Science.gov

Sample records for deuteromycota hyphomycetes conidia

  1. Polymorphism of Beauveria bassiana (Deuteromycota: Hyphomycetes) strains isolated from Ixodes ricinus (Acari: Ixodidae) in Moldova.

    PubMed

    Mitina, G V; Tokarev, Y S; Movila, A A; Yli-Mattila, T

    2011-03-01

    Polymorphism of 10 Beauveria bassiana strains, isolated from Ixodes ricinus in Moldova, was evaluated using traditional (morphological and cultural properties) and molecular (RAPD patterns and ITS sequences) methods. The isolates differed greatly in morphological and cultural features, such as color, consistence, and growth rate. Four RAPD-PCR markers were used to evaluate genetic diversity of the strains. Phylogenetic neighbor-joining analysis of RAPD patterns divided strains into 3 major clades. The ITS sequences of 8 strains were identical to those of known B. bassiana strains. Two subsets (1 and 2) different by one nucleotide change were found in the ITS1 region. One strain of subset 1 was different from known B. bassiana strains by possessing 2 point mutations in the ITS region. RAPD-based clustering correlated to ITS sequence and colony morphology-based grouping of the strains.

  2. Hyphomycetes in the snow from gymnosperm trees.

    PubMed

    Czeczuga, B; Orłowska, M

    1998-01-01

    The presence of 26 hyphomycete species was noted in snow water collected from coniferous trees. Camposporium pellucidum, Monodictys peruviana, Polystratorictus fusarioideus, Sporidesmium moniliforme, Tripospermum acerinum and Veronaea botryosa were recorded for the first time to Poland. Among the 26 species found in snow water from coniferous trees predominance of the socalled aero-aquatic hyphomycetes and only a few species belong to the group of aquatic hyphomycetes.

  3. Entomopathogenic potential of Verticillium and Acremonium species (Deuteromycotina: Hyphomycetes).

    PubMed

    Steenberg, T; Humber, R A

    1999-05-01

    Hyphomycetes with conidia formed in slimy heads from hyaline mycelium were isolated from a range of insect hosts. Isolation on artificial medium and microscopic examination revealed that these fungi in many cases were not Verticillium lecanii despite a superficial resemblance to this common entomopathogen. The fungi were identified as Verticillium fusisporum, Verticillium psalliotae, Verticillium lamellicola, and species of Acremonium. Isolates of these fungi were bioassayed against the sweet-potato whitefly (Bemisia tabaci) and against the housefly (Musca domestica) to examine their entomopathogenicity. A test was also conducted with a coleopteran (lesser mealworm, Alphitobius diaperinus) to further evaluate the host range for some of the fungi. V. lamellicola was not pathogenic to the two species of insects treated, while varying levels of pathogenicity were shown for the other species. In general, V. lecanii was the most pathogenic species. Immature whiteflies appeared to be more susceptible to fungal infection than adult houseflies, and the host range for several of the fungi also included lesser mealworm. PMID:10222186

  4. The ecology of nematode-trapping hyphomycetes in cattle dung from three plateau pastures.

    PubMed

    Su, Hongyan; Hao, Yu'e; Mo, Minghe; Zhang, Keqin

    2007-03-31

    This paper investigated the influence of season and altitude on the occurrence of nematode-trapping fungi in cattle faeces. Six hundred and sixty samples of cattle faeces deposited on three plateau pastures with different altitudes in the west of Yunnan Province, China, were examined in 2004. A total of 17 species of nematode-trapping hyphomycetes were isolated from these samples. The predominant species from all three plateau pastures were Arthrobotrys oligospora, A. musiformis, Monacrosporium ellipsosporum, and M. thaumasium. Species with adhesive networks were the most frequently isolated. Overall, species diversity index was negatively correlated with altitude and was different among seasons within the same site. Levels of diversity were highest in the summer, followed by autumn, spring, and winter. The conidia of the hyphomycetes isolated here germinated normally on medium containing cattle faeces, with species developing adhesive networks having the highest rate of germination. However, the rate of conidial trap (CT) formation was lower in species with adhesive networks than those in other species.

  5. [Method of biological control of Triatominae, vectors of Chagas disease, using entomopathogenic Hyphomycetes. Preliminary study].

    PubMed

    Romaña, C A; Fargues, J; Pays, J F

    1987-01-01

    Bioassays determined the pathogenic activity of 14 strains of 5 entomopathogenic hyphomycetous species (Fungi imperfecti), Beauveria bassiana, Beauveria brongniartii, Metarhizium anisopliae, Nomuraea rileyi and Paecilomyces fumosoroseus to Rhodnius prolixus. Treatments consisted of direct spraying with conidial titrated suspensions on first instar larvae. When tested at 3 X 10(5) conidia/cm2, only 2 strains, B. bassiana n. 297 and B. bassiana n. 326 killed 100% of larvae at 10 days post-exposure. In the same time their LD50 and their LD90 did not differ significantly. After 3 weeks, the mortality caused by either dose of spores of B. bassiana n. 297 was very high. In contrast, in the case of B. bassiana n. 326 mortality due to reduced doses remained at low rates. This laboratory study demonstrated that the isolate, B. bassiana n. 297 might have potential as microbial control agent against the assassin bugs. PMID:3111731

  6. Antagonism of some aquatic hyphomycetes against plant pathogenic fungi.

    PubMed

    Sati, S C; Arya, P

    2010-01-01

    The antagonistic activity of five aquatic hyphomycetes, viz., Heliscus lugdunensis, Tetrachaetum elegans, Tetracladium breve, T. marchalianum, and T. nainitalense, against seven plant pathogenic fungi was studied using a dual culture technique. Inhibitory activity of tested aquatic hyphomycetes was determined by measuring the radial growth of plant pathogenic fungi on dual culture plates. Tetrachaetum elegans showed antagonistic activity against Colletotrichum falcatum, Fusarium oxysporum, Pyricularia oryzae, Sclerotium sclerotiorum, and Tilletia indica. Heliscus lugdunensis showed antagonism against only two plant pathogenic fungi, Rhizoctonia solani and Colletotrichum falcatum. Tetracladium breve, T. marchalianum, and T. nainitalense showed no response towards tested plant pathogenic fungi. PMID:20454756

  7. Colonization pattern of aquatic hyphomycetes on leaf packs in subtropical stream.

    PubMed

    Abdel-Raheem, A M

    1997-01-01

    Steralized leaf pieces of eight plants (Eucalyptus rostrata, Phoenix dactylifera, Phragmites australis, Musa nana, Salix subserrata, Cyperus alopecuroides, Ricinus communis and Eichhornia crassipes) were submerged in the Nile stream. Thirty-nine species of aquatic hyphomycetes were colonized on the plant leaves. Eucalyptus was the best substratum (30 species) for colonization by aquatic hyphomycetes. Phoenix (14 species), Phragmites (11 species), Salix (9 species), Musa (8 species), Ricinus and Cyperus (6 species) were also good substrata for aquatic hyphomycetes colonization. Echhornia (aquatic plant) was not suitable for aquatic hyphomycetes colonization. Alatospora acuminata, Triscelophorus monosporus and Tetracladium marchalianum were found to be the major colonizers on all leaf materials. Temperature and dissolved oxygen were the highest physico-chemical parameters affecting the aquatic hyphomycetes colonization. These results indicate that aquatic hyphomycetes have been shown to be successful colonizers on plants leaf in river Nile in Egypt as subtropical region.

  8. Proteomic profile of dormant Trichophyton Rubrum conidia

    PubMed Central

    Leng, Wenchuan; Liu, Tao; Li, Rui; Yang, Jian; Wei, Candong; Zhang, Wenliang; Jin, Qi

    2008-01-01

    Background Trichophyton rubrum is the most common dermatophyte causing fungal skin infections in humans. Asexual sporulation is an important means of propagation for T. rubrum, and conidia produced by this way are thought to be the primary cause of human infections. Despite their importance in pathogenesis, the conidia of T. rubrum remain understudied. We intend to intensively investigate the proteome of dormant T. rubrum conidia to characterize its molecular and cellular features and to enhance the development of novel therapeutic strategies. Results The proteome of T. rubrum conidia was analyzed by combining shotgun proteomics with sample prefractionation and multiple enzyme digestion. In total, 1026 proteins were identified. All identified proteins were compared to those in the NCBI non-redundant protein database, the eukaryotic orthologous groups database, and the gene ontology database to obtain functional annotation information. Functional classification revealed that the identified proteins covered nearly all major biological processes. Some proteins were spore specific and related to the survival and dispersal of T. rubrum conidia, and many proteins were important to conidial germination and response to environmental conditions. Conclusion Our results suggest that the proteome of T. rubrum conidia is considerably complex, and that the maintenance of conidial dormancy is an intricate and elaborate process. This data set provides the first global framework for the dormant T. rubrum conidia proteome and is a stepping stone on the way to further study of the molecular mechanisms of T. rubrum conidial germination and the maintenance of conidial dormancy. PMID:18578874

  9. Ergosterol-to-Biomass Conversion Factors for Aquatic Hyphomycetes

    PubMed Central

    Gessner, Mark O.; Chauvet, Eric

    1993-01-01

    Fourteen strains of aquatic hyphomycete species that are common on decaying leaves in running waters were grown in liquid culture and analyzed for total ergosterol contents. Media included an aqueous extract from senescent alder leaves, a malt extract broth, and a glucose-mineral salt solution. Concentrations of ergosterol in fungal mycelium ranged from 2.3 to 11.5 mg/g of dry mass. The overall average was 5.5 mg/g. Differences among both species and growth media were highly significant but followed no systematic pattern. Stationary-phase mycelium had ergosterol contents 10 to 12% lower or higher than mycelium harvested during the growth phase, but these differences were only significant for one of four species examined. Availability of plant sterols in the growth medium had no clear effect on ergosterol concentrations in two species tested. To convert ergosterol contents determined in field samples to biomass values of aquatic hyphomycetes, a general multiplicative factor of 182 is proposed. More accurate estimates would be obtained with species-specific factors. Using these in combination with estimates of the proportion of the dominant species in a naturally established community on leaves resulted in biomass estimates that were typically 20% lower than those obtained with the general conversion factor. Improvements of estimates with species-specific factors may be limited, however, by intraspecific variability in fungal ergosterol content. PMID:16348874

  10. Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells.

    PubMed Central

    Paris, S; Boisvieux-Ulrich, E; Crestani, B; Houcine, O; Taramelli, D; Lombardi, L; Latgé, J P

    1997-01-01

    The internalization of conidia of the opportunistic fungus Aspergillus fumigatus by primary cell cultures of nonprofessional phagocytes was investigated. This study is the first to show that A. fumigatus conidia were able to be engulfed by tracheal epithelial, alveolar type II, and endothelial cells. PMID:9119494

  11. Splash dispersal of Phyllosticta citricarpa conidia from infected citrus fruit.

    PubMed

    Perryman, S A M; Clark, S J; West, J S

    2014-01-01

    Rain-splash dispersal of Phyllosticta citricarpa (syn. Guignardia citricarpa) conidia (pycnidiospores) from infected oranges was studied in still air and combined with wind. High power microscopy demonstrated the presence of conidia in splash droplets from diseased oranges, which exuded conidia for over one hour during repeated wetting. The largest (5 mm) incident drops produced the highest splashes (up to 41.0 cm). A linear-by-quadratic surface model predicted highest splashes to be 41.91 cm at a horizontal distance of 25.97 cm from the target orange. Large splash droplets contained most conidia (4-5.5 mm splashes averaged 308 conidia), but were splashed <30 cm horizontal distance. Most (80-90%) splashes were <1 mm diameter but carried only 0-4 conidia per droplet. In multiple splash experiments, splashes combined to reach higher maxima (up to 61.7 cm; linear-by-quadratic surface model prediction, 62.1 cm) than in the single splash experiments. In combination with wind, higher wind speeds carried an increasing proportion of splashes downwind travelling horizontally at least 8 m at the highest wind speed tested (7 m/s), due to a small proportion of droplets (<1 mm) being aerosolised. These experiments suggest that P. citricarpa conidia can be dispersed from infected oranges by splashes of water in rainfall events.

  12. Aquatic Hyphomycete Species Are Screened by the Hyporheic Zone of Woodland Streams

    PubMed Central

    Chauvet, Eric; Mermillod-Blondin, Florian; Assemat, Fiona; Elger, Arnaud

    2014-01-01

    Aquatic hyphomycetes strongly contribute to organic matter dynamics in streams, but their abilities to colonize leaf litter buried in streambed sediments remain unexplored. Here, we conducted field and laboratory experiments (slow-filtration columns and stream-simulating microcosms) to test the following hypotheses: (i) that the hyporheic habitat acting as a physical sieve for spores filters out unsuccessful strategists from a potential species pool, (ii) that decreased pore size in sediments reduces species dispersal efficiency in the interstitial water, and (iii) that the physicochemical conditions prevailing in the hyporheic habitat will influence fungal community structure. Our field study showed that spore abundance and species diversity were consistently reduced in the interstitial water compared with surface water within three differing streams. Significant differences occurred among aquatic hyphomycetes, with dispersal efficiency of filiform-spore species being much higher than those with compact or branched/tetraradiate spores. This pattern was remarkably consistent with those found in laboratory experiments that tested the influence of sediment pore size on spore dispersal in microcosms. Furthermore, leaves inoculated in a stream and incubated in slow-filtration columns exhibited a fungal assemblage dominated by only two species, while five species were codominant on leaves from the stream-simulating microcosms. Results of this study highlight that the hyporheic zone exerts two types of selection pressure on the aquatic hyphomycete community, a physiological stress and a physical screening of the benthic spore pool, both leading to drastic changes in the structure of fungal community. PMID:24441154

  13. Binding of human fibronectin to Aspergillus fumigatus conidia.

    PubMed Central

    Peñalver, M C; O'Connor, J E; Martinez, J P; Gil, M L

    1996-01-01

    Aspergillus fumigatus conidia exhibited the ability to bind purified human fibronectin, whereas mycelial forms did not bind the ligand, as detected by an indirect immunofluorescence assay with an antifibronectin polyclonal antibody after incubation of the cells with fibronectin. Flow cytometry confirmed that binding of the ligand to conidia was dose dependent and saturable. Pretreatment of the cells with trypsin markedly reduced binding, which suggested a protein nature for the binding sites present at the surface of conidia. Intact conidia were also able to adhere to fibronectin or antifibronectin antibodies, a significant reduction (from 88 to 92%) in the binding of conidia was noticed, thus suggesting that adhesion to the immobilized ligand was specific. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting with fibronectin and antifibronectin antibody of whole conidial homogenates and 2-mercaptoethanol extracts from isolated conidial cell walls allowed identification, among the complex array of protein and glycoprotein species present in both cell-free preparations, of two polypeptides with apparent molecular masses of 23 and 30 kDa which specifically interact with fibronectin. PMID:8606071

  14. Chronological aging in conidia of pathogenic Aspergillus: Comparison between species.

    PubMed

    Oliveira, Manuela; Pereira, Clara; Bessa, Cláudia; Araujo, Ricardo; Saraiva, Lucília

    2015-11-01

    Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus niger are common airborne fungi, and the most frequent causative agents of human fungal infections. However, the resistance and lifetime persistence of these fungi in the atmosphere, and the mechanism of aging of Aspergillus conidia are unknown.With this work, we intended to study the processes underlying conidial aging of these four relevant and pathogenic Aspergillus species. Chronological aging was therefore evaluated in A. fumigatus, A. flavus, A. terreus and A. niger conidia exposed to environmental and human body temperatures. The results showed that the aging process in Aspergillus conidia involves apoptosis,with metacaspase activation, DNA fragmentation, and reactive oxygen species production, associated with secondary necrosis. Distinct results were observed for the selected pathogenic species. At environmental conditions, A. niger was the species with the highest resistance to aging, indicating a higher adaption to environmental conditions, whereas A. flavus followed by A. terreus were the most sensitive species. At higher temperatures (37 °C), A. fumigatus presented the longest lifespan, in accordance with its good adaptation to the human body temperature. Altogether,with this work new insights regarding conidia aging are provided, which may be useful when designing treatments for aspergillosis.

  15. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.

    PubMed

    Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel

    2009-05-15

    In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.

  16. Effects of conidia of various Aspergillus species on apoptosis of human pneumocytes and bronchial epithelial cells.

    PubMed

    Féménia, F; Huet, D; Lair-Fulleringer, S; Wagner, M C; Sarfati, J; Shingarova, L; Guillot, J; Boireau, P; Chermette, R; Berkova, N

    2009-05-01

    Aspergillus species can cause mycoses in human and animals. Previously, we demonstrated that A. fumigatus conidia from a human isolate inhibited apoptosis in human pneumocytes and bronchial epithelial cells. In the current study, we studied the effects of A. fumigatus conidia non-human origin and A. flavus, A. nidulans, A. niger and A. oryzae conidia on human cells apoptosis. Human pneumocytes or bronchial epithelial cells were simultaneously exposed to apoptotic inductors and aspergilli conidia. The cell cultures were analyzed by flow cytometry, immunoblotting, and examination of nuclear morphology. Similar to A. fumigatus conidia, A. flavus conidia inhibited cellular apoptosis while A. nidulans, A. niger and A. oryzae conidia did not affect apoptosis. We further studied the species specificity of conidia: there were no differences in the inhibition of apoptosis by A. fumigatus conidia from either human or bird isolates. In order to determine whether the inhibition of apoptosis by conidia is limited to certain strains, the effect on human cell apoptosis of different A. fumigatus human clinical isolates and A. fumigatus of environmental origin was evaluated. All A. fumigatus isolates inhibited apoptosis; an anti-apoptotic factor was released by conidia. For TNF-induced apoptosis, the anti-apoptotic effect of conidia of all isolates was found to be associated with a reduction of caspase-3 in human cells. The results suggest that suppression of apoptosis may play a role in reducing the efficacy of host defense mechanisms during infection with Aspergillus species. PMID:19117118

  17. Variation in Occurrence of Dematiaceous Hyphomycetes on Forage Bermudagrass over Years, Sampling Times, and Locations.

    PubMed

    Pratt, R G

    2005-10-01

    ABSTRACT Leaf samples of forage bermudagrass with symptoms of infection by species of Bipolaris, Curvularia, and Exserohilum (dematiaceous hyphomycetes) were collected from three swine waste application sites in Mississippi at eight sampling times during each of 3 years. Samples were assayed for pathogens by observing sporulation on plated leaf tissue. Among 3,600 leaves assayed, eight species of the three genera were observed. Features and criteria for the practical identification of species on plated leaf samples are described. Sporulation by dematiaceous hyphomycetes was observed on 97% of leaves; a single pathogen was observed on 20% and two to five pathogens were observed on 77% of leaves. Distributions of leaves among classes with one to five pathogens per leaf, for sites within years, always differed significantly (P = 0.01) from a Poisson distribution and usually included fewer leaves than expected with four or five pathogens. Significant (P = 0.05) variation in frequencies of occurrence of pathogens among 72 samples of 50 leaves each was attributed to pathogen species, sampling times, and species-time interactions. Exserohilum rostratum, Curvularia lunata, and Bipolaris cynodontis were the most frequent pathogens across years and sites; B. spicifera and C. geniculata were intermediate; and B. hawaiiensis, B. sorokiniana, and B. stenospila were least frequent. For the five most common pathogens, significant differences in frequency among locations were commonplace. Six pathogens exhibited significant (P = 0.05) positive and negative correlations with others in overall frequencies of occurrence across years, sampling times, and sites. However, chi(2) tests of dual occurrence indicated that interactions between specific pairs of pathogens in or on leaves are not likely to be major causes for overall frequency correlations. Results indicate that dematiaceous hyphomycetes typically infect forage bermudagrass on swine waste application sites in complexes rather

  18. Taka-amylase A in the conidia of Aspergillus oryzae RIB40.

    PubMed

    Nguyen, Cong Ha; Tsurumizu, Ryoji; Sato, Tsutomu; Takeuchi, Michio

    2005-11-01

    A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.

  19. Effects of aluminium in acid streams on growth and sporulation of aquatic hyphomycetes.

    PubMed

    Chamier, A C; Tipping, E

    1997-01-01

    We investigated, by field and laboratory experiments, the effects of aluminium in an acid stream (pH 5.0) on the growth and sporulation of aquatic hyphomycete fungi which degrade organic litter. The stream water had monomeric aluminium (Al(m)) concentrations of 9.1-13.4 microm - fifty times higher than a nearby circumneutral stream. Alder leaves submersed in the stream accumulated Al, most of which was tightly bound. Growth rates of four species of aquatic hyphomycetes were altered by inclusion of Al(m) in the culture medium. On a polypectate substrate, and on low-phosphate medium with glucose, growth rates increased significantly. On a low-nutrient substrate of homogenized alder leaves, growth rates were inhibited by aluminium. The pattern of mycelial growth was found to be different on a polypectate medium including Al(m), compared with a control without aluminium. There was a significant increase in hyphal radial growth and a decrease in the hyphal growth unit. The effect resembled the growth of a starved fungal colony. Treatment with Al(m) decreased pectinase production by the four fungal species tested. The capacity of these species to sporulate was reduced by flooding culture plates with Al(m) solution. These deleterious metabolic effects were most severe in isolates taken from circumneutral streams and less marked, though significant, in species originating from acid streams. PMID:15093395

  20. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells.

  1. Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra.

    PubMed Central

    Sorenson, W G; Frazer, D G; Jarvis, B B; Simpson, J; Robinson, V A

    1987-01-01

    Stachybotrys atra is the etiologic agent of stachybotryotoxicosis, and this fungus and its trichothecene mycotoxins were recently implicated in an outbreak of unexplained illness in homes. S. atra was grown on sterile rice, autoclaved, dried, and then aerosolized by acoustic vibration. The distribution of particles (mass and number) was monitored on an aerodynamic particle sizer interfaced with a computer. Dust was collected on preweighed glass-fiber filters and extracted with 90% aqueous methanol. Extracts were tested for the ability to inhibit protein synthesis in rat alveolar macrophages, the ability to inhibit the proliferation of mouse thymocytes, and the presence of specific trichothecene mycotoxins. Virtually all of the particles were less than 15 micron in aerodynamic diameter, and the mass median diameter was 5 micron. Thus, most of the particles were respirable. Microscopic analysis of the generated dust revealed that ca. 85% of the dust particles were conidia of S. atra, another 6% were hyphal fragments, and the remainder of the particles were unidentifiable. Thus, greater than 90% of the particles were of fungal origin. The extracts strongly inhibited protein synthesis and thymocyte proliferation. Purified satratoxin H was also highly toxic in the same systems. Each of the individual filters contained satratoxin H (average, 9.5 ng/mg of dust). Satratoxin G and trichoverrols A and B were found in lesser amounts in some, but not all, of the filters. The limit of analysis is ca. 50 ng. These results establish that the conidia of S. atra contain trichothecene mycotoxins. In view of the potent toxicity of the trichothecenes, the inhalation of aerosols containing high concentrations of these conidia could be a potential hazard to health. PMID:3496850

  2. Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes.

    PubMed

    Charcosset, J Y; Chauvet, E

    2001-05-01

    Ergosterol is a membrane component specific to fungi that can be used to estimate fungal biomass using appropriate factors of conversion. Our objectives were to determine the limits of use of ergosterol content as a measure of biomass for aquatic hyphomycetes, and to evaluate a previously established ergosterol-to-biomass conversion factor. We varied inoculum quality, growth medium, and degree of shaking of four aquatic hyphomycete species. In cultures inoculated with homogenized mycelium, we found a significant effect of shaking condition and culture age on ergosterol content. In liquid cultures with defined medium, ergosterol content reached 10 to 11 microg/mg of mycelium (dry mass) and varied by factors of 2.2 during exponential growth and 1.3 during stationary phase. The increase in ergosterol content during exponential phase could be attributed, at least in part, to rapid depletion of glucose. Oxygen availability to internal hyphae within the mycelial mass is also responsible for the differences found between culture conditions. Ergosterol concentration ranged from 0.8 to 1.6 microg/mg in static cultures inoculated with agar plugs. Ergosterol content varied by a factor of 4 in two media of different richnesses. For different combinations of these parameters, strong (r(2) = 0.83 to 0.98) and highly significant (P < 0.001) linear relationships between ergosterol and mycelial dry mass (up to 110 mg) were observed. Overall, the ergosterol content varied by a factor of 14 (0.8 to 11 mg/g). These results suggest that care must be taken when the ergosterol content is used to compare data generated in different field environments. PMID:11319080

  3. Proteomic analysis of conidia germination in Colletotrichum acutatum.

    PubMed

    El-Akhal, Mohamed Rabie; Colby, Thomas; Cantoral, Jesús M; Harzen, Anne; Schmidt, Jürgen; Fernández-Acero, Francisco Javier

    2013-04-01

    Colletotrichum acutatum is an important phytopathogenic fungus causing anthracnose in commercially important fruit crops, such as strawberry. The conidia produced by the fungus are survival structures which play a key role in host infection and fungal propagation. Despite its relevance to the fungal life cycle, conidial biology has not been extensively investigated. Here, we provide the first proteomic description of the conidial germination in C. acutatum by comparing the proteomic profiles of ungerminated and germinated conidia. Using two-dimensional electrophoresis combined with MALDI-TOF/TOF mass spectrometry, we have identified 365 proteins in 354 spots, which represent 245 unique proteins, including some proteins with key functions in pathogenesis. All these proteins have been classified according to their molecular function and their involvement in biological processes, including cellular energy production, oxidative metabolism, stress, fatty acid synthesis, protein synthesis, and folding. This report constitutes the first comprehensive study of protein expression during the early stage of the C. acutatum conidial germination. It advances our understanding of the molecular mechanisms involved in the conidial germination process, and provides a useful basis for the further characterization of proteins involved in fungal biology and fungus life cycles. PMID:23371377

  4. Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia.

    PubMed

    Behle, Robert W; Compton, David L; Laszlo, Joseph A; Shapiro-Ilan, David I

    2009-10-01

    Soyscreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as Soyscreen oil, are biobased UV-absorbing molecules made by combining molecules of soybean oil with ferulic acid. Conidia stored in Soyscreen oil for 28 wk at 25, 30, and 35 degrees C retained viability as well as conidia stored in sunflower oil, demonstrating that Soyscreen did not adversely affect viability with prolonged storage. For samples applied to glass and exposed to simulated sunlight (xenon light), conidia in sunflower oil with or without sunscreens (Soyscreen or oxyl methoxycinnimate) had similar conidia viability after exposure. These oil formulations retained conidia viability better than conidia applied as an aqueous treatment. However, the 10% Soyscreen oil formulation applied to field grown cabbage (Brassica oleracea L.) and bean (Phaseolus vulgaris L.) plants, did not improve residual insecticidal activity compared with aqueous applications of unformulated conidia or two commercial formulations when assayed against Trichoplusia ni (Hübner) larvae. Our results suggest that the oil applications lose UV protection because the oil was absorbed by the leaf. This conclusion was supported in subsequent laboratory exposures of conidia in oil-based formulations with UV screens applied to cabbage leaves or balsa wood, which lost protection as measured by decreased viability of conidia when exposed to simulated sunlight. As a result, additional formulation techniques such as encapsulation to prevent separation of the protective oil from the conidia may be required to extend protection when oil formulations are applied in the field.

  5. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum.

    PubMed

    Shi, Junling; Li, Yin; Qian, Huali; Du, Guocheng; Chen, Jian

    2004-11-01

    The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied.

  6. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle.

    PubMed

    Ment, Dana; Gindin, Galina; Rot, Asael; Soroker, Victoria; Glazer, Itamar; Barel, Shimon; Samish, Michael

    2010-06-01

    The present study describes an accurate quantitative method for quantifying the adherence of conidia to the arthropod cuticle and the dynamics of conidial germination on the host. The method was developed using conidia of Metarhizium anisopliae var. anisopliae (Metschn.) Sorokin (Hypocreales: Clavicipitaceae) and engorged Rhipicephalus annulatus (Say) (Arachnida: Ixodidae) females and was also verified for M. anisopliae var. acridum Driver et Milner (Hypocreales: Clavicipitaceae) and Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) larvae. This novel method is based on using an organic solvent (dichloromethane [DCM]) to remove the adhered conidia from the tick cuticle, suspending the conidia in a detergent solution, and then counting them using a hemocytometer. To confirm the efficacy of the method, scanning electron microscopy (SEM) was used to observe the conidial adherence to and removal from the tick cuticle. As the concentration of conidia in the suspension increased, there were correlating increases in both the number of conidia adhering to engorged female R. annulatus and tick mortality. However, no correlation was observed between a tick's susceptibility to fungal infection and the amount of adhered conidia. These findings support the commonly accepted understanding of the nature of the adhesion process. The mechanism enabling the removal of the adhered conidia from the host cuticle is discussed. PMID:20363785

  7. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  8. Expression and identification of a laminin-binding protein in Aspergillus fumigatus conidia.

    PubMed Central

    Tronchin, G; Esnault, K; Renier, G; Filmon, R; Chabasse, D; Bouchara, J P

    1997-01-01

    Adhesion of Aspergillus fumigatus, the causative agent of human aspergillosis, to the extracellular matrix protein laminin has been previously demonstrated. This study investigated the expression of laminin receptors during swelling of conidia, a step leading to germination and subsequent colonization of tissues. Scanning electron microscopy showed that the laminin binding sites were distributed over the external rodlet layer of resting conidia. During swelling, the characteristic rodlet layer progressively disintegrated and conidia surrounded by a smooth cell wall layer appeared. Flow cytometry using fluorescein isothiocyanate-conjugated laminin demonstrated that expression of laminin receptors at the surface of conidia was swelling dependent. Resting conidia expressed high levels of laminin receptors on their surface. A gradual decrease of laminin binding was then observed as swelling occurred, reaching a minimum for 4-h-swollen conidia. This correlated with a loss of adherence of swollen conidia to laminin immobilized on microtiter plates. Trypsin pretreatment of conidia reduced laminin binding. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ligand blotting with laminin identified in a cell wall extract a major 72-kDa cell wall glycoprotein which binds laminin. Thus, one of the initial events in the host colonization may be the recognition of basement membrane laminin by this 72-kDa cell wall surface component. PMID:8975886

  9. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum.

    PubMed

    Shi, Junling; Li, Yin; Qian, Huali; Du, Guocheng; Chen, Jian

    2004-11-01

    The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied. PMID:15604814

  10. Phagocytosis of Aspergillus fumigatus conidia by primary nasal epithelial cells in vitro

    PubMed Central

    Botterel, Françoise; Gross, Karine; Ibrahim-Granet, Oumaïma; Khoufache, Khaled; Escabasse, Virginie; Coste, André; Cordonnier, Catherine; Escudier, Estelle; Bretagne, Stéphane

    2008-01-01

    Background Invasive aspergillosis, which is mainly caused by the fungus Aspergillus fumigatus, is an increasing problem in immunocompromised patients. Infection occurs by inhalation of airborne conidia, which are first encountered by airway epithelial cells. Internalization of these conidia into the epithelial cells could serve as a portal of entry for this pathogenic fungus. Results We used an in vitro model of primary cultures of human nasal epithelial cells (HNEC) at an air-liquid interface. A. fumigatus conidia were compared to Penicillium chrysogenum conidia, a mould that is rarely responsible for invasive disease. Confocal microscopy, transmission electron microscopy, and anti-LAMP1 antibody labeling studies showed that conidia of both species were phagocytosed and trafficked into a late endosomal-lysosomal compartment as early as 4 h post-infection. In double immunolabeling experiments, the mean percentage of A. fumigatus conidia undergoing phagocytosis 4 h post-infection was 21.8 ± 4.5%. Using combined staining with a fluorescence brightener and propidium iodide, the mean rate of phagocytosis was 18.7 ± 9.3% and the killing rate 16.7 ± 7.5% for A. fumigatus after 8 h. The phagocytosis rate did not differ between the two fungal species for a given primary culture. No germination of the conidia was observed until 20 h of observation. Conclusion HNEC can phagocytose fungal conidia but killing of phagocytosed conidia is low, although the spores do not germinate. This phagocytosis does not seem to be specific to A. fumigatus. Other immune cells or mechanisms are required to kill A. fumigatus conidia and to avoid further invasion. PMID:18564423

  11. Identification and directed biosynthesis of efrapeptins in the fungusTolypocladium geodes gams (Deuteromycotina: Hyphomycetes).

    PubMed

    Krasnoff, S B; Gupta, S

    1991-10-01

    HPLC analysis of crude dichloromethane extracts of shaken liquid cultures of the hyphomycetous fungusTolypocladium geodes Gams revealed the presence of efrapeptins. These peptides, which have mitochondrial ATPase inhibitory activity as well as antifungal and insecticidal properties, are previously known only from the congeneric species,T. niveum Rostrup. The identity of efrapeptins was confirmed by fast atom bombardment mass spectrometry and by amino acid analysis. HPLC analyses of efrapeptins extracted from single isolates of bothT. geodes andT. niveum indicated that both species produced the same efrapeptins but the profile of relative abundance of the compounds produced was diagnostic for the isolates examined. Efrapeptin F was the major component of the mixture fromT. geodes with the order of abundance of the six efrapeptins detected being F >G>D∼E>H>C. Efrapeptin D was the major component fromT. niveum with the order of abundance of the six efrapeptins detected being D >E>F>C∼G>H. Efrapeptin F diifers from efrapeptin D by a single amino acid residue, efrapeptin F having an alanine where efrapeptin D has a glycine. Addition of alanine to the culture medium increased the relative abundance of efrapeptin F in the profile of both species. Conversely, addition of glycine increased the relative abundance of efrapeptin D in the profile of both species.

  12. Response of Aquatic Hyphomycete Communities to Changes in Heavy Metal Exposure

    NASA Astrophysics Data System (ADS)

    Sridhar, K. R.; Bärlocher, Felix; Krauss, Gerd-Joachim; Krauss, Gudrun

    2005-02-01

    Decomposition of Alnus glutinosa (alder) leaves was studied in a severely (site H4) and a moderately (site H8) heavy metal polluted stream in the former copper shale mining district of Mansfeld, Central Germany. Leaves at H8 had reduced fungal diversity and spore production but a high exponential decay rate (k = 0.065). No further mass loss of leaves occurred at H4 after 4-6 weeks, and fungal diversity and spore production were lower than in H8. Decay and sporulation rates gradually increased to values of H8 control leaves in leaves preincubated in H4 and then transferred to H8. These increases correlated with the invasion of transplanted leaves by Tetracladium marchalianum and Tricladium angulatum. In the reverse transplant experiment (H8 to H4), mass loss appeared to stop immediately. Sporulation rates also declined, but remained consistently above levels in H4 control leaves. Leaves precolonized in the laboratory by one of three aquatic hyphomycete species exhibited increased decay rates in both streams. Sporulation rates on these leaves were greater than those of control leaves in H4, but smaller than those of control leaves in H8.

  13. Ovularia puerariae Sawada is the hyphomycetous anamorph of a new Marasmius species on living leaves of kudzu (Pueraria montana, Fabaceae).

    PubMed

    Kirschner, Roland; Lee, I-Shu; Chen, Chee-Jen

    2013-01-01

    An arthroconidial hyphomycete on living leaves of kudzu (Pueraria montana, Fabaceae), originally described by Sawada in 1959 as Ovularia puerariae, was rediscovered. This anamorph is connected to an unknown Marasmius teleomorph belonging to section Globulares, which develops on the same living leaves. Ultrastructure and LSU rDNA sequence analysis of the anamorph confirm this connection. The fungus does not have only a unique biology among agarics, comparable only to Mycena citricolor, but also has the potential for application as a control agent of kudzu. During comparison with similar anamorph genera, Illosporium graminicola was found to be a synonym for Beniowskia sphaeroidea. PMID:23360973

  14. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia.

    PubMed

    Singh, Bharat; Sharma, Gainda L; Oellerich, Michael; Kumar, Ram; Singh, Seema; Bhadoria, Dharam P; Katyal, Anju; Reichard, Utz; Asif, Abdul R

    2010-11-01

    Aspergillus fumigatus is the common cause of allergic broncho-pulmonary aspergillosis (ABPA) and most of the allergens have been described from its secreted fraction. In the present investigation, germinating conidial cytosolic proteins of A. fumigatus were extracted from a 16 h culture. The proteome from this fraction was developed, and immuno-blots were generated using pooled ABPA patients' sera. Well separated Immunoglobulin-E (IgE) and Immunoglobulin-G (IgG) reactive spots were picked from corresponding 2DE gels and subjected to mass spectrometric analysis. As a result, 66 immuno-reactive proteins were identified from two geographically different strains (190/96 and DAYA) of A. fumigatus. Only 3 out of 66 proteins reacted with IgG, and the remaining 63 proteins were found to be IgE reactive. These 63 IgE-reactive cytosolic proteins from germinating conidia included 2 already known (Asp f12 and Asp f22) and 4 predicted allergens (Hsp88, Hsp70, malate dehydrogenase, and alcohol dehydrogenase) based on their homology with other known fungal allergens. In view of this, the panel of presently identified IgE-reactive novel proteins holds the potential of providing a basis for the wider diagnostic application in assay for allergic aspergillosis. We could demonstrate that recombinantly expressed proteins from this panel showed consistent reactivity with IgE of individual sera of ABPA patients. The recombinantly expressed proteins may also be useful in desensitization therapy of allergic disorders including ABPA.

  15. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Barna, N.; Vass, Cs; Antal, Zs; Kredics, L.; Chrisey, D.

    2005-03-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM = 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s-1 at 355 mJ cm-2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 109 × g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  16. Germination of fungal conidia after exposure to low concentration ozone atmospheres.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germinability of conidia of Alternaria alternata, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, or Penicillium italicum was determined periodically during exposure for approximately 100 days to a humid atmosphere of air alone or air containing 150 ppb ozone ...

  17. THE POWER OF THE SMALL: THE EXAMPLE OF Paracoccidioides brasiliensis CONIDIA.

    PubMed

    Restrepo, Angela; Cano, Luz Elena; Gonzalez, Ángel

    2015-09-01

    Research on Paracoccidioides brasiliensis has centered in the yeast cell probably because of the lack of distinctive features in the mycelium. In 1942 and for the first time, lateral conidia were noticed in the fungus' hyphae. Later on, Brazilian, Venezuelan and Argentinean researchers described "aleurias" when the fungus was grown in natural substrates. In 1970 authors became interested in the conidia and were able to obtain them in large numbers and treat them as individual units. Their shape and size were defined and the presence of all the elements of a competent eukaryotic cell were demonstrated. Conidia exhibited thermal dimorphism and, additionally, when given intranasally to BALB/c male mice, they converted into yeasts in the lungs and produce progressive pulmonary lesions with further dissemination to other organs. Studies on the phagocyte-conidia interaction were revealing and showed that these versatile structures allow a better understanding of the host- P. brasiliensis interactions.

  18. Comparison of methodologies for conidia production by Alternaria alternata from citrus

    PubMed Central

    Carvalho, Daniel D. C.; Alves, Eduardo; Batista, Tereza R. S.; Camargos, Renato B.; Lopes, Eloísa A. G. L.

    2008-01-01

    Conidia production is a problem in the study of Alternaria alternata from citrus. Thus, this study aimed to compare existing methodologies for conidial production of A. alternata isolated from Ponkan tangerine (2 isolates), Cravo lemon (1 isolate), Pêra orange (2 isolates) and Murcott tangor (1 isolate). The methodologies used were conidia production with 12 and 24 hours under white fluorescent light, evaluation with 24 and 48 hours after applying fungal mycelium stress technique, cold stress followed by injury of mycelium and evaluation with 24 hours, using healthy vegetable tissue and the use of black fluorescent near ultraviolet (NUV) lamp. Satisfactory result was obtained with A. alternata isolate from Murcott tangor, with the production of 2.8 × 105 conidia mL-1, when fungal mycelium was stressed (Petri dish with 66.66% of fungi growth) and subsequently 24 h of growth. The use of white light (24 h) and black fluorescent NUV lamp also induced expressive conidia production by one isolate of Ponkan tangerine, which produced 17.2 × 105 and 10.1 × 105conidia mL-1 and another of Murcott tangor, which produced 13.9 × 105 and 10.1 × 105 conidia mL-1, respectively. The remaining methodologies analyzed in this study were not able to induce conidia production in satisfactory quantity. The use of both mycelium stress technique and white light (24 h) and black fluorescent NUV lamp allowed the production of enough quantities of conidia to be used in vitro (detection of fungitoxic substances) and in vivo (pathogenicity test) assays, respectively. PMID:24031309

  19. Efrapeptin production byTolypocladium fungi (Deuteromycotina: Hyphomycetes): Intra- and interspecific variation.

    PubMed

    Krasnoff, S B; Gupta, S

    1992-10-01

    Production of the mitochondrial ATPase inhibitory peptides efrapeptins was evaluated by HPLC analysis in 44 strains of nine species of the fungal genusTolypocladium (Deuteromycotina: Hyphomycetes). Efrapeptin identification was confirmed by mass spectral data for the first time in the speciesT. cylindrosporum. HPLC retention time data indicated thatT. nubicola andT. tundrense, two species not previously known to produce efrapeptins, also produce the peptides. No efrapeptins were detected (<0.3 mg/100 ml broth) in single strains each ofT. balanoides, T. extinguens, T. parasiticum, andT. microsporum. Five strains ofT. geodes produced detectable amounts of efrapeptins and had compound F, or F and G, as the major component(s) in the mixture with the order of abundance being F> or ∼G > H ∼ D ∼ E > C. Eleven strains ofT. niveum produced detectable amounts of efrapeptins and had efrapeptins D and E as the primary and secondary components, respectively, in the mixture with the order of abundance being D > E > F > C ∼ G. A singleT. niveum strain had an efrapeptin profile similar to that of theT. geodes strains. Ten strains ofT. cylindrosporum had detectable amounts of efrapeptins. Of these, nine had F and one had G as the major component.T. cylindrosporum had higher ratios of E to D than didT. geodes. Efrapeptins were detected in one of twoT. nubicola strains analyzed (F > G > H) and one of threeT. tundrense strains (F > G > H > E).T. niveum strains could, in most cases, be identified to species on the basis of their efrapeptin profiles.

  20. Distinct Responses of Human Monocyte Subsets to Aspergillus fumigatus Conidia1

    PubMed Central

    Serbina, Natalya V.; Cherny, Mathew; Shi, Chao; Bleau, Sharon A.; Collins, Nancy H.; Young, James W.; Pamer, Eric G.

