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Cikhardtova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.

    2014-12-15

    The present experiments were performed on the PF-1000 plasma focus device at a current of 2 MA with the deuterium injected from the gas-puff placed in the axis of the anode face. The XUV frames showed, in contrast with the interferograms, the fine structure: filaments and spots up to 1 mm diameter. In the deuterium filling, the short filaments are registered mainly in the region of the internal plasmoidal structures and their number correlates with the intensity of neutron production. The longer filamentary structure was recorded close to the anode after the constriction decay. The long curve-like filaments with spots were registered in the big bubble formed after the pinch phase in the head of the umbrella shape of the plasma sheath. Filaments can indicate the filamentary structure of the current in the pinch. Together with the filaments, small compact balls a few mm in diameter were registered by both interferometry and XUV frame pictures. They emerge out of the dense column and their life-time can be greater than hundreds of ns.

  20. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  1. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. USFWS demonstration fees

    USGS Publications Warehouse

    Taylor, Jonathan; Vaske, Jerry; Donnelly, Maureen; Shelby, Lori

    2002-01-01

    This study examined National Wildlife Refuge (NWR) visitors' reactions to changes in fees implemented as part of the fee demonstration program. Visitors' evaluations of the fees paid were examined in addition to their beliefs about fees and the fee demonstration program, and the impact of fees paid on their intention to return. All results were analyzed relative to socio-demographic characteristics.

  3. A Stellar Demonstrator

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2009-01-01

    The main purpose of the stellar demonstrator is to help explain the movement of stars. In particular, students have difficulties understanding why, if they are living in the Northern Hemisphere, they may observe starts in the Southern Hemisphere, or why circumpolar stars are not the same in different parts of Europe. Using the demonstrator, these…

  4. Toy Demonstrator's "VISIT" Handbook.

    ERIC Educational Resources Information Center

    Levenstein, Phyllis

    The role of the toy demonstrator in a home-based, mother-involved intervention effort (Verbal Interaction Project) is presented in this handbook for staff members. It is believed that the prerequisites for functioning in the toy demonstrator's role are a sense of responsibility, patience with the children and their mothers, and willingness to be…

  5. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  6. Better Ira Remsen Demonstration

    ERIC Educational Resources Information Center

    Dalby, David K.; Maynard, James H.; Moore, John W.

    2011-01-01

    Many versions of the classic Ira Remsen experience involving copper and concentrated nitric acid have been used as lecture demonstrations. Remsen's original reminiscence from 150 years ago is included in the Supporting Information, and his biography can be found on the Internet. This article presents a new version that makes the demonstration more…

  7. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  8. A Greener Chemiluminescence Demonstration

    ERIC Educational Resources Information Center

    Jilani, Osman; Donahue, Trisha M.; Mitchell, Miguel O.

    2011-01-01

    Because they are dramatic and intriguing, chemiluminescence demonstrations have been used for decades to stimulate interest in chemistry. One of the most intense chemiluminescent reactions is the oxidation of diaryl oxalate diesters with hydrogen peroxide in the presence of a fluorescer. In typical lecture demonstrations, the commercially…

  9. Demonstration Experiments in Physics

    ERIC Educational Resources Information Center

    Sutton, Richard M.

    2003-01-01

    This book represents a "cookbook" for teachers of physics, a book of recipes for the preparation of demonstration experiments to illustrate the principles that make the subject of physics so fascinating. Illustrations and explanations of each demonstration are done in an easy-to-understand format. Each can be adapted to be used as a demonstration…

  10. The Microgravity Demonstrator.

    ERIC Educational Resources Information Center

    Rogers, Melissa J. B.; Wargo, Michael J.

    The Microgravity Demonstrator is a tool used to create microgravity conditions in the classroom. A series of demonstrations is used to provide a dramatically visual, physical connection between free-fall and microgravity conditions in order to understand why various types of experiments are performed under microgravity conditions. The manual is…

  11. Demonstrating Newton's Second Law.

    ERIC Educational Resources Information Center

    Fricker, H. S.

    1994-01-01

    Describes an apparatus for demonstrating the second law of motion. Provides sample data and discusses the merits of this method over traditional methods of supplying a constant force. The method produces empirical best-fit lines which convincingly demonstrate that for a fixed mass, acceleration is proportional to force. (DDR)

  12. Deuterium isotope effect on the oxidation of monophenols and o-diphenols by tyrosinase.

    PubMed Central

    Fenoll, Lorena G; Peñalver, María José; Rodríguez-López, José N; García-Ruiz, P A; García-Cánovas, Francisco; Tudela, José

    2004-01-01

    A solvent deuterium isotope effect on the catalytic affinity (km) and catalytic constant (kcat) of tyrosinase in its action on different monophenols and o-diphenols was observed. The catalytic constant decreased in all substrates as the molar fraction of deuterated water in the medium increased, while the catalytic affinity only decreased for the o-diphenols with an R group in C-1 [-H, -CH3 and -CH(CH3)2]. In a proton inventory study of the oxidation of o-diphenols, the representation of kcat fn/kcat f0 against n (atom fractions of deuterium), where kcat fn is the catalytic constant for a molar fraction of deuterium (n) and kcat f0 is the corresponding kinetic parameter in a water solution, was linear for all substrates, indicating that only one of the four protons transferred from the hydroxy groups of the two molecules of substrate, which are oxidized in one turnover, is responsible for the isotope effects, the proton transferred from the hydroxy group of C-4 to the peroxide of the oxytyrosinase form (Eox). However, in the representation of Km fn/Km f0 against n, where Km fn represents the catalytic affinity for a molar fraction of deuterium (n) and Km f0 is the corresponding kinetic parameter in a water solution, a linear decrease was observed as n increased in the case of o-diphenols with the R group [-H, -CH3 and -CH(CH3)2], and a parabolic increase with other R groups, indicating that more than one proton is responsible for the isotope effects on substrate binding. In the case of monophenols with six protons transferred in the catalytic cycle, the isotope effect occurs in the same way as for o-diphenols. In the present paper, the fractionation factors of different monophenols and o-diphenols are described and possible mechanistic implications are discussed. PMID:15025557

  13. IUE observations of hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.

    1987-01-01

    High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.

  14. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Mao, H. K.

    1989-01-01

    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  15. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Boehly, T. R.; Epstein, R.; McCrory, R. L.; Skupsky, S.

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρD=0.5 to 673.518g/cm3 and temperatures from T=5000K up to the Fermi temperature TF for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ˜10% up to a factor of ˜2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  16. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    SciTech Connect

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-10-15

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  17. Modeling Insights into Deuterium Excess as an Indicator of Water Vapor Source Conditions

    NASA Technical Reports Server (NTRS)

    Lewis, Sophie C.; Legrande, Allegra Nicole; Kelley, Maxwell; Schmidt, Gavin A.

    2013-01-01

    Deuterium excess (d) is interpreted in conventional paleoclimate reconstructions as a tracer of oceanic source region conditions, such as temperature, where precipitation originates. Previous studies have adopted co-isotopic approaches to estimate past changes in both site and oceanic source temperatures for ice core sites using empirical relationships derived from conceptual distillation models, particularly Mixed Cloud Isotopic Models (MCIMs). However, the relationship between d and oceanic surface conditions remains unclear in past contexts. We investigate this climate-isotope relationship for sites in Greenland and Antarctica using multiple simulations of the water isotope-enabled Goddard Institute for Space Studies (GISS) ModelE-R general circulation model and apply a novel suite of model vapor source distribution (VSD) tracers to assess d as a proxy for source temperature variability under a range of climatic conditions. Simulated average source temperatures determined by the VSDs are compared to synthetic source temperature estimates calculated using MCIM equations linking d to source region conditions. We show that although deuterium excess is generally a faithful tracer of source temperatures as estimated by the MCIM approach, large discrepancies in the isotope-climate relationship occur around Greenland during the Last Glacial Maximum simulation, when precipitation seasonality and moisture source regions were notably different from present. This identified sensitivity in d as a source temperature proxy suggests that quantitative climate reconstructions from deuterium excess should be treated with caution for some sites when boundary conditions are significantly different from the present day. Also, the exclusion of the influence of humidity and other evaporative source changes in MCIM regressions may be a limitation of quantifying source temperature fluctuations from deuterium excess in some instances.

  18. Reaction of deuterium with olefins on nickel catalysts: evidence for adsorbed vinylic species

    SciTech Connect

    Mintsa-Eya, V.; Hilaire, L.; Choplin, A.; Touroude, R.; Gault, F.G.

    1983-08-01

    The interaction of deuterium with 1,2-dimethylcyclopentene, 2,3-dimethylcyclopentene, 1-methyl-2-methylenecyclopentane, 1,2-dimethylcyclobutene, 1-methyl-2-methylenecyclobutane, bicyclo(2,2,1)heptene, but-1-ene, and cis-but-2-ene was studied from -85 to 50/sup 0/C on nickel films in a static apparatus and on Ni/pumice in a flow system. Unexpected d/sub 3/ and d/sub 4/ molecules were obtained in the deuteration of bicyclo(2,2,1)heptene. The position of the double bond in the ring of the other cycloolefins was the main factor governing their behavior: in the deuteration of 1,2-dimethylcycloalkenes, the saturated products, especially the trans somers, were much more exchanged and the percentage of trans was lower than when the starting material consisted of the olefins with the double bond in 2,3 or exocyclic positions. The hyperfine distribution, obtained by microwave analysis, of the exchanged d/sub 1/ but-1-ene, revealed that the major part of the deuterium was introduced on C/sub 2/; the cis-trans isomerization was much faster than the double bond migration with the introduction of zero or one deuterium atom while the isomerized but-1-ene showed a multiple exchange up to d/sub 4/; in the isomerized d/sub 1/ but-1-ene, the deuterium atom was distributed on the three carbon atoms C/sub 1/, C/sub 2/, C/sub 3/. Most of these results clearly show that the classical Horiuti-Polanyi mechanism is not the only one taking part in the reactions. The introduction of other intermediaries, sigma-vinylic, sigma-vinylic ..pi..-olefinic, and sigma-vinylic ..pi..-allylic species, provides a coherent explanation for all our findings. It is shown that nickel and iron behave in a very similar way. 5 tables.

  19. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  20. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls

    SciTech Connect

    Krstic, Predrag S.; Allain, J. P.; Taylor, C. N.; Dadras, J.; Morokuma, K.; Jakowski, J.; Allouche, A.; Skinner, C. H.

    2013-01-01

    Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.