    2009-01-01

    Aspergillus fumigatus is an environmental fungus that causes life-threatening infections in neutropenic patients. In the absence of intact innate immunity, inhaled A. fumigatus spores (conidia) germinate in the lung, forming hyphae that invade blood vessels and disseminate to other tissues. Although macrophages and neutrophils are postulated to provide defense against invasive fungal infection, animal models and human studies suggest that circulating monocytes also contribute to antifungal immunity. Although human monocyte subsets, defined as either CD14+CD16− or CD14+ CD16+, have been extensively characterized, their respective roles during fungal infection remain undefined. We isolated CD14+CD16− and CD14+CD16+ monocytes from healthy allogeneic hematopoietic stem cell transplantation donors and compared their ability to phagocytose and inhibit A. fumigatus conidia. Both monocyte subsets efficiently phagocytose conidia, but only CD14+CD16− monocytes inhibit conidial germination yet secrete little TNF. In contrast CD14+CD16+ do not inhibit conidial germination and secrete large amounts of TNF. Although CD14+CD16− and CD14+CD16+ monocytes differ in their response to dormant conidia, responses are similar if conidia are already germinated at the time of monocyte uptake. Our study demonstrates that functional CD14+CD16− and CD14+CD16+ monocytes can be isolated from allogeneic hematopoietic stem cell transplantation donors and that these subsets differ in their response to A. fumigatus conidia. PMID:19635902

  1. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora.

    PubMed

    Yu, Xi; Huo, Liang; Liu, Heng; Chen, Longfei; Wang, Yu; Zhu, Xudong

    2015-10-01

    Melanin plays an important role in regulating various biological processes in many fungi. However, its biological role in conidiation remains largely elusive. We report here that conidia production, morphogenesis, integrity, germination and their viability in Pestalotiopsis microspora require the polyketide-derived melanin. A polyketide synthase gene, pks1, was identified and demonstrated responsible for melanin biosynthesis in this fungus. A targeted deletion mutant strain Δpks1 displayed a defect in pigmentation of conidia and had an albino colonial phenotype. Interestingly, Δpks1 produced approximately 6-fold as many conidia as the wild type did, suggesting a negative modulation of melanin on conidia production in this fungus. Moreover, the conidia failed to develop into the normal five-cell morphology, rather the three main-body cells separated via constriction at the original septum position to generate three independent mutant conidia. This result suggests a novel role of melanin in the formation of the multi-cellular conidia. Germ tubes could develop from the three different types of mutant conidia and kept elongating, despite a significantly lower germination rate was observed for them. Still more, the unpigmented conidia became permeable to Calcofluor White and DAPI, suggesting the integrity of the conidia was impaired. Deliberate inhibition of melanin biosynthesis by a specific inhibitor, tricyclazole, led to a similar phenotypes. This work demonstrates a new function of fungal melanin in conidial development.

  2. Influence of Additives on the Yield and Pathogenicity of Conidia Produced by Solid State Cultivation of an Isaria javanica Isolate

    PubMed Central

    Xie, Ling; Han, Ji Hee; Lee, Sang Yeob

    2014-01-01

    Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide, because of its increased resistance to some insecticide groups. As an alternative control agent, we selected an Isaria javanica isolate as a candidate for the development of a mycopesticide against the Q biotype of sweet potato whitefly. To select optimal mass production media for solid-state fermentation, we compared the production yield and virulence of conidia between 2 substrates (barley and brown rice), and we also compared the effects of various additives on conidia production and virulence. Barley was a better substrate for conidia production, producing 3.43 × 1010 conidia/g, compared with 3.05 × 1010 conidia/g for brown rice. The addition of 2% CaCO3 + 2% CaSO4 to barley significantly increased conidia production. Addition of yeast extract, casein, or gluten also improved conidia production on barley. Gluten addition (3% and 1.32%) to brown rice improved conidia production by 14 and 6 times, respectively, relative to brown rice without additives. Conidia cultivated on barley produced a mortality rate of 62% in the sweet potato whitefly after 4-day treatment, compared with 53% for conidia cultivated on brown rice. The amendment of solid substrate cultivation with additives changed the virulence of the conidia produced; the median lethal time (LT50) was shorter for conidia produced on barley and brown rice with added yeast extract (1.32% and 3%, respectively), KNO3 (0.6% and 1%), or gluten (1.32% and 3%) compared with conidia produced on substrates without additives. PMID:25606006

  3. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation

    PubMed Central

    2013-01-01

    Background Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. Methods Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. Results Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24

  4. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti.

    PubMed

    Leles, Renan Nunes; D'Alessandro, Walmirton Bezerra; Luz, Christian

    2012-04-01

    The effectiveness of Metarhizium anisopliae IP 46 conidia mixed with soil was tested against Aedes aegypti eggs. Mycelium and new conidia developed first on eggs between 4.8 and 15 days respectively after incubation of fungus-treated soils at 3.3 × 10(3) up to 3.3 × 10(5) conidia/g soil at 25°C and relative humidities close to saturation. After 15-day incubation, 53.3% of the eggs exposed to soil with 3.3 × 10(5) conidia/g showed external development of mycelium and conidia. Fungus-inoculated soils (but not untreated controls) showed some mycelial growth and sporulation apart from the eggs. Some eggs on treated soils hatched; those larvae died and eventually showed fungal development on their bodies. The cumulative relative eclosion of larvae after submersion of treated eggs in water decreased from 52.2% at 3.3 × 10(3) conidia/g to 25.3% at 3.3 × 10(5) conidia/g. These findings clearly showed that A. aegypti eggs can be infected by M. anisopliae when deposited on fungus-contaminated soil. The effectiveness of M. anisopliae against gravid females, larvae, and also eggs of A. aegypti underscored the possible usefulness of this fungus as a mycoinsecticide, whether naturally occurring or artificially applied, in the breeding sites of this mosquito. PMID:21984368

  5. Proteins differentially expressed in conidia and mycelia of the entomopathogenic fungus Metarhizium anisopliae sensu stricto.

    PubMed

    Su, Yubin; Guo, Qingfeng; Tu, Jie; Li, Xiaoxia; Meng, Lixue; Cao, Liping; Dong, Dong; Qiu, Junzhi; Guan, Xiong

    2013-07-01

    Metarhizium anisopliae is a well-characterized entomopathogenic fungus that attacks a variety of insects. Its conidia are involved in its propagation and also in its infection of host insects. To investigate the protein expression profiles and to identify the proteins related to development and pathogenesis, we performed a comparative proteomic analysis of the conidia and mycelia of an M. anisopliae strain (Ma1291). The analysis used 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We detected 898 ± 37 protein spots in conidia and 1072 ± 24 in mycelia of strain Ma1291. A comparison of the 2 protein-expression profiles indicated that only 28% of protein spots were common to both developmental stages. Finally, we identified 30 proteins (19 from conidia and 11 from mycelia). The identified proteins exclusive to conidia were those involved in protective processes, appressorium formation, and degradation of the host cuticle (protease PR1H). The identified proteins exclusive to mycelia included major proteins participating in biosynthetic and energy metabolism, such as UTP-glucose-1-phosphate uridylyltransferase and heat shock protein 70. This research provides the first proteomic analysis of different developmental stages of M. anisopliae, and the results should facilitate clarification of the molecular basis of these epigenetic variations.

  6. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    PubMed

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. PMID:27378203

  7. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    PubMed

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %.

  8. Molecular and physiological effects of environmental UV radiation on fungal conidia.

    PubMed

    Braga, Gilberto U L; Rangel, Drauzio E N; Fernandes, Éverton K K; Flint, Stephan D; Roberts, Donald W

    2015-08-01

    Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.

  9. Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage-fungus interactions.

    PubMed

    Van Waeyenberghe, Lieven; Baré, Julie; Pasmans, Frank; Claeys, Myriam; Bert, Wim; Haesebrouck, Freddy; Houf, Kurt; Martel, An

    2013-12-01

    Aspergillus fumigatus and free-living amoebae are common inhabitants of soil. Mechanisms of A. fumigatus to circumvent the amoeba's digestion may facilitate overcoming the vertebrate macrophage defence mechanisms. We performed co-culture experiments using A. fumigatus conidia and the amoeba Acanthamoeba castellanii. Approximately 25% of the amoebae ingested A. fumigatus conidia after 1 h of contact. During intra-amoebal passage, part of the ingested conidia was able to escape the food vacuole and to germinate inside the cytoplasm of A. castellanii. Fungal release into the extra-protozoan environment by exocytosis of conidia or by germination was observed with light and transmission electron microscopy. These processes resulted in structural changes in A. castellanii, leading to amoebal permeabilization without cell lysis. In conclusion, A. castellanii internalizes A. fumigatus conidia, resulting in fungal intracellular germination and subsequent amoebal death. As such, this interaction highly resembles that of A. fumigatus with mammalian and avian macrophages. This suggests that A. fumigatus virulence mechanisms to evade macrophage killing may be acquired by co-evolutionary interactions among A. fumigatus and environmental amoebae. PMID:24249290

  10. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    PubMed

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %. PMID:27565492

  11. Filter Paper Degrading Ability of a Trichoderma Strain With Multinucleate Conidia

    NASA Astrophysics Data System (ADS)

    Toyama, Hideo; Yano, Makiko; Hotta, Takeshi; Toyama, Nobuo

    The multinucleate conidia were produced from the green mature conidia of Trichoderma reesei Rut C-30 strain by colchicine treatment. The strain with higher Filter paper degrading ability was selected among those conidia using a double layer selection medium. The selected strain, JS-2 was able to collapse the filter paper within 15 min but the original strain took 25 min to collapse it completely. Moreover, the amount of reducing sugar in the L-type glass tube of the strain, JS-2, was greater than that of the original strain. The Avicel, CMC-Na, and Salicin hydrolyzing activity of the strain, JS-2, increased 2.1 times, 1.2 times, and 3.6 times higher than that of the original strain.

  12. A murine inhalation model to characterize pulmonary exposure to dry Aspergillus fumigatus conidia.

    PubMed

    Buskirk, Amanda D; Green, Brett J; Lemons, Angela R; Nayak, Ajay P; Goldsmith, W Travis; Kashon, Michael L; Anderson, Stacey E; Hettick, Justin M; Templeton, Steven P; Germolec, Dori R; Beezhold, Donald H

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. PMID:25340353

  13. Germination and adhesion of fungal conidia on polycarbonate membranes and on apple fruit exposed to mycoactive acetate esters.

    PubMed

    Filonow, Alexander B

    2003-02-01

    The adhesion and germination of conidia of nine fungal species were assessed on polycarbonate membranes or on the skin of apple fruit in sealed glass bottles injected or not injected with acetate esters. Adhesion was determined after dislodging conidia from surfaces using a sonication probe. Adhesion and germination of conidia of Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Penicillium citrinum, Penicillium claviforme, or Trichoderma sp. on membranes after 48 h were not increased in a 1.84 microg mL(-1) headspace of butyl acetate (BA), ethyl acetate, hexyl acetate, 2-methylbutyl acetate, pentyl acetate, or propyl acetate. Adhesion and germination of Botrytis cinerea, Penicillium expansum, and Penicillium roquefortii conidia were stimulated by all esters. Only conidia of B. cinerea and P. expansum exhibited increased adhesion and germination on the skin of apple fruit in bottles exposed to 0.92 microg mL(-1) of BA. Only conidia of B. cinerea and P. expansum produced decay in inoculated puncture wounds on fruit. Freshly made puncture wounds or 24-h-old puncture wounds in fruit were more adhesive than the unpunctured skin of fruit to conidia of B. cinerea or P. expansum. Fresh wounds were more adhesive to both fungi than 24-h-old puncture wounds. The skin and wounds of fruit were as adhesive to B. cinerea conidia as they were to P. expansum conidia. A 4-h exposure to 1.43 microg mL(-1) of BA increased adhesion of B. cinerea and P. expansum conidia in 24-h-old wounds. Results suggest that acetate-ester stimulation most likely is not a rare phenomenon in the fungi. For nutrient-dependent decay pathogens of apple fruit, acetate esters may be an alternative chemical cue used to maintain adhesion of conidia to wound surfaces. PMID:12718401

  14. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  15. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.

    PubMed

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Canhoto, Cristina

    2012-01-01

    Aquatic hyphomycetes, a group of polyphyletic fungi, have been reported in streams contaminated with metals. This tolerance to metal contamination however can result in limited performance and limited ability to cope with additional environmental change. The predicted increase in water temperature, as a consequence of global warming, will have an additional effect on many streams. The sensitivity to temperature of strains of three aquatic hyphomycete species isolated from a metal-contaminated stream and an uncontaminated stream was assessed by determining their radial growth and activity (conidial production, oxygen consumption, mycelial biomass accumulation, fine particulate organic matter [FPOM] production, and microbial induced leaf mass loss) at 13 C (present water temperature in autumn) and at 18 C (predicted water temperature under global warming). Growth and reproductive activity generally were depressed for the strains isolated from the metal-contaminated stream when compared with those isolated from the unpolluted stream. These differences however were not translated into differences in FPOM production and leaf-litter mass loss, indicating that the strains isolated from the contaminated stream can decompose leaf litter similar to those of the reference stream. The 5 C increase in temperature stimulated fungal activity and litter decomposition, irrespective of species and strain. This might have strong effect on aquatic food-web and ecosystem functioning under global warming because increases in litter decomposition might lead to food shortage for higher trophic levels. The sensitivity to temperature depended on the response variable, species and strain. FPOM production was the variable most sensitive to temperature across strains and species and that for which temperature sensitivities differed most between strains. Fungal tolerance to metal contamination affects the extent to which its functions are stimulated by an increase in temperature, constituting

  16. A new species of Cladophialophora (hyphomycetes) from boreal and montane bryophytes.

    PubMed

    Davey, Marie L; Currah, Randolph S

    2007-01-01

    During a survey of bryophilous fungi from boreal and montane habitats in central Alberta, a hitherto undescribed species of Cladophialophora was recovered from Polytrichum juniperinum, Aulacomnium palustre, and Sphagnum fuscum. On potato dextrose agar (PDA) colonies grew slowly, attaining a diameter of 25 mm after 30 d, were dark grey, velvety, radially sulcate, and convolute and cracked at the centre. Micronematous conidiophores gave rise to branched chains of small (1-2 x 8-22 microm), cylindrical to fusiform conidia with truncate, swollen scars at each end. Phylogenies built on the ITS and ribosomal SSU regions indicate the isolates form a monophyletic clade within the family Herpotrichiellaceae (Chaetothyriales) that is composed of two geographically based groups, each with 99% within-group sequence similarity and 97-98% between-group sequence similarity. A teleomorph has not been found but would likely be similar to species of Capronia. In vitro inoculation of the isolates onto axenically grown P. juniperinum produced no discernible host symptoms, and host penetration could not be detected using light microscopy. The production of polyphenol oxidases by the fungus and the role of other Cladophialophora species as latent endophytes and saprobes suggest that a potential role for the fungus is the degradation of the polyphenol-rich cell walls of mosses. A dichotomous key to species of the genus Cladophialophora is provided. PMID:17169546

  17. A new species of Cladophialophora (hyphomycetes) from boreal and montane bryophytes.

    PubMed

    Davey, Marie L; Currah, Randolph S

    2007-01-01

    During a survey of bryophilous fungi from boreal and montane habitats in central Alberta, a hitherto undescribed species of Cladophialophora was recovered from Polytrichum juniperinum, Aulacomnium palustre, and Sphagnum fuscum. On potato dextrose agar (PDA) colonies grew slowly, attaining a diameter of 25 mm after 30 d, were dark grey, velvety, radially sulcate, and convolute and cracked at the centre. Micronematous conidiophores gave rise to branched chains of small (1-2 x 8-22 microm), cylindrical to fusiform conidia with truncate, swollen scars at each end. Phylogenies built on the ITS and ribosomal SSU regions indicate the isolates form a monophyletic clade within the family Herpotrichiellaceae (Chaetothyriales) that is composed of two geographically based groups, each with 99% within-group sequence similarity and 97-98% between-group sequence similarity. A teleomorph has not been found but would likely be similar to species of Capronia. In vitro inoculation of the isolates onto axenically grown P. juniperinum produced no discernible host symptoms, and host penetration could not be detected using light microscopy. The production of polyphenol oxidases by the fungus and the role of other Cladophialophora species as latent endophytes and saprobes suggest that a potential role for the fungus is the degradation of the polyphenol-rich cell walls of mosses. A dichotomous key to species of the genus Cladophialophora is provided.

  18. Conidia of Alternaria in the atmosphere of the city of Cordoba, Spain in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Angulo-Romero, J.; Mediavilla-Molina, Ana; Domínguez-Vilches, Eugenio

    In this study, we have analyzed the presence of conidia belonging to different species of the genus Alternaria in the atmosphere of the city of Cordoba, using a Hirst sampler. The results show that spores of this genus are present all year, with a clear seasonal pattern which shows two peaks, one in spring and the other in fall. A total of 26,822 conidia/m3 have been sampled, which implies a daily mean of 74.3 conidia/m3. Statistical analyses comparing the data with meteorological parameters show a positive correlation with maximum, minimum and mean temperatures, and a negative correlation with rain. Nevertheless, meteorological parameters seem to affect the number of conidia differently according to the season of the year. Regression analyses carried out in order to obtain a predictive pattern show that the best fit is between the 7-day running mean of the number of conidia and a week's accumulated mean temperature.

  19. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  20. Chlamydospore Induction from Conidia of Cylindrocarpon destructans Isolated from Ginseng in Korea

    PubMed Central

    Kang, Yunhee; Kim, Mi Ran; Kim, Ki Hong

    2016-01-01

    Cylindrocarpon destructans causes root rot disease in ginseng and can survive for a long time, producing chlamydospores. We optimized conditions to induce chlamydospore production from the conidia of C. destructans, isolated from Korean ginseng. This will provide the basis for testing the efficacy of control agents targeting these chlamydospores. PMID:27103857

  1. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review

    PubMed Central

    Croft, Carys A.; Culibrk, Luka; Moore, Margo M.; Tebbutt, Scott J.

    2016-01-01

    Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis. PMID:27092126

  2. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum.

    PubMed

    de Menezes, Henrique D; Massola, Nelson S; Flint, Stephan D; Silva, Geraldo J; Bachmann, Luciano; Rangel, Drauzio E N; Braga, Gilberto U L

    2015-01-01

    Light conditions can influence fungal development. Some spectral wavebands can induce conidial production, whereas others can kill the conidia, reducing the population size and limiting dispersal. The plant pathogenic fungus Colletotrichum acutatum causes anthracnose in several crops. During the asexual stage on the host plant, Colletototrichum produces acervuli with abundant mucilage-embedded conidia. These conidia are responsible for fungal dispersal and host infection. This study examined the effect of visible light during C. acutatum growth on the production of conidia and mucilage and also on the UV tolerance of these conidia. Conidial tolerance to an environmentally realistic UV irradiance was determined both in conidia surrounded by mucilage on sporulating colonies and in conidial suspension. Exposures to visible light during fungal growth increased production of conidia and mucilage as well as conidial tolerance to UV. Colonies exposed to light produced 1.7 times more conidia than colonies grown in continuous darkness. The UV tolerances of conidia produced under light were at least two times higher than conidia produced in the dark. Conidia embedded in the mucilage on sporulating colonies were more tolerant of UV than conidia in suspension that were washed free of mucilage. Conidial tolerance to UV radiation varied among five selected isolates.

  3. Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidia.

    PubMed

    Kaliňák, Michal; Simkovič, Martin; Zemla, Peter; Matata, Matej; Molnár, Tomáš; Liptaj, Tibor; Varečka, L'udovít; Hudecová, Daniela

    2014-08-01

    The aim of this work was to study the metabolic changes during germination of Trichoderma atroviride conidia along with selected marker enzyme activities. The increase in proteinogenic amino acid concentrations together with the increase in glutamate dehydrogenase activity suggests a requirement for nitrogen metabolism. Even though the activities of tricarboxylic acid cycle enzymes also increased, detected organic acid pools did not change, which predisposes this pathway to energy production and supply of intermediates for further metabolism. The concentrations of many metabolites, including the main osmolytes mannitol and betaine, also increased during the formation of germ tubes. The activities of H(+)-ATPase and GDPase, the only marker enzymes that did not have detectable activity in non-germinated conidia, were shown with germ tubes.

  4. Differential Regulation by Organic Compounds and Heavy Metals of Multiple Laccase Genes in the Aquatic Hyphomycete Clavariopsis aquatica

    PubMed Central

    Solé, Magali; Müller, Ines; Pecyna, Marek J.; Fetzer, Ingo; Harms, Hauke

    2012-01-01

    To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats. PMID:22544244

  5. Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain).

    PubMed

    Pérez, Javier; Descals, Enrique; Pozo, Jesús

    2012-08-01

    The community of aquatic hyphomycetes associated with decomposing alder leaf litter was studied during autumn-winter in nine headwater reference streams of the Basque Country (northern Spain). In order to study the spatial variability in composition and community structure, three streams from each of three different river basins were compared. The colonization dynamics and community changes throughout the decomposition process were also followed in three of the rivers (one per basin). The taxonomic richness and community structure of these fungi varied among rivers, including similar streams of a given watershed. However, neither species diversity nor total abundance was statistically related to environmental variables. Only the conidial production of two of the species, Flagellospora curvula and Lunulospora curvula appeared to be enhanced by nitrate availability in the water. The taxonomic richness and the reproductive activity (sporulation rate) were positively related to the leaf litter decomposition rate. The changes in conidial production along the process were similar for all the streams and helped explain leaf litter quality dynamics.

  6. In vitro photodynamic inactivation of conidia of the phytopathogenic fungus Colletotrichum graminicola with cationic porphyrins.

    PubMed

    Vandresen, Camila Chevonica; Gonçalves, Alan Guilherme; Ducatti, Diogo Ricardo Bazan; Murakami, Fabio Seigi; Noseda, Miguel Daniel; Duarte, Maria Eugenia Rabello; Barreira, Sandra Mara Woranovicz

    2016-05-11

    Photodynamic inactivation (PDI) is an efficient approach for the elimination of a series of microorganisms; however, PDI involving phytopathogenic filamentous fungi is scarce in the literature. In the present study, we have demonstrated the photoinactivating properties of five cationic meso-(1-methyl-4-pyridinio)porphyrins on conidia of the phytopathogen Colletotrichum graminicola. For this purpose, photophysical properties (photostability and (1)O2 singlet production) of the porphyrins under study were first evaluated. PDI assays were then performed with a fluence of 30, 60, 90 and 120 J cm(-2) and varying the porphyrin concentration from 1 to 25 μmol L(-1). Considering the lowest concentration that enabled the best photoinactivation, with the respective lowest effective irradiation time, the meso-(1-methyl-4-pyridinio)porphyrins herein studied could be ranked as follows: triple-charged 4 (1 μmol L(-1) with a fluence of 30 J cm(-2)) > double-charged-trans2 (1 μmol L(-1) with 60 J cm(-2)) > tetra-charged 5 (15 μmol L(-1) with 90 J cm(-2)) > mono-charged 1 (25 μmol L(-1) with 120 J cm(-2)). Double-charged-cis-porphyrin 3 inactivated C. graminicola conidia in the absence of light. Evaluation of the porphyrin binding to the conidia and fluorescence microscopic analysis were also performed, which were in agreement with the PDI results. In conclusion, the cationic porphyrins herein studied were considered efficient photosensitizers to inactivate C. graminicola conidia. The amount and position of positive charges are related to the compounds' amphiphilicity and therefore to their photodynamic activity. PMID:27109559

  7. Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla.

    PubMed

    Tadych, Mariusz; Bergen, Marshall; Dugan, Frank M; White, James F

    2007-04-01

    Neotyphodium endophytes are asexual, filamentous fungi, mutualistically associated with diverse cool season grasses. Infected seeds and vegetative organs of infected host plants are the only known modes of propagation of the asexual endophytes. In the last decade certain Epichloë and Neotyphodium-infected grass species have been shown to have epiphyllous structures of the endophytes, hyphae, conidiophores, and conidia, growing on leaf blades. The production of epiphyllous conidia suggests the possibility that some of these endophytes may have the ability for plant-to-plant spread. The objective of this study was to determine the possible mechanisms involved in liberation and dispersal of asexual spores of Neotyphodium growing in vitro and epiphyllously on leaves of Poa ampla. Our results indicate that water dispersal is the most likely means of dissemination of conidia of the Neotyphodium sp. Wind generated by dry compressed air does not dislodge the conidia from slide cultures or from P. ampla leaves.

  8. EVALUATION OF DIFFERENT METHODS FOR THE EXTRACTION OF DNA FROM FUNGAL CONIDIA BY QUANTITATIVE COMPETITIVE PCR ANALYSIS

    EPA Science Inventory

    Five different DNA extraction methods were evaluated for their effectiveness in recovering PCR templates from the conidia of a series of fungal species often encountered in indoor air. The test organisms were Aspergillus versicolor, Penicillium chrysogenum, Stachybotrys chartaru...

  9. Ecological study of Paracoccidioides brasiliensis in soil: growth ability, conidia production and molecular detection

    PubMed Central

    Terçarioli, Gisela Ramos; Bagagli, Eduardo; Reis, Gabriela Martins; Theodoro, Raquel Cordeiro; Bosco, Sandra De Moraes Gimenes; Macoris, Severino Assis da Graça; Richini-Pereira, Virgínia Bodelão

    2007-01-01

    Background Paracoccidioides brasiliensis ecology is not completely understood, although several pieces of evidence point to the soil as its most probable habitat. The present study aimed to investigate the fungal growth, conidia production and molecular pathogen detection in different soil conditions. Methods Soils samples of clayey, sandy and medium textures were collected from ground surface and the interior of armadillo burrows in a hyperendemic area of Paracoccidioidomycosis. P. brasiliensis was inoculated in soil with controlled humidity and in culture medium containing soil extracts. The molecular detection was carried out by Nested PCR, using panfungal and species specific primers from the ITS-5.8S rDNA region. Results The soil texture does not affect fungus development and the growth is more abundant on/in soil saturated with water. Some soil samples inhibited the development of P. brasiliensis, especially those that contain high values of Exchangeable Aluminum (H+Al) in their composition. Some isolates produced a large number of conidia, mainly in soil-extract agar medium. The molecular detection was positive only in samples collected from armadillo burrows, both in sandy and clayey soil. Conclusion P. brasiliensis may grow and produce the infectious conidia in sandy and clayey soil, containing high water content, mainly in wild animal burrows, but without high values of H+Al. PMID:17953742

  10. Mast cell activation by conidia of Sporothrix schenckii: role in the severity of infection.

    PubMed

    Romo-Lozano, Y; Hernández-Hernández, F; Salinas, E

    2012-07-01

    Mast cells are abundant in the skin and other peripheral tissues, where they are one of the first immune cells to make contact with invading pathogens. As a result of pathogen recognition, mast cells can be activated and release different preformed and de novo-synthesized mediators. Sporothrix schenckii is the fungus that causes sporotrichosis, a worldwide-distributed subcutaneous mycosis considered as an important emerging health problem. It remains unknown whether or not mast cells are activated by S. schenckii. Here, we investigated the in vitro response of mast cells to conidia of S. schenckii and their in vivo involvement in sporotrichosis. Mast cells became activated after interaction with conidia, releasing early response cytokines as TNF-α and IL-6. Although histamine release was not significantly stimulated by S. schenckii, we determined that conidia potentiate histamine secretion induced by compound 48/80. Furthermore, functional depletion of peritoneal mast cells before S. schenckii infection significantly reduced the severity of cutaneous lesions of the sporotrichosis. These data demonstrate that mast cells are important contributors in the host response to S. schenckii infection, suggesting a role of these cells in the progress of clinical manifestations in sporotrichosis. PMID:22486186

  11. Mast cell activation by conidia of Sporothrix schenckii: role in the severity of infection.

    PubMed

    Romo-Lozano, Y; Hernández-Hernández, F; Salinas, E

    2012-07-01

    Mast cells are abundant in the skin and other peripheral tissues, where they are one of the first immune cells to make contact with invading pathogens. As a result of pathogen recognition, mast cells can be activated and release different preformed and de novo-synthesized mediators. Sporothrix schenckii is the fungus that causes sporotrichosis, a worldwide-distributed subcutaneous mycosis considered as an important emerging health problem. It remains unknown whether or not mast cells are activated by S. schenckii. Here, we investigated the in vitro response of mast cells to conidia of S. schenckii and their in vivo involvement in sporotrichosis. Mast cells became activated after interaction with conidia, releasing early response cytokines as TNF-α and IL-6. Although histamine release was not significantly stimulated by S. schenckii, we determined that conidia potentiate histamine secretion induced by compound 48/80. Furthermore, functional depletion of peritoneal mast cells before S. schenckii infection significantly reduced the severity of cutaneous lesions of the sporotrichosis. These data demonstrate that mast cells are important contributors in the host response to S. schenckii infection, suggesting a role of these cells in the progress of clinical manifestations in sporotrichosis.

  12. Location of Aryl Sulfatase in Conidia and Young Mycelia of Neurospora crassa

    PubMed Central

    Scott, Walter A.; Metzenberg, Robert L.

    1970-01-01

    Aryl sulfatase (arylsulfate sulfohydrolase, EC 3.1.6.1) was found to have multiple locations in Neurospora conidia. Some enzyme activity remained in the supernatant when a spore suspension was centrifuged or filtered. Part of the cell-bound activity could be detected by adding the assay ingredients to a suspension of intact spores (patent enzyme), and additional activity was only detectable when the spores were first treated to destroy their permeability barriers (cryptic enzyme). Such treatments include: disruption with an X-press, brief rinsing with chloroform or acetone, incubation at 60 C for 5 min, and incubation with phenethyl alcohol, nystatin, or ascosin. Part of the patent aryl sulfatase was inactivated by briefly acid treating the intact spores (no loss of conidial viability). This enzyme was considered to have a cell surface location. Some enzyme was acid-resistant in intact spores, but all of the enzyme was acid-sensitive in spores whose permeability barriers had been disrupted. The pH dependence, kinetic properties, and p-nitrophenyl sulfate uptake were investigated in acid-treated conidia. No aryl sulfatase was detected in ascospores. Young mycelia contained more aryl sulfatase than did conidia, but little, if any, was secreted into the growth medium. Cryptic activity was demonstrated in young mycelia by brief chloroform treatment or by rinsing the cells with 0.1 m acetate buffer. Enzyme activity in young mycelia was completely labile to acid treatment, as was cell viability. PMID:16559101

  13. Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn-corn oil mixture.

    PubMed

    Kim, Jae Su; Je, Yeon Ho; Roh, Jong Yul

    2010-04-01

    Low thermotolerance of entomopathogenic fungi is a major impediment to long-term storage and effective application of these biopesticides under seasonal high temperatures. The effects of high temperatures on the viability of an entomopathogenic fungus, Isaria fumosorosea SFP-198 (KCTC 0499BP), produced on different substrates amended with various additives were explored. Ground corn was found to be superior in producing the most thermotolerant conidia compared to yellow soybean, red kidney bean, and rice in a polyethylene bag production system. Using ground corn mixed with corn oil as a substrate resulted in only 7% reduction in germination compared to ground corn alone (67% reduction) after exposure of conidia to 50 degrees C for 2 h. Corn oil as an additive for ground corn was followed by inorganic salts (KCl and NaCl), carbohydrates (sucrose and dextrin), a sugar alcohol (sorbitol), and plant oils (soybean oil and cotton seed oil) in ability to improve conidial thermotolerance. Unsaturated fatty acids, such as linoleic acid and oleic acid, the main components of corn oil, served as effective additives for conidial thermotolerance in a dosage-dependent manner, possibly explaining the improvement by corn oil. This finding suggests that the corn-corn oil mixture can be used to produce highly thermotolerant SFP-198 conidia and provides the relation of unsaturated fatty acids as substrates with conidial thermotolerance.

  14. Production and quality of conidia by Metarhizium anisopliae var. lepidiotum: critical oxygen level and period of mycelium competence.

    PubMed

    Garcia-Ortiz, Nohemi; Tlecuitl-Beristain, Saúl; Favela-Torres, Ernesto; Loera, Octavio

    2015-03-01

    Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O2) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia. PMID:25472433

  15. Influence of solute, pH, and incubation temperature on recovery of heat-stressed Wallemia sebi conidia.

    PubMed

    Beuchat, L R; Pitt, J I

    1990-08-01

    The influences of glucose, sorbitol, and NaCl in a basal enumeration medium at water activities (aw) from 0.82 to 0.97 on colony formation by sublethally heat-stressed Wallemia sebi conidia were determined. Over this aw range, glucose and sorbitol had similar effects on recovery, whereas at an aw of 0.82 to 0.92, NaCl had a detrimental effect. Colony diameters were generally largest on media containing sorbitol and smallest on media containing NaCl. Maximum colony size and viable population of heat-stressed conidia were observed on media at an aw of ca. 0.92. When the recovery incubation temperature was 20 degrees C, the number of uninjured conidia detected at an aw of 0.82 was reduced compared with the number detected at 25 degrees C, while at 30 degrees C, the number recovered at an aw of 0.97 was reduced. The effect on heat-stressed conidia was magnified. This suggests that W. sebi conidia may be more tolerant of aw values higher than the optimum 0.92 when the incubation temperature is decreased from the near optimum of 25 degrees C and less tolerant of aw values greater than 0.92 when the incubation temperature is higher than 25 degrees C. The sensitivity of heat-stressed conidia increased as the pH of the recovery medium was decreased from 6.55 to 3.71. W. sebi conidia dispersed in wheat flour at aw values of 0.43 and 0.71 and stored for up to 65 days at both 1 and 25 degrees C neither lost viability nor underwent sublethal desiccation or temperature injury.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2403261

  16. Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia.

    PubMed

    Somai, Benesh Munilal; Belewa, Vuyokazi

    2011-06-01

    Aspergillus flavus and Aspergillus parasiticus are important plant pathogens and causal agents of pre- and postharvest rots of corn, peanuts, and tree nuts. These fungal pathogens cause significant crop losses and produce aflatoxins, which contaminate many food products and contribute to liver cancer worldwide. Aqueous preparations of Tulbaghia violacea (wild garlic) were antifungal and at 10 mg/ml resulted in sustained growth inhibition of greater than 50% for both A. flavus and A. parasiticus. Light microscopy revealed that the plant extract inhibited conidial germination in a dose-dependent manner. When exposed to T. violacea extract concentrations of 10 mg/ml and above, A. parasiticus conidia began germinating earlier and germination was completed before that of A. flavus, indicating that A. parasiticus conidia were more resistant to the antifungal effects of T. violacea than were A. flavus conidia. At a subinhibitory extract dose of 15 mg/ml, hyphae of both fungal species exhibited increased granulation and vesicle formation, possibly due to increased reactivity between hyphal cellular components and T. violacea extract. These hyphal changes were not seen when hyphae were formed in the absence of the extract. Transmission electron microscopy revealed thickening of conidial cell walls in both fungal species when grown in the presence of the plant extract. Cell walls of A. flavus also became considerably thicker than those of A. parasiticus, indicating differential response to the extract. Aqueous preparations of T. violacea can be used as antifungal treatments for the control of A. flavus and A. parasiticus. Because the extract exhibited a more pronounced effect on A. flavus than on A. parasiticus, higher doses may be needed for control of A. parasiticus infections. PMID:21669082

  17. Synthesis of monorhamnosyl L-rhamno-D-mannans by conidia of Sporothrix schenckii.

    PubMed

    Travassos, L R; Mendonça-Previato, L

    1978-01-01

    A rhamnomannan containing single-unit alpha-L-rhamnopyranose side chains was identified in isolated conidia from Sporothrix schenckii. Such a rhamnomannan differed from the dirhamnosyl rhamnomannan synthesized by the hyphae but was very similar to the monorhamnosyl rhamnomannan formed in yeastlike cells. Nuclear magnetic resonance spectroscopy and chemical analysis were used to compare these polysaccharides. Based on the distribution of different rhamnomannans in different S. schenckii cell types and in view of the reactivity of some human antisera previously reported (6), the formation of hyphae in vivo is suggested.

  18. Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa.

    PubMed

    Guijarro, B; Melgarejo, P; De Cal, A

    2008-08-15

    Additives, such as sucrose, d-sorbitol, glycerol, sodium alginate, carboxymethyl cellulose, silica gel, gelatine, non-fat skimmed milk and a commercial adhesive were added to conidia of Penicillium frequentans at two different points in the production process of the formulation of this fungus to improve conidial adhesion. Conidial adhesion was estimated as the number of P. frequentans conidia (no. conidia cm(-2)) and colony-forming units of P. frequentans per unit area (cfu cm(-2)) that adhered to glass slides or to peach surfaces. The P. frequentans conidial concentration had a significant effect on conidial adhesion, while the shelf life of conidia did not have any effect. The highest adhesion of P. frequentans conidia to glass slides was observed when conidial concentrations were greater than 10(6) conidia ml(-1). P. frequentans conidial adhesion was improved when 1.5% sodium alginate or 1.5% carboxymethyl cellulose were added to the conidial mass obtained after production and before drying by the fluid bed drying process. Conidial adhesion was also enhanced when 1.5% sodium alginate, 1.5% carboxymethyl, or 1.5% gelatine were added to conidia after fluid bed drying. P. frequentans formulations with 1.5% sodium alginate or 1.5% carboxymethyl cellulose were more effective in reducing brown rot caused by Monilinia laxa than dried P. frequentans conidia alone. Our results show that additives can improve adhesion of P. frequentans conidia to fruit surfaces, resulting in more effective control of brown rot in peaches.

  19. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia.

    PubMed

    Rangel, Drauzio E N; Anderson, Anne J; Roberts, Donald W

    2008-11-01

    Elevated tolerance to UV-B radiation and heat may be induced in conidia produced on fungi exposed during mycelial growth to sublethal stresses other than heat or UV-B. This is due to a phenomenon referred to as 'cross-protection'. Several mechanisms are associated with this increased conidial tolerance, one of which is the accumulation of trehalose and mannitol within conidia. In the present study, conidia of the insect-pathogenic fungus Metarhizium anisopliae var. anisopliae were produced on mycelium subjected to nutritive, heat-shock, osmotic, or oxidative stress. The tolerance levels to UV-B radiation and heat of the conidia from stressed mycelium were evaluated, and the amounts of trehalose and mannitol accumulated in conidia were quantified. Conidia produced under nutritive stress (carbon and nitrogen starvation) were two-times more heat and UV-B tolerant than conidia produced under rich (non-stress) nutrient conditions [potato-dextrose agar with yeast extract (PDAY)], and they also accumulated the highest concentrations of trehalose and mannitol. Conidia produced on heat-shock stressed PDAY cultures had higher tolerance to UV-B radiation and heat than conidia produced without heat shock; however, both the UV-B tolerance and trehalose/mannitol concentrations in conidia produced on heat-shocked mycelium were less than those of conidia produced under nutritive stress. Conidia produced under osmotic stress (sodium or potassium chloride added to PDAY) had elevated heat and UV-B tolerances similar to those of conidia produced under nutritive stress; however, they had the lowest levels of mannitol and trehalose, which indicates that accumulation of these compounds is not the only mechanism used by M. anisopliae for protection from heat and UV-B radiation. Oxidative stress from UV-A irradiation or hydrogen peroxide did not produce conidia with elevated UV-B or heat tolerances. Conidia produced under oxidative stress generated by menadione had increased or unchanged

  20. Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP-198 conidia in corn oil-based suspension.

    PubMed

    Kim, Jae Su; Je, Yeon Ho; Woo, En Ok; Park, Jong Sung

    2011-01-01

    Long-term persistence of entomopathogenic fungi as biopesticides is a major requirement for successful industrialization. Corn oil carrier was superior in maintaining germination rates of Isaria fumosorosea SFP-198 conidia during exposure to 50°C for 2 h, when compared with other oils, such as soybean oil, cottonseed oil, paraffin oil, and methyl oleate. The corn oil-based conidial suspension (91.6% germination) was also better in this regard than conidial powder (28.4% germination) after 50°C for 8 h. Long-term storage stabilities of corn oil-based conidial suspension and conidial powder at 4 and 25°C for 24 months were investigated, based on the correlation of germination rate with insecticidal activity against greenhouse whiteflies, Trialeurodes vaporariorum. Viability of conidia in corn oil was more than 98.4% for up to 9 months of storage at 25°C, and followed by 23% at 21 months. However, conidial powder had only 34% viability after 3 months of storage at 25°C, after which its viability rapidly decreased. The two conidial preparations stored at 4°C had better viabilities than those at 25°C, showing the same pattern as above. These results indicate that corn oil-based conidial suspension can be used to improve conidial persistence in long-term storage and be further applied to the formulation of other thermo-susceptible biological control agents.

  1. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    PubMed

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. PMID:27133313

  2. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle

    PubMed Central

    Greenfield, Bethany P. J.; Lord, Alex M.; Dudley, Ed; Butt, Tariq M.

    2014-01-01

    Adhesion of conidia of the insect pathogenic fungus, Metarhizium anisopliae, to the arthropod host cuticle initially involves hydrophobic forces followed by consolidation facilitated by the action of extracellular enzymes and secretion of mucilage. Gene expression analysis and atomic force microscopy were used to directly quantify recognition and adhesion between single conidia of M. anisopliae and the cuticle of the aquatic larval stage of Aedes aegypti and a representative terrestrial host, Tenebrio molitor. Gene expression data indicated recognition by the pathogen of both hosts; however, the forces for adhesion to the mosquito were approximately five times lower than those observed for Tenebrio. Although weak forces were recorded in response to Aedes, Metarhizium was unable to consolidate firm attachment. An analysis of the cuticular composition revealed an absence of long-chain hydrocarbons in Aedes larvae which are thought to be required for fungal development on host cuticle. This study provides, to our knowledge, the first evidence that Metarhizium does not form firm attachment to Ae. aegypti larvae in situ, therefore preventing the normal route of invasion and pathogenesis from occuring. PMID:26064542

  3. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    PubMed

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease. PMID:24190516

  4. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    PubMed

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments.

  5. Purification and chemical characterization of the rodlet layer of Neurospora crassa conidia.

    PubMed Central

    Beever, R E; Redgwell, R J; Dempsey, G P

    1979-01-01

    The rodlet layer of Neurospora crassa macroconidia has been purified and chemically characterized. Sheets of rodlets were released from the conidial surface by vigorously shaking conidia in water. Conidia were removed by filtration and low-speed centrifugation, and the rodlets were recovered from the supernatant by high-speed centrifugation. The rodlet pellet comprised 1.9% of the initial dry weight. Chemical analysis was hampered by the insolubility of the rodlets. They were not solubilized by heating in various protein-denaturing buffers and were only partially dissolved by heating in 1 M NaOH at 100 degrees C for 5 min. Nevertheless, they were found to be largely composed of protein (91%, based on total nitrogen). The major amino acids in acid hydrolysates were aspartic acid, glycine, serine, alanine, half-cystine, and valine. Glucosamine was not detected in acid hydrolysates. The sulfur content was 2.5%, and this could be accounted for in half-cystine and methionine. Carbohydrate comprised just over 2%. The phosphorus content was 0.21%, of which less than one-third was accounted for in phospholipid. The total fatty acid content was 1.0%, most of which could be accounted for by the fatty acids of the phospholipids. Images PMID:160407

  6. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle.

    PubMed

    Greenfield, Bethany P J; Lord, Alex M; Dudley, Ed; Butt, Tariq M

    2014-10-01

    Adhesion of conidia of the insect pathogenic fungus, Metarhizium anisopliae, to the arthropod host cuticle initially involves hydrophobic forces followed by consolidation facilitated by the action of extracellular enzymes and secretion of mucilage. Gene expression analysis and atomic force microscopy were used to directly quantify recognition and adhesion between single conidia of M. anisopliae and the cuticle of the aquatic larval stage of Aedes aegypti and a representative terrestrial host, Tenebrio molitor. Gene expression data indicated recognition by the pathogen of both hosts; however, the forces for adhesion to the mosquito were approximately five times lower than those observed for Tenebrio. Although weak forces were recorded in response to Aedes, Metarhizium was unable to consolidate firm attachment. An analysis of the cuticular composition revealed an absence of long-chain hydrocarbons in Aedes larvae which are thought to be required for fungal development on host cuticle. This study provides, to our knowledge, the first evidence that Metarhizium does not form firm attachment to Ae. aegypti larvae in situ, therefore preventing the normal route of invasion and pathogenesis from occuring. PMID:26064542

  7. Effects of Single-Drop Impactions and Natural and Simulated Rains on the Dispersal of Botryosphaeria dothidea Conidia.

    PubMed

    Ahimera, Neph; Gisler, Simon; Morgan, David P; Michailides, Themis J

    2004-11-01

    ABSTRACT Laboratory and field experiments were conducted to study the dispersal of Botryosphaeria dothidea conidia using single-drop impactions and natural and simulated precipitations. For laboratory studies, 200 single drops were released from a height of 1 m on infected pistachio nuts. On pieces of photographic film, 50% of the droplets were collected within 20 mm (average droplet travel distance) of the target area, and the droplets ranged from 0.041 to 3.19 mm in diameter, with an average of 0.3 mm. Each droplet carried an average of 23 B. dothidea conidia. In 3 years of field experiments, rainwater was collected in funnels connected to bottles positioned at different heights inside the tree canopy and at different distances away from the edge of tree canopy in three commercial pistachio orchards in San Joaquin, Yolo, and Glenn counties in California. Numbers of conidia in rainwater varied among and within sampling seasons by sampling dates and orchards. Up to 67,000 conidia/ml were obtained in rainwater samples collected from an orchard in Yolo County. Rainwater from orchards in Yolo and Glenn counties contained a consistently higher number of conidia than rainwater collected from the orchard in San Joaquin County. Variation in numbers of conidia also existed among heights where bottles were located. There were significantly more conidia in rainwater collected inside than outside tree canopies. Inside tree canopies, bottles located at 100 and 150 cm above ground collected more B. dothidea conidia than those placed at 50 and 200 cm. Conidia were collected as far as 1 m from the tree canopy edge. Based on data from the Glenn County orchard, a linear relationship between number of conidia (Y) and rainfall amount (X) in millimeters was determined as Y = 240X - 3,867, with r(2) = 0.91, which meant that a minimum of 16.1 mm of rain was needed to disperse conidia of B. dothidea. The power law model best described the dispersal gradients of B. dothidea propagules in

  8. Development of a method to detect and quantify Aspergillus fumigatus conidia by quantitative PCR for environmental air samples.

    PubMed

    McDevitt, James J; Lees, Peter S J; Merz, William G; Schwab, Kellogg J

    2004-10-01

    Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4-log10 range with high linearity (R2 >0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.

  9. The effect of mode of exposure to Beauveria bassiana on conidia acquisition and host mortality of Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Fernandez, S; Groden, E; Vandenberg, J D; Furlong, M J

    2001-04-01

    The effects of the mode of exposure of second instar Colorado potato beetles to Beauveria bassiana on conidia acquisition and resulting mortality were investigated in laboratory studies. Larvae sprayed directly with a B. bassiana condial suspension, larvae exposed to B. bassiana-treated foliage, and larvae both sprayed and exposed to treated foliage experienced 76, 34, and 77% mortality, respectively. The total number of conidia and the proportion of germinating conidia were measured over time for four sections of the insect body: the ventral surface of the head (consisting mostly of ventral mouth parts), the ventral abdominal surface, the dorsal abdominal surface, and the legs. From observations at 24 and 36 h posttreatment, mean totals of 161.1 conidia per insect were found on sprayed larvae, 256.1 conidia on larvae exposed only to treated foliage, and 408.3 conidia on larvae both sprayed and exposed to treated foliage. On sprayed larvae, the majority of conidia were found on the dorsal abdominal surface, whereas conidia were predominantly found in the ventral abdominal surface and mouth parts on larvae exposed to treated foliage. Between 24 and 36 h postinoculation the percentage of conidia germinating on sprayed larvae increased slightly from 80 to 84%). On the treated foliage, the percentage of germinated conidia on larvae increased from 35% at 24 h to 50% at 36 h posttreatment. Conidia germination on sprayed larvae on treated foliage was 65% at 24 h and 75% at 36 h posttreatment. It is likely that the gradual acquisition of conidia derived from the continuous exposure to B. bassiana inoculum on the foliar surface was responsible for the increase in germination over time on larvae exposed to treated foliage. The density and germination of conidia were observed 0, 4, 8, 12, 16, 20, and 24 h after being sprayed with or dipped in conidia suspensions or exposing insects to contaminated foliage. Conidia germinated twice as fast on sprayed insects as with any other

  10. Conidia production by Beauveria bassiana (for the biocontrol of a diamondback moth) during solid-state fermentation in a packed-bed bioreactor.

    PubMed

    Kang, S W; Lee, S H; Yoon, C S; Kim, S W

    2005-01-01

    Conidia of Beauveria bassiana CS-1, which have the potential for the control of the diamondback moth (Plutella xylostella), were produced by solid-state fermentation (SSF) using a packed-bed bioreactor with rice straw and wheat bran. As the packing density and the bed height were increased, the production of conidia decreased. In a packed-bed bioreactor under no aeration and no addition of polypropylene (PP) foam (control), the total average of conidia was 4.9 x 10(8) g-1. The production of conidia was affected more by the addition of PP foam as an inert support than forced aeration and was approx. 23 times higher than that of the control. The total average of conidia produced by B. bassiana was 1.1-1.2 x 10(10) g-1 .

  11. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  12. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  13. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree.

    PubMed

    Villa-Rojas, R; Sosa-Morales, M E; López-Malo, A; Tang, J

    2012-04-16

    Botrytis cinerea is one of the most important post-harvest molds that cause quality deterioration of strawberries and other fruits even during refrigeration storage. This research studied the effects of thermal inactivation of B. cinerea in synthetic medium and strawberry puree using hot water baths at different temperatures. These media were studied in order to determine if results obtained in a solution with the major components of the fruit (synthetic media), are comparable to the ones obtained in fruit purees. The results demonstrated that B. cinerea spores can be inactivated by heat treatments using relatively low temperatures (42-46 °C). Inactivation curves were well described by first order kinetics (R² 0.91-0.99). B. cinerea conidia inoculated in synthetic medium required less time to achieve one log reduction in population than those inoculated in the fruit puree. D values were 22, 8.5, 4 and 1.4 min at 42, 44, 46 and 48 °C, respectively, in synthetic medium; while D values in strawberry puree were 44.9, 13.8, 4.7 and 1.4 min at 42, 44, 46 and 48 °C, respectively. The z values obtained were 4.15 and 5.08 °C for the strawberry puree and synthetic medium respectively, showing higher sensitivity of B. cinerea in fruit purees than in the synthetic medium. Thus, a change in the medium composition had a marked difference in the heat inactivation of B. cinerea conidia, and the results obtained in synthetic medium are not accurate to describe the behavior of the microorganism in the fruit. PMID:22445202

  14. Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments.

    PubMed

    Lang-Yona, Naama; Shuster-Meiseles, Timor; Mazar, Yinon; Yarden, Oded; Rudich, Yinon

    2016-01-15

    Understanding the chemical interactions of common allergens in urban environments may help to decipher the general increase in susceptibility to allergies observed in recent decades. In this study, asexual conidia of the allergenic mold Aspergillus fumigatus were exposed to air pollution under natural (ambient) and controlled (laboratory) conditions. The allergenic activity was measured using two immunoassays and supported by a protein mass spectrometry analysis. The allergenicity of the conidia was found to increase by 2-5 fold compared to the control for short exposure times of up to 12h (accumulated exposure of about 50 ppb NO2 and 750 ppb O3), possibly due to nitration. At higher exposure times, the allergenicity increase lessened due to protein deamidation. These results indicate that during the first 12h of exposure, the allergenic potency of the fungal allergen A. fumigatus in polluted urban environments is expected to increase. Additional work is needed in order to determine if this behavior occurs for other allergens.

  15. Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Lim, Jae Yun; Lee, Yoonji; Lee, Yin-Won

    2016-01-01

    Transcriptome analysis is a widely used approach to study the molecular mechanisms underlying development and the responses of fungi to environmental cues. However, it is difficult to obtain cells with a homogeneous status from the sexually-induced culture of the plant pathogenic fungus Fusarium graminearum. In this study, we provided phenotypic and genetic evidence to show that the current conditions applied for perithecia induction inevitably highly induced asexual sporulation in this fungus. We also found that hundreds of genes under the control of the conidiation-specific gene ABAA were unnecessarily upregulated after perithecia induction. Deletion of ABAA specifically blocked conidia production in both the wild-type strain and sexually-defective mutants during sexual development. Taken together, our results suggest that the abaA strain could be used as a background strain for studies of the initial stages of perithecia production in F. graminearum. Further comparative transcriptome analysis between the abaA mutant and the sexually-defective transcription factor mutant carrying the ABAA deletion would contribute to the construction of the genetic networks involved in perithecia development in F. graminearum. PMID:27175901

  16. Does the mycotoxin citrinin function as a sun protectant in conidia from Penicillium verrucosum.

    PubMed

    Størmer, F C; Sandven, P; Huitfeldt, H S; Eduard, W; Skogstad, A

    1998-01-01

    Our results demonstrate high concentrations of the UV absorbing mycotoxin citrinin in the outer layer of spores from three citrinin-producing strains of Penicillium verrucosum, which is released in an aqueous environment. An important function of the toxin could be to act as a sun protectant in order to create favorable conditions during the initial germination process. When spores from these strains of P. verrucosum were examined by confocal microscopy, a clearly visible fluorescent layer associated with the cell wall was observed. The strains were grown on agar plates, and the mycelial mat was washed with saline. This suspension contained at least 95% of the spores and particulate material, which was removed by filtration after counting the conidia. An aliquot of this filtrate was extracted and citrinin was purified by high pressure liquid chromatography. The absorbance at 319 nm was used to calculate the amount of UV absorbing material released from the spores. Based on the spore numbers in the suspension of the saline extract, we estimated that this material released was 1.4-4.1 pg per spore or 8-24% of the spore weight. Citrinin (and minor amounts of ochratoxin A and some other unidentificable fluorescent compounds) were observed in the filtrate when subjected to thin layer chromatography.

  17. Relative Activities and Characteristics of Some Oxidative Respiratory Enzymes from Conidia of Verticillium albo-atrum

    PubMed Central

    Throneberry, G. O.

    1967-01-01

    Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected. With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction. Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction. PMID:16656681

  18. In vitro: Response of plant growth regulators and antimalformins on conidia germination of Fusarium mangiferae and incidence of mango malformation.

    PubMed

    Ansari, Mohammad Wahid; Tula, Suresh; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-11-01

    Mango malformation is the most important and threatening disease of recent times, primarily because of persistent lacuna in complete understanding of its nature. Diverse Fusarium spp, including F. mangiferae, were found to be associated with the disease. Here, F. mangiferae from mango cv Dashehri was morphologically characterized. Typically, oval-shaped microconidia without septum and crescent-shaped macroconidia with 3-septate were more often observed, whereas not a single chlamydospore was detected. The length and width of micro- and macro-conidia were 7.5, 55, 3.2, and 3.5, respectively. The plant growth regulators such as NAA, GA3, BAP and ethrel were found to induce in vitro germination of conidia of F. mangiferae after 12 h. In contrast, antimalformin silver nitrate (AgNO3) inhibits conidial germination in vitro and none of conidia was germinated beyond 500 ppm, however antimalformin glutathione was highly effective in stimulating conidial germination of F. mangiferae in vitro at > 1000 ppm after 24 h. We observed that the response of F. mangiferae to germinate the conidia in vitro under influence of plant growth regulators and antimalformins is not coincided with earlier findings of reduced disease incidence by exogenous application of these compounds. The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle. Further, a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set, which needs to be investigated.

  19. In vitro: Response of plant growth regulators and antimalformins on conidia germination of Fusarium mangiferae and incidence of mango malformation.

    PubMed

    Ansari, Mohammad Wahid; Tula, Suresh; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-11-01

    Mango malformation is the most important and threatening disease of recent times, primarily because of persistent lacuna in complete understanding of its nature. Diverse Fusarium spp, including F. mangiferae, were found to be associated with the disease. Here, F. mangiferae from mango cv Dashehri was morphologically characterized. Typically, oval-shaped microconidia without septum and crescent-shaped macroconidia with 3-septate were more often observed, whereas not a single chlamydospore was detected. The length and width of micro- and macro-conidia were 7.5, 55, 3.2, and 3.5, respectively. The plant growth regulators such as NAA, GA3, BAP and ethrel were found to induce in vitro germination of conidia of F. mangiferae after 12 h. In contrast, antimalformin silver nitrate (AgNO3) inhibits conidial germination in vitro and none of conidia was germinated beyond 500 ppm, however antimalformin glutathione was highly effective in stimulating conidial germination of F. mangiferae in vitro at > 1000 ppm after 24 h. We observed that the response of F. mangiferae to germinate the conidia in vitro under influence of plant growth regulators and antimalformins is not coincided with earlier findings of reduced disease incidence by exogenous application of these compounds. The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle. Further, a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set, which needs to be investigated. PMID:24505497

  20. Nitric Oxide Participation in the Fungicidal Mechanism of Gamma Interferon-Activated Murine Macrophages against Paracoccidioides brasiliensis Conidia

    PubMed Central

    Gonzalez, Angel; de Gregori, Waldemar; Velez, Diana; Restrepo, Angela; Cano, Luz E.

    2000-01-01

    Paracoccidioidomycosis, a systemic mycosis restricted to Latin America and produced by the dimorphic fungus Paracoccidioides brasiliensis, is probably acquired by inhalation of conidia produced by the mycelial form. The macrophage (Mφ) represents the major cell defense against this pathogen; when activated with gamma interferon (IFN-γ), murine Mφs kill the fungus by an oxygen-independent mechanism. Our goal was to determine the role of nitric oxide in the fungicidal effect of Mφs on P. brasiliensis conidia. The results revealed that IFN-γ-activated murine Mφs inhibited the conidium-to-yeast transformation process in a dose-dependent manner; maximal inhibition was observed in Mφs activated with 50 U/ml and incubated for 96 h at 37°C. When Mφs were activated with 150 to 200 U of cytokine per ml, the number of CFU was 70% lower than in nonactivated controls, indicating that there was a fungicidal effect. The inhibitory effect was reversed by the addition of anti-IFN-γ monoclonal antibodies. Activation by IFN-γ also enhanced Mφ nitric oxide production, as revealed by increasing NO2 values (8 ± 3 μM in nonactivated Mφs versus 43 ± 13 μM in activated Mφs). The neutralization of IFN-γ also reversed nitric oxide production at basal levels (8 ± 5 μM). Additionally, we found that there was a significant inverse correlation (r = −0.8975) between NO2− concentration and transformation of P. brasiliensis conidia. Additionally, treatment with any of the three different nitric oxide inhibitors used (arginase, NG-monomethyl-l-arginine, and aminoguanidine), reverted the inhibition of the transformation process with 40 to 70% of intracellular yeast and significantly reduced nitric oxide production. These results show that IFN-γ-activated murine Mφs kill P. brasiliensis conidia through the l-arginine–nitric oxide pathway. PMID:10768942

  1. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.

  2. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei.

    PubMed

    Sapmak, Ariya; Boyce, Kylie J; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type.

  3. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    PubMed

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.

  4. Molecular and morphological characterization of Dothiorella casuarini sp. nov. and other Botryosphaeriaceae with diplodia-like conidia.

    PubMed

    de Wet, Juanita; Slippers, Bernard; Preisig, Oliver; Wingfield, Brenda D; Tsopelas, Panaghiotis; Wingfield, Michael J

    2009-01-01

    After recent changes to the taxonomy of the Botryosphaeriaceae species with diplodia-like (= dark, ovoid, often pigmented) conidia are considered to belong to at least three genera including Diplodia, Lasiodiplodia and Dothiorella. In a recent molecular phylogenetic study it became apparent that two groups of isolates with diplodia-like conidia required taxonomic revision. One group of isolates originated from Cupressus sempervirens in Greece and Cyprus and had been identified as D. pinea f. sp. cupressi based on morphological characteristics. The other isolates originated from a Casuarina sp. in Australia and were superficially similar to those in the first group based on their morphologically similar diplodia-like conidia. The aim of this study was to resolve the taxonomy of these two groups of isolates by combining the information from the multiple gene genealogies with morphological characters. The results showed that the isolates from C. sempervirens in Greece and Cyprus represent D. cupressi. The isolates from Casuarina in Australia belong to the more distantly related genus Dothiorella and represent a distinct species that is described here as Do. casuarini sp. nov. PMID:19623930

  5. Intact Cell/Spore Mass Spectrometry of Fusarium Macro Conidia for Fast Isolate and Species Differentiation

    NASA Astrophysics Data System (ADS)

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Winkler, Wolfgang; Lohninger, Hans; Allmaier, Guenter

    The focus of this paper is the development of an approach called intact cell mass spectrometry (ICMS) or intact spore mass spectrometry (ISMS) based on the technique matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the rapid differentiation and identification of Fusarium species. Several parameters, which are known to affect the quality of IC mass spectra, have been investigated in detail by varying the MALDI matrix as well as the solvent system, in which the matrix has been dissolved, the solvent system for sample purification and the type of sample/MALDI matrix deposition technique. In the end characteristic as well as highly reproducible IC or IS mass spectra or peptide/protein fingerprints of three Fusarium species (F. cerealis, F. graminearum and F. poae) including 16 Fusarium isolates derived from different hosts and geographical locations have been obtained. Unscaled hierarchical cluster analysis based on ICMS data of eight selected Fusarium isolates of two species F. graminearum and F. poae revealed significant difference among the peptide/protein pattern of them. The results of the applied cluster analysis proved that, ICMS is a powerful approach for the rapid differentiation of Fusarium species. In addition, an on-target tryptic digestion was applied to Fusarium macro conidia spores to identify proteins using MALDI post source decay (PSD) fragment ion analysis. Two kinds of trypsin, namely bead-immobilized - to favor cleavage of surface-associated proteins - and non-immobilized trypsin were applied and compared. The results showed that the latter is more suitable for generating sequence tags by PSD fragment ion analysis.

  6. Protein translation inhibition by Stachybotrys chartarum conidia with and without the mycotoxin containing polysaccharide matrix.

    PubMed

    Karunasena, Enusha; Cooley, J Danny; Straus, Douglas; Straus, David C

    2004-07-01

    Recent studies have correlated the presence of Stachybotrys chartarum in structures with SBS. S. chartarum produces mycotoxins that are thought to produce some of the symptoms reported in sick-building syndrome (SBS). The conidia (spores) produced by Stachybotrys species are not commonly found in the air of buildings that have been found to contain significant interior growth of this organism. This could be due in part to the large size of the Stachybotrys spores, or the organism growing in hidden areas such as wall cavities. However, individuals in buildings with significant Stachybotrys growth frequently display symptoms that may be attributed to exposure to the organism's mycotoxins. In addition, Stachybotrys colonies produce a "slime" or polysaccharide (carbohydrate) matrix that coats the hyphae and the spores. The intent of this project was to determine whether the carbohydrate matrix and the mycotoxins embedded in it could be removed from the spores by repeated washings with either aqueous or organic solvents. The results demonstrated that the process of spore washing removed compounds that were toxic in a protein translation assay as compared to spores that were washed with an organic solution, however a correlation between carbohydrate removal during the washing process and the removal of mycotoxins from the spore surface was not observed. These data demonstrated that mycotoxins are not likely to be found exclusively in the carbohydrate matrix of the spores. Therefore, mycotoxin removal from the spore surface can occur without significant loss of polysaccharide. We also showed that toxic substances may be removed from the spore surface with an aqueous solution. These results suggest that satratoxins are soluble in aqueous solutions without being bound to water-soluble moieties, such as the carbohydrate slime matrix. PMID:15487326

  7. A new system to bioassay pesticides present in the surface microlayer using floating propagules of an aero-aquatic hyphomycetous fungus Pseu doaegerita matsushimae.

    PubMed

    Premdas, P D; Kendrick, B

    1992-09-01

    The surface microlayer often contains pesticides at levels which may be more than one hundred thousand times those sampled in the remainder of the water column. Standard bioassay systems cannot asses these pesticides since no system yet devised has made use of organisms inhabiting the surface microlayer. Using floating propagules of Pseudoaegerita matsushimae, an aeroaquatic hyphomycetous fungus, a bioassay system was devised in which the percentage germinations of such propagules after exposure to various levels of pesticides were plotted to produce a dosegermination scale onto which subsequent data could be fitted. The following pesticides and pesticide mixtures were used: PCP; DDT; Methoxychlor; Bis(tributyl)tin Oxide; Malathion; Captan; 1 part PCP/1 part DDT; 2 parts PCP/1 part DDT; 3 parts PCP/1 part DDT; 2 parts DDT/1 part PCP; 3 parts DDT/1 part PCP; 1 part PCP/1 part Methoxychlor; 2 parts PCP/1 part Methoxychlor; 3 parts PCP/1 part Methoxychlor; 2 parts Methoxychlor/1 part PCP; 3 parts Methoxychlor/1 part PCP. The bioassay system revealed increased sensitivity to pesticides and pesticide mixtures which affected respiratory metabolism. Some pesticide mixtures were more effective in inhibiting germination than their individual components while others appeared much less toxic to the propagules than their unassisted components.

  8. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.

    PubMed

    Janisiewicz, Wojciech J; Takeda, Fumiomi; Glenn, D Michael; Camp, Mary J; Jurick, Wayne M

    2016-04-01

    Strawberries are available throughout the year either from production in the field or from high and low tunnel culture. Diversity of production conditions results in new challenges in controlling diseases before and after harvest. Fungicides have traditionally been used to control these diseases; however, their limitations necessitate a search for new approaches. We found that UV-C irradiation of Botrytis cinerea, a major pathogen of strawberry, can effectively kill this fungus if a dark period follows the treatment. The inclusion of a 4-h dark period resulted in almost complete kill of B. cinerea conidia on agar media at a dose of 12.36 J/m2. The UV-C dose did not cause a reduction in photosynthesis in strawberry leaves or discoloration of sepals, even after exposing plants repeatedly (twice a week) for 7 weeks. Although irradiation of dry conidia of B. cinerea with this dose resulted in some survival, the conidia were not infective and not able to cause decay even when inoculated onto a highly susceptible mature apple fruit. Irradiation of strawberry pollen at 12.36 J/m2 did not affect pollen germination, tube growth and length in vitro, or germination and tube growth in the style of hand-pollinated emasculated strawberry flowers. No negative effect of the UV-C treatment was observed on fruit yield and quality in high tunnel culture. In the fruit and flower petal inoculation tests, the UV-C treatment was highly effective in reducing fruit decay and petal infection. This UV-C treatment with an exposure time of 60 s may be useful in controlling gray mold in tunnel production of strawberries and may also have the potential for use in intensive field and indoor production of other fruits and vegetables providing that a 4-h dark period follows the irradiation.

  9. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia

    PubMed Central

    Jaklitsch, Walter M.; Samuels, Gary J.; Dodd, Sarah L.; Lu, Bing-Sheng; Druzhinina, Irina S.

    2006-01-01

    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1α gene. Its anamorph, T. viride, the type species of Trichoderma, is re-described and epitypified. Eidamia viridescens is combined as Trichoderma viridescens and is recognised as one of the most morphologically and phylogenetically similar relatives of T. viride. Its teleomorph is newly described as Hypocrea viridescens. Contrary to frequent citations of H. rufa and T. viride in the literature, this species is relatively rare. Although both T. viride and T. viridescens have a wide geographic distribution, their greatest genetic diversity appears to be in Europe and North America. Hypocrea vinosa is characterised and its anamorph, T. vinosum sp. nov., is described. Conidia of T. vinosum are subglobose and warted. The new species T. gamsii is proposed. It shares eidamia-like morphology of conidiophores with T. viridescens, but it has smooth, ellipsoidal conidia that have the longest L/W ratio that we have seen in Trichoderma. Trichoderma scalesiae, an endophyte of trunks of Scalesia pedunculata in the Galapagos Islands, is described as new. It only produces conidia on a low-nutrient agar to which filter paper has been added. Additional phylogenetically distinct clades are recognised and provisionally delimited from the species here described. Trichoderma neokoningii, a T. koningii-like species, is described from a collection made in Peru on a fruit of Theobroma cacao infected with Moniliophthora roreri. PMID:18490991

  10. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.

    PubMed

    Janisiewicz, Wojciech J; Takeda, Fumiomi; Glenn, D Michael; Camp, Mary J; Jurick, Wayne M

    2016-04-01

    Strawberries are available throughout the year either from production in the field or from high and low tunnel culture. Diversity of production conditions results in new challenges in controlling diseases before and after harvest. Fungicides have traditionally been used to control these diseases; however, their limitations necessitate a search for new approaches. We found that UV-C irradiation of Botrytis cinerea, a major pathogen of strawberry, can effectively kill this fungus if a dark period follows the treatment. The inclusion of a 4-h dark period resulted in almost complete kill of B. cinerea conidia on agar media at a dose of 12.36 J/m2. The UV-C dose did not cause a reduction in photosynthesis in strawberry leaves or discoloration of sepals, even after exposing plants repeatedly (twice a week) for 7 weeks. Although irradiation of dry conidia of B. cinerea with this dose resulted in some survival, the conidia were not infective and not able to cause decay even when inoculated onto a highly susceptible mature apple fruit. Irradiation of strawberry pollen at 12.36 J/m2 did not affect pollen germination, tube growth and length in vitro, or germination and tube growth in the style of hand-pollinated emasculated strawberry flowers. No negative effect of the UV-C treatment was observed on fruit yield and quality in high tunnel culture. In the fruit and flower petal inoculation tests, the UV-C treatment was highly effective in reducing fruit decay and petal infection. This UV-C treatment with an exposure time of 60 s may be useful in controlling gray mold in tunnel production of strawberries and may also have the potential for use in intensive field and indoor production of other fruits and vegetables providing that a 4-h dark period follows the irradiation. PMID:26714103

  11. Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria.

    PubMed

    Kim, Y K; Li, D; Kolattukudy, P E

    1998-10-01

    Hard-surface contact primes the conidia of Colletotrichum gloeosporioides to respond to plant surface waxes and a fruit-ripening hormone, ethylene, to germinate and form the appressoria required for infection of the host. Our efforts to elucidate the molecular events in the early phase of the hard-surface contact found that EGTA (5 mM) and U73122 (16 nM), an inhibitor of phospholipase C, inhibited (50%) germination and appressorium formation. Measurements of calmodulin (CaM) transcripts with a CaM cDNA we cloned from C. gloeosporioides showed that CaM was induced by hard-surface contact maximally at 2 h and then declined; ethephon enhanced this induction. The CaM antagonist, compound 48/80, completely inhibited conidial germination and appressorium formation at a concentration of 3 microM, implying that CaM is involved in this process. A putative CaM kinase (CaMK) cDNA of C. gloeosporioides was cloned with transcripts from hard-surface-treated conidia. A selective inhibitor of CaMK, KN93 (20 microM), inhibited (50%) germination and appressorium formation, blocked melanization, and caused the formation of abnormal appressoria. Scytalone, an intermediate in melanin synthesis, reversed the inhibition of melanization but did not restore appressorium formation. The phosphorylation of 18- and 43-kDa proteins induced by hard-surface contact and ethephon was inhibited by the treatment with KN93. These results strongly suggest that hard-surface contact induces Ca2+-calmodulin signaling that primes the conidia to respond to host signals by germination and differentiation into appressoria.

  12. Quantification of the Influence of Extracellular Laccase and Intracellular Reactions on the Isomer-Specific Biotransformation of the Xenoestrogen Technical Nonylphenol by the Aquatic Hyphomycete Clavariopsis aquatica▿

    PubMed Central

    Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar

    2009-01-01

    The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559

  13. Verruculogen associated with Aspergillus fumigatus hyphae and conidia modifies the electrophysiological properties of human nasal epithelial cells

    PubMed Central

    Khoufache, Khaled; Puel, Olivier; Loiseau, Nicolas; Delaforge, Marcel; Rivollet, Danièle; Coste, André; Cordonnier, Catherine; Escudier, Estelle; Botterel, Françoise; Bretagne, Stéphane

    2007-01-01

    Background The role of Aspergillus fumigatus mycotoxins in the colonization of the respiratory tract by conidia has not been studied extensively, even though patients at risk from invasive aspergillosis frequently exhibit respiratory epithelium damage. In a previous study, we found that filtrates of A. fumigatus cultures can specifically alter the electrophysiological properties of human nasal epithelial cells (HNEC) compared to those of non pathogenic moulds. Results We fractionated the organic phase of filtrate from 3-day old A. fumigatus cultures using high-performance liquid chromatography. The different fractions were tested for their ability to modify the electrophysiological properties of HNEC in an in vitro primary culture model. The fraction collected between 20 and 30 min mimicked the effects of the whole filtrate, i.e. decrease of transepithelial resistance and increase of potential differences, and contained secondary metabolites such as helvolic acid, fumagillin, and verruculogen. Only verruculogen (10-8 M) had effects similar to the whole filtrate. We verified that verruculogen was produced by a collection of 67 human, animal, plant and environmental A. fumigatus isolates. Using MS-MS analysis, we found that verruculogen was associated with both mycelium and conidia extracts. Conclusion Verruculogen is a secondary metabolite that modifies the electrophysiological properties of HNEC. The role of these modifications in the colonization and invasion of the respiratory epithelium by A. fumigatus on first contact with the epithelium remains to be determined. PMID:17244350

  14. Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans.

    PubMed

    Hamid, M Imran; Zeng, Fanyun; Cheng, Jiasen; Jiang, Daohong; Fu, Yanping

    2013-04-01

    Coniothyrium minitans is a bio-control agent of Sclerotinia spp., and has the ability to produce abundant conidia to infect the host fungi. Mediation of heat shock factors (HSFs) is required to adapt to the acute temperatures, and to regulate the expression of heat shock proteins (HSPs) to function as molecular chaperones to assist in development, protein folding and stability. A heat shock factor 1 (HSF1) gene was identified from a T-DNA insertion mutant that lost the ability to form conidia in liquid culture as well as on solid media. Null mutants lacking CmHSF1 were constructed by gene disruption strategy. Mutants lacking CmHSF1 had reduced in conidial production and displayed decreased tolerance to heat and other abiotic stresses as compared to the wild type parent. Over-expression strains could recover faster from heat and abiotic stresses such as, ethanol, oxidative or osmotic stresses with or without heat shock. In over-expression strains, conidial germination was increased, and parasitic ability on sclerotia of Sclerotinia sclerotiorum was enhanced by 0.42-5.92% compared to the wild type strain. Increased expression levels in wild strain ZS-1 were observed when the fungus was grown at 37°C or 45°C with other abiotic stresses. CmHSF1 plays an important role in conidial production, conidial germination, and tolerance against heat and other abiotic stresses. PMID:23357354

  15. A soluble fucose-specific lectin from Aspergillus fumigatus conidia--structure, specificity and possible role in fungal pathogenicity.

    PubMed

    Houser, Josef; Komarek, Jan; Kostlanova, Nikola; Cioci, Gianluca; Varrot, Annabelle; Kerr, Sheena C; Lahmann, Martina; Balloy, Viviane; Fahy, John V; Chignard, Michel; Imberty, Anne; Wimmerova, Michaela

    2013-01-01

    Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including α1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, Le(Y) being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-α,L-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus' conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.

  16. Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia.

    PubMed

    Maerker, Claudia; Rohde, Manfred; Brakhage, Axel A; Brock, Matthias

    2005-07-01

    Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed.

  17. Application of hydrophilic-lypophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrophilic-lipophilic balance (HLB) number system was used to optimize a compatible non-ionic surfactant, TDA(polyoxyethylene tridecyl ether) in formulations for two Beauveria bassiana strains, NI8 and GHA. The optimal HLB number for TDA was determined on the basis of wetting times for conidia...

  18. A proposed role for the cuticular fatty amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dry-conidia.

    PubMed

    Lord, Jeffrey C; Howard, Ralph W

    2004-08-01

    Maximum challenge exposure of Liposcelis bostrychophila to Beauveria bassiana, Paecilomyces fumosoroseus, Aspergillus parasiticus or Metarhizium anisopliae resulted in no more than 16% mortality. We investigated several of L. bostrychophila's cuticular lipids for possible contributions to its tolerance for entomopathogenic fungi. Saturated C14 and C16 fatty acids did not reduce the germination rates of B. bassiana or M. anisopliae conidia. Saturated C6 to C12 fatty acids that have not been identified in L. bostrychophila cuticular extracts significantly reduced germination, but the reduction was mitigated by the presence of stearamide. Cis-6-hexadecenal did not affect germination rates. Mycelial growth of either fungal species did not occur in the presence of caprylic acid, was reduced by the presence of lauric acid, and was not significantly affected by palmitic acid. Liposcelis bostrychophila is the only insect for which fatty acid amides have been identified as cuticular components. Stearamide, its major fatty amide, did not reduce germination of B. bassiana or M. anisopliae conidia or growth of their mycelia. Adhesion of conidia to stearamide preparations did not differ significantly from adhesion to the cuticle of L. bostrychophila. Pretreatment of a beetle known to be fungus-susceptible, larval Oryzaephilus surinamensis, with stearamide significantly decreased adhesion of B. bassiana or M. anisopliae conidia to their cuticles. This evidence indicates that cuticular fatty amides may contribute to L. bostrychophila's tolerance for entomopathogenic fungi by decreasing hydrophobicity and static charge, thereby reducing conidial adhesion.

  19. The effect of time postexposure and sex on the horizontal transmission of Metarhizium brunneum conidia between Asian longhorned beetle (Coleoptera: Cerambycidae) mates.

    PubMed

    Ugine, Todd A; Peters, Kenlyn E; Gardescu, Sana; Hajek, Ann E

    2014-12-01

    A study using Metarhizium brunneum Petch fungal bands designed to improve delivery of conidia to adult Asian longhorned beetles, Anoplophora glabripennis (Motschulsky), was conducted to determine how a time delay between exposure to infective conidia and pairing of male and female beetles would affect the ability to successfully transfer lethal doses of conidia to a mate. We measured conidial load at the time of mate pairing (0, 4, 24, 48 h postexposure) and assessed its effect on beetle mortality. Conidial load per beetle decreased across the four sampling times, and there was no effect of beetle sex on conidial load. At all time periods postexposure, beetles that climbed across fungal bands carried enough conidia that at least some of their indirectly exposed mates died of mycosis. For indirectly exposed beetles, mortality decreased significantly as the time delay increased from 0 to 48 h, and this was independent of beetle sex. Median survival time was only 11.5 d for females indirectly exposed immediately after their mate had been exposed, but >3 wk when there was a 48-h delay before pairing. Generally, beetles exposed directly to fungal bands died faster than their indirectly exposed mates. In contrast to the pattern seen for indirectly exposed beetles, beetles exposed directly to fungal bands showed no change in survival times with a delay between exposure and pairing. Median survival times of exposed females and males were generally similar, at 10.5-12.5 d.

  20. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus.

    PubMed

    Accinelli, Cesare; Saccà, M Ludovica; Abbas, Hamed K; Zablotowicz, Robert M; Wilkinson, Jeffery R

    2009-09-01

    Previous research demonstrated that aflatoxin contamination in corn is reduced by field application of wheat grains pre-inoculated with the non-aflatoxigenic Aspergillus flavus strain NRRL 30797. To facilitate field applications of this biocontrol isolate, a series of laboratory studies were conducted on the reliability and efficiency of replacing wheat grains with the novel bioplastic formulation Mater-Bi to serve as a carrier matrix to formulate this fungus. Mater-Bi granules were inoculated with a conidial suspension of NRRL 30797 to achieve a final cell density of approximately log 7 conidia/granule. Incubation of 20-g soil samples receiving a single Mater-Bi granule for 60-days resulted in log 4.2-5.3 propagules of A. flavus/g soil in microbiologically active and sterilized soil, respectively. Increasing the number of granules had no effect on the degree of soil colonization by the biocontrol fungus. In addition to the maintenance of rapid vegetative growth and colonization of soil samples, the bioplastic formulation was highly stable, indicating that Mater-Bi is a suitable substitute for biocontrol applications of A. flavus NRRL 30797.

  1. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery

    PubMed Central

    Xu, Maowen; Jia, Min; Mao, Cuiping; Liu, Sangui; Bao, Shujuan; Jiang, Jian; Liu, Yang; Lu, Zhisong

    2016-01-01

    A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m2g−1 by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, the carbon-sulfur composites with 56.7 wt% sulfur loading deliver an initial capacity of 1625 mAh g−1, which is almost equal to the theoretical capacity of sulfur. The good performance may be ascribed to excellent electronic networks constructed by the high-surface-area carbon species. Moreover, the semi-closed architecture of derived carbons can effectively retard the polysulfides dissolution during charge/discharge, resulting in a capacity of 940 mAh g−1 after 120 charge/discharge cycles. PMID:26732547

  2. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium-Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Xu, Maowen; Jia, Min; Mao, Cuiping; Liu, Sangui; Bao, Shujuan; Jiang, Jian; Liu, Yang; Lu, Zhisong

    2016-01-01

    A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m2g-1 by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, the carbon-sulfur composites with 56.7 wt% sulfur loading deliver an initial capacity of 1625 mAh g-1, which is almost equal to the theoretical capacity of sulfur. The good performance may be ascribed to excellent electronic networks constructed by the high-surface-area carbon species. Moreover, the semi-closed architecture of derived carbons can effectively retard the polysulfides dissolution during charge/discharge, resulting in a capacity of 940 mAh g-1 after 120 charge/discharge cycles.

  3. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast.

  4. Survival of Penicillium spp. conidia during deep-frying and baking steps of frozen chicken nuggets processing.

    PubMed

    Wigmann, Évelin Francine; Moreira, Rafael Chelala; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Copetti, Marina Venturini

    2016-05-01

    This study aimed at determining whether Penicillium spp. strains could survive through the heat treatment applied during the processing of frozen chicken nuggets. Firstly, it was found that the conidia of Penicillium were not able to survive the heat shock in phosphate buffer at pH 7.2 in thermal death tubes (TDT) at 80 °C/30 min. Subsequently, each Penicillium strain was inoculated in frozen chicken nuggets, which were subjected to the following treatments: i) only deep frying (frying oil at 195-200 °C), ii) only baking (120-130 °C until the internal temperature reached 70 °C) and iii) deep frying followed by baking (frying oil temperature of 195-200 °C and baking temperature of 120-130 °C, until the internal temperature reached 70 °C). The results indicated that Penicillium polonicum NGT 23/12, Penicillium commune NGT 16/12, Penicillium solitum NGT 30/12 and Penicillium crustosum NGT 51/12 were able to survive after the combined treatment (deep frying followed by baking) when inoculated in chicken nuggets. P. polonicum NGT 23/12 was the most resistant strain to the combined treatment (deep frying and baking), as its population was reduced by 3 log cycles CFU/g, when the internal temperature reached 78 °C after 10 min and 30 s of baking. The present data show that if Penicillium spp. is present in high numbers in raw materials, such as breading flours, it will survive the thermal processing applied during chicken nuggets production.

  5. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens.

    PubMed

    Kirkland, Theo N

    2016-08-01

    The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast. PMID:27118798

  6. Structural and Topographic Dynamics of Pulmonary Histopathology and Local Cytokine Profiles in Paracoccidioides brasiliensis Conidia-Infected Mice

    PubMed Central

    Cruz, Oswaldo G.; Restrepo, Angela; Cano, Luz Elena; Lenzi, Henrique Leonel

    2011-01-01

    Background Paracoccidioidomycosis (PCM), an endemic systemic mycosis caused by the fungus Paracoccidioides brasiliensis (Pb), usually results in severe lung damage in patients. Methods and Findings Considering the difficulties to sequentially study the infection in humans, this work was done in mice inoculated intranasally with infective Pb-conidia. Lungs of control and Pb-infected mice were studied after 2-hours, 4, 8, 12 and 16-weeks post-infection (p.i) in order to define histopathologic patterns of pulmonary lesions, multiplex-cytokine profiles and their dynamics during the course of this mycosis. Besides the nodular/granulomatous lesions previously informed, results revealed additional non-formerly described lung abnormalities, such as periarterial sheath inflammation and pseudotumoral masses. The following chronologic stages occurring during the course of the experimental infection were defined: Stage one (2-hours p.i): mild septal infiltration composed by neutrophils and macrophages accompanied by an intense “cytokine burst” represented by significant increases in IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IL-13, IL-17, Eotaxin, G-CSF, MCP1, MIP1α, GM-CSF, IFN-γ, MIP1β and TNFα levels. Stage two (4-weeks p.i): presence of nodules, evidence of incipient periarterial- and intense but disperse parenchymal- inflammation, abnormalities that continued to be accompanied by hyper-secretion of those cytokines and chemokines mentioned in the first stage of infection. Stages three and four (8 and 12-weeks p.i.): fungal proliferation, inflammation and collagenesis reached their highest intensity with particular involvement of the periarterial space. Paradoxically, lung cytokines and chemokines were down-regulated with significant decreases in IL-2,IL-3,IL-5,IL-9,IL-13,IL-15,GM-CSF,IFN-γ,MIP1β and TNFα. Stage five (16-weeks p.i.): inflammation decreased becoming limited to the pseudotumoral masses and was accompanied by a “silent” cytokine response

  7. Increased rDNA synthesis in germinated conidia of Neurospora crassa is caused by RNA primer molecules found in its culture medium

    SciTech Connect

    Dutta, S.K.; Beljanski, M.

    1984-01-01

    Purine rich small primer RNA molecules (10-15 nucleotides) were isolated from growth medium of germinated (3 hr sprout) conidia of N. crassa. These RNA-primer molecules strongly stimulated in vitro DNA synthesis in N. crassa 74A wild type, as well as in DNAs from mice spleen and lung, and quail testis. These increases of in vitro DNA synthesis was dependent on the concentration of these RNA primer molecules. In contrast, such molecules were not found in 1 or 10 hour sprouts, nor in the culture medium of mycelia (24 hr). These RNA-primer molecules could be hydrolyzed by T1 RNAse but not by pancreatic RNase. Dutta et al. reported increased (250) copies of rRNA genes in germinated conidia (3 hr sprouts) compared to 100 copies of rRNA genes in mycelial cells grown for 24 hours. These observations suggest excessive transcription of rDNAs in the germinated conidial cells which undergo cleavages by nucleates after 3-4 hours of cell growth. Some degradation products were excreted into the culture medium and acted as RNA-primers.

  8. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. PMID:25813507

  9. Identification of a Gene Product Induced by Hard-Surface Contact of Colletotrichum gloeosporioides Conidia as a Ubiquitin-Conjugating Enzyme by Yeast Complementation

    PubMed Central

    Liu, Zhi-Mei; Kolattukudy, Pappachan E.

    1998-01-01

    The germinating conidia of many phytopathogenic fungi on hosts must differentiate into an infection structure called the appressorium in order to penetrate their hosts. Chemical signals, such as the host’s surface wax or fruit ripening hormone, ethylene, trigger germination and appressorium formation of the avocado pathogen Colletotrichum gloeosporioides only after the conidia are in contact with a hard surface. What role this contact plays is unknown. Here, we describe isolation of genes expressed during the early stage of hard-surface treatment by a differential-display method and report characterization of one of these cloned genes, chip1 (Colletotrichum hard-surface induced protein 1 gene), which encodes a ubiquitin-conjugating enzyme. RNA blots clearly showed that it is induced by hard-surface contact and that ethylene treatment enhanced this induction. The predicted open reading frame (ubc1Cg) would encode a 16.2-kDa ubiquitin-conjugating enzyme, which shows 82% identity to the Saccharomyces cerevisiae UBC4-UBC5 E2 enzyme, comprising a major part of total ubiquitin-conjugating activity in stressed yeast cells. UBC1Cg can complement the proteolysis deficiency of the S. cerevisiae ubc4 ubc5 mutant, indicating that ubiquitin-dependent protein degradation is involved in conidial germination and appressorial differentiation. PMID:9658002

  10. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases.

  11. Low pressure mode combined with OsO4 vapor fixation and sputter-coating for the preservation of delicate aerial hyphae and conidia in the ESEM.

    PubMed

    Coetzee, Stephan H; Jordaan, Anine; Mpuchane, Sisai F

    2005-08-01

    The newer generation of environmental scanning electron microscopes (ESEMs) allows samples to be viewed under a range of different vacuum conditions. No specific sample preparation protocols are required with the ESEMs, as fresh, unfixed samples are used and discarded later. We have worked out a method that preserves aerial hyphae on biltong that closely resemble fresh specimens and may be stored for viewing at a later date. Another advantage is that fixed samples are more resilient to the variable vacuum encountered in the ESEM. When biltong samples with fungal growth were first studied, we observed that vacuum-related artifacts were induced unless vacuum conditions and changes in pressure were carefully controlled. Damage readily occured in conidia and its delicate hyphae. Fresh, unfixed samples are very vulnerable to these artifacts. In addition, biltong proved to be a problematic study sample because of its high salt content, its hygroscopic nature as well as being laden with spices. To eliminate these artifacts, the preservation of specimens by OsO4 vapor fixation combined with a special sputter-coating technique is described. Previous studies confirmed that OsO4 vapor fixation is superior to traditional immersion fixation methods for the examination of hyphae and conidia of various fungi in a conventional SEM. However, both preparation methods induce sample shrinkage. We observed that OsO4 vapor fixation followed by Au coating under strictly controlled vacuum conditions induced fewer artifacts and gave the best images with minimum distortion in low pressure (LP) mode. The proposed method allows samples to be viewed both in ESEM and LP mode. There are however some disadvantages inherent to ESEM mode. Even when viewing fixed, coated samples, care should be taken to maintain a pressure of not lower than 0.2 Torr in the specimen chamber. It is critical that different samples have the same vacuum exposure history, as shrinkage and collapse were found to be

  12. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger.

    PubMed

    Liu, Jing; Zhou, Lin; Chen, Ji-Hong; Mao, Wang; Li, Wen-Jian; Hu, Wei; Wang, Shu-Yang; Wang, Chun-Ming

    2014-01-01

    This study aimed to investigate the tolerance of a melanized wild-type strain of Aspergillus niger (CON1) and its light-colored mutant (MUT1) to UV-C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (-UV, -O3), (-UV, +O3), (+UV, -O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical-scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV-C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.

  13. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae).

    PubMed

    Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P

    2014-05-01

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (<31% mortality at doses>1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed.

  14. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    PubMed

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  15. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the

  16. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2006-03-01

    reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.

  17. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been res...

  18. A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor.

    PubMed

    Weber, F J; Tramper, J; Rinzema, A

    1999-11-20

    Production of conidia of the biocontrol fungus Coniothyrium minitans by solid-state cultivation in a packed-bed reactor on an industrial scale is feasible. Spore yield and oxygen consumption rate of C. minitans during cultivation on oats and three inert solids (hemp, perlite, and bagasse) saturated with a liquid medium were determined in laboratory-scale experiments. The sensitivity of the fungus to reduced aw, and the water desorption isotherms of the four solid materials were also determined. C. minitans is very sensitive to reduced aw: 50% inhibition of respiration was found at aw 0.95, spore formation was completely inhibited at aw 0.97. A simplified mathematical model taking into account convective and evaporative cooling was used to simulate temperature and moisture gradients in the bed during cultivation. Adequate temperature control can be achieved with acceptable air flow rates for all four solid matrices. Moisture control is the limiting factor for cultivation in a packed bed. Oats cannot be used due to the shrinkage and aw reduction caused by evaporative cooling. Of the three inert supports tested, hemp provides the best spore yield and control of water activity, due to its high water uptake capacity. A spore yield of 9 x 10(14) conidia per m(3) packed bed can be achieved in 18 days, using hemp impregnated with a solution containing 100 g dm(-3) glucose and 20 g dm(-3) potato extract. Sufficient water is predicted to be available after 18 days, to allow a higher initial nutrient concentration, which may lead to higher spore yields. PMID:10506420

  19. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period

    NASA Astrophysics Data System (ADS)

    Yeo, Hwan-Goo; Kim, Jong-Ho

    The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m -3 in the first Asian dust period (23-24 March), 249.4 μg m -3 in the second Asian dust period (7-9 April) and 98.9 μg m -3 in the non-Asian dust period (12-16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1-2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.

  20. Corneal Ulcer Caused by the New Fungal Species Sarcopodium oculorum

    PubMed Central

    Guarro, Josep; Höfling-Lima, Ana Luisa; Gené, Josepa; De Freitas, Denise; Godoy, Patricio; Zorat-Yu, Maria Luisa; Zaror, Luis; Fischman, Olga

    2002-01-01

    We describe a case of keratitis caused by a new species of the hyphomycetous genus Sarcopodium, S. oculorum. The corneal ulcer developed after 5 months of treatment with corticosteroids in a Brazilian boy diagnosed with allergic conjunctivitis. Fungal hyphae and conidia were detected in corneal scrapings, and repeated cultures were positive for this fungus. The infection was resolved with natamycin and ketoconazole. Eleven antifungals were tested against this fungus, and all except flucytosine and fluconazole showed in vitro activity. PMID:12149384

  1. [Clinical, diagnostic and therapeutic aspects of dermatophytosis].

    PubMed

    Molina de Diego, Araceli

    2011-03-01

    Dermatophytes are a group of closely related fungi that have keratinase and can therefore cause infections in keratinised human and animal tissues (skin, hair and nails), leading to a disease known as dermatophytosis. This group is composed by the genera Epidermophyton, Trichophyton and Microsporum, forming an approximated total of 40 species. Depending on the source of the keratin used, dermatophytes can be divided in geophilic (soil), zoophilic (animals) and anthropophilic (human), with soil, some animals and humans being their primary habitats. Many dermatophytes can be present in both anamorphic (asexual state) or imperfect and teleomorphic state (with sexual reproduction) or perfect fungi. Anamorphic states (genera Epidermophyton, Microsporum and Trichophyton ) belong to the Hyphomycetes and phylum Deuteromycota class and teleomorphic states (the majority of geophilic and zoophilic species of Microsporum and Trichophyton) are classified in the teleomorphic genus Arthroderma, order Onygenales, phylum Ascomycota, and are usually found in their anamorphic state. Dermatophytes have a worldwide distribution, being responsible for most of the skin mycoses in both healthy and immunocompromised patients. The diagnosis and treatment of dermatophytosis are well known by most microbiologists and scientists in general. However, we describe recent techniques for their diagnosis and up-to-date treatments. The main purpose of this review is to provide a detailed description of the three genera of dermatophytes, with special mention of Epidermophyton floccosum, a object of the SEIMC's mycology quality control (M-2/09).

  2. Effect of pH on the distribution and occurrence of aquatic fungi in six West Virginia mountain streams

    SciTech Connect

    Dubey, T.; Stephenson, S.L.; Edwards, P.J.

    1994-11-01

    Aquatic fungi in six streams located on or near the Fernow Experimental Forest in Tucker County, West Virginia, were studied during the 1991 and 1992 growing seasons. Water pH was >5.9 in three of the streams, while the others were more acidic, with average pH = 4.2, 3.9, and 3.2. Sampling methods included (1) isolating conidia from stream water using membrane filtration, (2) placing bags containing leaves of four tree species in the streams for periods ranging from 2 to 16 wk, and (3) baiting the streams with various types of other organic material. The stream mycoflora included 156 taxa (47 zoosporic fungi [chytridiaceous fungi and water molds] and 109 hyphomycetes [60 Ingoldian and 49 non-Ingoldian forms]). Twenty-seven taxa of zoosporic fungi were recorded from the stream with the highest pH (7.9); only 15 to 18 taxa were collected from other streams. Based on conidia filtered from water samples, the number of taxa of hyphomycetes generally was lower in streams with low pH; however, fewest conidia were recorded at the two extremes of the pH gradient. Northern red oak (Quercus rubra L.) leaves were colonized by an average of 16.0 hyphomycete taxa in the six streams, sugar maple (Acer saccharum Marsh.) by 15.3 taxa, and mixed red maple (A. rubrum L.), and American beech (Fagus grandifolia Ehrh.) by 15.2 taxa. For all three types of leaves, more taxa generally were present in the less acidic streams and fewer in the more acidic streams. 67 refs., 9 tabs.

  3. Transformation of Epichloë typhina by electroporation of conidia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Choke, caused by the endophytic fungus Epichloë typhina is an important disease of orchardgrass (Dactylis glomerata L.) grown for seed. Very little is known concerning the conditions necessary for successful infection of orchardgrass by E. typhina. Detection of E. typhina early in the disease cycle ...

  4. In vitro and in planta compatibility of insecticides and the endophytic entomopathogen, Lecanicillium lecanii.

    PubMed

    Gurulingappa, Pampapathy; Mc Gee, Peter; Sword, Gregory A

    2011-08-01

    In an attempt to clarify the potential role of endophytic fungi in integrated pest management, the compatibility of an endophytic isolate of Lecanicillium lecanii (Zimmermann) Gams & Zare (Hyphomycetes) with nine insecticides used against Aphis gossypii Glover (Homoptera : Aphididae) was examined both in vitro over 14 days and in planta. In the laboratory, most insecticides partially or completely inhibited the germination of conidia and growth of hyphae in nutrient-rich conditions. Endosulfan completely inhibited the germination of conidia and hyphal growth. In contrast, all insecticides were compatible with L. lecanii in planta, and the fungus was readily recovered from inoculated, colonized leaves. These data support the hypothesis that endophytic L. lecanii will be unaffected by insecticides and could be integrated in the management of pests in cotton. PMID:21424605

  5. Biodegradation of bisphenol A by Heliscus lugdunensis, a naturally occurring hyphomycete in freshwater environments.

    PubMed

    Omoike, A; Wacker, T; Navidonski, M

    2013-06-01

    Bisphenol A (BPA) is an environmental contaminant that has been under investigation for its detrimental effect on the aquatic ecosystem. In this study, an aquatic fungus, Heliscus lugdunensis Saccardo & Therry (live and heat-inactivated by autoclaving) was evaluated for its ability to utilize BPA as a carbon source. Both live and heat-inactivated fungal cultures were exposed to 10 mg L(-1) bisphenol A after cultivation in glucose for 3d. Extraction of BPA in the medium was carried out using PrepSep™ C-18 mini columns followed by quantification of recovered BPA by high performance liquid chromatography after sample clean-up. While heat inactivation sufficiently disrupts the ability of the fungal cells to utilize BPA, the live fungal cultures removed over 70% of BPA after 12d. Our results suggest that H. lugdunensis is capable of biodegrading BPA and utilizing it as an energy source. PMID:23399302

  6. Comparison of Degradative Ability, Enzymatic Activity, and Palatability of Aquatic Hyphomycetes Grown on Leaf Litter

    PubMed Central

    Suberkropp, Keller; Arsuffi, Thomas L.; Anderson, John P.

    1983-01-01

    Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores. PMID:16346343

  7. CELL-WALL DEGRADING ENZYMES OF AQUATIC HYPHOMYCETES: A REVIEW. (U915444)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.

    PubMed

    Ferreira, Verónica; Gulis, Vladislav; Graça, Manuel A S

    2006-10-01

    We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 microg l-1) and four enriched sites along the nitrate gradient (214-983 microg NO3-N l-1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33-104 microg NO3-N l-1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis-Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning.

  9. A century later: rediscovery, culturing and phylogenetic analysis of Diploöspora rosea, a rare onygenalean hyphomycete.

    PubMed

    Tanney, Joey B; Nguyen, Hai D T; Pinzari, Flavia; Seifert, Keith A

    2015-11-01

    Nearly 100 years after its first discovery, Diploöspora rosea was detected on biologically damaged parchment paper in Rome, Italy and isolated from house dust collected in Micronesia. The isolation of this culture permitted morphological study of colony characters, conidium and conidiophore development, and phylogenetic investigations using sequences of nuc 18S rDNA, internal transcribed spacers, and 28S rDNA. The results indicate that D. rosea is an onygenalean fungus, of uncertain taxonomic position, basal or sister to the Gymnoascaceae. Based on observations of the parchments using SEM-Energy Dispersive Spectroscopy, we speculate that the fungus occurs in archival and domestic environments subject to periodic wetting. Its ability to grow on all low water activity media used in the study, including malt extract agar amended with 60% sucrose, confirms its xerophilic nature. PMID:26363911

  10. A century later: rediscovery, culturing and phylogenetic analysis of Diploöspora rosea, a rare onygenalean hyphomycete.

    PubMed

    Tanney, Joey B; Nguyen, Hai D T; Pinzari, Flavia; Seifert, Keith A

    2015-11-01

    Nearly 100 years after its first discovery, Diploöspora rosea was detected on biologically damaged parchment paper in Rome, Italy and isolated from house dust collected in Micronesia. The isolation of this culture permitted morphological study of colony characters, conidium and conidiophore development, and phylogenetic investigations using sequences of nuc 18S rDNA, internal transcribed spacers, and 28S rDNA. The results indicate that D. rosea is an onygenalean fungus, of uncertain taxonomic position, basal or sister to the Gymnoascaceae. Based on observations of the parchments using SEM-Energy Dispersive Spectroscopy, we speculate that the fungus occurs in archival and domestic environments subject to periodic wetting. Its ability to grow on all low water activity media used in the study, including malt extract agar amended with 60% sucrose, confirms its xerophilic nature.

  11. Confirming resistance in bottle gourd germplasm by quantifying powdery mildew conidia using a cellometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew (PM) caused by Podosphaera xanthii, an important foliar disease affecting cucurbit crops grown in the United States, commonly occurs on foliage, petioles, and stems. We have developed two highly resistant bottle gourd (Lagenaria siceraria) germplasm (USVL351 and USVL482) for use in o...

  12. Mutants of Neurospora crassa that alter gene expression and conidia development.

    PubMed Central

    Madi, L; Ebbole, D J; White, B T; Yanofsky, C

    1994-01-01

    Several genes have been identified that are highly expressed during conidiation. Inactivation of these genes has no observable phenotypic effect. Transcripts of two such genes, con-6 and con-10, are normally absent from vegetative mycelia. To identify regulatory genes that affect con-6 and/or con-10 expression, strains were prepared in which the regulatory regions for these genes were fused to a gene conferring hygromycin resistance. Mutants were then selected that were resistant to the drug during mycelial growth. Mutations in several of the isolates had trans effects; they activated transcription of the corresponding intact gene and, in most isolates, one or more of the other con genes. Most interestingly, resistant mutants were obtained that were defective at different stages of conidiation. One mutant conidiated under conditions that do not permit conidiation in wild type. Images PMID:8016143

  13. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi.

    PubMed Central

    Guarro, J; Llop, C; Aguilar, C; Pujol, I

    1997-01-01

    The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, fluconazole, ketoconazole, flucytosine, miconazole, and itraconazole for 12 isolates of filamentous opportunistic fungi (Scopulariopsis sp., Paecilomyces sp., Cladosporium spp., and Cladophialophora sp.) were determined by a broth microdilution method with hyphal and conidial inocula. With hyphal inocula MICs and MFCs were practically always substantially higher. Only 25% of the 60 MIC comparisons showed discrepancies of twofold or less, while the remaining comparisons showed much larger differences. PMID:9420054

  14. Preillumination of rice blast conidia induces tolerance to subsequent oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and RO...

  15. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  16. Influence of Leaf Chemical Composition on Bacterial and Fungal Colonization During Leaf Litter Decomposition in a Venezuelan stream

    NASA Astrophysics Data System (ADS)

    Rincon, J.

    2005-05-01

    We studied bacterial and fungal colonization during decomposition of leaf litter differing in chemical composition in a small intermittent stream of northwestern Venezuela. Litter bags containing leaves of Tabebuia roseae, Ficus sp, Hura crepitans and Anacardium excelsum were incubated during 42 days in the stream. Six bags were retrieved after 2, 7, 14, 21, 28, 35 and 42 days and the mass loss was registered. Leaves were initially analyzed for N, P, Lignin and Polyphenols in order to assess the chemical composition of each species. Conidia of aquatic hyphomycetes were identified and quantified after in vitro incubation of leaves with filtered stream water. Bacteria were counted and identified using an epifluorescence microscope. The species H. crepitans and Ficus sp showed higher decomposition rates than T. roseae and A. excelsum. Higher conidia production was observed in Anacardium leaves, while bacterial density and biomass resulted higher in Hura leaves. Our results suggest that chemical composition of leaves differentially affected to bacteria and aquatic hyphomicetes colonization. Bacteria colonized earlier than fungi during leaf litter decomposition process.

  17. Determining Diversity of Freshwater Fungi on Decaying Leaves: Comparison of Traditional and Molecular Approaches

    PubMed Central

    Nikolcheva, Liliya G.; Cockshutt, Amanda M.; Bärlocher, Felix

    2003-01-01

    Traditional microscope-based estimates of species richness of aquatic hyphomycetes depend upon the ability of the species in the community to sporulate. Molecular techniques which detect DNA from all stages of the life cycle could potentially circumvent the problems associated with traditional methods. Leaf disks from red maple, alder, linden, beech, and oak as well as birch wood sticks were submerged in a stream in southeastern Canada for 7, 14, and 28 days. Fungal biomass, estimated by the amount of ergosterol present, increased with time on all substrates. Alder, linden, and maple leaves were colonized earlier and accumulated the highest fungal biomass. Counts and identifications of released conidia suggested that fungal species richness increased, while community evenness decreased, with time (up to 11 species on day 28). Conidia of Articulospora tetracladia dominated. Modifications of two molecular methods—denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analysis—suggested that both species richness and community evenness decreased with time. The dominant ribotype matched that of A. tetracladia. Species richness estimates based on DGGE were consistently higher than those based on T-RFLP analysis and exceeded those based on spore identification on days 7 and 14. Since traditional and molecular techniques assess different aspects of the fungal organism, both are essential for a balanced view of fungal succession on leaves decaying in streams. PMID:12732520

  18. Pseudosigmoidea ibarakiensis sp. nov., a Dark Septate Endophytic Fungus from a Cedar Forest in Ibaraki, Japan

    PubMed Central

    Diene, Ousmane; Wang, Wei; Narisawa, Kazuhiko

    2013-01-01

    A dark septate fungus of Pseudosigmoidea, Hyphomycetes, was recovered from forest soil in Ibaraki prefecture, Japan. The isolate is characterized by pale to brown conidia with up to 8 septa measuring 68–132 × 4–7.9 μm. It is also unique in producing conidia borne by long conidogenious cells in agar medium with or without water, compared to P. cranei, which must be immersed in water to sporulate. Morphological analysis indicated that the isolate is distinct from P. cranei and is described as a new species, P. ibarakiensis sp. nov. Pathogenicity tests of Chinese cabbage and cucumber seedlings indicated that the fungus grows as an endophyte and colonizes, inter and intracellularly, the root epidermal and cortical layers without causing apparent disease symptoms in the host. This endophyte showed the ability to support cucumber plant growth under conditions where NaNO3 was replaced by organic nitrogen but also conferred to Chinese cabbage the ability to grow at low pH. It also became successfully established in six other plants, including the Brassicae, Solanaceae, Poaceae, and Liliacea families, suggesting its adaptability to a broad range of host plants. PMID:24005845

  19. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs.

    PubMed

    Rehner, Stephen A; Buckley, Ellen

    2005-01-01

    Beauveria is a globally distributed genus of soil-borne entomopathogenic hyphomycetes of interest as a model system for the study of entomopathogenesis and the biological control of pest insects. Species recognition in Beauveria is difficult due to a lack of taxonomically informative morphology. This has impeded assessment of species diversity in this genus and investigation of their natural history. A gene-genealogical approach was used to investigate molecular phylogenetic diversity of Beauveria and several presumptively related Cordyceps species. Analyses were based on nuclear ribosomal internal transcribed spacer (ITS) and elongation factor 1-alpha (EF1-alpha) sequences for 86 exemplar isolates from diverse geographic origins, habitats and insect hosts. Phylogenetic trees were inferred using maximum parsimony and Bayesian likelihood methods. Six well supported clades within Beauveria, provisionally designated A-F, were resolved in the EF1-alpha and combined gene phylogenies. Beauveria bassiana, a ubiquitous species that is characterized morphologically by globose to subglobose conidia, was determined to be non-monophyletic and consists of two unrelated lineages, clades A and C. Clade A is globally distributed and includes the Asian teleomorph Cordyceps staphylinidaecola and its probable synonym C. bassiana. All isolates contained in Clade C are anamorphic and originate from Europe and North America. Clade B includes isolates of B. brongniartii, a Eurasian species complex characterized by ellipsoidal conidia. Clade D includes B. caledonica and B. vermiconia, which produce cylindrical and comma-shaped conidia, respectively. Clade E, from Asia, includes Beauveria anamorphs and a Cordyceps teleomorph that both produce ellipsoidal conidia. Clade F, the basal branch in the Beauveria phylogeny includes the South American species B. amorpha, which produces cylindrical conidia. Lineage diversity detected within clades A, B and C suggests that prevailing morphological

  20. All that glitters is not Ramularia.

    PubMed

    Videira, S I R; Groenewald, J Z; Braun, U; Shin, H D; Crous, P W

    2016-01-01

    Ramularia is a species-rich genus that harbours plant pathogens responsible for yield losses to many important crops, including barley, sugar beet and strawberry. Species of Ramularia are hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila, and Mycosphaerella sexual morphs. Because of its simple morphology and general lack of DNA data in public databases, several allied genera are frequently confused with Ramularia. In order to improve the delimitation of Ramularia from allied genera and the circumscription of species within the genus Ramularia, a polyphasic approach based on multilocus DNA sequences, morphological and cultural data were used in this study. A total of 420 isolates belonging to Ramularia and allied genera were targeted for the amplification and sequencing of six partial genes. Although Ramularia and Ramulariopsis proved to be monophyletic, Cercosporella and Pseudocercosporella were polyphyletic. Phacellium isolates clustered within the Ramularia clade and the genus is thus tentatively reduced to synonymy under Ramularia. Cercosporella and Pseudocercosporella isolates that were not congeneric with the ex-type strains of the type species of those genera were assigned to existing genera or to the newly introduced genera Teratoramularia and Xenoramularia, respectively. Teratoramularia is a genus with ramularia-like morphology belonging to the Teratosphaeriaceae, and Xenoramularia was introduced to accommodate hyphomycetous species closely related to Zymoseptoria. The genera Apseudocercosporella, Epicoleosporium, Filiella, Fusidiella, Neopseudocercosporella, and Mycosphaerelloides were also newly introduced to accommodate species non-congeneric with their purported types. A total of nine new combinations and 24 new species were introduced in this study. PMID:27570325

  1. Use of a Granular Bioplastic Formulation for Carrying Conidia of a Non-aflatoxigenic Strain of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research demonstrated that aflatoxin contamination in corn grown in Mississippi is reduced by field application of wheat grains pre-inoculated with the non-aflatoxigenic Aspergillus flavus strain NRRL 30797. To facilitate field applications of the biocontrol isolate, a series of laboratory ...

  2. Cover crop and conidia delivery system impacts on soil persistence of Metarhizium anisopliae (Hypocreales:Clavicipitaceae) in sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), is a major North American pest of sugarbeet, Beta vulgaris L. Previous research suggests moderate field efficacy of the fungal entomopathogen Metarhizium anisopliae (Metch.) Sorok. against T. myopaeformis larvae. We conducted three-years of f...

  3. Species-specific profiles of mycotoxins produced in cultures and associated with conidia of airborne fungi derived from biowaste.

    PubMed

    Fischer, G; Müller, T; Schwalbe, R; Ostrowski, R; Dott, W

    2000-10-01

    The potential to produce mycotoxins and non-volatile secondary metabolites was investigated for approximately 250 freshly isolated fungal strains. Among the eleven most relevant species, viz. Aspergillus flavus, A. fumigatus, A. niger, A. parasiticus, A. versicolor, Emericella nidulans, Paecilomyces variotii, Penicillium brevicompactum, P. clavigerum, P. crustosum, and P. polonicum, a wide range of metabolites partly of toxicological relevance was identified. Several unknown metabolites were found for the less frequent species, which were primarily investigated for chemotaxonomic delimitation from closely related species. The spectra of metabolites in conidial extracts and culture extracts (containing also mycelium and medium) were compared for a limited number of relevant fungi. Some mycotoxins, such as sterigmatocystin in Emericella nidulans, were not present in the conidial extracts, though produced by most strains. Fumigaclavine C, tryptoquivaline, and trypacidin, characteristic for A. fumigatus, were found in conidial extracts, but highly toxic compounds such as gliotoxin and fumitremorgens were not present. Finally, compounds such as cyclopenol, cyclopenin, and penitrem A being characteristic for certain penicillia, were found in conidial extracts and are therefore assumed to occur in native bioaerosols. PMID:11109562

  4. Using Soyscreen in an Oil-Based Biopesticide Formulation to Protect Beauveria bassiana Conidia from Degradation by Ultraviolet Light Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving the efficacy of biological control treatments for pest control in crops will help to reduce dependence on chemical pesticide applications. Although effective for controlling insects, entomopathogenic microbes degrade rapidly when applied to field crops because of the adverse effects of su...

  5. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Peng, Hui; Wang, Xiuping; Shao, Feng; Yuan, Zhaodong; Han, Heyou

    2014-01-01

    To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04941h

  6. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    PubMed Central

    Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.; Starink-Willemse, M.; Andersen, B.; Summerell, B.A.; Shin, H.-D.; Dugan, F.M.; Schroers, H.-J.; Braun, U.; Crous, P.W.

    2010-01-01

    The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been resolved, resulting in the elucidation of numerous new taxa. In the present study, more than 200 isolates belonging to the C. cladosporioides complex were examined and phylogenetically analysed on the basis of DNA sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences. For the saprobic, widely distributed species Cladosporium cladosporioides, both a neotype and epitype are designated in order to specify a well established circumscription and concept of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific hosts, or have a restricted geographical distribution. A key to all species recognised within the C. cladosporioides complex is provided. PMID:20877444

  7. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle.

    PubMed

    Erler, Fedai; Ates, A Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 10(9) conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m(3) of moist soil medium for GR (9 × 10(8) cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 10(9) conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  8. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle

    PubMed Central

    Erler, Fedai; Ates, A. Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 109 conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m3 of moist soil medium for GR (9 × 108 cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 109 conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  9. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle.

    PubMed

    Erler, Fedai; Ates, A Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 10(9) conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m(3) of moist soil medium for GR (9 × 10(8) cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 10(9) conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo.

  10. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales).

    PubMed

    Bensch, K; Groenewald, J Z; Dijksterhuis, J; Starink-Willemse, M; Andersen, B; Summerell, B A; Shin, H-D; Dugan, F M; Schroers, H-J; Braun, U; Crous, P W

    2010-01-01

    The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been resolved, resulting in the elucidation of numerous new taxa. In the present study, more than 200 isolates belonging to the C. cladosporioides complex were examined and phylogenetically analysed on the basis of DNA sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences. For the saprobic, widely distributed species Cladosporium cladosporioides, both a neotype and epitype are designated in order to specify a well established circumscription and concept of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific hosts, or have a restricted geographical distribution. A key to all species recognised within the C. cladosporioides complex is provided.

  11. Common but different: The expanding realm of Cladosporium

    PubMed Central

    Bensch, K.; Groenewald, J.Z.; Braun, U.; Dijksterhuis, J.; de Jesús Yáñez-Morales, M.; Crous, P.W.

    2015-01-01

    The genus Cladosporium (Cladosporiaceae, Dothideomycetes), which represents one of the largest genera of dematiaceous hyphomycetes, has been intensively investigated during the past decade. In the process, three major species complexes (C. cladosporioides, C. herbarum and C. sphaerospermum) were resolved based on morphology and DNA phylogeny, and a monographic revision of the genus (s. lat.) published reflecting the current taxonomic status quo. In the present study a further 19 new species are described based on phylogenetic characters (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, as well as partial actin and translation elongation factor 1-α gene sequences) and morphological differences. For a selection of the species with ornamented conidia, scanning electron microscopic photos were prepared to illustrate the different types of surface ornamentation. Surprisingly, during this study Cladosporium ramotenellum was found to be a quite common saprobic species, being widely distributed and occurring on various substrates. Therefore, an emended species description is provided. Furthermore, the host range and distribution data for several previously described species are also expanded. PMID:26955200

  12. [Cultural Properties and Taxonomic Position of Helminthosporium-Like Fungal Isolates from the White Sea].

    PubMed

    Kireev, Ya V; Konovalova, O P; Myuge, N S; Shnyreva, A V; Bubnova, E N

    2015-01-01

    Morphological, cultural and physiological characteristics of 19 Helminthosporium-like hyphomycetes isolated from the White Sea were studied. Taxonomic status of the isolates was verified using molecular genetics techniques. One of the isolates was identified as Alternatia sp., while the rest of marine isolates belonged to the species Paradendriphiella salina (G.K. Sutherl.) Woudenb. & Crous. The specific features of the isolates studied were characterized as adaptive. Optimum salinity for their growth was 1-2% NaCl, which is lower than the value for the known open ocean isolates. This is probably due to relatively low salinity of White Sea (22-24 per thousand) as compared with the ocean water (35 per thousand). While the temperature optimum for growth was 22 per thousand, growth and sporulation occurred at 6 degrees C, which has not been reported for marine fungi isolated from warmer seawater. All isolates studied grew and sporulated efficiently on the medium supplied with the Fucus algae extract and in the sea water layer. Conidia of the isolates submerged in the sea water were propagated efficiently, unlike the soil-born fungi. Holoblastic conidiogenesis was demonstrated by light and scanning electron microscopy, confirming the separation of P. salina from the genus Scolecobasidium. PMID:27169247

  13. Morphology, phylogeny and biology of Gliocephalis hyalina, a biotrophic contact mycoparasite of Fusarium species.

    PubMed

    Jacobs, K; Holtzman, Kim; Seifert, Keith A

    2005-01-01

    Gliocephalis hyalina, a rarely seen microfungus with a morphology similar to the hyphomycete genus Aspergillus but with slimy conidia was found in a mixed microbial culture from soybean roots. This species has been reported sporadically since 1899, each time in association with other fungi or bacteria. Gliocephalis hyalina has not been maintained in monoxenic culture and requires other fungi to grow. Light and scanning electron microcope studies indicate that it is a biotrophic contact parasite of Fusarium species. The fungus may penetrate the cells but has no apparent deleterious effect on the growth or plant pathogenicity of its host. Phylogenetic analyses of partial nuclear small subunit rDNA sequences place G. hyalina near the Laboulbeniales, an order of obligate insect parasitic microfungi, and the related mycelial genus Pyxidiophora. Gliocephalis hyalina is mycoparasitic along with many Pyxidiophora species. These discoveries suggest that some "unculturable" microorganisms or "cryptic DNA" recovered from environmental DNA samples might represent obligate biotrophs that could be cultured and studied with simple techniques. PMID:16389962

  14. Common but different: The expanding realm of Cladosporium.

    PubMed

    Bensch, K; Groenewald, J Z; Braun, U; Dijksterhuis, J; de Jesús Yáñez-Morales, M; Crous, P W

    2015-09-01

    The genus Cladosporium (Cladosporiaceae, Dothideomycetes), which represents one of the largest genera of dematiaceous hyphomycetes, has been intensively investigated during the past decade. In the process, three major species complexes (C. cladosporioides, C. herbarum and C. sphaerospermum) were resolved based on morphology and DNA phylogeny, and a monographic revision of the genus (s. lat.) published reflecting the current taxonomic status quo. In the present study a further 19 new species are described based on phylogenetic characters (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, as well as partial actin and translation elongation factor 1-α gene sequences) and morphological differences. For a selection of the species with ornamented conidia, scanning electron microscopic photos were prepared to illustrate the different types of surface ornamentation. Surprisingly, during this study Cladosporium ramotenellum was found to be a quite common saprobic species, being widely distributed and occurring on various substrates. Therefore, an emended species description is provided. Furthermore, the host range and distribution data for several previously described species are also expanded.

  15. Loss of msnA, a Putative Stress Regulatory Gene, in Aspergillus parasiticus and Aspergillus flavus Increased Production of Conidia, Aflatoxins and Kojic Acid

    PubMed Central

    Chang, Perng-Kuang; Scharfenstein, Leslie L.; Luo, Meng; Mahoney, Noreen; Molyneux, Russell J.; Yu, Jiujiang; Brown, Robert L.; Campbell, Bruce C.

    2011-01-01

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion (∆msnA) strains of A. parasiticus and A. flavus exhibited retarded colony growth with increased conidiation. The ∆msnA strains also produced slightly higher amounts of aflatoxins and elevated amounts of kojic acid on mixed cereal medium. Microarray assays showed that expression of genes encoding oxidative stress defense enzymes, i.e., superoxide dismutase, catalase, and cytochrome c peroxidase in A. parasiticus ∆msnA, and the catalase A gene in A. flavus ∆msnA, was up-regulated. Both A. parasiticus and A. flavus ∆msnA strains produced higher levels of reactive oxygen species (ROS), and ROS production of A. flavus msnA addback strains was decreased to levels comparable to that of the wild type A. flavus. The msnA gene appears to be required for the maintenance of the normal oxidative state. The impairment of msnA resulted in the aforementioned changes, which might be used to combat the increased oxidative stress in the cells. PMID:22069691

  16. Selection of Wetting Agent for Dried Conidia of two Beauveria bassiana Strains from Different Production Systems to Control Tarnished Plant Bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrophilic–lipophilic balance (HLB) number was used to select surfactant, TDA (polyoxy-ethylene tridecyl ether) with a range of HLB numbers in formulation development of two Beauveria bassiana strains, NI8 and GHA produced from different systems. The results indicated that optimal HLB number of...

  17. A RAPID METHOD FOR THE EXTRACTION OF FUNGAL DNA FROM ENVIRONMENTAL SAMPLES: EVALUATION IN THE QUANTITATIVE ANALYSIS OF MEMNONIELLA ECHINATA CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS

    EPA Science Inventory

    New technologies are creating the potential for using nucleic acid sequence detection to perform routine microbiological analyses of environmental samples. Our laboratory has recently reported on the development of a method for the quantitative detection of Stachybotrys chartarum...

  18. [Level of cytokines, abscisic and salicylic acids in the leafs of Phlox under the effect of invasion by conidia of phytopathogens].

    PubMed

    Talieva, M N; Kondrat'eva, V V; Andreev, L N

    2001-01-01

    We studied the effects of the invasion of Phlox paniculata L. and Ph. setacea L. by causative agents of the phlox powdery mildew (compatible combination) and lupine powdery mildew (incompatible combination) on the level of endogenous cytokinins and abscisic and salicylic acids. In all experimental variants, the level of zeatin-riboside and abscisic and salicylic acids in the leaves of invaded plants increased within 48 h. The highest level of phytohormones and salicylic acid was recorded in the absolutely resistant species Ph. setacea.

  19. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene, the ortholog of Saccharomyces cerevisiae MSN2 associated with multi-stress response, of the two species was disrupted....

  20. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid.

    PubMed

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Luo, Meng; Mahoney, Noreen; Molyneux, Russell J; Yu, Jiujiang; Brown, Robert L; Campbell, Bruce C

    2011-01-01

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion (∆msnA) strains of A. parasiticus and A. flavus exhibited retarded colony growth with increased conidiation. The ∆msnA strains also produced slightly higher amounts of aflatoxins and elevated amounts of kojic acid on mixed cereal medium. Microarray assays showed that expression of genes encoding oxidative stress defense enzymes, i.e., superoxide dismutase, catalase, and cytochrome c peroxidase in A. parasiticus ∆msnA, and the catalase A gene in A. flavus ∆msnA, was up-regulated. Both A. parasiticus and A. flavus ∆msnA strains produced higher levels of reactive oxygen species (ROS), and ROS production of A. flavus msnA addback strains was decreased to levels comparable to that of the wild type A. flavus. The msnA gene appears to be required for the maintenance of the normal oxidative state. The impairment of msnA resulted in the aforementioned changes, which might be used to combat the increased oxidative stress in the cells. PMID:22069691

  1. Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida.

    PubMed

    Kanga, Lambert H B; Jones, Walker A; Gracia, Carlos

    2006-01-01

    Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.

  2. New fungal genera, Tectonidula gen. nov. for Calosphaeria-like fungi with holoblastic-denticulate conidiogenesis and Natantiella gen. nov. for three species segregated from Ceratostomella.

    PubMed

    Réblová, Martina; Stepánek, Václav

    2009-09-01

    Two morphologically similar groups of ascomycetes with globose to subglobose perithecia, elongate necks, unitunicate asci floating freely at maturity, and hyaline ascospores currently placed in Calosphaeria s. lat. and Ceratostomella s. lat., respectively, are studied. The Calosphaeria-like fungi have groups of perithecia growing between cortex and wood, arranged in circular groups with converging necks and piercing the cortex in a common point; the asci with a shallow apical ring and U- to horseshoe-shaped hyaline ascospores are compared with Calosphaeria pulchella, the type species of the genus. Conidiogenesis of the investigated Calosphaeria-like fungi is holoblastic-denticulate; ramichloridium-like and sporothrix-like conidiophores and conidia were formed in vitro. Ascospore and ascus morphology, structure of the ascal apex, ascogenous system, mode of conidiogenesis and the large subunit rRNA sequences of this group differ considerably from C. pulchella and both groups are unrelated. Thus a new genus, Tectonidula, is described with two accepted species, T. hippocrepida and T. fagi; they are separated by ascospore and ascus morphology and holoblastic-denticulate conidiogenesis from the core species of Calosphaeria. The placement of Tectonidula among perithecial ascomycetes is discussed. The relationship of Tectonidula with Barbatosphaeria and two ramichloridium-like hyphomycetous genera Rhodoveronaea and Myrmecridium is investigated. Three species formerly attributed to Ceratostomella are studied. The revision of the herbarium type specimen and fresh material of Ceratostomella ligneola revealed that it is conspecific with Ceratostomella ampullasca and Ceratostomella similis. The LSU phylogeny clearly separated C. ligneola from Ceratostomella s. str. and morphologically similar Lentomitella. On the basis of molecular sequence data and detailed comparison of morphology of asci, ascospores and ascogenous system the genus Natantiella is described for C. ligneola

  3. Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala.

    PubMed

    Day, Melissa J; Hall, Jocelyn C; Currah, Randolph S

    2012-01-01

    The dematiaceous hyphomycete genera Cadophora and Phialocephala are anamorphs associated with mollisioid inoperculate discomycetes (Helotiales) and are delineated based on the complexity of the phialide arrangement with members of Cadophora producing solitary phialides and species of Phialocephala producing complex heads of multiple phialides. A third phylogenetically related taxon, Leptodontidium orchidicola, produces mostly indehiscent conidia that may represent non-functional phialides. Morphological characteristics of both sexual and asexual states of these and other fungi in a focal group of helotialean taxa were re-examined, in light of relationships shown by molecular phylogenetic analyses of rDNA ITS sequences, to determine the evolutionary significance of phialide arrangement. The focal species of Phialocephala formed a monophyletic clade, while five of six species of Cadophora including the type were in a separate clade along with L. orchidicola. C. finlandica was placed in a third clade with species of Meliniomyces and Rhizoscyphus. We hypothesized that the ancestral state for species in Cadophora and Phialocephala is the production of sclerotium-like heads of multiple phialides, which has been retained in most species assignable to Phialocephala. A reduction to solitary phialides occurred in the lineage leading to the clade containing most of the Cadophora species. Two possible reductions to non-functional phialides were identified: one in the Meliniomyces-C. finlandica-Chloridium paucisporum clade and another in the L. orchidicola and Mollisia "rhizophila": clade. A reversion to increased phialide complexity might have occurred in the clade containing C. finlandica and Ch. paucisporum. Our data and analyses also show a previously unrecognized relationship between teleomorph and anamorph morphology in that Mollisia species with smaller asci would be expected to have Phialocephala states while those with larger asci would be expected to have Cadophora

  4. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance.

    PubMed

    Ma, Qinsi; Jin, Kai; Peng, Guoxiong; Xia, Yuxian

    2015-10-01

    In fungi, ENA ATPases play key roles in osmotic and alkaline pH tolerance, although their functions in thermo- and UV-tolerances have not been explored. Entomopathogenic fungi are naturally widespread and have considerable potential in pest control. An ENA ATPase gene, MaENA1, from the entomopathogenic fungus Metarhizium acridum was functionally analyzed by deletion. MaENA1-disruption strain (ΔMaENA1) was less tolerant to NaCl, heat, and UV radiation than a wild-type strain (WT). Digital Gene Expression profiling of conidial RNAs resulted in 281 differentially expressed genes (DEGs) between the WT and ΔMaENA1 strains. Eighty-five DEGs, 56 of which were down-regulated in the ΔMaENA1 strain, were shown to be associated with heat/UV tolerance, including six cytochrome P450 superfamily genes, 35 oxidoreductase genes, 24 ion-binding genes, seven DNA repair genes, and five other genes. In addition, eight genes were components of stress responsive pathways, including the Ras-cAMP PKA pathway, the RIM101 pathway, the Ca(2+)/calmodulin pathway, the TOR pathway, and the HOG/Spc1/Sty1/JNK pathway. These results demonstrated that MaENA1 influences fungal tolerances to Na(+), heat, and UV radiation in M. acridum, and is involved in multiple mechanisms of stress tolerance. Therefore, MaENA1 is required for the adaptation and survival of entomopathogenic fungi in stressful conditions in the environment and in their hosts.

  5. Polykaryon formation using a swollen conidium of Trichoderma reesei.

    PubMed

    Toyama, Hideo; Yano, Makiko; Hotta, Takeshi

    2004-01-01

    The cellulolytic fungus, Trichoderma has oval and mononucleate conidia. When these conidia are incubated in a liquid medium, they begin to swell and their shape becomes spherical followed by an increase in inner space. In such swollen conidia, it is possible to produce a larger autopolyploid nucleus using a mitotic arrester compared with the case of the original conidia. In this study, polykaryon formation was attempted using these swollen conidia. Dried mature green conidia of Trichoderma reesei QM6a (IFO 31326) were incubated in Mandel's medium in order to swell. The swollen conidia were treated with a mitotic arrester, colchicine, for autopolyploidization. After autopolyploidization, polykaryon formation was carried out using the swollen conidia. After the treatment, multiple smaller nuclei whose diameter was almost the same as that of the original strain were generated from an autopolyploid nucleus in a swollen conidium. A cellulase hyperproducer without decrease in growth rate could be selected using such swollen conidia. PMID:15054260

  6. Polykaryon formation using a swollen conidium of Trichoderma reesei.

    PubMed

    Toyama, Hideo; Yano, Makiko; Hotta, Takeshi

    2004-01-01

    The cellulolytic fungus, Trichoderma has oval and mononucleate conidia. When these conidia are incubated in a liquid medium, they begin to swell and their shape becomes spherical followed by an increase in inner space. In such swollen conidia, it is possible to produce a larger autopolyploid nucleus using a mitotic arrester compared with the case of the original conidia. In this study, polykaryon formation was attempted using these swollen conidia. Dried mature green conidia of Trichoderma reesei QM6a (IFO 31326) were incubated in Mandel's medium in order to swell. The swollen conidia were treated with a mitotic arrester, colchicine, for autopolyploidization. After autopolyploidization, polykaryon formation was carried out using the swollen conidia. After the treatment, multiple smaller nuclei whose diameter was almost the same as that of the original strain were generated from an autopolyploid nucleus in a swollen conidium. A cellulase hyperproducer without decrease in growth rate could be selected using such swollen conidia.

  7. Isolation and complementation studies of auxotrophic mutants of the lignin-degrading basidiomycete Phanerochaete chrysosporium

    SciTech Connect

    Gold, M.H.; Cheng, T.M.; Mayfield, M.B.

    1982-10-01

    A variety of auxotrophic strains of Phanerochaete chrysosporium were isolated after treatment of conidia with UV and X rays. Complementation studies with these strains demonstrated heterokaryotic mycelia and conidia in this organism. Nuclear staining also showed that conidia can be mono-, di-, or multinucleate. Complementation tests allowed the separation of each auxotrophic class with the same phenotype into complementation groups. (Refs. 15).

  8. Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana.

    PubMed

    Crous, Pedro W; Schroers, Hans-Josef; Groenewald, Johannes Z; Braun, Uwe; Schubert, Konstanze

    2006-03-01

    Cladosporium musae, a widespread leaf-spotting hyphomycete on Musa spp., is genetically and morphologically distinct from Cladosporium s. str. (Davidiella anamorphs, Mycosphaerellaceae, Dothideales). DNA sequence data derived from the ITS and LSU gene regions of C. musae isolates show that this species is part of a large group of hyphomycetes in the Chaetothyriales with dematiaceous blastoconidia in acropetal chains. Cladosporium adianticola, a foliicolous hyphomycete known from leaf litter in Cuba is also a member of this clade and is closely related to C. musae. A comparison with other genera in the Cladosporium complex revealed that C. musae belongs to a lineage for which no generic name is currently available, and for which the genus Metulocladosporiella gen. nov. is proposed. Two species of Metulocladosporiella are currently known, namely M. musae, which is widely distributed, and M. musicola sp. nov., which is currently known from Africa.

  9. Susceptibility of different developmental stages of large pine weevil Hylobius abietis (Coleoptera: Curculionidae) to entomopathogenic fungi and effect of fungal infection to adult weevils by formulation and application methods.

    PubMed

    Ansari, Minshad A; Butt, Tariq M

    2012-09-15

    The large pine weevil, Hylobius abietis, is a major pest in European conifer forests causing millions of Euros of damage annually. Larvae develop in the stumps of recently felled trees; the emerging adults feed on the bark of seedlings and may kill them. This study investigated the susceptibility of different developmental stages of H. abietis to commercial and commercially viable isolates of entomopathogenic fungi, Metarhizium and Beauveria. All the developmental stages of H. abietis can be killed by Metarhizium robertsii, Metarhizium brunneum, and Beauveria bassiana. The most virulent isolate of M. robertsii ARSEF4556 caused 100% mortality of pupae, larvae and adults on day 4, 6 and 12, respectively. This strain was further tested against adult weevils in different concentrations (10(5)-10(8) conidia cm(-2) or ml(-1)) using two types of fungal formulation: 'dry' conidia and 'wet' conidia (suspended in 0.03% aq. Tween 80) applied on different substrates (tissue paper, peat and Sitka spruce seedlings). 'Dry' conidia were more effective than 'wet' conidia on tissue paper and on spruce or 'dry' conidia premixed in peat. The LC(50) value for 'dry' conidia of isolate ARSEF4556 was three folds lower than 'wet' conidia on tissue paper. This study showed that 'dry' conidia are more effective than 'wet' conidia, causing 100% adult mortality within 12 days. Possible strategies for fungal applications are discussed in light of the high susceptibility of larvae and pupae to fungal pathogen.

  10. Medium selection and effect of higher oxygen concentration pulses on Metarhizium anisopliae var. lepidiotum conidial production and quality.

    PubMed

    Tlecuitl-Beristain, Saul; Viniegra-González, Gustavo; Díaz-Godínez, Gerardo; Loera, Octavio

    2010-05-01

    Rice and oat flours were analyzed as media for the production of conidia by M. anisopliae var. lepidiotum. The presence of peptone increased conidia yield regardless of the substrate used; however, the highest yield was achieved on oat flour media. The effect of oxygen on conidia production using oat-peptone medium was also studied at two levels: Normal atmosphere (21% O(2)) and Oxygen-rich pulses (26% O(2)). Maximum conidia production (4.25 x 10(7) conidia cm(-2)) was achieved using 26% O(2) pulses after 156 h of culture, which was higher than 100% relative to conidial levels under normal atmosphere. Conidia yield per gram of biomass was 2.6 times higher with 26% O(2) (1.12 x 10(7) conidia mg(-1)). Conidia quality parameters, such as germination and hydrophobicity, did not show significant differences (P < 0.05) between those treatments. Bioassays parameters, using Tenebrio molitor adults, were analyzed for conidia obtained in both atmospheres and data were fitted to an exponential model. The specific mortality rates were 2.22 and 1.26 days(-1), whereas lethal times for 50% mortality were 3.90 and 4.31 days, for 26% O(2) pulses and 21% O(2) atmosphere, respectively. These results are relevant for production processes since an oxygen increase allowed superior levels of conidia by M. anisopliae without altering quality parameters and virulence toward Tenebrio molitor adults. PMID:20039138

  11. Fungal life in the extremely hypersaline water of the Dead Sea: first records.

    PubMed Central

    Buchalo, A S; Nevo, E; Wasser, S P; Oren, A; Molitoris, H P

    1998-01-01

    The first report, to our knowledge, on the occurrence of filamentous fungi in the hypersaline (340 g salt l-1) Dead Sea is presented. Three species of filamentous fungi from surface water samples of the Dead Sea were isolated: Gymnascella marismortui (Ascomycota), which is described as a new species, Ulocladium chlamydosporum and Penicillium westlingii (Deuteromycota). G. marismortui and U. chlamydosporum grew on media containing up to 50% Dead Sea water. G. marismortui was found to be an obligate halophile growing optimally in the presence of 0.5-2 M NaCl or 10 30% (by volume) of Dead Sea water. Isolated cultures did not grow on agar media without salt, but grew on agar prepared with up to 50% Dead Sea water. This suggests that they may be adapted to life in the extremely stressful hypersaline Dead Sea. PMID:9721690

  12. Microsatellite variability in the entomopathogenic fungus Paeciolomyces fumosoroseus: genetic diversity and population structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus’ genetic diversity and population str...

  13. Potassium influences forage bermudagrass yield and fungal leaf disease severity in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf spot diseases are associated with K deficiency in forage bermudagrass. In 2010, a natural disease epiphytotic caused by six species of Bipolaris, Curvularia, and Exserohilum (dematiaceous hyphomycetes) was evaluated in 56 plots of ‘Tifton 44' bermudagrass in Mississippi. Pathogen occurrence, di...

  14. Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches.

    PubMed

    Clivot, Hugues; Cornut, Julien; Chauvet, Eric; Elger, Arnaud; Poupin, Pascal; Guérold, François; Pagnout, Christophe

    2014-07-01

    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems.

  15. Sensitivity of the Entomogenous Fungus Beauveria bassiana to Selected Plant Growth Regulators and Spray Additives

    PubMed Central

    Storey, Greggory K.; Gardner, Wayne A.

    1986-01-01

    Mefluidide was the only one of four plant growth regulators that caused little to no significant inhibition of in vitro germination and growth of the entomogenous fungus Beauveria bassiana. Silaid, paclobutrazol, and flurprimidol significantly inhibited germination and growth. Mortality of fall armyworm, Spodoptera frugiperda, resulting from B. bassiana was significantly reduced when larvae were exposed to conidia plus soil treated with paclobutrazol. Larval mortality resulting from conidia plus soil treated with mefluidide did not differ significantly from mortality resulting from untreated conidia. Triton CS-7 was the only one of eight spray adjuvants that significantly inhibited germination of B. bassiana conidia. PMID:16347095

  16. Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes.

    PubMed

    Guzman-Beltran, Silvia; Perez-Torres, Armando; Coronel-Cruz, Cristina; Torres-Guerrero, Haydee

    2012-10-01

    Sporothrix schenckii is a human pathogen that causes sporotrichosis, a cutaneous subacute or chronic mycosis. Little is known about the innate immune response and the receptors involved in host recognition and phagocytosis of S. schenckii. Here, we demonstrate that optimal phagocytosis of conidia and yeast is dependent on preimmune human serum opsonisation. THP-1 macrophages efficiently ingested opsonised conidia. Competition with D-mannose, methyl α-D-mannopyranoside, D-fucose, and N-acetyl glucosamine blocked this process, suggesting the involvement of the mannose receptor in binding and phagocytosis of opsonised conidia. Release of TNF-α was not stimulated by opsonised or non-opsonised conidia, although reactive oxygen species (ROS) were produced, resulting in the killing of conidia by THP-1 macrophages. Heat inactivation of the serum did not affect conidia internalization, which was markedly decreased for yeast cells, suggesting the role of complement components in yeast uptake. Conversely, release of TNF-α and production of ROS were induced by opsonised and non-opsonised yeast. These data demonstrate that THP-1 macrophages respond to opsonised conidia and yeast through different phagocytic receptors, inducing a differential cellular response. Conidia induces a poor pro-inflammatory response and lower rate of ROS-induced cell death, thereby enhancing the pathogen's survival.

  17. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection.

    PubMed

    Kerr, Sheena C; Fischer, Gregory J; Sinha, Meenal; McCabe, Orla; Palmer, Jonathan M; Choera, Tsokyi; Lim, Fang Yun; Wimmerova, Michaela; Carrington, Stephen D; Yuan, Shaopeng; Lowell, Clifford A; Oscarson, Stefan; Keller, Nancy P; Fahy, John V

    2016-04-01

    The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia. PMID:27058347

  18. Presence of adhesive vesicles in the mycoherbicide Alternaria helianthi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternaria helianthi conidia have been shown to cause disease on common cocklebur. Conidia were applied to slides made hydrophobic by coating with dimethyldicholorosilane (mimics leaf surface), then rinsed and treated with FITC-Con A to stain the adhesive material. Alternaria helianthi coni...

  19. Comparative efficacy of emulsifiable-oil, wettable-powder, and unformulated-powder preparations of Beauveria bassiana against the melon aphid Aphis gossypii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphicidal efficacy of two commercial formulations of Beauveria bassiana strain GHA conidia, an emulsifiable-paraffinic oil dispersion (OD) and a clay-based wettable powder (WP), were compared to unformulated conidia in laboratory tests with adult melon aphids (Aphis gossypii). For the initial 24 hou...

  20. Interaction of Aceria mangiferae with Fusarium mangiferae, the causal agent of mango malformation disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study examines the role of the mango bud mite, Aceria mangiferae, in carrying Fusarium mangiferae’s conidia, vectoring them into the penetration sites and assisting fungal penetration and dissemination. Conidia that were exposed to a green fluorescent protein (gfp)-marked isolate of F. mangifer...

  1. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection

    PubMed Central

    Sinha, Meenal; McCabe, Orla; Palmer, Jonathan M.; Choera, Tsokyi; Yun Lim, Fang; Wimmerova, Michaela; Carrington, Stephen D.; Yuan, Shaopeng; Lowell, Clifford A.; Oscarson, Stefan; Keller, Nancy P.; Fahy, John V.

    2016-01-01

    The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia. PMID:27058347

  2. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic anamorphic genus Evlachovaea was described to differ from other fungi in forming its conidia obliquely to the axis of the conidiogenous cell and with successive conidia having alternate orientations with a zipper- or chevron-like arrangement resulting in flat, ribbon-like chains...

  3. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection.

    PubMed

    Kerr, Sheena C; Fischer, Gregory J; Sinha, Meenal; McCabe, Orla; Palmer, Jonathan M; Choera, Tsokyi; Lim, Fang Yun; Wimmerova, Michaela; Carrington, Stephen D; Yuan, Shaopeng; Lowell, Clifford A; Oscarson, Stefan; Keller, Nancy P; Fahy, John V

    2016-04-01

    The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.

  4. Biological control of Spreading Dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and field experiments showed that conidia of the fungal pathogen, Phoma commelinicola exhibited bioherbicidal activity on spreading dayflower (Commelina diffusa) seedlings when applied at concentrations of 106 to 109 conidia ml-1. Greenhouse tests determined an optimal temperature for co...

  5. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  6. Variabilities of two Drechslerella dactyloides isolates in Korea and high predacity against Bursaphelenchus xylophilus.

    PubMed

    Wang, Zhen; Wang, Chun-Yan; Gu, Li-Juan; Sun, Bai-Shen; Zhang, Dong-Liang; Liu, Lei; Lee, Mi-Ra; Wang, Chun-Ling; Li, Zheng; Mo, Eun-Kyung; Sung, Chang-Keun

    2011-02-01

    Drechslerella dactyloides generates elongate ellipsoid conidia and three-celled rings. Recently, Drechslerella dactyloides CNU 091025 and CNU 091026 were isolated in Korea, which generated elongate ellipsoid, Y-shaped and reaphook-shaped conidia, three-celled rings and fishhook-shaped traps. Therefore, molecular phylogenetic analysis, morphological variability, and nematode capturing ability were tested in this study. CNU 091025 generated two-celled or three-celled Y-shaped conidia, reaphook-shaped conidia, and elongate ellipsoid conidia, 17.2, 40.9, and 41.9%, respectively. Some fishhook-shaped rings connecting together formed two-dimensional web. Both fungi showed high trap-forming and nematode-capturing ability; especially CNU 091026 captured 100% Bursaphelenchus xylophilus within 24 h after inoculation.

  7. Comparative Transcriptomics of Infectious Spores from the Fungal Pathogen Histoplasma capsulatum Reveals a Core Set of Transcripts That Specify Infectious and Pathogenic States

    PubMed Central

    Inglis, Diane O.; Voorhies, Mark; Hocking Murray, Davina R.

    2013-01-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  8. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

    PubMed

    Inglis, Diane O; Voorhies, Mark; Hocking Murray, Davina R; Sil, Anita

    2013-06-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  9. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus.

    PubMed

    Rangel, Drauzio E N; Alston, Diane G; Roberts, Donald W

    2008-11-01

    Growth under stress may influence pathogen virulence and other phenotypic traits. Conidia of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae (isolate ARSEF 2575) were produced under different stress conditions and then examined for influences on in vitro conidial germination speed, adhesion to the insect cuticle, and virulence to an insect host, Tenebrio molitor. Conidia were produced under non-stress conditions [on potato-dextrose agar plus 1gl(-1) yeast extract (PDAY; control)], or under the following stress conditions: osmotic (PDAY+sodium chloride or potassium chloride, 0.6 or 0.8m); oxidative [(PDAY+hydrogen peroxide, 5mm) or UV-A (irradiation of mycelium on PDAY)]; heat shock (heat treatment of mycelium on PDAY at 45 degrees C, 40min); and nutritive [minimal medium (MM) with no carbon source, or on MM plus 3gl(-1) lactose (MML)]. Conidia were most virulent (based on mortality at 3d) and had the fastest germination rates when produced on MML, followed by MM. In addition, conidial adhesion to host cuticle was greatest when the conidia were produced on MML. Media with high osmolarity (0.8m) produced conidia with slightly elevated virulence and faster germination rates than conidia produced on the control medium (PDAY), but this trend did not hold for media with the lower osmolarity, (0.6m). Conidia produced from mycelium irradiated with UV-A while growing on PDAY had somewhat elevated virulence levels similar to that of conidia produced on MM, but their germination rate was not increased. Hydrogen peroxide and heat shock treatments did not alter virulence. These results demonstrate that the germination, adhesion and virulence of M. anisopliae conidia can be strongly influenced by culture conditions (including stresses) during production of the conidia. PMID:18947989

  10. Soil mycoflora from the Dead Sea Oases of Ein Gedi and Einot Zuqim (Israel).

    PubMed

    Steiman, R; Guiraud, P; Sage, L; Seigle-Murandi, F

    1997-10-01

    Samples were taken from the top 10 cm of soils from 24 points in the Ein Gedi area. Among 329 isolates, 142 species were identified: 11 genera of ascomycetes, one genus of coelomycetes, 28 genera of hyphomycetes, 7 genera of zygomycetes and one yeast, in addition to some unidentified basidiomycetes. The hyphomycetes were represented by 17 dematiaceous, 9 mucedinaceous and two tuberculariaceous. Melanconiaceous and stilbellaceous genera were not found. Two new varieties of Microascus recently described were reisolated. No strict thermophiles or halophiles were obtained. There is apparently no very characteristic or specific fungal flora of the Dead Sea Oases although it was different from that found in the desert soil surrounding this area.

  11. Effects of metals on growth and sporulation of aquatic fungi.

    PubMed

    Azevedo, Maria M; Cássio, Fernanda

    2010-07-01

    Aquatic hyphomycetes are a relevant group of fungi that play a crucial role as intermediaries between plant detritus and invertebrates in clean or metal-polluted streams. In this study, we investigated the effects of Zn, Cu, Ni, and Cd on the growth and sporulation of several aquatic hyphomycete species. Effects of these metals on growth were assessed in solid and liquid media with different compositions [1% malt extract (ME) and a mineral medium supplemented with vitamins and 2% glucose (MK)], and fungal sensitivity to metals was compared. The exposure to Zn or Cd inhibited the sporulation of Heliscus submersus and Tricladium chaetocladium, with these effects being stronger in the latter species. In solid medium, mydelial growth was linear, and, in most cases, metals negatively affected fungal growth. The sensitivity of aquatic hyphomycetes to metals, assessed as the metal concentration inhibiting biomass production in 50% (EC(50)), showed that Ypsilina graminea and Varicosporium elodeae were the most resistant species to Zn, while Alatospora acuminata, H. submersus, and Flagellospora curta appeared to be the most resistant fungus to Cu. Generally, lower toxicity of Zn or Cu than Ni or Cd was found. However, EC(50) values were about 20 times higher in solid than in liquid medium. Changes in nutrient supplies to fungi affected metal toxicity, as shown by higher EC(50) values in MK than ME. Complementarily, fungal tolerance to metals varied with fungal species as well as metal type. PMID:20429804

  12. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches.

    PubMed

    Martínez, Aingeru; Larrañaga, Aitor; Pérez, Javier; Descals, Enrique; Pozo, Jesús

    2014-01-01

    Despite predicted global warming, the temperature effects on headwater stream functioning are poorly understood. We studied these effects on microbial-mediated leaf decomposition and the performance of associated aquatic hyphomycete assemblages. Alder leaves were incubated in three streams differing in winter water temperature. Simultaneously, in laboratory, leaf discs conditioned in these streams were incubated at 5, 10 and 15 °C. We determined mass loss, leaf N and sporulation rate and diversity of aquatic hyphomycete communities. In the field, decomposition rate correlated positively with temperature. Decomposition rate and leaf N presented a positive trend with dissolved nutrients, suggesting that temperature was not the only factor determining the process velocity. Under controlled conditions, it was confirmed that decomposition rate and leaf N were positively correlated with temperature, leaves from the coldest stream responding most clearly. Sporulation rate correlated positively with temperature after 9 days of incubation, but negatively after 18 and 27 days. Temperature rise affected negatively the sporulating fungi richness and diversity only in the material from the coldest stream. Our results suggest that temperature is an important factor determining leaf processing and aquatic hyphomycete assemblages and that composition and activity of fungal communities adapted to cold environments could be more affected by temperature rises. Highlight: Leaf decomposition rate and associated fungal communities respond to temperature shifts in headwater streams. PMID:24111990

  13. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches.

    PubMed

    Martínez, Aingeru; Larrañaga, Aitor; Pérez, Javier; Descals, Enrique; Pozo, Jesús

    2014-01-01

    Despite predicted global warming, the temperature effects on headwater stream functioning are poorly understood. We studied these effects on microbial-mediated leaf decomposition and the performance of associated aquatic hyphomycete assemblages. Alder leaves were incubated in three streams differing in winter water temperature. Simultaneously, in laboratory, leaf discs conditioned in these streams were incubated at 5, 10 and 15 °C. We determined mass loss, leaf N and sporulation rate and diversity of aquatic hyphomycete communities. In the field, decomposition rate correlated positively with temperature. Decomposition rate and leaf N presented a positive trend with dissolved nutrients, suggesting that temperature was not the only factor determining the process velocity. Under controlled conditions, it was confirmed that decomposition rate and leaf N were positively correlated with temperature, leaves from the coldest stream responding most clearly. Sporulation rate correlated positively with temperature after 9 days of incubation, but negatively after 18 and 27 days. Temperature rise affected negatively the sporulating fungi richness and diversity only in the material from the coldest stream. Our results suggest that temperature is an important factor determining leaf processing and aquatic hyphomycete assemblages and that composition and activity of fungal communities adapted to cold environments could be more affected by temperature rises. Highlight: Leaf decomposition rate and associated fungal communities respond to temperature shifts in headwater streams.

  14. Abundant Respirable Ergot Alkaloids from the Common Airborne Fungus Aspergillus fumigatus†

    PubMed Central

    Panaccione, Daniel G.; Coyle, Christine M.

    2005-01-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success. PMID:15933008

  15. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles.

    PubMed

    Mello, Thaís Pereira de; Aor, Ana Carolina; Oliveira, Simone Santiago Carvalho de; Branquinha, Marta Helena; Santos, André Luis Souza Dos

    2016-06-27

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  16. Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus.

    PubMed

    Panaccione, Daniel G; Coyle, Christine M

    2005-06-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success.

  17. Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus.

    PubMed

    Panaccione, Daniel G; Coyle, Christine M

    2005-06-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success. PMID:15933008

  18. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles

    PubMed Central

    de Mello, Thaís Pereira; Aor, Ana Carolina; de Oliveira, Simone Santiago Carvalho; Branquinha, Marta Helena; dos Santos, André Luis Souza

    2016-01-01

    In the present study, we have investigated some growth conditions capable of inducing the conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Germination in Sabouraud medium (pH 7.0, 37ºC, 5% CO2) showed to be a typically time-dependent event, reaching ~75% in S. minutisporum and > 90% in S. apiospermum, S. aurantiacum and L. prolificans after 4 h. Similar germination rate was observed when conidia were incubated under different media and pHs. Contrarily, temperature and CO2 tension modulated the germination. The isotropic conidial growth (swelling) and germ tube-like projection were evidenced by microscopy and cytometry. Morphometric parameters augmented in a time-dependent fashion, evidencing changes in size and granularity of fungal cells compared with dormant 0 h conidia. In parallel, a clear increase in the mitochondrial activity was measured during the transformation of conidia-into-germinated conidia. Susceptibility profiles to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin varied regarding each morphotype and each fungal species. Overall, the minimal inhibitory concentrations for hyphae were higher than conidia and germinated conidia, except for caspofungin. Collectively, our study add new data about the conidia-into-hyphae transformation in Scedosporium and Lomentospora species, which is a relevant biological process of these molds directly connected to their antifungal resistance and pathogenicity mechanisms. PMID:27355215

  19. Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen

    PubMed Central

    Escobar, Natalia; Ordonez, Soledad R.; Wösten, Han A. B.; Haas, Pieter-Jan A.; de Cock, Hans; Haagsman, Henk P.

    2016-01-01

    Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung. PMID:27092115

  20. Comparison between superficial and solid-state cultures of Isaria fumosorosea: conidial yields, quality and sensitivity to oxidant conditions.

    PubMed

    Muñiz-Paredes, Facundo; Garza-López, Paul Misael; Viniegra-González, Gustavo; Loera, Octavio

    2016-07-01

    Conidia production and quality from mycoinsecticides in solid-state cultures (SSC) are frequently inferred from superficial culture (SC) results. Both parameters were evaluated for two Isaria fumosorosea strains (ARSEF 3302 and CNRCB1), in SC and SSC, using culture media with the same chemical composition. For both strains, conidia production was higher in SC than SSC in terms of conidia per gram of dry substrate. Germination in both strains did not show significant differences between SC and SSC (>90 %). Similarly, conidia viability in ARSEF 3302 strain did not show differences at early stages between SC and SSC, but was higher in SC compared to SSC in the late stage of culture; in contrast, conidia from CNRCB1 strain did not differ between both culture systems. Some infectivity parameters improved in conidia from SSC, compared to SC at the early stages, but these differences disappeared at the final stage, independently of the strain. Both strains showed decreased conidia production when 26 % O2 pulses were applied; nevertheless, conidiation in SSC was two orders of magnitude more sensitive to oxidant pulses. In SC with 26 % O2 pulses, conidia viability for both strains at early stages, was higher than in normal atmospheric conditions. Infectivity towards Galleria mellonella larvae was similar between conidia from normal atmosphere and oxidant conditions; notably, for the strain ARSEF 3302 infectivity decreased at the final stage. This study shows the intrinsic differences between SC and SSC, which should be considered when using SC as a model to design production processes in SSC. PMID:27263006

  1. Methylprednisolone impairs conidial phagocytosis but does not attenuate hyphal damage by neutrophils against Exserohilum rostratum.

    PubMed

    Simitsopoulou, Maria; Walsh, Thomas J; Kyrpitzi, Daniela; Petraitis, Vidmantas; Kontoyiannis, Dimitrios P; Perlin, David S; Roilides, Emmanuel

    2015-02-01

    Exserohilum rostratum caused a multistate fungal meningitis outbreak following iatrogenic inoculation of contaminated methylprednisolone in the United States. To gain insight into the immunopathogenesis of this infection, we studied the innate host responses of human neutrophils against E. rostratum conidia and hyphae with or without methylprednisolone. The neutrophil-induced percentage fungal damage against conidia and hyphae was effector-to-target ratio dependent (≤55%). While methylprednisolone did not affect neutrophil-induced fungal damage by treatment of Exserohilum or neutrophils, it compromised phagocytosis of conidia (P < 0.05). These findings suggest that methylprednisolone-treated neutrophils may have altered phagocytic clearance of Exserohilum conidia, reducing host capacity to contain the invasive process.

  2. DIFFERENTIAL ALLERGIC AND NEUROTROPHIN RESPONSES TO FUNGAL COMPONENT EXTRACTS IN BALB/C MICE

    EPA Science Inventory

    Metarhizium anisopliae mycelium (MYC), conidia (CON) and inducible protease (IND) extracts were combined to produce the antigen MACA to screen for allergenic potential. Involuntary aspiration (IA) exposure to MACA in BALB/c mice has caused immune, inflammatory and physiological ...

  3. [Health effects of indoor molds].

    PubMed

    Buzina, Walter

    2007-01-01

    Molds are found almost everywhere in the environment. Their airborne propagules (conidia, spores, hyphal fragments) can--under certain circumstances--cause a variety of health problems like mycotic infections, allergies, asthma, irritations or toxic syndromes. PMID:18030548

  4. Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice

    EPA Science Inventory

    Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allerg...

  5. Conidial movement of nontoxigenic Aspergillus flavus and A. parasiticus in peanut fields following application to soil.

    PubMed

    Horn, B W; Greene, R L; Sorensen, R B; Blankenship, P D; Dorner, J W

    2001-01-01

    The use of nontoxigenic strains of Aspergillus flavus and A. parasiticus in biological control effectively reduces aflatoxin in peanuts when conidium- producing inoculum is applied to the soil surface. In this study, the movement of conidia in soil was examined following natural rainfall and controlled precipitation from a sprinkler irrigation system. Conidia of nontoxigenic A. flavus and A. parasiticus remained near the soil surface despite repeated rainfall and varying amounts of applied water from irrigation. In addition, rainfall washed the conidia along the peanut furrows for up to 100 meters downstream from the experimental plot boundary. The dispersal gradient was otherwise very steep upstream along the furrows and in directions perpendicular to the peanut rows. The retention of biocontrol conidia in the upper soil layers is likely important in reducing aflatoxin contamination of peanuts and aerial crops such as corn and cottonseed. PMID:11554582

  6. [Inhibition of Bacillus pumilus AR03 on Alternaria alternata and Erysiphe cichoracearum on tobacco].

    PubMed

    Wang, Jing; Tian, Hua; Kong, Fan-yu; Wang, Yi-hong; Zhang, Cheng-sheng; Feng, Chao

    2015-10-01

    This study aimed to evaluate the efficiency of Bacillus pumilus AR03 against Altenaria alternata and Erysiphe cichoracearum. The antagonistic activities were studied in the way of co-culture on plate, inhibition of pathogen conidia germination on concave slides and LB agar medium. In the investigation, the water suspension of living cells of strain AR03, at 3 x 10(8) cfu . mL-1 had a remarkable inhibition effect on hyphae growth and conidia germination of A. alternata and caused hyphae deformation, shorter and swollen nodes, winding hyphae accumulation, abnormal tubes with tips expanded or deformed. Conidia did not germinate and the tissues of compartment became swollen or formed a round spherical bubble. In addition, the inhibition rate of conidia germination of E. cichoracearum was 91. 3% and 69. 3%, respectively when treated with strain AR03 at 1 x 10(7) cfu . mL-1 and 1.5 x 10(6) cfu . mL-1. Conidia treated by living cells of AR03 became swollen, deformed, the protoplasm of conidia shrinked, disintegrated gradually and separated from the conidia wall. And some conidia were hollow because the protoplasm leaked out from inside. Greenhouse results revealed that the effects of living cells of AR03 with different concentrations were significantly different. Bacterial suspension of AR03 at 3 x 10(8) cfu . mL-1 was strongly antagonistic to E. cichoracearum with the control efficiencies 7 days and 15 days after treatment of two spays being 83.8% and 90.3%, respectively, while the control efficiencies of AR03 at 3 x 10(6) cfu . mL-1 were 70.0% and 73.3%, respectively. Strain AR03 had a long persistence against powdery mildew more than 30 days.

  7. MoTea4-Mediated Polarized Growth Is Essential for Proper Asexual Development and Pathogenesis in Magnaporthe oryzae▿†

    PubMed Central

    Patkar, Rajesh N.; Suresh, Angayarkanni; Naqvi, Naweed I.

    2010-01-01

    Polarized growth is essential for cellular development and function and requires coordinated organization of the cytoskeletal elements. Tea4, an important polarity determinant, regulates localized F-actin assembly and bipolar growth in fission yeast and directional mycelial growth in Aspergillus. Here, we characterize Tea4 in the rice blast fungus Magnaporthe oryzae (MoTea4). Similar to its orthologs, MoTea4-green fluorescent protein (MoTea4-GFP) showed punctate distribution confined to growth zones, particularly in the mycelial tips, aerial hyphae, conidiophores, conidia, and infection structures (appressoria) in Magnaporthe. MoTea4 was dispensable for vegetative growth in Magnaporthe. However, loss of MoTea4 led to a zigzag morphology in the aerial hyphae and a huge reduction in conidiation. The majority of the tea4Δ conidia were two celled, as opposed to the tricellular conidia in the wild type. Structure-function analysis indicated that the SH3 and coiled-coil domains of MoTea4 are necessary for proper conidiation in Magnaporthe. The tea4Δ conidia failed to produce proper appressoria and consequently failed to infect the host plants. The tea4Δ conidia and germ tubes showed disorganized F-actin structures with significantly reduced numbers of cortical actin patches. Compared to the wild-type conidia, the tea4Δ conidia showed aberrant germination, poor cytoplasmic streaming, and persistent accumulation of lipid droplets, likely due to the impaired F-actin cytoskeleton. Latrunculin A treatment of germinating wild-type conidia showed that an intact F-actin cytoskeleton is indeed essential for appressorial development in Magnaporthe. We show that MoTea4 plays an important role in organizing the F-actin cytoskeleton and is essentially required for polarized growth and morphogenesis during asexual and pathogenic development in Magnaporthe. PMID:20472691

  8. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

    PubMed

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F; Brakhage, Axel A

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

  9. Horizontal Transmission of Metarhizium anisopliae in Fruit Flies and Effect of Fungal Infection on Egg Laying and Fertility

    PubMed Central

    Dimbi, Susan; Maniania, Nguya K.; Ekesi, Sunday

    2013-01-01

    Fly-to-fly transmission of conidia of the entomopathogenic fungus Metarhizium anisopliae and the effect of fungal infection on the reproductive potential of females surviving infection were investigated in three fruit fly species, Ceratitis cosyra, C. fasciventris, and C. capitata. The number of conidia picked up by a single fruit fly was determined in C. cosyra. The initial uptake (Day 0) of conidia by a single fly was approx. 1.1 × 106 conidia after exposure to the treated substrate. However, the number of conidia dropped from 7.2 × 105 to 4.1 × 105 conidia after 2 and 8 h post-exposure, respectively. The number of conidia picked up by a single fungus-treated fly (“donor”) varied between 3.8 × 105 and 1.0 × 106 in the three fruit fly species, resulting in 100% mortality 5–6 days post-exposure. When fungus-free flies of both sexes (“recipient” flies) were allowed to mate with “donor” flies, the number of conidia picked up by a single fly varied between 1.0 × 105 and 2.5 × 105, resulting in a mortality of 83–100% in C. capitata, 72–85% in C. cosyra and 71–93% in C. fasciventris 10–15 days post-inoculation. There was an effect of fungal infection on female egg laying in the three species of fruit flies as control flies laid more eggs than fungus-treated females. The percentage reduction in fecundity in flies infected with M. anisopliae was 82, 73 and 37% in C. capitata, C. fasciventris and C. cosyra, respectively. The results are discussed with regard to application in autodissemination techniques. PMID:26464386

  10. Germination-defective mutant of Neurospora crassa that responds to siderophores

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Williams, N. P.

    1977-01-01

    A conditionally germination-defective mutant of Neurospora crassa has been found to be partially curable by ferricrocin and other siderophores. The mutant conidia rapidly lose their membrane-bound siderophores when suspended in buffer or growth media. Germination is consequently delayed unless large numbers of conidia are present (positive population effect). This indicates that the mutant has a membrane defect involving the siderophore attachment site.

  11. Effects of adjuvant and conidial concentration on the efficacy of Beauveria bassiana for the control of the two spotted spider mite, Tetranychus urticae.

    PubMed

    Gatarayiha, Mutimura C; Laing, Mark D; Miller, Ray M

    2010-03-01

    Greenhouse experiments were conducted on various crops (cucumber, tomato, eggplant, green bean) to ascertain the effects of Break-thru (polyether-polymethylsiloxane-copolymer, a silicone surfactant) and an oil emulsion, on Beauveria bassiana (Balsamo) Vuillemin (Bb) applications for the control of the two spotted spider mite, Tetranychus urticae Koch. The objectives were to compare a) the efficacy of Bb control when applied in aqueous Break-thru or an oil emulsion; b) the effects of various concentrations of Bb conidia, as affected by each surfactant; and c) the effects of Break-thru on the activity of the fungus. Conidia were suspended either in an aqueous Break-thru or an emulsifiable formulation at different conidial concentrations (1.05 x 10(6), 2.1 x 10(6) and 4.2 x 10(6) conidia ml(-1)) and sprayed onto leaves 2 weeks after artificial pest inoculation. Two sprays were performed, with an interval of one week from one spray to another, and T. urticae population counts (both motile and egg stages) were made on plant leaves 7 days after each spray. Bb conidia in Break-thru((R)) were more efficacious than conidia in emulsifiable formulation. With the highest rate of conidia (4.2 x 10(6) conidia ml(-1)), mortality of adult mites ranged from 60 +/- 4.2 (mean +/- SE) to 85.7 +/- 4.3% in the Break-thru suspension and 39.4 +/- 7 to 61.3 +/- 6% in the oil emulsion. Leaf damage index was also substantially reduced from 70% in the unsprayed control to 40% by the application of Bb conidia at the highest rate with Break-thru. Break-thru can be combined with Bb in the integrated management of T. urticae and Isolate R444 is a promising candidate for the control of the pest.

  12. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    PubMed Central

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  13. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1.

    PubMed

    De Lucca, Anthony J; Heden, Lars-Olof; Ingber, Bruce; Bhatnagar, Deepak

    2011-07-13

    Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.

  14. Adulticidal and larvicidal activity of Beauveria bassiana and Metarhizium anisopliae against housefly, Musca domestica (Diptera: Muscidae), in laboratory and simulated field bioassays.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree; Satya, Santosh

    2011-06-01

    The susceptibility of the adult and larval stage of housefly, Musca domestica L. (Diptera: Muscidae), to two entomopathogenic fungi, Metarhizium anisopliae (Metsch.) Sor. and Beauveria bassiana (Bals.) Vuill., was evaluated under laboratory and simulated field bioassays. Bioassays on adult houseflies were carried out at different conidial concentrations ranging from 10(3) to 10(9) conidia/ml in petri plate and minichamber assays. Absolute mortality was observed within 4-5 days at all the concentrations tested. M. anisopliae was found to be more effective with LC(50) of 6.75 × 10(7) conidia/ml compared with 1.21 × 10(8) conidia/ml of B. bassiana in petri plate bioassay. Similar trend was observed in minichamber bioassay. Larvicidal activity evaluated through petri plate bioassay also indicated that M. anisopliae was more effective larvicide with LC(50) of 4.1 × 10(8) conidia/ml as against 3.31 × 10(9) conidia/ml of B. bassiana. Larvicidal activity was further evaluated in simulated field condition of decaying waste matrix using dry conidial formulations (10(8) conidia/g) of both the fungi. Larval mortality obtained in this assay was 43% (B. bassiana) and 63% (M. anisopliae). Remarkably better performance of M. anisopliae as an adulticidal and larvicidal agent over B. bassiana in laboratory bioassays as well as simulated field conditions suggests that it may have good potential to become part of an integrated housefly control program.

  15. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae.

    PubMed

    Luz, Christian; D'Alessandro, Walmirton Bezerra; Rodrigues, Juscelino; Fernandes, Éverton Kort Kamp

    2016-01-01

    Conidia of the entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were assessed against Rhipicephalus sanguineus (Arachnida: Ixodidae) eggs under laboratory conditions. Clusters of 25 eggs were applied either directly with the fungal conidial formulations or set on previously fungus-treated filter paper. Treatments consisted of conidia formulated in water or an oil-in-water emulsion at final concentrations of 3.3 × 10(3), 10(4), 3.3 × 10(4), 10(5), or 3.3 × 10(5) conidia/cm(2). The development of mycelium and new conidia on egg clusters incubated at 25 °C and humidity close to saturation depended on conidial concentration, formulation, and application technique. No larvae eclosed from eggs after direct applications of conidia regardless of the formulation. The eclosion and survival of larvae from indirectly treated egg clusters depended on the type of formulation and conidial concentration applied. Oil-in-water formulations of conidia demonstrated the highest activity against eggs of R. sanguineus.

  16. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  17. Conidial hydrophobins of Aspergillus fumigatus.

    PubMed

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-03-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and DeltarodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. DeltarodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of DeltarodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the DeltarodA DeltarodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells.

  18. In Vitro Photodynamic Inactivation of Plant-Pathogenic Fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium Photosensitizers

    PubMed Central

    de Menezes, Henrique D.; Rodrigues, Gabriela B.; Teixeira, Simone de Pádua; Massola, Nelson S.; Bachmann, Luciano; Wainwright, Mark

    2014-01-01

    The increasing tolerance to currently used fungicides in both clinical and agricultural areas is of great concern. The nonconventional light-based approach of antimicrobial photodynamic treatment (APDT) is a promising alternative to conventional fungicides. We evaluated the effects of APDT with four phenothiazinium derivatives (methylene blue [MB], new methylene blue N [NMBN], toluidine blue O [TBO], and the novel pentacyclic phenothiazinium photosensitizer [PS] S137) on conidia of three fungal species (Colletotrichum acutatum, Colletotrichum gloeosporioides, and Aspergillus nidulans). The efficacy of APDT with each PS was determined, initially, based on photosensitizer MICs. Additionally, the effects of APDT with two selected PSs (NMBN and S137) on survival of conidia were evaluated. The subcellular localization of the PS in C. acutatum conidia was determined. The effects of photodynamic treatments on leaves of the plant host Citrus sinensis were also investigated. APDT with S137 showed the lowest MIC. MICs for S137 were 5 μM for the three fungal species when a fluence of 25 J cm−2 was used. APDT with NMBN (50 μM) and S137 (10 μM) resulted in a reduction in the survival of the conidia of all species of approximately 5 logs with fluences of ≥15 J cm−2. Washing of the conidia before light exposure did not prevent photodynamic inactivation. Both NMBN and S137 accumulated in cytoplasmic structures, such as lipid bodies, of C. acutatum conidia. No damage to orange tree leaves was observed after APDT. PMID:24362436

  19. First report of Veronaea botryosa as a causal agent of chromomycosis in frogs.

    PubMed

    Hosoya, Tsuyoshi; Hanafusa, Yasuko; Kudo, Tomoo; Tamukai, Kenichi; Une, Yumi

    2015-05-01

    A dematiaceous hyphomycete, isolated from frogs, was determined as the possible etiologic agent of a case of systemic chromomycosis this cold-blooded animal. The fungus was identified as Veronaea botryosa on the basis of morphological features observed in histopathological examination and molecular phylogenetic evidence. Although V. botryosa is known to be distributed widely in litter and as a human pathogen, this is the first confirmed report of its involvement in a lethal infection in a cold-blooded animal, including an anuran. PMID:25851263

  20. The interaction between Helminthosporium carbonum and maize: Induced resistance and the role of an inhibitor

    SciTech Connect

    Cantone, F.A.

    1989-01-01

    Helminthosporium carbonum race 1 produces large, necrotic lesions on susceptible leaves of maize, whereas race 2 causes small, chlorotic flecks. Resistance to race 1 on susceptible leaves was induced when race 2 was inoculated for at least 10 h prior to a challenge inoculation with the pathogen and was manifest as a decrease in the number of appressoria and reduced penetration by race 1 conidia. Induced resistance was prevented or reversed when HC-toxin was added to challenge race 1 inoculum. The basis for protection appears to be a volatile, inhibitory compound produced by the host. This inhibitor was always associated with treatments that resulted in resistance, whereas no inhibitory activity was detected in diffusates from susceptible reactions. The appearance of inhibitor in diffusates coincided with the appearance of protection on the leaf. In addition to race 2 of H. carbonum, other fungi (H. victoriae, H. turcicum, and Alternaria) also induced production of the inhibitor as well as resistance to race 1. The inhibitor prevented the germination of conidia of all fungi tested. The growth of two phytopathogenic bacteria was also completely inhibited. Incorporation of {sup 3}H-leucine and {sup 14}C-uridine into protein and RNA, respectively, by conidia of H. carbonum was prevented within 15 min of exposure to inhibitor. In addition, respiration of conidia in inhibitor was reduced within 90 min to just 25% of the rate of conidia germinated in water. However, inhibitory activity of the diffusates was readily reversed when conidia were rinsed with water or when organic or amino acids were added to inhibited conidia. The addition of sodium acetate to race 2 and race 1 inocula resulted in lesion enlargement and also nullified inhibitory activity in vitro.

  1. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.

    PubMed

    Tribst, Alline A L; Franchi, Mark A; Cristianini, Marcelo; de Massaguer, Pilar R

    2009-01-01

    This research evaluated the inactivation of a heat-resistant Aspergillus niger conidia in mango nectar by high-pressure homogenization (HPH) combined with heat shock. A. niger were inoculated in mango nectar (10(6) conidia mL(-1)) and subjected to HPH (300 to 100 MPa) and heat shock (80 degrees C for 5 to 20 min) before or after HPH. Processes were evaluated according to number of decimal reductions reached by each isolated or combined process. Scanning electron microscopy was performed to observe conidia wall after pressure treatment. Pressures below 150 MPa did not inactivate A. niger while pressures of 200 and 300 MPa resulted in 2 and more than 6 log reductions, respectively. D(80 degrees C) of A. niger was determined as 5.03 min. A heat shock of 80 degrees C/15 min, reaching 3 decimal conidia reductions, was applied before or after a 200 MPa pressure treatment to improve the decimal reduction to 5 log cycles. Results indicated that HPH inactivated A. niger in mango nectar at 300 MPa (>6.24 log cycles) and that, with pressure (200 MPa) combined with post heat shock, it was possible to obtain the same decimal reduction, showing a synergistic effect. On the other hand, pre heat shock associated with HPH resulted in an additive effect. The observation of A. niger conidia treated by HPH at 100 and 200 MPa by scanning electron microscopy indicated that HPH promoted intense cell wall damage, which can sensitize the conidia to post heat shock and possibly explain the synergistic effect observed. Practical Application: The results obtained in this paper are relevant to elucidate the mechanism of conidia inactivation in order to develop the application of HPH as an alternative pasteurization process for the fruit nectar industry.

  2. Dendryphion penicillatum and Pleospora papaveracea, Destructive Seedborne Pathogens and Potential Mycoherbicides for Papaver somniferum.

    PubMed

    O'Neill, N R; Jennings, J C; Bailey, B A; Farr, D F

    2000-07-01

    ABSTRACT Dendryphion penicillatum and Pleospora papaveracea were isolated from blighted Papaver somniferum and Papaver bracteatum plants grown in growth chambers and the field in Beltsville, MD. The etiology of the diseases was determined, and the fungi are being investigated as potential mycoherbicides to control the narcotic opium poppy plant. P. papaveracea is known to be a highly destructive seedborne pathogen of Papaver somniferum, causing seedling blight, leaf blight, crown rot, and capsule rot. Single conidia and ascospores were isolated and cultures established from naturally infested seed and diseased foliage and pods of opium poppy from Iran, Colombia, Venezuela, Sweden, India, and the United States (Maryland and Washington). Mycelia and conidia of P. papaveracea and D. penicillatum produced on necrotic leaf tissues appear morphologically similar, and the fungi were previously considered to be anamorph and teleomorph. However, no anamorph/teleomorph connection could be established, and the fungi appear to be distinct taxa. P. papaveracea produced conidia, mature pseudothecia, and chlamydospores in vitro and on infected stems. D. penicillatum produced conidia, microsclerotia, and macronematous conidiophores. Although both fungi were pathogenic to three poppy cultivars, conidial inoculum from P. papaveracea cultures was more virulent than conidial inoculum from D. penicillatum. Eight-week-old plants became necrotic and died 8 days after inoculation with a conidial suspension of P. papaveracea at 2 x 10(5) spores per ml. Disease severity was significantly enhanced by inoculum formulations that contained corn oil, by higher conidial inoculum concentrations, and by increased wetness periods. Symptoms on plants inoculated with either pathogen included leaf and stem necrosis, stem girdling, stunting, necrotic leaf spots, and foliar and pod blight. Inoculated seedlings exhibited wire stem, damping-off, and root rot. Conidia, and less frequently pseudothecia, of P

  3. Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay.

    PubMed

    Avery, Pasco B; Faull, Jane; Simmonds, Monique S J

    2004-01-01

    Growth, infectivity and colonization rates for blastospores and conidia of Trinidadian strains T, T10, and T11 of Paecilomyces fumosoroseus (Wize) Brown and Smith were assessed for activity against late fourth-instar nymphs of Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae) under two different photoperiods (24 and 16 hour photophase). A glass-slide bioassay and a fungal development index, modified for both blastospores and conidia, were used to compare the development rates of the fungal strains on the insect hosts. Fewer adult whiteflies emerged from nymphs treated with blastospores and reared under a 16:8 hour light:dark photoperiod than a 24:0 hour photoperiod. Eclosion times of whitefly adults that emerged from nymphs treated with the different strains of conidia were similar over the 8 day experimental period at both light regimes. The percent eclosion of adult whiteflies seems to be directly correlated with the speed of infection of the blastospore or conidial treatment and the photoperiod regime. The longer photophase had a significant positive effect on development index for blastospores; however, a lesser effect was observed for the conidia at either light regime. Blastospore strain T11 offered the most potential of the three Trinidadian strains against T. vaporariorum fourth-instar nymphs, especially under constant light. The glass-slide bioassay was successfully used to compare both blastospores and conidia of P. fumosoroseus. It can be used to determine the pathogenicity and the efficacy of various fungal preparations against aleyrodid pests.

  4. A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand.

    PubMed

    Maketon, Monchan; Amnuaykanjanasin, Alongkorn; Kaysorngup, Achirayar

    2014-02-01

    Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100% mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 10⁶ conidia ml⁻¹. Its LC₅₀ was 3 × 10⁵ conidia ml⁻¹, and the lethal time (LT₅₀) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100% identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 10⁹ conidia ml⁻¹. P. citrinum CM-010 at 1 × 10⁶ conidia ml⁻¹ killed 100% larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml⁻¹ required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.

  5. Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation.

    PubMed

    Fracarolli, Letícia; Rodrigues, Gabriela B; Pereira, Ana C; Massola Júnior, Nelson S; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Bastos, Jairo Kenupp; Braga, Gilberto U L

    2016-09-01

    The increasing tolerance to currently used fungicides and the need for environmentally friendly antimicrobial approaches have stimulated the development of novel strategies to control plant-pathogenic fungi such as antimicrobial phototreatment (APT). We investigated the in vitro APT of the plant-pathogenic fungus Colletotrichum acutatum with furocoumarins and coumarins and solar radiation. The compounds used were: furocoumarins 8-methoxypsoralen (8-MOP) and 5,8-dimethoxypsoralen (isopimpinellin), coumarins 2H-chromen-2-one (coumarin), 7-hydroxycoumarin, 5,7-dimethoxycoumarin (citropten) and a mixture (3:1) of 7-methoxycoumarin and 5,7-dimethoxycoumarin. APT of conidia with crude extracts from 'Tahiti' acid lime, red and white grapefruit were also performed. Pure compounds were tested at 50μM concentration and mixtures and extracts at 12.5mgL(-1). The C. acutatum conidia suspension with or without the compounds was exposed to solar radiation for 1h. In addition, the effects of APT on the leaves of the plant host Citrus sinensis were determined. APT with 8-MOP was the most effective treatment, killing 100% of the conidia followed by the mixture of two coumarins and isopimpinellin that killed 99% and 64% of the conidia, respectively. APT with the extracts killed from 20% to 70% of the conidia, and the extract from 'Tahiti' lime was the most effective. No damage to sweet orange leaves was observed after APT with any of the compounds or extracts. PMID:27434699

  6. Endogenous ergothioneine is required for wild type levels of conidiogenesis and conidial survival but does not protect against 254 nm UV-induced mutagenesis or kill.

    PubMed

    Bello, Marco H; Mogannam, John C; Morin, Dexter; Epstein, Lynn

    2014-12-01

    Ergothioneine, a histidine derivative, is concentrated in conidia of ascomycetous fungi. To investigate the function of ergothioneine, we crossed the wild type Neurospora crassa (Egt(+)) and an ergothioneine non-producer (Egt(-), Δegt-1, a knockout in NCU04343.5) and used the Egt(+) and Egt(-) progeny strains for phenotypic analyses. Compared to the Egt(+) strains, Egt(-) strains had a 59% reduction in the number of conidia produced on Vogel's agar. After storage of Egt(+) and Egt(-) conidia at 97% and 52% relative humidity (RH) for a time course to either 17 or 98 days, respectively, Egt(-) strains had a 23% and a 18% reduction in life expectancy at 97% and 52% RH, respectively, compared to the Egt(+) strains. Based on a Cu(II) reduction assay with the chelator bathocuproinedisulfonic acid disodium salt, ergothioneine accounts for 38% and 33% of water-soluble antioxidant capacity in N. crassa conidia from seven and 20 day-old cultures, respectively. In contrast, ergothioneine did not account for significant (α=0.05) anti-oxidant capacity in mycelia, which have lower concentrations of ergothioneine than conidia. The data are consistent with the hypothesis that ergothioneine has an antioxidant function in vivo. In contrast, experiments on the spontaneous mutation rate in Egt(+) and Egt(-) strains and on the effects of 254 nm UV light on mutation rate and conidial viability do not support the hypothesis that ergothioneine protects DNA in vivo.

  7. Susceptibility of Brevipalpus phoenicis to entomopathogenic fungi.

    PubMed

    Rossi-Zalaf, Luciana Savoi; Alves, Sérgio Batista

    2006-01-01

    The pathogenicity of 52 isolates from several fungus species was studied for the false spider mite Brevipalpus phoenicis. In addition, the main stages during the course of infection by Hirsutella thompsonii, by far the most virulent pathogen, were studied by means of light and electron microscopy. Adult mites were confined to arenas prepared with citrus leaves in acrylic dishes containing agar-water. Conidial suspensions containing 10(8) conidia/ml were applied, except for H. thompsonii, where a concentration of 10(7) conidia/ml was used. The H. thompsonii isolates caused higher mortality, with indices higher than 90%. Observations under the scanning electron microscope (SEM) were performed at 0, 6, 12, 24, 48, 72, and 120 h after application of a H. thompsonii suspension containing 10(7) conidia/ml. Twenty-four hours after inoculation, H. thompsonii conidia were observed attached to the mite's integument. The conidia germinated and penetrated through the base of the setae on the hysterosoma. Colonization occurred after 48 h, as evidenced by mortality. Conidiogenesis occurred after 120 h, with the development of mycelium and conidiophores emerging from the posterior and anterior parts of the mite. PMID:17004029

  8. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  9. Monitoring environmental Aspergillus spp. contamination and meteorological factors in a haematological unit.

    PubMed

    Cavallo, M; Andreoni, S; Martinotti, M G; Rinaldi, M; Fracchia, L

    2013-12-01

    The opportunistic pathogens belonging to the Aspergillus genus are present in almost all seasons of the year, and their concentration is related to meteorological conditions. The high density of Aspergillus spp. conidia in a haematological hospital ward may be a significant risk factor for developing invasive fungal diseases in immunocompromised patients. Aim of the present study was to evaluate the variability of airborne Aspergillus spp. conidia contamination in a Haematological Unit (HU) within a period of 16 months in relation with some meteorological parameters. An environmental Aspergillus surveillance was conducted in the HU in four rooms and their bathrooms, in the corridor and in three external sites using an agar impact sampler. During each sampling, temperature and relative humidity at each site were recorded and current wind speed and rainfall events were taken from the official weather service. Aspergillus spp. conidia concentration differed significantly across the sampling sites. Internal Aspergillus spp. loads were significantly dependent on temperature, internal relative humidity and rain. External conidia concentrations were significantly influenced by outdoor temperature and relative humidity. A suitable indicator was introduced to evaluate the seasonal distribution of Aspergillus spp. conidia in the sampling sites, and a significant dependence on this indicator was observed inside the HU. Seventeen different fungal species belonging to the Aspergillus genus were detected during the sampling period. Aspergillus fumigatus was the most frequently isolated species and its distribution depended significantly on the seasonal indicator both inside and outside the hospital ward.

  10. Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation.

    PubMed

    Fracarolli, Letícia; Rodrigues, Gabriela B; Pereira, Ana C; Massola Júnior, Nelson S; Silva-Junior, Geraldo José; Bachmann, Luciano; Wainwright, Mark; Bastos, Jairo Kenupp; Braga, Gilberto U L

    2016-09-01

    The increasing tolerance to currently used fungicides and the need for environmentally friendly antimicrobial approaches have stimulated the development of novel strategies to control plant-pathogenic fungi such as antimicrobial phototreatment (APT). We investigated the in vitro APT of the plant-pathogenic fungus Colletotrichum acutatum with furocoumarins and coumarins and solar radiation. The compounds used were: furocoumarins 8-methoxypsoralen (8-MOP) and 5,8-dimethoxypsoralen (isopimpinellin), coumarins 2H-chromen-2-one (coumarin), 7-hydroxycoumarin, 5,7-dimethoxycoumarin (citropten) and a mixture (3:1) of 7-methoxycoumarin and 5,7-dimethoxycoumarin. APT of conidia with crude extracts from 'Tahiti' acid lime, red and white grapefruit were also performed. Pure compounds were tested at 50μM concentration and mixtures and extracts at 12.5mgL(-1). The C. acutatum conidia suspension with or without the compounds was exposed to solar radiation for 1h. In addition, the effects of APT on the leaves of the plant host Citrus sinensis were determined. APT with 8-MOP was the most effective treatment, killing 100% of the conidia followed by the mixture of two coumarins and isopimpinellin that killed 99% and 64% of the conidia, respectively. APT with the extracts killed from 20% to 70% of the conidia, and the extract from 'Tahiti' lime was the most effective. No damage to sweet orange leaves was observed after APT with any of the compounds or extracts.

  11. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.

    PubMed

    Zhang, Zhenggang; Zhang, Jingyu; Wang, Yuanchao; Wang, Yuchao; Zheng, Xiaobo

    2005-08-01

    We developed two species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences of Fusarium spp. and Mycosphaerella spp., two pairs of species-specific primers, Fn-1/Fn-2 and Mn-1/Mn-2, were synthesized. After screening 24 isolates of F. oxysporum f. sp. niveum, 22 isolates of M. melonis, and 72 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Fn-1/Fn-2 primers amplified only a single PCR band of approximately 320 bp from F. oxysporum f. sp.niveum, and the Mn-1/Mn-2 primers yielded a PCR product of approximately 420 bp from M. melonis. The detection sensitivity with primers Fn-1/Fn-2 and Mn-1/Mn-2 was 1fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with either Fn-1/Fn-2 and or Mn-1/Mn-2, two nested PCR procedures were developed, and the detection sensitivity increased 1000-fold to 1ag. The detection sensitivity for the soil pathogens was 100-microconidia/g soil. A duplex PCR method, combining primers Fn-1/Fn-2 and Mn-1/Mn-2, was used to detect F. oxysporum f. sp. niveum and M. melonis in plant tissues infected by the pathogens. Real-time fluorescent quantitative PCR assays were developed to detect and monitor the pathogens directly in soil samples. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management.

  12. Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress.

    PubMed

    Guimarães-Soares, Luís; Felícia, Helena; João Bebianno, Maria; Cássio, Fernanda

    2006-12-15

    The production of thiol-containing proteins/peptides and its role in metal-binding was examined in the aquatic hyphomycetes Fontanospora fusiramosa and Flagellospora curta exposed to Cu, Cd, or Zn at concentrations inhibiting the biomass production in 80%. Heat-treated cell-free extracts were separated by size-exclusion chromatography and the thiol and metal content in the fractions was determined. F. curta, the species tolerant to metals, showed higher absolute levels of thiol compounds, which bound higher amounts of Cu and Cd than F. fusiramosa. Peptides with very low molecular weight (<9 kDa), most likely glutathione and phytochelatins, were the major Cu- and Zn-binding components in both species of aquatic hyphomycetes. In most cases, proteins with high molecular weight (>26 kDa) were induced by metal ions and they were the major Cd-binding component in both species. Proteins with characteristics of metallothioneins were also induced by exposure to metals in both species, but they showed a minor role in metal-binding, suggesting they might have other functions in fungal cells. PMID:17083969

  13. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  14. Microbial Dynamics on Decaying Leaf Litter in an Ohio Stream

    NASA Astrophysics Data System (ADS)

    Das, M.; Royer, T. V.; Leff, L. G.

    2005-05-01

    Deciduous leaf litter is an important source of energy for many streams. Fungi (aquatic hyphomycetes) and bacteria play important roles in litter processing, but the colonization dynamics of these groups across different leaf types is not well described. We examined fungal and bacterial colonization on sugar maple and white oak leaves in a hardwater stream in Northeastern Ohio from November 2003 through May 2004. Triplicate samples of each leaf type were collected from litter bags approximately monthly. The dry weight and organic content of the leaves were measured. Fungal biomass was determined from ergosterol concentrations in the samples. Image analysis of DAPI-stained cells and standard conversion factors were used to calculate bacterial biomass. On most dates, fungal biomass was similar on leaf types, and 10-fold higher than bacterial biomass. Throughout the study, bacterial numbers and biomass were greater on sugar maple than white oak. Sugar maple leaves decayed faster than oak leaves, but this was not reflected in the biomass of aquatic hyphomycetes, rather in the abundance of bacteria. Although fungi are considered the main organisms in litter breakdown, bacteria showed a greater response to leaf quality in this study, and may be more important than the biomass suggests.

  15. Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress.

    PubMed

    Guimarães-Soares, Luís; Felícia, Helena; João Bebianno, Maria; Cássio, Fernanda

    2006-12-15

    The production of thiol-containing proteins/peptides and its role in metal-binding was examined in the aquatic hyphomycetes Fontanospora fusiramosa and Flagellospora curta exposed to Cu, Cd, or Zn at concentrations inhibiting the biomass production in 80%. Heat-treated cell-free extracts were separated by size-exclusion chromatography and the thiol and metal content in the fractions was determined. F. curta, the species tolerant to metals, showed higher absolute levels of thiol compounds, which bound higher amounts of Cu and Cd than F. fusiramosa. Peptides with very low molecular weight (<9 kDa), most likely glutathione and phytochelatins, were the major Cu- and Zn-binding components in both species of aquatic hyphomycetes. In most cases, proteins with high molecular weight (>26 kDa) were induced by metal ions and they were the major Cd-binding component in both species. Proteins with characteristics of metallothioneins were also induced by exposure to metals in both species, but they showed a minor role in metal-binding, suggesting they might have other functions in fungal cells.

  16. Fungi and bacteria involved in desert varnish formation

    NASA Technical Reports Server (NTRS)

    Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.

    1983-01-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  17. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    PubMed

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene.

  18. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    PubMed

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene. PMID:27186876

  19. Fungi and bacteria involved in desert varnish formation.

    PubMed

    Taylor-George, S; Palmer, F; Staley, J T; Borns, D J; Curtiss, B; Adams, J B

    1983-10-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation. PMID:24221703

  20. Fungi and bacteria involved in desert varnish formation.

    PubMed

    Taylor-George, S; Palmer, F; Staley, J T; Borns, D J; Curtiss, B; Adams, J B

    1983-10-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  1. Pathogenicity and ultrastructural studies of the mode of penetration by Phoma strasseri in peppermint stems and rhizomes.

    PubMed

    Zimowska, Beata

    2012-01-01

    Pathogenicity and ultrastructural investigation of the inoculation of peppermint stems and rhizomes with Phoma strasseri conidia was undertaken using scanning and transmission electron microscopy to examine the host-parasite relationship. Pathogenicity experiments demonstrated that all tested P. strasseri isolates had infected the stems and rhizomes of peppermint. Of all inoculation methods, direct placement of colonized agar plugs on damaged epidermis and soaking stems and rhizomes in conidial suspension were the most effective. The behavior of the conidia deposited on the stems and rhizomes was investigated at different time intervals after inoculation: 6, 16, 24, 36 and 48 h. Conidia produced an appressorium directly at the end of a short germ tube. Appressoria were formed over the cuticle, but never over stomata. Direct penetration to host tissue through the cuticle was observed. The spore and hyphae were covered with a mucilaginous sheath.

  2. Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees.

    PubMed

    Pazoutová, Sylvie; Srutka, Petr; Holusa, Jaroslav; Chudícková, Milada; Kubátová, Alena; Kolarík, Miroslav

    2012-01-01

    During a study of endophytic and saprotrophic fungi in the sapwood and phloem of broadleaf trees (Salix alba, Quercus robur, Ulmus laevis, Alnus glutinosa, Betula pendula) fungi belonging to an anamorphic coelomycetous genus not attributable to a described taxon were detected and isolated in pure culture. The new genus, Liberomyces, with two species, L. saliciphilus and L. macrosporus, is described. Both species have subglobose conidiomata containing holoblastic sympodial conidiogenous cells. The conidiomata dehisce irregularly or by ostiole and secrete a slimy suspension of conidia. The conidia are hyaline, narrowly allantoid with a typically curved distal end. In L. macrosporus simultaneous production of synanamorph with thin filamentous conidia was observed occasionally. The genus has no known teleomorph. Related sequences in the public databases belong to endophytes of angiosperms. Phylogenetic analysis revealed a position close to the Xylariales (Sordariomycetes), but family and order affiliation remained unclear.

  3. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.

    PubMed

    Liu, Xiao-Hong; Lu, Jian-Ping; Zhang, Lei; Dong, Bo; Min, Hang; Lin, Fu-Cheng

    2007-06-01

    We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea. PMID:17416896

  4. Involvement of a Magnaporthe grisea Serine/Threonine Kinase Gene, MgATG1, in Appressorium Turgor and Pathogenesis▿

    PubMed Central

    Liu, Xiao-Hong; Lu, Jian-Ping; Zhang, Lei; Dong, Bo; Min, Hang; Lin, Fu-Cheng

    2007-01-01

    We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the ΔMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the ΔMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea. PMID:17416896

  5. The in vitro fungicidal activity of human macrophages against Penicillium marneffei is suppressed by dexamethasone.

    PubMed

    Ma, Tuan; Chen, Renqiong; Li, Xiqing; Lu, Changming; Xi, Liyan

    2015-09-01

    Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts.

  6. Identification and functional analysis of endogenous nitric oxide in a filamentous fungus

    PubMed Central

    Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon

    2016-01-01

    In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8–16 hours after incubation in Vogel’s minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation. PMID:27425220

  7. Production of tremorgenic mycotoxins by isolates of Aspergillus fumigatus from sawmills in Sweden.

    PubMed

    Land, C J; Lundström, H; Werner, S

    1993-11-01

    One hundred and six strains of A. fumigatus were isolated from 21 sawmills in Sweden, and 73 of these strains were examined for production of fumitremorgen B and verruculogen (tremorgenic mycotoxins) on YES-medium using thin layer chromatography (TLC). Twenty-three strains (32%) were tremorgen producers and 50 strains (68%) were non-producers. Tremorgenic mycotoxins were detected in conidia of seven A. fumigatus strains. The amount of toxin varied between 0.6-8.0 microgram/10(8) conidia (mean value 2.3 micrograms/10(8) conidia, equivalent with 0.18%). No production of the mycotoxin gliotoxin was detected in 6 strains of A. fumigatus. No tremorgens were detected during mould growth on wood substrates, in spite of the use of different wood species (Scots pine, Pinus sylvestris: Norway spruce, Picea abies and birch, Betula spp.), dried versus non-dried wood, bark (pine), leached wood, and wood after various sterilization methods. PMID:8008045

  8. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation.

    PubMed

    Rangel, Drauzio E N; Braga, Gilberto U L; Fernandes, Éverton K K; Keyser, Chad A; Hallsworth, John E; Roberts, Donald W

    2015-08-01

    The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects. PMID:25791499

  9. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation.

    PubMed

    Rangel, Drauzio E N; Braga, Gilberto U L; Fernandes, Éverton K K; Keyser, Chad A; Hallsworth, John E; Roberts, Donald W

    2015-08-01

    The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

  10. N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans.

    PubMed

    Lackner, Michaela; Binder, Ulrike; Reindl, Martin; Gönül, Beyhan; Fankhauser, Hannes; Mair, Christian; Nagl, Markus

    2015-10-01

    N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 10(7) conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine.

  11. The effects of photoperiod and light intensity on the sporulation of Brazilian and Norwegian isolates of Neozygites floridana.

    PubMed

    de Castro, Thiago Rodrigues; Wekesa, Vitalis Wafula; Moral, Rafael de Andrade; Demétrio, Clarice Garcia Borges; Delalibera, Italo; Klingen, Ingeborg

    2013-11-01

    The objective of this study was to determine the effects of light intensity and duration (photoperiod) on the sporulation (discharge of primary conidia) and conidia germination (from non-infective primary conidia to infective capilliconidia) of Neozygites floridana isolates from Tetranychus urticae originating from Norway and Brazil. Two light intensities (40 and 208 μmolm(-2)s(-1)), three photoperiods (24 h of continuous light (24 h D), 12 h of darkness followed by 12 h of light (12 h D: 12 h L) and 24 h of continuous darkness (24 h D)) and two temperatures (18°C and 23°C) were tested. The fungus produced similar amounts of primary conidia and capilliconidia at 12 h D:12 h and 24 h D, indicating that the fungus discharges almost all of its conidia during the first 12 h of darkness. Light had less of an effect on the production of primary conidia than on capilliconidia formation. At 24 h L, capilliconidia formation was significantly lower for all tested light intensities, temperatures and isolates compared to 12 h D:12 h L and 24 h D. At both light intensities, 24 h L resulted in a significantly lower capilliconidia formation for the Norwegian isolate compared to the Brazilian isolate. Our data suggest that, even though 24 h L reduced sporulation, some capilliconidia formation may occur at the low light intensities found on the underside of strawberry leaves during parts of the day as well as the top of a non-shaded strawberry leaf during the dim evening and morning hours in the tropics and during the dim, long summer days in temperate regions. PMID:24007762

  12. Geomyces destructans sp. nov. associated with Bat white-nose syndrome

    USGS Publications Warehouse

    Gargas, A.; Trest, M.T.; Christensen, M.; Volk, T.J.; Blehert, D.S.

    2009-01-01

    We describe and illustrate the new species Geomyces destructans. Bats infected with this fungus present with powdery conidia and hyphae on their muzzles, wing membranes, and/or pinnae, leading to description of the accompanying disease as white-nose syndrome, a cause of widespread mortality among hibernating bats in the northeastern US. Based on rRNA gene sequence (ITS and SSU) characters the fungus is placed in the genus Geomyces, yet its distinctive asymmetrically curved conidia are unlike those of any described Geomyces species.

  13. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  14. Antifungal properties of lectin and new chitinases from potato tubers.

    PubMed

    Gozia, O; Ciopraga, J; Bentia, T; Lungu, M; Zamfirescu, I; Tudor, R; Roseanu, A; Nitu, F

    1993-08-01

    We have purified from potato tubers, the lectin STA devoid of chitinase activity and two chitinases devoid of lectin activity. Both enzymes are 16 kDa glycoproteins, and probably belong to a new family of plant chitinases. The respective antifungal properties of lectin and chitinases were studied by following their effects against early developmental stages of Fusarium oxysporum, a fungal potato pathogen. Here we demonstrate that: (1) lectin does not inhibit mycelial growth but irreversibly inhibits conidia germination and alters the germ tubes; and (2) chitinases block mycelial growth as well as conidia germination and lyse germ tubes.

  15. Isolation and identification of the conidial germination factor of Neurospora crassa

    NASA Technical Reports Server (NTRS)

    Horowitz, N. H.; Charlang, G.; Horn, G.; Williams, N. P.

    1976-01-01

    The germination-essential substance (germination factor /GF/) that is lost from conidia of Neurospora crassa on exposure to solutions of low water activity has been isolated and identified as a group of iron-transport compounds, or siderochromes. The principal siderochrome of conidia is ferricrocin, a cyclic hexapeptide. A closely related substance, ferrichrome C, is tentatively identified as a minor constituent. The same substances are also present in extracts of mycelium along with small amounts of a third siderochrome, which has not been identified. The GF activity of culture filtrates is due to coprogen, the only siderochrome previously identified with N. crassa.

  16. Viability and nematophagous activity of the freeze-dried fungus Arthrobotrys robusta against Ancylostoma spp. infective larvae in dogs.

    PubMed

    Carvalho, Rogério Oliva; Braga, Fabio Ribeiro; Araújo, Jackson Victor

    2011-03-10

    Viability and in vitro and in vivo activities of freeze-dried conidia of the predatory fungus Arthrobotrys robusta (I-31) were evaluated against infective larvae (L(3)) of Ancylostoma spp. in dogs. A. robusta conidia were lyophilized and stored at 4°C for a month. Freeze-dried conidia were diluted to 1×10(3)conidia/ml and tested in vivo. The treated group consisted of a solution containing conidia (1ml) and 1000 Ancylostoma spp. (L(3)) placed on Petri dishes plated with 2% water-agar (2% WA), at 25°C, in the dark for 10 days. The control group consisted of 1000 Ancylostoma spp. L(3), plated on 2% WA. After 10 days, Ancylostoma spp. L(3) from both the treated and the control groups were recovered and counted. The in vivo test was performed on two dogs by administering a single oral dose of freeze-dried conidia (1.5×10(5)) in aqueous solution to one animal and only water to the other. Fecal samples were collected at 12, 24 and 48h after the treatments, plated 2% WA plates and incubated at 25°C for 15 days. A thousand Ancylostoma spp. L(3) larvae were spread on these plates. At day 15, infective L(3) recovered from the treated and control groups were counted. In the in vitro test, A. robusta was able to survive the freeze-drying process, grow in the plates, form traps and capture Ancylostoma spp. L(3). There was a 75.38% decrease in the number of infective larvae recovered from the treated group. The in vivo test showed that freeze-dried A. robusta conidia survived the passage through the gastrointestinal tract of the treated dog, was able to grow in the plates and capture Ancylostoma spp. L(3), reducing the number of recovered L(3) (p<0.01). Freeze-drying can be an alternative method for conservation of conidia of nematophagous fungi. PMID:21111535

  17. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.

    PubMed

    Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M

    2013-11-15

    The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in

  18. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    SciTech Connect

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.; Glinsukon, T.; Shinmyo, A.

    1987-08-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.

  19. Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of detecting Aflatoxin B1 (AFB1) in single maize kernel inoculated with Aspergillus flavus conidia in the field, as well as its spatial distribution in the kernels, was assessed using near-infrared hyperspectral imaging (HSI) technique. Firstly, an image mask was applied to a pixel-b...

  20. Sporulation in Erysiphe necator: signals, differential gene expression and possible implications for disease management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant production of conidia is a driving factor for epidemics of grape powdery mildew (Erysiphe necator (syn. Uncinula necator). Previous investigations revealed evidence for a signal that coordinates the onset of asexual reproduction. The genetic basis for this signal in powdery mildews had not ...

  1. Effect of prior vegetative growth, inoculum density and light on conidiation in Erysiphe necator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in epidemics of grape powdery mildew is the abundant production of conidia. Our objective was to better define the three factors involved in the qualitative change that occurs when a mildew colony switches from vegetative growth to sporulation –inoculum density, light, and a sporulat...

  2. Population structure and genetic diversity of Fusicladium effusum in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scab (Fusicladium effusum) is the most destructive disease of pecan in the Southeast US. Infection is thought to occur solely through asexually produced conidia. To explore the population structure and genetic diversity of F. effusum, populations were hierarchically sampled from 11 orchards in Alaba...

  3. Evidence for sexual reproduction in Fusicladium effusum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusicladium effusum is the causal agent of pecan scab, the most prevalent and often catastrophic disease of pecan in the southeastern USA. Despite earlier efforts to determine a sexual stage, reproduction in F. effusum has been observed only by asexually produced conidia. However, the degree and dis...

  4. A Trichophyton Rubrum Infection Model Based on the Reconstructed Human Epidermis - Episkin®

    PubMed Central

    Liang, Pan-Pan; Huang, Xin-Zhu; Yi, Jin-Ling; Chen, Zhi-Rui; Ma, Han; Ye, Cong-Xiu; Chen, Xian-Yan; Lai, Wei; Chen, Jian

    2016-01-01

    Background: Trichophyton rubrum represents the most common infectious fungus responsible for dermatophytosis in human, but the mechanism involved is still not completely understood. An appropriate model constructed to simulate host infection is the prerequisite to study the pathogenesis of dermatophytosis caused by T. rubrum. In this study, we intended to develop a new T. rubrum infection model in vitro, using the three-dimensional reconstructed epidermis - EpiSkin®, and to pave the way for further investigation of the mechanisms involved in T. rubrum infection. Methods: The reconstructed human epidermis (RHE) was infected by inoculating low-dose (400 conidia) and high-dose (4000 conidia) T. rubrum conidia to optimize the infection dose. During the various periods after infection, the samples were processed for pathological examination and scanning electron microscopy (SEM) observation. Results: The histological analysis of RHE revealed a fully differentiated epidermis with a functional stratum corneum, which was analogous to the normal human epidermis. The results of hematoxylin and eosin staining and the periodic acid-Schiff staining showed that the infection dose of 400 conidia was in accord with the pathological characteristics of host dermatophytosis caused by T. rubrum. SEM observations further exhibited the process of T. rubrum infection in an intuitionistic way. Conclusions: We established the T. rubrum infection model on RHE in vitro successfully. It is a promising model for further investigation of the mechanisms involved in T. rubrum infection. PMID:26712433

  5. Heat-stressed Metarhizium anisopliae: Viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study investigated the thermotolerance of Metarhizium anisopliae s.l. conidia from the commercial products Metarril® SP Organic and Metarril® WP. The efficacy of these M. anisopliae formulations against the tick Rhipicephalus sanguineus s.l. was studied in laboratory under optimum or hea...

  6. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS‐1, against Tetranychus urticae (Koch)

    PubMed Central

    Zhang, Xiaona; Zou, Xiao; Guo, Jianjun

    2016-01-01

    Abstract BACKGROUND The two‐spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS‐1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. RESULTS The results showed that a suspension of 2 × 107 submerged conidia mL −1 caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 108 submerged conidia mL −1 achieved significant efficiency – the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. CONCLUSION The results suggest that the I. cateniannulata strain 08XS‐1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26775712

  7. Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum.

    PubMed

    Chen, Ahai; Xie, Qiurong; Lin, Yahong; Xu, Huaijian; Shang, Wenjie; Zhang, Jun; Zhang, Dongmei; Zheng, Wenhui; Li, Guangpu; Wang, Zonghua

    2016-09-01

    Septins are GTP-binding proteins that regulate cell polarity, cytokinesis and cell morphogenesis. Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases worldwide. In this study, we have functionally characterized the core septins, Cdc3, Cdc10, Cdc11 and Cdc12 in F. graminearum. The loss of FgCdc3, FgCdc11, FgCdc12, but not FgCdc10, mutants showed significant reduction in growth, conidiation and virulence. Microscopic analyses revealed that all of them were involved in septum formation and nuclear division. Moreover, disruption of septin genes resulted in morphological defects in ascospores and conidia. Interestingly, conidia produced by ΔFgcdc3, ΔFgcdc11 and ΔFgcdc12 mutants exhibited deformation with interconnecting conidia in contrast to their parent wild-type strain PH-1 and the ΔFgcdc10 mutant that produced normal conidia. Using yeast two-hybrid assays, we determined the interactions among FgCdc3, FgCdc10, FgCdc11 and FgCdc12. Taken together, our results indicate that septins play important roles in the nuclear division, morphogenesis and pathogenicity in F. graminearum. PMID:27387218

  8. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.

    PubMed

    Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian

    2016-09-01

    Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae.

  9. Metallopeptidase inhibitors arrest vital biological processes in the fungal pathogen Scedosporium apiospermum.

    PubMed

    Silva, Bianca A; Souza-Gonçalves, Ana Luíza; Pinto, Marcia R; Barreto-Bergter, Eliana; Santos, André L S

    2011-03-01

    Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 °C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 μmol l(-1), while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (β-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l(-1). EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l(-1), inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.

  10. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  11. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus

    PubMed Central

    Fones, Helen Nicola; Mardon, Charlotte; Gurr, Sarah Jane

    2016-01-01

    The invasive pathogen, ash dieback fungus Hymenoscyphus fraxineus, is spreading rapidly across Europe. It shows high levels of outcrossing and limited population structure, even at the epidemic front. The anamorphic (asexual) form produces prolific conidia, thought to function solely as spermatia (male gametes), facilitating gene flow between sympatric strains. Here, we show that conidia are capable of germination on ash leaves and in vitro, and can infect seedlings via leaves or soil. In leaves, germlings form structures resembling fruiting bodies. Additionally, H. fraxineus colonises ash debris and grows in soil in the absence of ash tissues. We propose an amended life-cycle in which wind-dispersed, insect-vectored or water-spread conidia infect ash and may sporulate in planta, as well as in forest debris. This amplifies inoculum levels of different strains in ash stands. In combination with their function as spermatia, conidia thus act to maximise gene flow between sympatric strains, including those originally present at low inoculum. Such mixing increases evolutionary potential, as well as enhancing the likelihood of gene introgression from closely-related strains or assimilation of further genetic diversity from parental Asian populations. This scenario increases the adaptability of H. fraxineus to new climates and, indeed, onto new host species. PMID:27694963

  12. Host, Pathogen, and Environmental Characteristics Predict White-Nose Syndrome Mortality in Captive Little Brown Myotis (Myotis lucifugus)

    PubMed Central

    Johnson, Joseph S.; Reeder, DeeAnn M.; McMichael, James W.; Meierhofer, Melissa B.; Stern, Daniel W. F.; Lumadue, Shayne S.; Sigler, Lauren E.; Winters, Harrison D.; Vodzak, Megan E.; Kurta, Allen; Kath, Joseph A.; Field, Kenneth A.

    2014-01-01

    An estimated 5.7 million or more bats died in North America between 2006 and 2012 due to infection with the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) during hibernation. The behavioral and physiological changes associated with hibernation leave bats vulnerable to WNS, but the persistence of bats within the contaminated regions of North America suggests that survival might vary predictably among individuals or in relation to environmental conditions. To investigate variables influencing WNS mortality, we conducted a captive study of 147 little brown myotis (Myotis lucifugus) inoculated with 0, 500, 5 000, 50 000, or 500 000 Pd conidia and hibernated for five months at either 4 or 10°C. We found that female bats were significantly more likely to survive hibernation, as were bats hibernated at 4°C, and bats with greater body condition at the start of hibernation. Although all bats inoculated with Pd exhibited shorter torpor bouts compared to controls, a characteristic of WNS, only bats inoculated with 500 conidia had significantly lower survival odds compared to controls. These data show that host and environmental characteristics are significant predictors of WNS mortality, and that exposure to up to 500 conidia is sufficient to cause a fatal infection. These results also illustrate a need to quantify dynamics of Pd exposure in free-ranging bats, as dynamics of WNS produced in captive studies inoculating bats with several hundred thousand conidia may differ from those in the wild. PMID:25409028

  13. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.

  14. Morphological and molecular variation among species of the Fusarium dimerum species group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Fusarium dimerum has been used in the past for saprotrophic fungi and opportunistic human pathogens with up to 3-septate but mostly 0- or 1-septate Fusarium-like conidia. On the basis of narrowly defined morphological characters, the varieties Pusillum, Nectrioides and Violaceum were disti...

  15. Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of detecting the Aflatoxin B1 in maize kernels inoculated with Aspergillus flavus conidia in the field was assessed using near-infrared hyperspectral imaging technique. After pixel-level calibration, wavelength dependent offset, the masking method was adopted to reduce the noise and ...

  16. Photoprotective and Antimutagenic Activity of Agaricus subrufescens Basidiocarp Extracts.

    PubMed

    da Costa, M C D; Regina, M; Cilião Filho, M; Linde, G A; do Valle, J S; Paccola-Meirelles, L D; Colauto, N B

    2015-10-01

    The photoprotective and antimutagenic activity of opened and closed basidiocarps of Agaricus subrufescens (=A. blazei; =A. brasiliensis) obtained by different extraction methods were evaluated on Aspergillus nidulans conidia submitted to ultraviolet (UV) light. The aqueous extracts were obtained by three extraction methods: maceration, infusion, and decoction, at two different extraction times. The extracts of A. subrufescens did not present toxicity for A. nidulans conidia. A suspension of A. nidulans conidia was submitted to extracts before and after the exposure to UV light. All basidiocarp extracts, regardless of the extraction method or development stage, protected A. nidulans conidia against the damaging effects of the mutagenic agent. The antimutagenic and photoprotective activity was strengthened with extracts obtained by 168-h maceration, followed by 24-h maceration and 60-min infusion and, at last, by 30-min infusion. Although the extracts presented protector effect as well as recoverer effect to the action of UV light, the preventive effect was more evident. Differences in the biological activity in function of the different development stages were detected with greater antimutagenic and photoprotective activity for the opened basidiocarps. However, the extraction method is the most important factor to be considered when compared to the basidiocarp development stage to obtain better antimutagenic and photoprotective activity of A. subrufescens basidiocarps.

  17. Comparing fungal band formulations for Asian longhorned beetle biological control.

    PubMed

    Ugine, Todd A; Jenkins, Nina E; Gardescu, Sana; Hajek, Ann E

    2013-07-01

    Experiments were conducted with the fungal entomopathogen Metarhizium brunneum to determine the feasibility of using agar-based fungal bands versus two new types of oil-formulated fungal bands for Asian longhorned beetle management. We investigated conidial retention and survival on three types of bands attached to trees in New York and Pennsylvania: standard polyester fiber agar-based bands containing fungal cultures, and two types of bands made by soaking either polyester fiber or jute burlap with oil-conidia suspensions. Fungal band formulation did not affect the number or viability of conidia on bands over the 2-month test period, although percentage conidial viability decreased significantly with time for all band types. In a laboratory experiment testing the effect of the three band formulations on conidial acquisition and beetle survival, traditional agar-based fungal bands delivered the most conidia to adult beetles and killed higher percentages of beetles significantly faster (median survival time of 27d) than the two oil-formulated materials (36-37d). We also tested the effect of band formulation on conidial acquisition by adult beetles kept individually in cages with a single band for 24h, and significantly more conidia (3-7times) were acquired by beetles from agar-based bands compared to the two oil formulations. PMID:23628142

  18. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  19. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  20. Performance of fogged disinfectants to inactivate conida of Penicillium digitatum within citrus degreening rooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fogging with formaldehyde of citrus packinghouses when the fruit are absent is a practice to control conidia of Penicillium digitatum (Pers.) Sacc., cause of citrus green mold. Replacements for formaldehyde in these facilities are needed because of worker and environmental health issues. To evaluate...

  1. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.

    PubMed

    Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian

    2016-09-01

    Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae. PMID:27449678

  2. Conidiogenic effects of mannose-binding lectins isolated from cotyledons of red kidney bean (Phaseolus vulgaris) on Alternaria alternata.

    PubMed

    Alizadeh, Hossein; Leung, David W M; Cole, Anthony L J

    2011-01-01

    Effect of proteinaceous extracts from red kidney bean cotyledons on mycelium of Alternaria alternata growing on potato dextrose agar (PDA) plates was investigated. Unexpectedly, conidia formation was induced in response to applied crude extracts. A PDA disc method was developed to quantify conidia formed. A purified fraction retaining conidiation inducing effect (CIE) was obtained following several protein purification procedures including the last step of eluting bound proteins from an Affi-gel blue gel column. Based on MALDI (matrix assisted laser desorption/ionization) mass spectrometric analysis, a previously identified mannose-binding lectin (MBL) called PvFRIL (Phaseolus vulgaris fetal liver tyrosine kinase 3-receptor interacting lectin) was present in this conidiation inducing fraction. The PvFRIL was subsequently purified using a single step mannose-agarose affinity column chromatography. When the lectin was applied exogenously to A. alternata, increased conidiation resulted. The conidia produced in response to the MBL were similar to those induced by other methods and their germ tubes were longer after 12 h growth than those induced under white light. To our knowledge this is the first report of exogenous application of a PvFRIL or another purified protein from a plant inducing conidia formation in a fungus. PMID:21112064

  3. Metacridamide B methanol-d4 monosolvate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The title compound was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the abs...

  4. Serinocyclins A and B, Cyclic Heptapeptides from Metarhizium anisopliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new cyclic heptapeptides, serinocyclins A (1) and B (2), were isolated from conidia of the entomopathogenic fungus Metarhizium anisopliae. Structures were elucidated by a combination of mass spectrometric, NMR, and X-ray diffraction techniques. Serinocyclin A (1) contains three serine units, a...

  5. Host, pathogen, and environmental characteristics predict white-nose syndrome mortality in captive little brown myotis (Myotis lucifugus).

    PubMed

    Johnson, Joseph S; Reeder, DeeAnn M; McMichael, James W; Meierhofer, Melissa B; Stern, Daniel W F; Lumadue, Shayne S; Sigler, Lauren E; Winters, Harrison D; Vodzak, Megan E; Kurta, Allen; Kath, Joseph A; Field, Kenneth A

    2014-01-01

    An estimated 5.7 million or more bats died in North America between 2006 and 2012 due to infection with the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) during hibernation. The behavioral and physiological changes associated with hibernation leave bats vulnerable to WNS, but the persistence of bats within the contaminated regions of North America suggests that survival might vary predictably among individuals or in relation to environmental conditions. To investigate variables influencing WNS mortality, we conducted a captive study of 147 little brown myotis (Myotis lucifugus) inoculated with 0, 500, 5000, 50,000, or 500,000 Pd conidia and hibernated for five months at either 4 or 10°C. We found that female bats were significantly more likely to survive hibernation, as were bats hibernated at 4°C, and bats with greater body condition at the start of hibernation. Although all bats inoculated with Pd exhibited shorter torpor bouts compared to controls, a characteristic of WNS, only bats inoculated with 500 conidia had significantly lower survival odds compared to controls. These data show that host and environmental characteristics are significant predictors of WNS mortality, and that exposure to up to 500 conidia is sufficient to cause a fatal infection. These results also illustrate a need to quantify dynamics of Pd exposure in free-ranging bats, as dynamics of WNS produced in captive studies inoculating bats with several hundred thousand conidia may differ from those in the wild. PMID:25409028

  6. Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficacy tests of three entomopathogenic fungi (Beauveria bassiana strain GHA, Metarhizium brunneum strain F52, and Metarhizium anisopliae s.l. strain ESC-1) were conducted against thrips infesting greenhouse crops of single impatiens under variable moisture conditions. Fungal conidia suspended in 0...

  7. Use of acoustic technology to monitor the time course of Rhynchophorus ferrugineus larval mortality in date palms after treatments with Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral and temporal patterns of insect sound impulses were monitored daily for 23-d periods in 8, 10, or 5 small date palm trees containing larvae dipped in 0 (control), 104 (low), or 108 (high) conidia/ml doses of entomopathogenic fungus, Beauveria bassiana (Bb 203), respectively. Each tree conta...

  8. Exposure of bed bugs to metarhizium anisopliae, and the effect of defensive secretions on fungal growth in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bed bugs Cimex lectularius were treated with conidia of the entomopathogenic fungus Metarhizium anisopliae by topical, spray, and contact exposure. One week post-exposure, inconsistent mortalities were observed, averaging 30% across all treatment groups and replicates. Microscopic examination of top...

  9. WetA Is Required for Conidiogenesis and Conidium Maturation in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee

    2014-01-01

    Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi. PMID:24186953

  10. GERMINATION, VIABILITY AND CLEARANCE OF STACHYBOTRYS CHARTARUM IN THE LUNGS OF INFANT RATS

    EPA Science Inventory

    The fungus Stachybotrys chartarum has been associated with many adverse health effects including the condition known as idiopathic pulmonary hemorrhage in infants. In order to gain some insight into possible mechanisms, viable conidia of S. chartarum were instilled into the lung...

  11. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    SciTech Connect

    Redman, R.S.; Rodriguez, R.J. Univ. of Washington, Seattle, WA . Dept. of Botany); Clifton, D.R.; Morrel, J.; Brown, G. ); Freeman, S. . Dept. of Plant Pathology)

    1999-02-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) plant-defense response were investigated in anthracnose-resistant and-susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  12. Primary in vitro culture of porcine tracheal epithelial cells in an air-liquid interface as a model to study airway epithelium and Aspergillus fumigatus interactions.

    PubMed

    Khoufache, Khaled; Cabaret, Odile; Farrugia, Cécile; Rivollet, Danièle; Alliot, Annie; Allaire, Eric; Cordonnier, Catherine; Bretagne, Stéphane; Botterel, Françoise

    2010-12-01

    Since the airway epithelium is the first tissue encountered by airborne fungal spores, specific models are needed to study this interaction. We developed such a model using primary porcine tracheal epithelial cells (PTEC) as a possible alternative to the use of primary human cells. PTEC were obtained from pigs and were cultivated in an air-liquid interface. Fluorescent brightener was employed to quantify the internalization of Aspergillus fumigatus conidia. Potential differences (Vt) and transepithelial resistances (Rt) after challenge with the mycotoxin, verruculogen, were studied. Primers for porcine inflammatory mediator genes IL-8, TNF-alpha, and GM-CSF were designed for a quantitative real-time PCR procedure to study cellular responses to challenges with A. fumigatus conidia. TEM showed the differentiation of ciliated cells and the PTEC ability to internalize conidia. The internalization rate was 21.9 ± 1.4% after 8 h of incubation. Verruculogen (10(-6) M) significantly increased Vt without having an effect on the Rt. Exposure of PTEC to live A. fumigatus conidia for 24 h induced a 10- to 40-fold increase in the mRNA levels of inflammatory mediator genes. PTEC behave similarly to human cells and are therefore a suitable alternative to human cells for studying interaction between airway epithelium and A. fumigatus. PMID:20608777

  13. Effects of surfactants on conidial germination of Myrothecium verrucaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myrothecium verrucaria has been employed as a unique biological control agent because it is highly effective against several annual and perennial weeds, including red vine, trumpet creeper, redroot pigweed, kudzu, hempsesbania and sicklepod. Although aerial conidia of M. verrucaria are hydrophilic, ...

  14. First report of Oidiopsis taurica causing powdery mildew outbreak on pepper in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pepper plants grown in large experimental plots at Beltsville Maryland showed widespread powdery mildew infection in the late summer of 2008. Extensive coverage of the abaxial surface by white patches of conidia was noted, along with chlorotic regions on the adaxial surface. Samples were taken for ...

  15. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    USGS Publications Warehouse

    Redman, R.S.; Freeman, S.; Clifton, D.R.; Morrel, J.; Brown, G.; Rodriguez, R.J.

    1999-01-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) 'plant-defense' response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1 colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  16. Potential of a strain of the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Beauveria bassiana strains were evaluated for control of western flower thrips. Strain RSB was the most virulent, causing 69-96% mortality at concentrations of 1×104 – 1×107 conidia mL-1, 10 days after inoculation of first instars. In greenhouse trials, RSB applied to broccoli foliage signifi...

  17. A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics

    PubMed Central

    Chaverri, P.; Liu, M.; Hodge, K.T.

    2008-01-01

    The present taxonomic revision deals with Neotropical species of three entomopathogenic genera that were once included in Hypocrella s. l.: Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia gen. nov (anamorph aschersonia-like). Species of Hypocrella, Moelleriella, and Samuelsia are pathogens of scale insects (Coccidae and Lecaniidae, Homoptera) and whiteflies (Aleyrodidae, Homoptera) and are common in tropical regions. Phylogenetic analyses of DNA sequences from nuclear ribosomal large subunit (28S), translation elongation factor 1-α (TEF 1-α), and RNA polymerase II subunit 1 (RPB1) and analyses of multiple morphological characters demonstrate that the three segregated genera can be distinguished by the disarticulation of the ascospores and shape and size of conidia. Moelleriella has filiform multi-septate ascospores that disarticulate at the septa within the ascus and aschersonia-like anamorphs with fusoid conidia. Hypocrella s. str. has filiform to long-fusiform ascospores that do not disarticulate and Aschersonia s. str. anamorphs with fusoid conidia. The new genus proposed here, Samuelsia, has filiform to long-fusiform ascospores that do not disarticulate and aschersonia-like anamorphs with small allantoid conidia. In addition, the present study presents and discusses the evolution of species, morphology, and ecology in Hypocrella, Moelleriella, and Samuelsia based on multigene phylogenetic analyses. PMID:18490956

  18. Effect of Tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley.

    PubMed

    Kumar, Manoj; Chand, Ramesh; Dubey, R S; Shah, Kavita

    2015-01-01

    Bipolaris sorokiniana synthesizes the 1,8-dihydroxynaphthalene (DHN) melanin via pentaketide pathway and promotes the development of aerial mycelia and conidia. A melanin biosynthesis inhibitor Tricyclazole (TCZ), brought changes when applied at 5-100 μg ml(-1) concentration in the colony morphology, radial growth, mycelia weight, melanin content, antioxidant enzymes (SOD and CAT) and extracellular hydrolytic enzymes (cellulase, pectinase, amylase and protease) in black, mixed and white isolates of B. sorokiniana. A significant alteration was recorded in antioxidant enzymes in black and mixed isolates; however, non-significant alteration was recorded in white isolate. Isolates of B. sorokiniana exposed to 100 µg ml(-1) TCZ showed significantly increased formation of superoxide radical (O 2 (·-) ) and hydrogen peroxide (H2O2)·H2O2 was detected significantly high in hyphae and conidia while, O 2 (·-) was found primarily in the conidia. Microscopic results suggest that TCZ damages not only the cell wall but also the cell membrane. The foliar application of TCZ (25, 50 and 100 µg ml(-1)) decreases the area under disease progress curve, lesion development and spore formation on barley leaves thereby reducing potential for the disease development. In conclusion TCZ influences the pathogenic ability by damaging the cell structure of hyphae and conidia and also alters the antioxidant enzyme levels in B. sorokiniana. TCZ may therefore, works against to pathogen for better management of spot blotch disease in barley infected with B. sorokiniana.

  19. Agrobacterium tumefaciens-Mediated Transformation of Valsa mali: An Efficient Tool for Random Insertion Mutagenesis

    PubMed Central

    Wang, Caixia; Guan, Xiangnan; Wang, Hanyan; Li, Guifang; Dong, Xiangli; Wang, Guoping

    2013-01-01

    Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 106/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200 μM acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 106 recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels. PMID:24381526

  20. Antifungal activity of a synthetic cationic peptide against the plant pathogens Colletotrichum graminicola and three Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 µg ml 1, although one isolate of Fusarium oxysporum was inhibited at 5 µg ml 1. Most conidia of Fusa...

  1. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  2. Spicellum ovalisporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of fungi was discovered that is associated with the leaf-cutter bee Megachile rotundata. It is described as Spicellum ovalisporum and is similar to the type and only species in Spicellum, namely S. roseum except that the conidia are ellipsoid to ovate, 3.5–5.5 x 2–2.5 µm. As the neig...

  3. Three new hecogenin glycosides from fermented leaves of Agave americana.

    PubMed

    Jin, Jian-Ming; Liu, Xi-Kui; Yang, Chong-Ren

    2003-06-01

    Eight steroidal compounds, including three new hecogenin glycosides, agamenosides D-F, were isolated from the fermented leaves of Agave americana. The structures of the new steroidal saponins were elucidated by spectroscopic data and chemical methods. The activity of the isolated compounds on deformations of mycelia germinated from conidia of Pyricularia oaryzae P-2b was evaluated.

  4. Presence of Fusarium graminearum in air associated with sorghum fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum can be included in crop rotations with wheat. However, there are no known reports on the effects of sorghum grown in rotation with wheat on the epidemiology of head scab caused by Fusarium graminearum. Conidia in air samples within two sorghum fields were collected by passive spore trapping ...

  5. An Entomopathogenic Strain of Beauveria bassiana against Frankliniella occidentalis with no Detrimental Effect on the Predatory Mite Neoseiulus barkeri: Evidence from Laboratory Bioassay and Scanning Electron Microscopic Observation

    PubMed Central

    Wu, Shengyong; Gao, Yulin; Zhang, Yaping; Wang, Endong; Xu, Xuenong; Lei, Zhongren

    2014-01-01

    Among 28 isolates of Beauveria bassiana tested for virulence against F. occidentalis in laboratory bioassays, we found strain SZ-26 as the most potent, causing 96% mortality in adults at 1×107 mL−1conidia after 4 days. The effect of the strain SZ-26 on survival, longevity and fecundity of the predatory mite Neoseiulus (Amblyseius) barkeri Hughes were studied under laboratory conditions. The bioassay results showed that the corrected mortalities were less than 4 and 8% at 10 days following inoculation of the adult and the larvae of the predator, respectively, with 1×107 conidia mL−1 of SZ-26. Furthermore, no fungal hyphae were found in dead predators. The oviposition and postoviposition durations, longevity, and fecundity displayed no significant differences after inoculation with SZ-26 using first-instar larvae of F. occidentalis as prey in comparison with untreated predator. In contrast, the preoviposition durations were significantly longer. Observations with a scanning electron microscope, revealed that many conidia were attached to the cuticles of F. occidentalis at 2 h after treatment with germ tubes oriented toward cuticle at 24 h, penetration of the insect cuticle at 36 h, and finally, fungal colonization of the whole insect body at 60 h. In contrast, we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to predatory mite. PMID:24454744

  6. Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold.

    PubMed

    Batta, Y A

    2004-11-15

    Conidia of Trichoderma harzianum were formulated in invert emulsion (water-in-oil type) at a concentration of 6.0 x 10(7) conidia/ml of the formulation. Treatments with conidia in the formulated emulsion and conidia in sterile distilled water were conducted to assess the effect on Penicillium expansum Link inoculated on apple fruits. Comparisons were made with control treatments of an uninoculated emulsion and uninoculated distilled water. The T. harzianum-containing emulsion significantly (P conidia and control with uninoculated invert emulsion (48.8%, 24.8%, and 0.6%, respectively). Mean time period needed for sporulation of P. expansum was significantly (P conidia were applied in comparison with the other types of treatments (14.2 versus 12.2, 9.0, and 8.8 days, respectively, for the other treatments). However, no significant differences (P conidia before being inoculated by P. expansum compared to the wounded fruits. This indicates the importance

  7. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  8. Damage to Trichothecium roseum caused by sodium silicate is independent from pH.

    PubMed

    Niu, Li-li; Bi, Yang; Bai, Xiao-dong; Zhang, Sheng-gui; Xue, Hua-li; Li, Yong-cai; Wang, Yi; Calderón-Urrea, Alejandro

    2016-02-01

    Trichothecium roseum is one of the most important postharvest pathogens in arid and semiarid regions. Sodium silicate (NaSi) and environmental pH have significant inhibitory effects on fungal growth. However, no study has addressed the relationship of NaSi and pH in combination and the effects on T. roseum. In this work, we showed that spore germination, germ tube elongation, and mycelial growth of T. roseum were significantly inhibited by various NaSi concentrations, which had corresponding increasing pHs. Furthermore, these NaSi solutions showed a much greater impact than did pH treatments alone. The pathogenicity of NaSi-treated conidia on a model assay (conidia-inoculated apple fruit) was dramatically reduced, whereas no changes of pathogenicity were evident for the corresponding pH (various sodium hydroxide (NaOH) solutions) treatments. Fluorescent microscopy, using propidium iodide staining, showed damage of the plasma membranes of T. roseum conidia treated with both NaSi and NaOH, although the damage was more severe with NaSi. Leakage of proteins and sugars was significantly higher in NaSi-treated and NaOH-treated conidia than in untreated controls. In addition, serious damage was observed in the conidia exposed to NaSi for longer periods of time. Ultrastructural observations showed that treatment with either NaSi or NaOH caused a plasmolysis state and disorganized organelles. Taken together the results show that NaSi has inhibitory effects on T. roseum and that the inherent higher pH of NaSi solutions of higher concentrations simply acts as an enhancer of the inhibitory effects of NaSi. PMID:26751338

  9. Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: New insights on temperature dependent-virulence.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika D; Jose, Robinson C; Goyari, Sailendra; Talukdar, Narayan C; Roy, Pranab

    2015-10-01

    Extreme temperature fluctuations affect the interaction dynamics of Cochliobolus lunatus through temperature-dependent virulence, virulence differentiation and induced-virulence which poses a major threat to global food security. The relationship between higher temperature and pathogenicity of C. lunatus on reported hosts are poorly understood. In this study, temperature stress was applied on C. lunatus to investigate the correlation among the different types of conidia. Additionally, a comparative dissection of the invasion process, infection structures and conidial germination pattern on four different Solanum tuberosum L. (potato) cultivars were performed. Based on microscopic examination, it was found that C. lunatus adopts different hyphae morphology and septation pattern at different temperature regimes and produce different types of conidia. The study showed that four-celled conidia are overproduced at elevated temperature (>30 °C) than one, two, three and five-celled conidia. Our finding revealed that C. lunatus conidia exhibit bipolar germination (>14.67%, P<0.05), unipolar germination (>35.33%, P<0.05), penetrate subcutaneously via epidermal anticlinal cell wall (>0.33%, P < 0.05) and differentially form appressoria-like structures during colonization of four different potato cultivars. Importantly, it is shown that unipolar germination and bipolar germination in C. lunatus are independently occurring phenomenon irrespective of the host. It is confirmed that C. lunatus adopt different but highly successful strategies on four different potato cultivars to incite brown-to-black leaf spot disease. Altogether, our data showed that increase in temperature enhances C. lunatus virulence on different potato cultivars irrespective of their inherent thermotolerant traits. PMID:26205908

  10. Biocontrol of the Brown-Banded Cockroach, Supella longipalpa F. (Blattaria: Blattellidae), with Entomopathogenic Fungus, Metharhizium anisopliae

    PubMed Central

    Sharififard, Mona; Mossadegh, Mohammad Saeed; Vazirianzadeh, Babak; Latifi, Seyed Mahmood

    2016-01-01

    Background: Considering to the high distribution of cockroaches as urban pests, the efficacy of different formulations of Metarhizium anisopliae strain Iran 437C were assessed against the brown-banded cockroach, Supella longipalpa F. under laboratory and field conditions. Methods: Metarhizium anisopliae isolates were screened with immersing adults of the brown-banded cockroachs in aqueous suspension of 108 conidia ml−1 followed by surface or bait treated with different doses of the most virulent isolate against the nymphs. Then formulations of conidia oil-in-water were examined versus cockroach nymphs using different plant oils and paraffin. Then they were evaluated and compared with aqueous suspension and control group. On a large-scale, the sunflower oil-in-water formulation of conidia was sprayed at houses using a hand sprayer. Results: Metarhizium anisopliae IRAN 437C was the most virulent isolate against the brown-banded cockroach, causing 100% mortality in adults at seven days post-exposure. Inoculated bait with this isolate was not enough pathogenic against the cockroach even at two weeks after treatment. Treated surface with conidia as aqueous suspension or oil-in-water formulation was more effective than the bait formulation against the cockroach caused 39.4–97.2% mortality compared with 2.5% mortality in control group after two days. Spraying the conidia formulated with sunflower oil was an effective formulation causing 76.1% reduction in the cockroach density on the third day post treatment in the houses. Conclusion: The oil-in-water formulation of M. anisopliae IRAN 437C could be recommended as a promising alternative for cockroach control. PMID:27308292

  11. Oxygen and an Extracellular Phase Transition Independently Control Central Regulatory Genes and Conidiogenesis in Aspergillus fumigatus

    PubMed Central

    Chi, Myoung-Hwan; Craven, Kelly D.

    2013-01-01

    Conidiogenesis is the primary process for asexual reproduction in filamentous fungi. As the conidia resulting from the conidiogenesis process are primarily disseminated via air currents and/or water, an outstanding question has been how fungi recognize aerial environments suitable for conidial development. In this study, we documented the somewhat complex development of the conidia-bearing structures, termed conidiophores, from several Aspergillus species in a subsurface (gel-phase) layer of solid media. A subset of the isolates studied was able to develop conidiophores in a gel-phase environment, but exposure to the aeriform environment was required for the terminal developmental transition from phialide cells to conidia. The remaining Aspergilli could not initiate the conidiogenesis process until they were exposed to the aeriform environment. Our observations of conidiophore development in high or low oxygen conditions in both aeriform and gel-phase environments revealed that oxygen and the aeriform state are positive environmental factors for inducing conidiogenesis in most of the aspergilli tested in this study. Transcriptional analysis using A. fumigatus strain AF293 confined to either the aeriform or gel-phase environments revealed that expression of a key regulatory gene for conidiophore development (AfubrlA) is facilitated by oxygen while expression of another regulatory gene controlling conidia formation from phialides (AfuabaA) was repressed regardless of oxygen levels in the gel-embedded environment. Furthermore, by comparing the developmental behavior of conidiation-defective mutants lacking genes controlling various regulatory checkpoints throughout the conidiogenesis pathway, we propose that this aerial response by the fungus requires both oxygen and the phase transition (solid to aeriform), with these environmental signals integrating into the upstream regulatory pathway and central regulatory pathway of conidiogenesis, respectively. Our findings

  12. Nothing special in the specialist? Draft genome sequence of Cryomyces antarcticus, the most extremophilic fungus from Antarctica.

    PubMed

    Sterflinger, Katja; Lopandic, Ksenija; Pandey, Ram Vinay; Blasi, Barbara; Kriegner, Albert

    2014-01-01

    The draft genome of the Antarctic endemic fungus Cryomyces antarcticus is presented. This rock inhabiting, microcolonial fungus is extremely stress tolerant and it is a model organism for exobiology and studies on stress resistance in Eukaryots. Since this fungus is a specialist in the most extreme environment of the Earth, the analysis of its genome is of important value for the understanding of fungal genome evolution and stress adaptation. A comparison with Neurospora crassa as well as with other microcolonial fungi shows that the fungus has a genome size of 24 Mbp, which is the average in the fungal kingdom. Although sexual reproduction was never observed in this fungus, 34 mating genes are present with protein homologs in the classes Eurotiomycetes, Sordariomycetes and Dothideomycetes. The first analysis of the draft genome did not reveal any significant deviations of this genome from comparative species and mesophilic hyphomycetes.

  13. Nothing Special in the Specialist? Draft Genome Sequence of Cryomyces antarcticus, the Most Extremophilic Fungus from Antarctica

    PubMed Central

    Sterflinger, Katja; Lopandic, Ksenija; Pandey, Ram Vinay; Blasi, Barbara; Kriegner, Albert

    2014-01-01

    The draft genome of the Antarctic endemic fungus Cryomyces antarcticus is presented. This rock inhabiting, microcolonial fungus is extremely stress tolerant and it is a model organism for exobiology and studies on stress resistance in Eukaryots. Since this fungus is a specialist in the most extreme environment of the Earth, the analysis of its genome is of important value for the understanding of fungal genome evolution and stress adaptation. A comparison with Neurospora crassa as well as with other microcolonial fungi shows that the fungus has a genome size of 24 Mbp, which is the average in the fungal kingdom. Although sexual reproduction was never observed in this fungus, 34 mating genes are present with protein homologs in the classes Eurotiomycetes, Sordariomycetes and Dothideomycetes. The first analysis of the draft genome did not reveal any significant deviations of this genome from comparative species and mesophilic hyphomycetes. PMID:25296285

  14. Characterization and structure of the mitochondrial small rRNA gene of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Hegedus, D D; Pfeifer, T A; Mulyk, D S; Khachatourians, G G

    1998-06-01

    The entire mitochondrial (mt) small ribosomal RNA (srRNA) gene from the entomopathogenic fungus Beauveria bassiana was sequenced. Alignment of the sequence to those of other filamentous fungi revealed gross length differences in their respective products. Construction of a secondary structural model showed that these differences were restricted to known variable srRNA subdomains. Several features were identified that were common only to the hyphomycetous fungi examined. Phylogenetic analysis indicated that the anamorph B. bassiana was more closely related to the pyrenomycete than to the plectomycete ascomycetous fungi. Based on our previous comparison of mt gene arrangement in filamentous fungi, this was unexpected. The possibility that the smaller mt genomes reflect the ancestral arrangement of genes is discussed.

  15. Interaction between aspergilli and streptomycetes in the soil of potted indoor plants: a preliminary report (contribution to the epidemiology of human aspergillosis).

    PubMed

    Staib, F; Mishra, S K; Blisse, A

    1980-02-29

    The soil of potted ornamental plants as a reservoir for Aspergillus species pathogenic for man is of epidemiological and ecological interest. Isolation of A. niger as the sole hyphomycete from the soil of potted African violets (Saintpaulia ionantha, Gesneriaceae), prompted us to look for A. inger on the surface of the roots of this plant. Small pieces of the roots were inoculated in the nutrient-free agar-gel with and without antibiotics. On the antibiotic-free gel, a dense growth of Streptomyces griseus was consistently observed around the root pieces. But the gel fortified with antibiotics showed pure growth of only A. niger. One of the two strains of S. ariseus isolated from the African violet, showed inhibitory effect against a number of fungi including A. niger but the other strain had no effect on this fungus. The possible influence of streptomycetes on the occurrence of aspergilli in the soil of potted ornamental plants is discussed. PMID:6769046

  16. Nutritional physiology and taxonomy of human-pathogenic Cladosporium-Xylohypha species.

    PubMed

    de Hoog, G S; Guého, E; Masclaux, F; Gerrits van den Ende, A H; Kwon-Chung, K J; McGinnis, M R

    1995-01-01

    Physiological profiles of type, authentic and some additional isolates of Cladosporium-Xylohypha species of purported herpotrichiellaceous relationship are established. This group comprises melanized catenate hyphomycetes which are prevalently found on the human host. The species are excluded from the genus Cladosporium and are classified in the genus Cladophialophora. Taeniolella boppii is also transferred to this genus. Cladosporium bantianum (= Xylohypha emmonsii) and C. trichoides are considered conspecific and are now referred to as Cladophialophora bantiana. Meso-erythritol, L-arabinitol, ethanol and growth at 40 degrees C are found to be the most useful criteria for species distinction. The species Cladosporium carrionii is found to be heterogeneous. The anamorph of the saprophytic ascomycete Capronia pilosella is morphologically similar to an authentic strain of Cladosporium carrionii, but physiologically distinct. A diagnostic key for the recognized Cladophialophora species and to morphologically similar taxa is provided.

  17. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus.

    PubMed

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Schierhorn, Angelika; Rücknagel, Peter; Krauss, Gerd-Joachim

    2005-07-22

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1 mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. PMID:15939401

  18. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus

    SciTech Connect

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Krauss, Gerd-Joachim . E-mail: krauss@biochemtech.uni-halle.de

    2005-07-22

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. ol.

  19. [Behavior of microorganisms in wastes from medical practice and household refuse deposited in a model landfill].

    PubMed

    Trost, M; Filip, Z

    1985-06-01

    Refuse from medical consulting rooms, a mixture of those refuse with municipal refuse (1:10), and municipal refuse were disposed aerobically and roughly anaerobically for over six months in a model landfill. Survival, proliferation, and transportation of microorganisms were estimated at different periods of time. Concentrations of aerobic bacteria and hyphomycetes decreased during the first weeks of deposition but remained later almost unchanged. Concentrations of nonsporeforming indicator bacteria (Escherichia coli, feacal streptococci) decreased more strongly, and E. coli could not be found at latest after 23 weeks. In municipal refuse alone and mixed with refuse from medical consulting rooms, Pseudomonas aeruginosa proliferated temporarily. Leaching of microorganisms from the model landfill was observed in the whole course of the disposal period.

  20. The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment.

    PubMed

    Sterflinger, Katja; Pinzari, Flavia

    2012-03-01

    Hyphomycetous fungi - so called 'mould'- are the most important agents of biodeterioration in museums, museums' storage rooms, in libraries, collections and restoration studios. Fungi are able to live at low water activities, they are perfectly adapted to indoor environments and thrive in microclimatic niches caused by condensation, lack of ventilation or water retention by hygroscopic materials. Fungi spoil valuable pieces of art aesthetically, mechanically, chemically and by degradation of organic components. Historical material made of paper and oil paintings with high amounts of organic binders are especially susceptible to fungal deterioration. In order to prevent fungal contamination or to treat already contaminated objects an integrated approach including climate control, material-specific cleaning and application of carefully selected biocides is necessary.

  1. Cutaneous hyalohyphomycosis and onychomycosis caused by Onychocola canadensis: report of the first case from Turkey.

    PubMed

    Erbagci, Zülal; Balci, Iclal; Erkiliç, Suna; Zer, Yasemin; Inci, Ramazan

    2002-08-01

    We present the first Turkish case of skin and nail infection due to Onychocola canadensis in an otherwise healthy farmer who frequently worked barefoot on soil. Cutaneous involvement consisted of scaly and hyperkeratotic lesions resembling tinea pedis, erythematous plaques, and dermal papulonodules of various sizes simulating Majocchi's granuloma. Repeated cultures from nail plates, skin scrapings and needle aspiration materials from papules or nodules all yielded the same mold on Sabouroud dextrose media with and without cycloheximide, trichophyton agar, and potato dextrose agar at 26 degrees C. The causal isolate was identified as Onychocola canadensis Sigler gen. et sp. nov., a slow-growing arthroconidial hyphomycete, on the basis of its colonial and microscopic morphology. While skin lesions were responsive to daily itraconazole in a dose of 200 mg for three months, the onychomycosis was resistant to therapy. To our knowledge, this is the first presentation of O. canadensis as the cause of cutaneous hyalohyphomycosis to date.

  2. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae).

    PubMed

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2014-12-01

    Cercosporoid fungi (formerly Cercospora s. lat.) represent one of the largest groups of hyphomycetes belonging to the Mycosphaerellaceae (Ascomycota). They include asexual morphs, asexual holomorphs, or species with mycosphaerella-like sexual morphs. Most of them are leaf-spotting plant pathogens with special phytopathological relevance. In the first part of a new monographic work, cercosporoid hyphomycetes occurring on other fungi (fungicolous species), on ferns (pteridophytes) and gymnosperms were treated. This second part deals with cercosporoid fungi on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), which covers species occurring on host plants belonging to families arranged in alphabetical order from Acoraceae to Xyridaceae, excluding Poaceae (cereals and grasses) which requires a separate treatment. The species are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the first part of this series. Neopseudocercospora, an additional recently introduced cercosporoid genus, is briefly discussed. The following taxonomic novelties are introduced: Cercospora alpiniigena sp. nov., C. neomaricae sp. nov., Corynespora palmicola comb. nov., Exosporium miyakei comb. nov., E. petersii comb. nov., Neopseudocercospora zambiensis comb. nov., Passalora caladiicola comb. nov., P. streptopi comb. nov., P. togashiana comb. nov., P. tranzschelii var. chinensis var. nov., Pseudocercospora beaucarneae comb. nov., P. constrictoflexuosa comb. et stat. nov., P. curcumicola sp. nov., P. dispori comb. nov., P. smilacicola sp. nov., P. urariigena nom. nov., Zasmidium agavicola comb. nov., Z. cercestidis-afzelii comb. nov., Z. citri-griseum comb. nov., Z. cyrtopodii comb. nov., Z. gahnae comb. nov., Z. indicum

  3. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome

    PubMed Central

    2012-01-01

    Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly

  4. Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Wanchoo, Arun; Lewis, Michael W; Keyhani, Nemat O

    2009-09-01

    The entomopathogenic fungus Beauveria bassiana and its insect host target represent a model system with which to examine host-pathogen interactions. Carbohydrate epitopes on the surfaces of fungal cells play diverse roles in processes that include adhesion, non-self recognition and immune invasion with respect to invertebrate hosts. B. bassiana produces a number of distinct cell types that include aerial conidia, submerged conidia, blastospores and haemolymph-derived cells termed in vivo blastospores or hyphal bodies. In order to characterize variations in the surface carbohydrate epitopes among these cells, a series of fluorescently labelled lectins, combined with confocal microscopy and flow cytometry to quantify the response, was used. Aerial conidia displayed the most diverse lectin binding characteristics, showing reactivity against concanavalin A (ConA), Galanthus nivalis (GNL), Griffonia simplicifolia (GSII), Helix pomatia (HPA), Griffonia simplicifolia isolectin (GSI), peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEAI) and wheatgerm agglutinin (WGA), and weak reactivity against Ricinus communis I (RCA), Sambucus nigra (SNA), Limax flavus (LFA) and Sophora japonica (SJA) lectins. Lectin binding to submerged conidia was similar to that to aerial conidia, except that no reactivity against UEAI, HPA and SJA was noted, and WGA appeared to bind strongly at specific polar spots. In contrast, the majority of in vitro blastospores were not bound by ConA, GNL, GSII, GSI, SNA, UEAI, LFA or SJA, with PNA binding in large patches, and some polarity in WGA binding noted. Significant changes in lectin binding also occurred after aerial conidial germination and in cells grown on either lactose or trehalose. For germinated conidia, differential lectin binding was noted between the conidial base, the germ tube and the hyphal tip. Fungal cells isolated from the haemolymph of the infected insect hosts Manduca sexta and Heliothis virescens appeared to shed most

  5. Effect of Soil Texture and Soil Sterilization on Susceptibility of Ovipositing Grasshoppers to Beauveria bassiana

    PubMed

    Inglis; Johnson; Kawchuk; Goettel

    1998-01-01

    The effect of conidial concentration, soil texture, and soil sterilization on the efficacy of Beauveria bassiana against ovipositing grasshoppers (Melanoplus sanguinipes) was investigated in a controlled environment. In the first experiment, mortality of female grasshoppers ovipositing into a sterile loamy-sand soil containing conidia of B. bassiana was measured. The prevalence of mortality increased as the concentration of conidia in soil increased, and a median lethal concentration of 10(4) colony-forming units (CFU) per gram of soil (dry weight) was observed. Conidia (10(2.9) to 10(3) CFU per abdomen) were recovered from the abdomens of grasshoppers ovipositing into sand containing 10(5.5) and 10(6) conidia per gram. Similar numbers of eggs were laid among treatments during the first oviposition period (1 to 7 days), but an effect of conidial concentration on eggs laid was observed during the second oviposition period (8 to 14 days). This was attributed to reduction in female numbers and not to reduction in fecundity independent of mortality. In a second experiment, grasshoppers oviposited into soils of three different textures (loamy-sand, sandy-loam, or clay-loam) that were amended with 10(5) B. bassiana conidia per gram and possessed either a viable or heat-killed microflora. There was no effect of soil texture on mortality of ovipositing grasshoppers, on the number of eggs laid, on positioning of egg pods in the soil profile, or on numbers of B. bassiana CFU recovered from female abdomens. However, a higher prevalence of mortality was observed for females ovipositing into the sterilized than nonsterilized sandy-loam and clay-loam soils. Substantial populations of fungi and bacteria were recovered from nonsterilized soils. The predominant fungi isolated from these soils were members of the genera Chrysosporium, Fusarium, Gliocladium, Penicillium, Rhizopus, and Trichoderma, whereas Bacillus, Paenibacillus, and Pseudomonas species were the most commonly

  6. Effect of fermentation media on the production, efficacy, and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule.

    PubMed

    Behle, Robert W; Jackson, Mark A

    2014-04-01

    New liquid fermentation techniques for the production of the bioinsecticidal fungus Metarhizium brunneum strain F-52 have resulted in the formation of microsclerotia (MS), a compact, melonized-hyphal structure capable of surviving desiccation and formulation as dry granules. When rehydrated, these MS granules germinate to produce conidia that can infect susceptible insects. Fermentation media containing cottonseed or soy flours as nitrogen sources and formulated at two carbon to nitrogen ratios (C:N), 30:1 or 50:1, were evaluated forproduction of microsclerotia. Dry MS granule samples were compared for storage stability based on conidia production, and insecticidal activity against larvae of the lesser mealworm, Alphitobius diaperinus (Panzer), using a potting soil bioassay. Cottonseed and soy flours were equivalent for production, MS granule viability, and insecticidal activity. Fermentation media containing higher nitrogen concentrations (30:1 C:N) resulted in greater biomass accumulation and greater production of conidia from granules regardless of the nitrogen source. MS granules made with M. brunneum cultures grown in media with 30:1 C:N produced 8.5 x 10(9) conidia per gram of granules after 8-d incubation, significantly higher than MS granules made using fungus produced using 50:1 C:N media (5.5 x 10(9) conidia per gram dry MS granules). The LC50 for larval mortality was 8.05 x 10(5) conidia per cup, equivalent to applications of 94 or 147 microg granules per cup for granules made from high and low nitrogen media, respectively. Measurements of water activity were not significantly different among granule samples (0.28-0.29) even though granules made from high nitrogen media had higher moisture content (> 5.2%) compared with granules made from low nitrogen media (< 4.6%). Higher initial conidial production was reflected in longer storage stability at 25 degrees C, with half-lives estimated at 3.7 and 1.7 wk for 30:1 and 50:1 C:N ratios, respectively. These

  7. Developmental regulators in Aspergillus fumigatus.

    PubMed

    Park, Hee-Soo; Yu, Jae-Hyuk

    2016-03-01

    The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species.

  8. Variants of Sporothrix schenckii with attenuated virulence for mice.

    PubMed

    de Lima, Renata Ferretti; Schäffer, Guido Vidal; Borba, Cintia de Moraes

    2003-09-01

    Strains of Sporothrix schenckii preserved under mineral oil were examined for virulence in BALB/c mice. The mice were inoculated with S. schenckii conidia and development of cutaneous lesions, signs of inactivity, weight loss, survival rates, number of viable yeast cells in lung and spleen, splenomegaly and organ lesions were evaluated. After intravenous injection of 7.5 x 10(6) conidia, two of five S. schenckii strains were unable to induce systemic disease and to kill the mice, only producing cord-like lesions on the tail that regressed with mouse maturation. Very small numbers of viable cells isolated from the spleen confirmed the lower invasive ability of these strains when compared with other strains studied here. These results suggest a relationship between the attenuation of virulence and the storage method under mineral oil after long periods of time.

  9. Infection-Mediated Priming of Phagocytes Protects against Lethal Secondary Aspergillus fumigatus Challenge.

    PubMed

    Savers, Amélie; Rasid, Orhan; Parlato, Marianna; Brock, Matthias; Jouvion, Gregory; Ryffel, Bernhard; Cavaillon, Jean-Marc; Eberl, Gerard; Ibrahim-Granet, Oumaïma

    2016-01-01

    Phagocytes restrict the germination of Aspergillus fumigatus conidia and prevent the establishment of invasive pulmonary aspergillosis in immunecompetent mice. Here we report that immunecompetent mice recovering from a primary A. fumigatus challenge are protected against a secondary lethal challenge. Using RAGγc knock-out mice we show that this protection is independent of T, B and NK cells. In protected mice, lung phagocytes are recruited more rapidly and are more efficient in conidial phagocytosis and killing. Protection was also associated with an enhanced expression of CXCR2 and Dectin-1 on bone marrow phagocytes. We also show that protective lung cytokine and chemokine responses are induced more rapidly and with enhanced dynamics in protected mice. Our findings support the hypothesis that following a first encounter with a non-lethal dose of A. fumigatus conidia, the innate immune system is primed and can mediate protection against a secondary lethal infection. PMID:27078879

  10. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus.

    PubMed

    Waldorf, A R; Levitz, S M; Diamond, R D

    1984-11-01

    The ability of bronchoalveolar macrophages from normal, diabetic, and cortisone-treated mice to inhibit spore germination and kill fungal spores in vivo was investigated. The data indicated that the normal host controls different fungal infections in the lungs by different mechanisms. Prevention of mucormycosis required inhibition of fungal spore germination by alveolar macrophages. In contrast, pulmonary defense against aspergillosis depended on early killing of conidia by alveolar macrophages and not on inhibition of germination by bronchoalveolar macrophages. Bronchoalveolar macrophages in diabetic and cortisone-treated animals allowed fungal spore germination, thereby permitting infection by Rhizopus oryzae. In the cortisone-treated mouse, bronchoalveolar macrophages did not kill fungal conidia and progressive infection by Aspergillus fumigatus occurred. Fungicidal activity of bronchoalveolar macrophages was measured with a new in vivo killing assay.

  11. Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand.

    PubMed

    Aoki, Takayuki; Vaughan, Martha M; McCormick, Susan P; Busman, Mark; Ward, Todd J; Kelly, Amy; O'Donnell, Kerry; Johnston, Peter R; Geiser, David M

    2015-01-01

    The B trichothecene toxin-producing clade (B clade) of Fusarium includes the etiological agents of Fusarium head blight, crown rot of wheat and barley and stem and ear rot of maize. B clade isolates also have been recovered from several wild and cultivated grasses, including Dactylis glomerata (orchard grass or cock's foot), one of the world's most important forage grasses. Two isolates from the latter host are formally described here as F. dactylidis. Phenotypically F. dactylidis most closely resembles F. ussurianum from the Russian Far East. Both species produce symmetrical sporodochial conidia that are similar in size and curved toward both ends. However, conidia of F. ussurianum typically end in a narrow apical beak while the apical cell of F. dactylidis is acute. Fusarium dactylidis produced nivalenol mycotoxin in planta as well as low but detectable amounts of the estrogenic mycotoxin zearalenone in vitro. Results of a pathogenicity test revealed that F. dactylidis induced mild head blight on wheat.

  12. Developmental regulators in Aspergillus fumigatus.

    PubMed

    Park, Hee-Soo; Yu, Jae-Hyuk

    2016-03-01

    The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species. PMID:26920882

  13. Human Phaeohyphomycotic Osteomyelitis Caused by the Coelomycete Phomopsis Saccardo 1905: Criteria for Identification, Case History, and Therapy

    PubMed Central

    Sutton, Deanna A.; Timm, William D.; Morgan-Jones, Gareth; Rinaldi, Michael G.

    1999-01-01

    The Sphaeropsidales, coelomycetous fungi producing asexual conidia within enclosed conidiomata (pycnidia), are saprobic on numerous vascular plants. Despite their ubiquitous nature, only a limited number of genera have been documented as causing human disease. We report what we believe to be the first human case of osteomyelitis due to a Phomopsis species in a chronically immunosuppressed female. The patient developed a subcutaneous abscess on the distal phalanx of the right fourth finger complicated by osteomyelitis. Operative specimens revealed fungal hyphae and a pure culture of mould. The patient was treated with a 6-month course of itraconazole. At 16 months of follow-up, she remained free of recurrence. Phomopsis species differ from the similar, more frequently reported Phoma species by having immersed, thick-walled, multiloculate conidiomata and by the production of alpha (short, ellipsoidal) and beta (long, filamentous) conidia. PMID:9986861

  14. White-Nose Syndrome: Human Activity in the Emergence of an Extirpating Mycosis.

    PubMed

    Reynolds, Hannah T; Barton, Hazel A

    2013-12-01

    In winter 2006, the bat population in Howe Cave, in central New York State, USA, contained a number of bats displaying an unusual white substance on their muzzles. The following year, numerous bats in four surrounding caves displayed unusual winter hibernation behavior, including day flying and entrance roosting. A number of bats were found dead and dying, and all demonstrated a white, powdery substance on their muzzles, ears, and wing membranes, which was later identified as the conidia of a previously undescribed fungal pathogen, Geomyces destructans. The growth of the conidia gave infected bats the appearance of having dunked their faces into powdered sugar. The disease was named white-nose syndrome and represents an emerging zoonotic mycosis, likely introduced through human activities, which has led to a precipitous decline in North American bat species. PMID:26184962

  15. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  16. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans.

    PubMed

    Mello, Thaís P; Aor, Ana Carolina; Gonçalves, Diego S; Seabra, Sergio H; Branquinha, Marta H; Santos, André L S

    2016-08-01

    Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens. PMID:27309801

  17. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants.

    PubMed

    Yek, Sze Huei; Nash, David R; Jensen, Annette B; Boomsma, Jacobus J

    2012-10-22

    Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced.

  18. [Hydrolysis of cellulose by fungi. 1. Screening of cellulolytic strains].

    PubMed

    Roussos, S; Raimbault, M

    1982-01-01

    Trichoderma harzianum was selected from 30 strains of cellulolytic fungi with the aim of producing cellulases by solid state fermentation of lignocellulosic substrates. Special attention was paid to cellulase production (i.e. carboxymethylcellulase and filter paper activity), apical growth and conidia production. Under the conditions of our experiments, T. harzianum exhibited the highest cellulasic activities with 1,315 IU/l of carboxymethyl cellulose and 80 IU/l of filter paper activity. Apical growth (1 mm/h) and yield of conidial production (3.25 x 10(10) conidia/g of substrate dry weight) were also valuable characteristics of this strain in the use of solid state fermentation.

  19. [Hydrolysis of cellulose by fungi. II. Production of cellulases by Trichoderma harzianum by fermentation in liquid media].

    PubMed

    Roussos, S; Raimbault, M

    1982-01-01

    Microcristalline cellulose (cellulose Avicel, Merck) supported growth of Trichoderma harzianum and induced production of cellulases in liquid cultures. After 50 h growth, the total cellulasic activities present in both the supernatant and the mycelium were 3,000 IU/l of carboxymethyl cellulose, 400 IU/l of filter paper activity, and 4 IU/l of cotton activity corresponding to 1.7 g/l of proteins. Cellulase production could be increased by a preliminary treatment of cellulose, and pH regulation during growth. The influence of inoculum concentration was studied and an optimum of 3 x 10(7) conidia/g dry weight of substrate was demonstrated. Using a synthetic culture medium, a soluble factor of germination was demonstrated which could be leached out by 3 successive washings of conidia.

  20. Upper boundary of the biosphere.

    PubMed Central

    Imshenetsky, A A; Lysenko, S V; Kazakov, G A

    1978-01-01

    By using meterological rockets fitted with specially designed analyzers, samples for microbiological investigation have been taken. The analyzer design prevented extraneous microorganisms from penetrating into the analyzer. Before being used, the analyzers were sterilized with high gamma-ray doses. For the first time microorganisms have been detected in the mesosphere at an altitude of 48 to 77 km. The microorganisms are microscopic fungi having black conidia or spores (Circinella muscae, Aspergillus niger, Papulaspora anomala) and one species forming green conidia (Penicillium notatum). Colonies of Mycobacterium luteum and Micrococcus albus have also grown. Five of the six species have synthesized pigments. The presence of pigmented microbial forms leads us to believe that natural selection is occurring in the mesosphere because cells possessing chromogenous pigments (carotenoids, melanins) are more resistant to ultraviolet-ray action. A greater number of microorganisms have been registered in the mesosphere during dust storms than in the absence of strong winds. Images PMID:623455

  1. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  2. BZcon1, a SANT/Myb-Type Gene Involved in the Conidiation of Cochliobolus carbonum

    PubMed Central

    Zhang, Jun-xiang; Wu, Yi-xin; Ho, Honhing; Zhang, Hao; He, Peng-fei; He, Yue-qiu

    2014-01-01

    The fungal pathogen Cochliobolus carbonum (anamorph, Bipolaris zeicola) causes Northern Leaf Spot, leading to a ubiquitous and devastating foliar disease of corn in Yunnan Province, China. Asexual spores (conidia) play a major role in both epidemics and pathogenesis of Northern Leaf Spot, but the molecular mechanism of conidiation in C. carbonum has remained elusive. Here, using a map-based cloning strategy, we cloned a single dominant gene, designated as BZcon1 (for Bipolaris zeicola conidiation), which encodes a predicted unknown protein containing 402 amino acids, with two common conserved SANT/Myb domains in N-terminal. The BZcon1 knockout mutant completely lost the capability to produce conidiophores and conidia but displayed no effect on hyphal growth and sexual reproduction. The introduced BZcon1 gene fully complemented the BZcon1 null mutation, restoring the capability for sporulation. These data suggested that the BZcon1 gene is essential for the conidiation of C. carbonum. PMID:24898708

  3. Conidiobolus macrosporus (Entomophthorales), a mosquito pathogen in Central Brazil.

    PubMed

    Montalva, Cristian; Rocha, Luiz F N; Fernandes, Éverton K K; Luz, Christian; Humber, Richard A

    2016-09-01

    A new fungal pathogen of Culicinae (Diptera: Culicidae) adults, Conidiobolus macrosporus (Entomophthorales: Ancylistaceae), was detected and isolated during a survey of mosquito pathogens close to the city of Aruanã, Goiás State, in December 2014. The morphological characteristics of C. macrosporus are presented, and reasons for some uncertainty about this identification are discussed. The pathogenicity and high virulence of this fungus for Aedes aegypti were confirmed in laboratory conditions. Mortality of adults exposed to conidia was observed within 24h of exposure to the pathogen, and increased to 100% as quickly as 3days after inoculation (with the highest conidial concentration tested, 8.3×10(4)conidia/cm(2)). Repeated attempts to obtain genomic sequence data failed despite confirmations that the DNA extraction methods were themselves successful. PMID:27506454

  4. In vitro

    PubMed Central

    Ansari, Mohammad Wahid; Tula, Suresh; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-01-01

    Mango malformation is the most important and threatening disease of recent times, primarily because of persistent lacuna in complete understanding of its nature. Diverse Fusarium spp, including F. mangiferae, were found to be associated with the disease. Here, F. mangiferae from mango cv Dashehri was morphologically characterized. Typically, oval-shaped microconidia without septum and crescent-shaped macroconidia with 3-septate were more often observed, whereas not a single chlamydospore was detected. The length and width of micro- and macro-conidia were 7.5, 55, 3.2, and 3.5, respectively. The plant growth regulators such as NAA, GA3, BAP and ethrel were found to induce in vitro germination of conidia of F. mangiferae after 12 h. In contrast, antimalformin silver nitrate (AgNO3) inhibits conidial germination in vitro and none of conidia was germinated beyond 500 ppm, however antimalformin glutathione was highly effective in stimulating conidial germination of F. mangiferae in vitro at > 1000 ppm after 24 h. We observed that the response of F. mangiferae to germinate the conidia in vitro under influence of plant growth regulators and antimalformins is not coincided with earlier findings of reduced disease incidence by exogenous application of these compounds. The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle. Further, a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set, which needs to be investigated. PMID:24505497

  5. Cladophialophora bantiana as an Emerging Pathogen in Animals: Case Report of Equine Endometritis and Review of the Literature.

    PubMed

    Rantala, Merja; Attia, Stella; Koukila-Kähkölä, Pirkko; de Hoog, Sybren; Anttila, Marjukka; Katila, Terttu

    2015-09-01

    We present an unusual equine endometritis case associated with Cladophialophora bantiana in a 15-year-old mare. The mare displayed infertility and uterine fluid accumulation with numerous black, hairy granules. Microscopically, the fluid revealed numerous septate, dark fungal hyphae and conidia in chains. Culture yielded C. bantiana (CBS 138271); the species was confirmed by internal transcribed spacer (ITS) sequencing. Treatment was unsuccessful. C. bantiana causes cerebral phaeohyphomycosis in humans, while animal cases are rare. Animal cases are reviewed. PMID:26085616

  6. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation.

    PubMed

    Mascarin, Gabriel Moura; Kobori, Nilce Naomi; de Jesus Vital, Rayan Carlos; Jackson, Mark Alan; Quintela, Eliane Dias

    2014-05-01

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 10⁶ l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 10⁷ l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 10⁹ conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months.

  7. Asexual development is increased in Neurospora crassa cat-3-null mutant strains.

    PubMed

    Michán, Shaday; Lledías, Fernando; Hansberg, Wilhelm

    2003-08-01

    We use asexual development of Neurospora crassa as a model system with which to determine the causes of cell differentiation. Air exposure of a mycelial mat induces hyphal adhesion, and adherent hyphae grow aerial hyphae that, in turn, form conidia. Previous work indicated the development of a hyperoxidant state at the start of these morphogenetic transitions and a large increase in catalase activity during conidiation. Catalase 3 (CAT-3) increases at the end of exponential growth and is induced by different stress conditions. Here we analyzed the effects of cat-3-null strains on growth and asexual development. The lack of CAT-3 was not compensated by other catalases, even under oxidative stress conditions, and cat-3(RIP) colonies were sensitive to H(2)O(2), indicating that wild-type (Wt) resistance to external H(2)O(2) was due to CAT-3. cat-3(RIP) colonies grown in the dark produced high levels of carotenes as a consequence of oxidative stress. Light exacerbated oxidative stress and further increased carotene synthesis. In the cat-3(RIP) mutant strain, increased aeration in liquid cultures led to increased hyphal adhesion and protein oxidation. Compared to the Wt, the cat-3(RIP) mutant strain produced six times more aerial hyphae and conidia in air-exposed mycelial mats, as a result of longer and more densely packed aerial hyphae. Protein oxidation in colonies was threefold higher and showed more aerial hyphae and conidia in mutant strains than did the Wt. Results indicate that oxidative stress due to lack of CAT-3 induces carotene synthesis, hyphal adhesion, and more aerial hyphae and conidia.

  8. Cladophialophora bantiana as an Emerging Pathogen in Animals: Case Report of Equine Endometritis and Review of the Literature.

    PubMed

    Rantala, Merja; Attia, Stella; Koukila-Kähkölä, Pirkko; de Hoog, Sybren; Anttila, Marjukka; Katila, Terttu

    2015-09-01

    We present an unusual equine endometritis case associated with Cladophialophora bantiana in a 15-year-old mare. The mare displayed infertility and uterine fluid accumulation with numerous black, hairy granules. Microscopically, the fluid revealed numerous septate, dark fungal hyphae and conidia in chains. Culture yielded C. bantiana (CBS 138271); the species was confirmed by internal transcribed spacer (ITS) sequencing. Treatment was unsuccessful. C. bantiana causes cerebral phaeohyphomycosis in humans, while animal cases are rare. Animal cases are reviewed.

  9. Isolation and Characterization of a New Fungal Species, Chrysosporium ophiodiicola, from a Mycotic Granuloma of a Black Rat Snake (Elaphe obsoleta obsoleta)▿

    PubMed Central

    Rajeev, S.; Sutton, D. A.; Wickes, B. L.; Miller, D. L.; Giri, D.; Van Meter, M.; Thompson, E. H.; Rinaldi, M. G.; Romanelli, A. M.; Cano, J. F.; Guarro, J.

    2009-01-01

    Isolation and characterization of the new species Chrysosporium ophiodiicola from a mycotic granuloma of a black rat snake (Elaphe obsoleta obsoleta) are reported. Analysis of the sequences of different fragments of the ribosomal genes demonstrated that this species belongs to the Onygenales and that this species is genetically different from other morphologically similar species of Chrysosporium. This new species is unique in having both narrow and cylindrical-to-slightly clavate conidia and a strong, pungent odor. PMID:19109465

  10. Screening of high toxic Metarhizium strain against Plutella xylostella and its marking with green fluorescent protein.

    PubMed

    Cui, Qianqian; Zhang, Yi; Zang, Yanchao; Nong, Xiangqun; Wang, Guangjun; Zhang, Zehua

    2014-10-01

    Entomopathogenic fungus is proposed to be one of the best biocontrol agents against the destructive insect pest Plutella xylostella. In this study, we tested the virulence of 11 Metarhizium strain isolates against P. xylostella using a leaf dipping method, and found one strain, named 609, which had displayed the highest pathogenicity. Bioassay results showed that the accumulated corrected mortality rate was 86.7 % on the eighth day after inoculation with a spore concentration 1 × 10(8) conidia/mL, and that the time to 50 % lethality was 5.7-day. The strain was identified as Metarhizium anisopliae var. acridum by internal transcribed spacer (ITS) region sequencing. A green fluorescent protein (GFP) marker containing vector, camben-gfp, was constructed and delivered into strain 609 by Agrobacterium tumefaciens-mediated transformation. Six positive clones expressing GFP were selected and tested for toxicity against P. xylostella, all of which displayed the same toxicity as the parental wild type strain. The survival rate of transformant T1 was investigated by monitoring GFP levels at 4-day intervals after inoculation into soil. We found that the concentration of Metarhizium spores decreased sharply from 1 × 10(7) conidia/g to 1 × 10(6) conidia/g in the first 5 days after inoculation. The decreasing trend then stabilized and the spore count declined to approximately 1 × 10(4)-10(5) conidia/g after 1 month. The results of this study indicate that the expression of gfp gene in strain 609 does not alter the virulence capability of Metarhizium. This strain will therefore be useful for the control of P. xylostella and as a tool to study molecular biology properties and monitor colonization of M. anisopliae in the field. PMID:25037866

  11. Apollo MEED mycology revisited and reviewed, including the Trichophyton terrestre keratinophilic growth at splashdown and 23 years after exposure to space parameters.

    PubMed

    Volz, P A; Long, J D; Veselenak, J M

    1995-01-01

    Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23.

  12. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion.

    PubMed

    Zarember, Kol A; Sugui, Janyce A; Chang, Yun C; Kwon-Chung, Kyung J; Gallin, John I

    2007-05-15

    Aspergillus fumigatus, a common mold, rarely infects humans, except during prolonged neutropenia or in cases of chronic granulomatous disease (CGD), a primary immunodeficiency caused by mutations in the NADPH oxidase that normally produces fungicidal reactive oxygen species. Filamentous hyphae of Aspergillus are killed by normal, but not CGD polymorphonuclear leukocytes (PMN); however, the few studies on PMN-mediated host defenses against infectious conidia (spores) of this organism have yielded conflicting results, some showing that PMN do not inhibit conidial growth, with others showing that they do, most likely using reactive oxygen species. Given that CGD patients are exposed daily to hundreds of viable A. fumigatus conidia, yet considerable numbers of them survive years without infection, we reasoned that PMN use ROS-independent mechanisms to combat Aspergillus. We show that human PMN from both normal controls and CGD patients are equipotent at arresting the growth of Aspergillus conidia in vitro, indicating the presence of a reactive oxygen species-independent factor(s). Cell-free supernatants of degranulated normal and CGD neutrophils both suppressed fungal growth and were found to be rich in lactoferrin, an abundant PMN secondary granule protein. Purified iron-poor lactoferrin at concentrations occurring in PMN supernatants (and reported in human mucosal secretions in vivo) decreased fungal growth, whereas saturation of lactoferrin or PMN supernatants with iron, or testing in the presence of excess iron in the form of ferritin, completely abolished activity against conidia. These results demonstrate that PMN lactoferrin sequestration of iron is important for host defense against Aspergillus. PMID:17475866

  13. Laboratory evaluation of the entomopathogenic fungus, Metarhizium anisopliae for the control of the groundnut bruchid, Caryedon serratus on groundnut.

    PubMed

    Ekesi, S; Egwurube, E A.; Akpa, A D.; Onu, I

    2001-10-01

    The pathogenicity of five isolates of Metarhizium anisopliae to adult Caryedon serratus was evaluated in the laboratory. All the isolates tested were virulent to the beetle but pathogenicity varied among the isolates. One isolate, CPD 4 was consistently superior to all other isolates in terms of mortality of the beetle, protection of groundnut pods from damage, reduction in progeny production and repellency to the beetle. At 10 days post-treatment, adult mortality treated with 0.1, 0.5 and 1.0g of dry conidia equivalent to 3.6x10(8), 1.8x10(9) and 3.6x10(9) conidia of isolate CPD 4 per 50g of groundnut pods was 100% which did not differ significantly from pirimiphos-methyl-treated pods at 10ppm. At the lowest dosage of 0.1g of conidia per 50g of pods, damage in pods protected with isolate CPD 4 was 5% which did not differ significantly from the 2% damage in pods protected by pirimiphos-methyl at 10ppm but significantly differed from damage in untreated pods which was 26%. Isolate CPD 4 caused complete reduction in progeny emergence at all dosages tested. It also exhibited some degree of repellency to the beetle with percentage repellency values of between 40-79% at concentrations of 0.1-1.0g of conidia per 50g of groundnut pods. These combined virulence and repellency characteristics of this isolate may increase its protectant potential against C. serratus.

  14. Sprays of emulsifiable Beauveria bassiana formulation are ovicidal towards Tetranychus urticae (Acari: Tetranychidae) at various regimes of temperature and humidity.

    PubMed

    Shi, Wei-Bing; Feng, Ming-Guang; Liu, Shu-Sheng

    2008-12-01

    Aerial conidia of Beauveria bassiana in an emulsifiable formulation germinated by >95% after 24 h exposure to the regimes of 20, 25 and 30 degrees C with 51%, 74% and 95% RH. Ovicidal activities of the formulation towards two-spotted spider mite, Tetranychus urticae, were assayed at the concentrations of 0, 18, 160 and 693 conidia mm(-2) sprayed separately onto fava bean leaves including 39 (25-76) eggs per capita. All the sprayed eggs on the leaves were directly exposed to the different regimes for hatch after 24 h maintenance in covered Petri dishes. Generally, hatched proportions increased over post-spray days and decreased with the elevated fungal concentrations; no more eggs hatched from day 9 or 10 onwards. Based on the counts of the hatched/non-hatched eggs in the different regimes, the final egg mortalities were 15.0-40.4%, 48.9-66.6% and 62.9-87.5% at the low, medium and high concentrations, respectively, but only 5.6-11.3% in blank controls. The RH effect on the fungal action was significant at 20 and 25 degrees C but not at 30 degrees C whereas the effect of temperature was significant at 51% and 74% RH but not at 95% RH. Probit analysis of the egg mortalities versus the fungal sprays generated median lethal concentrations (LC(50)) of 65-320 conidia mm(-2) at all the regimes, and of only 65-78 conidia mm(-2) at 25-30 degrees C with 74-95% RH. The results highlight ovicidal activities of the emulsifiable formulation against the mite species at the tested regimes and its potential use in spider mite control. PMID:18584129

  15. Plant waxy bloom on peas affects infection of pea aphids by Pandora neoaphidis.

    PubMed

    Duetting, Patrick S; Ding, Hongjian; Neufeld, Jeffrey; Eigenbrode, Sanford D

    2003-11-01

    This study examined the effects of the surface wax bloom of pea plants, Pisum sativum, on infection of pea aphids, Acyrthosiphon pisum, by the fungal pathogen Pandora neoaphidis. In prior field surveys, a higher proportion of P. neoaphidis-killed pea aphids (cadavers) had been observed on a pea line with reduced wax bloom, as compared with a sister line with normal surface wax bloom. Laboratory bioassays were conducted in order to examine the mechanisms. After plants of each line infested with aphids were exposed to similar densities of conidia, the rate of accumulation of cadavers on the reduced wax line was significantly greater than on the normal wax bloom line; at the end of the experiment (13d), the proportion of aphid cadavers on the reduced wax line was approximately four times that on the normal wax bloom line. When plants were exposed to conidia first and then infested with aphids, the rate of accumulation of cadavers was slightly but significantly greater on the reduced wax line, and infection at the end of the experiment (16d) did not differ between the lines. When aphids were exposed first and then released onto the plants, no differences in the proportion of aphid cadavers were observed between the pea lines. Greater infection of pea aphid on reduced wax peas appears to depend upon plants being exposed to inoculum while aphids are settled in typical feeding positions on the plant. Additional experiments demonstrated increased adhesion and germination by P. neoaphidis conidia to leaf surfaces of the reduced wax line as compared with normal wax line, and this could help explain the higher infection rate by P. neoaphidis on the reduced wax line. In bioassays using surface waxes extracted from the two lines, there was no effect of wax source on germination of P. neoaphidis conidia.

  16. Cutaneous phaeohyphomycosis caused by Alternaria longipes in an immunosuppressed patient.

    PubMed Central

    Gené, J; Azón-Masoliver, A; Guarro, J; Ballester, F; Pujol, I; Llovera, M; Ferrer, C

    1995-01-01

    Alternaria longipes was reported as the agent of a cutaneous infection in a patient with a neoplastic disease. The fungus has not been reported previously as causing disease in humans. It was distinguished by its rather small conidia with smooth or slightly verruculose walls and a pale brown beak which rarely extended into a secondary conidiophore. In vitro inhibitory activities of amphotericin B, ketoconazole, itraconazole, and miconazole were shown. PMID:8567925

  17. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products.

    PubMed

    Oliveira, Daian Guilherme Pinto; Pauli, Giuliano; Mascarin, Gabriel Moura; Delalibera, Italo

    2015-12-01

    Techniques for directly determining conidial viability have widespread use but also have limitations for quality control assessments of formulated mycoinsecticides, especially in emulsifiable oil. This study proposes a new method based on adaptations of already established protocols that use the direct viability method to make it more economical and accurate, thus enabling its use in the evaluation of formulated products. Appropriate parameters and conditions were defined using products based on Beauveria bassiana and Metarhizium anisopliae in the forms of pure conidia, fungus-colonized rice, ground fungus-colonized rice and oil dispersion. The established protocol, named ESALQ, consists of the transfer of 150 μL of a suspension containing about 0.7 and 1 × 10(6) conidia/mL onto Rodac® plates with 5 mL of potato dextrose agar culture medium + 5 mg/L of Pentabiotic® and 10 μL/L of Derosal® (Carbendazim) and subsequent counting of germinated and non-germinated conidia. For the ground fungus-colonized rice and oil dispersion formulations, prior to transferring the fungal suspension to the medium, rice should be decanted and the oil removed, respectively. This method was compared with another direct viability method and with the Colony-forming unit (CFU) and Fluorescence viability methods, comparing the accuracy obtained using the coefficient of variation (CV) of the analysis of each method. The results showed that in addition to the ease of application, the developed method has higher accuracy than the other methods (with a CV up to seven times lower than in the Standard method and up to 32 times lower than CFU). The CFU method underestimated the concentration of viable conidia in most of the tested fungal forms, and in the emulsifiable oil products, these values were 54% lower for B. bassiana and 84% lower for M. anisopliae. The adaptations and standardizations proposed in the ESALQ method showed effective improvements for routine quality assessment of

  18. [Bahaviour of Solenopsis invicta workers to protect pupae from infection by Metarhizium anisopliae].

    PubMed

    Qiu, Hua-Long; Lü, Li-Hua; Zhang, Chun-Yang; He, Yu-Rong

    2014-09-01

    Previous studies have focused on how ants deal with workers infected by pathogens but how pupae are protected from infection by fungi is not well understood. The behavioral mechanisms adopted by Solenopsis invicta (red imported fire ants, RIFA) adult workers to protect pupae against Metarhizium anisopliae infection were studied. We observed the behavioral changes of M. anisopliae infected adult workers in the brood chamber as well as the behavioral changes of healthy workers to fungus exposed pupae. The time of fungus infected workers spent in the pupal chamber reduced significantly from 103.4 s on the first day to 38.5 s on the third day. Moreover, the percentage of time spending on brood care in the pupal chamber reduced significantly from 13.6% on the first day to 3.5% on the third day. When pupae were infected by M. anisopliae, workers performed 5.3 times more grooming to fungus exposed pupae than controls, and the duration of each grooming bout to fungus exposed pupae was 5.2 times longer than controls. Grooming did remove many conidia on the surface of fungus exposed pupae. The mean numbers of conidia on the surface of pupae were 103.1, 51.6 and 31.3 when no workers, two workers and ten workers accompanied a pupa, respectively. The presence of workers resulted in a lower germination rate of conidia on the surface of pupae. The mean germination rates of conidia after 20 h of inoculation on the surface of pupae were 95.1%, 80.4% and 59.9%, in the treatments with no worker, two workers and ten workers respectively. There was a positive correlation between the emergence rate of pupae and the number of accompanying workers. RIFA protect their pupae from infection by M. anisopliae through social be- haviors which enable the sustainable development of their population. PMID:25757319

  19. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus.

    PubMed

    Mech, Franziska; Thywissen, Andreas; Guthke, Reinhard; Brakhage, Axel A; Figge, Marc Thilo

    2011-05-05

    Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly increased.

  20. Cladophialophora bantiana as an Emerging Pathogen in Animals: Case Report of Equine Endometritis and Review of the Literature

    PubMed Central

    Attia, Stella; Koukila-Kähkölä, Pirkko; de Hoog, Sybren; Anttila, Marjukka; Katila, Terttu

    2015-01-01

    We present an unusual equine endometritis case associated with Cladophialophora bantiana in a 15-year-old mare. The mare displayed infertility and uterine fluid accumulation with numerous black, hairy granules. Microscopically, the fluid revealed numerous septate, dark fungal hyphae and conidia in chains. Culture yielded C. bantiana (CBS 138271); the species was confirmed by internal transcribed spacer (ITS) sequencing. Treatment was unsuccessful. C. bantiana causes cerebral phaeohyphomycosis in humans, while animal cases are rare. Animal cases are reviewed. PMID:26085616

  1. Automated Image Analysis of the Host-Pathogen Interaction between Phagocytes and Aspergillus fumigatus

    PubMed Central

    Guthke, Reinhard; Brakhage, Axel A.; Figge, Marc Thilo

    2011-01-01

    Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly increased. PMID

  2. [Effects of Beauveria bassiana on Myzus persicae and its two predaceous natural enemies].

    PubMed

    Zhu, Hong; Luo, Xu-mei; Song, Jin-xin; Fan, Mei-zhen; Li, Zeng-zhi

    2011-09-01

    A Beauveria bassiana strain Bb21 was isolated from naturally infected green peach aphid Myzus persicae (Hemiptera: Aphididae). The effects of the strain on M. persicae and its two predaceous natural enemies Chrysoperla carnea (Neuroptera: Chrysopidae) and Harmonia axyridis (Coleoptera: Coccinellidae) were investigated under laboratory conditions. Bb21 had strong pathogenicity to M. persicae, with the LD50 of 97 conidia x mm(-2) (45-191, 95% confidence interval), but was less pathogenic to the second instar nymph of C. carnea, with the LD50 of 1089 conidia x mm(-2). The LD50 for C. carnea was 10.2 times higher than that for M. persicae. The pathogenicity of Bb21 to H. axyridis was very weak, with a low infection rate of 13% even at a high concentration 5 x 10(8) conidia x mL(-1). The Bb21 at low conidia concentration had less effect on the developmental period and fecundity of the two predaceous natural enemies. However, when applied at the high concentration 5 x 10(8) spores x mL(-1), Bb21 shortened the larval stage of H. axyridis averagely by 1.4 d and decreased the adult emergence rate and fecundity by 33% and 14%, respectively, and shortened the larval stage of C. carnea averagely by 0.7 d and decreased the adult emergence rate and fecundity by 24% and 11%, respectively. Since the LD50 for green peach aphid was much lower than that for the two predaceous natural enemies, and had very low effect on the adult emergence rate and fecundity of the two predators at the concentration recommended for field spray, Bb21 could be applied as a biocontrol agent of M. persicae in the integrated management of pernicious organisms.

  3. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  4. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.

    PubMed

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2008-11-01

    There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of several Hypocreales fungi to pecan aphids. In the first experiment we tested the virulence of Isaria fumosorosea (ARSEF 3581) blastospores to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Rates of 1x10(7) or 1x10(8) spores per ml were applied in 2 ml via a spray tower to 90 mm Petri dishes containing 10 aphids each. Mortality and mycosis were determined after 24, 48 and 72 h. Treatment effects were observed by 48 h post-application, and by 72 h the higher application rate caused >90% mortality and mycosis in M. caryella and M. caryaefoliae, whereas <70% was observed in M. pecanis. We conducted two subsequent experiments (Experiments 2 and 3), using the same methodology, to compare the virulence of several Hypocreales species and strains against the aphid of primary economic concern to most pecan growers, M. caryaefoliae. In Experiment 2, we compared blastospores and conidia of two I. fumosorosea strains (ARSEF 3581 and ATCC 20874 [= strain 97]). The blastospores of ARSEF 3581 and conidia of ATCC 20874 showed higher virulence than other treatments and thus were included in Experiment 3, which also compared the virulence of conidia of Beauveria bassiana (GHA strain) and Metarhizium anisopliae (F52 strain). Results in Experiment 3 indicated the highest virulence in I. fumosorosea 3581 blastospores and M. anisopliae (F52) followed by I. fumosorosea (20874) conidia. The detection of pathogenicity to pecan aphids establishes the potential for commercial usage and additional study. Results reported here will narrow treatments to test in future greenhouse and field trials. PMID:18675272

  5. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  6. Apollo MEED mycology revisited and reviewed, including the Trichophyton terrestre keratinophilic growth at splashdown and 23 years after exposure to space parameters.

    PubMed

    Volz, P A; Long, J D; Veselenak, J M

    1995-01-01

    Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23. PMID:7476563

  7. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Vanittanakom, Nongnuch

    2010-12-01

    We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.

  8. Rapid enumeration of low numbers of moulds in tea based drinks using an automated system.

    PubMed

    Tanaka, Kouichi; Yamaguchi, Nobuyasu; Baba, Takashi; Amano, Norihide; Nasu, Masao

    2011-01-31

    Aseptically prepared cold drinks based on tea have become popular worldwide. Contamination of these drinks with harmful microbes is a potential health problem because such drinks are kept free from preservatives to maximize aroma and flavour. Heat-tolerant conidia and ascospores of fungi can survive pasteurization, and need to be detected as quickly as possible. We were able to rapidly and accurately detect low numbers of conidia and ascospores in tea-based drinks using fluorescent staining followed by an automated counting system. Conidia or ascospores were inoculated into green tea and oolong tea, and samples were immediately filtered through nitrocellulose membranes (pore size: 0.8 μm) to concentrate fungal propagules. These were transferred onto potato dextrose agar and incubated for 23 h at 28 °C. Fungi germinating on the membranes were fluorescently stained for 30 min. The stained mycelia were counted selectively within 90s using an automated counting system (MGS-10LD; Chuo Electric Works, Osaka, Japan). Very low numbers (1 CFU/100ml) of conidia or ascospores could be rapidly counted, in contrast to traditional labour intensive techniques. All tested mould strains were detected within 24h while conventional plate counting required 72 h for colony enumeration. Counts of slow-growing fungi (Cladosporium cladosporioides) obtained by automated counting and by conventional plate counting were close (r(2) = 0.986). Our combination of methods enables counting of both fast- and slow-growing fungi, and should be useful for microbiological quality control of tea-based and also other drinks.

  9. Testing anti-fungal activity of a soil-like substrate for growing plants in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Nesterenko, E. V.; Kozlov, V. A.; Khizhnyak, S. V.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.; Liu, Hong; Xing, Yidong; Hu, Enzhu

    2009-10-01

    The object of this research is to study a soil-like substrate (SLS) to grow plants in a Bioregenerative Life Support System (BLSS). Wheat and rice straw were used as raw materials to prepare SLS. Anti-fungal activity of SLS using test cultures of Bipolaris sorokiniana, a plant-pathogenic fungus which causes wheat root rot was studied. Experiments were conducted with SLS samples, using natural soil and sand as controls. Infecting the substrates, was performed at two levels: the first level was done with wheat seeds carrying B. sorokiniana and the second level with seeds and additional conidia of B. sorokiniana from an outside source. We measured wheat disease incidence and severity in two crop plantings. Lowest disease incidence values were obtained from the second planting, SLS: 26% and 41% at the first and the second infection levels, respectively. For soil the values were 60% and 82%, respectively, and for sand they were 67% and 74%, respectively. Wheat root rot in the second crop planting on SLS, at both infection levels was considerably less severe (9% and 13%, respectively) than on natural soil (20% and 33%) and sand (22% and 32%). SLS significantly suppressed the germination of B. sorokiniana conidia. Conidia germination was 5% in aqueous SLS suspension, and 18% in clean water. No significant differences were found regarding the impact on conidia germination between the SLS samples obtained from wheat and rice straw. The anti-fungal activity in SLS increased because of the presence of worms. SLS also contained bacteria stimulating and inhibiting B. sorokiniana growth.

  10. A maize lectin-like protein with antifungal activity against Aspergillus flavus.

    PubMed

    Baker, R L; Brown, R L; Chen, Z-Y; Cleveland, T E; Fakhoury, A M

    2009-01-01

    The filamentous fungus Aspergillus flavus causes an ear rot on maize and produces a mycotoxin (aflatoxin) in colonized maize kernels. Aflatoxins are carcinogenic to humans and animals upon ingestion. Aflatoxin contamination results in a large loss of profits and marketable yields for farmers each year. Several research groups have worked to pinpoint sources of resistance to A. flavus and the resulting aflatoxin contamination in maize. Some maize genotypes exhibit greater resistance than others. A proteomics approach has recently been used to identify endogenous maize proteins that may be associated with resistance to the fungus. Research has been conducted on cloning, expression, and partial characterization of one such protein, which has a sequence similar to that of cold-regulated proteins. The expressed protein, ZmCORp, exhibited lectin-like hemagglutination activity against fungal conidia and sheep erythrocytes. Quantitative real-time PCR assays revealed that ZmCOR is expressed 50% more in maize kernels from the Mp420 line, a type of maize resistant to A. flavus, compared with the expression level of the gene in the susceptible B73 line. ZmCORp exhibited fungistatic activity when conidia from A. flavus were exposed to the protein at a final concentration of 18 mM. ZmCORp inhibited the germination of conidia by 80%. A 50% decrease in mycelial growth resulted when germinated conidia were incubated with the protein. The partial characterization of ZmCORp suggests that this protein may play an important role in enhancing kernel resistance to A. flavus infection and aflatoxin accumulation. PMID:19205472

  11. Ecthyma-like phaeohyphomycosis caused by Cladosporium cladosporioides.

    PubMed

    Duquia, Rodrigo Pereira; de Almeida, Hiram Larangeira; Vettorato, Gerson; Rocha, Nara Moreira; de Castro, Luis Antonio Suita

    2010-11-01

    A case of cutaneous phaeohyphomycosis caused by Cladosporium cladosporioides in a 50-year-old housewife is described. The clinical presentation was an ecthyma-like crusted lesion on the back of her left hand. Scanning electron microscopy of the culture showed the conidiophores and the limoniform or ellipsoidal conidia, with a slightly verrucous surface. The lesion was removed surgically, with no relapses after 6-month follow up.

  12. The N-terminus region of the putative C2H2 transcription factor Ada1 harbors a species-specific activation motif that regulates asexual reproduction in Fusarium verticillioides.

    PubMed

    Malapi-Wight, Martha; Kim, Jung-Eun; Shim, Won-Bo

    2014-01-01

    Fusarium verticillioides is an important plant pathogenic fungus causing maize ear and stalk rots. In addition, the fungus is directly associated with fumonisin contamination of food and feeds. Here, we report the functional characterization of Ada1, a putative Cys2-His2 zinc finger transcription factor with a high level of similarity to Aspergillus nidulans FlbC, which is required for the activation of the key regulator of conidiation brlA. ADA1 is predicted to encode a protein with two DNA binding motifs at the C terminus and a putative activator domain at the N terminus region. Deletion of the flbC gene in A. nidulans results in "fluffy" cotton-like colonies, with a defect in transition from vegetative growth to asexual development. In this study we show that Ada1 plays a key role in asexual development in F. verticillioides. Conidia production was significantly reduced in the knockout mutant (Δada1), in which aberrant conidia and conidiophores were also observed. We identified genes that are predicted to be downstream of ADA1, based on A. nidulans conidiation signaling pathway. Among them, the deletion of stuA homologue, FvSTUA, resulted in near absence of conidia production. To further investigate the functional conservation of this transcription factor, we complemented the Δada1 strain with A. nidulans flbC, F. verticillioides ADA1, and chimeric constructs. A. nidulans flbC failed to restore conidia production similar to the wild-type level. However, the Ada1N-terminal domain, which contains a putative activator, fused to A. nidulans FlbC C-terminal motif successfully complemented the Δada1 mutant. Taken together, Ada1 is an important transcriptional regulator of asexual development in F. verticillioides and that the N-terminus domain is critical for proper function of this transcription factor.

  13. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta.

    PubMed

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  14. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation.

    PubMed

    Hillmann, Falk; Novohradská, Silvia; Mattern, Derek J; Forberger, Tilmann; Heinekamp, Thorsten; Westermann, Martin; Winckler, Thomas; Brakhage, Axel A

    2015-08-01

    Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.

  15. Screening of tropical isolates of Metarhizium anisopliae for virulence to the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae).

    PubMed

    Sun, Xiaodong; Yan, Wei; Qin, Weiquan; Zhang, Jing; Niu, Xiaoqing; Ma, Guangchang; Li, Fuheng

    2016-01-01

    The red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is a serious pest of the palm tree in tropical regions of the world. One strain of Metarhizium sp. ZJ-1, isolated from Chinese soils, was evaluated for growth characteristics, and screened for its virulence to R. ferrugineus larvae in laboratory conditions. An approximately 685-bp fragment was amplified by ITS (ITS1-5.8S-ITS2) PCR from strain ZJ-1, further phylogenetic analysis revealed that 93 % similarity to Metarhizium anisopliae. Inoculation of 1 × 10(8) conidia/mL caused 100 % mortality of R. ferrugineus, LT50 levels of ZJ-1 were 1.66 days (1 × 10(8) conidia/mL), indicating that the conidia of strain ZJ-1 were highly virulent. These results suggest that M. anisopliae ZJ-1 has potential as an effective and persistent biological control agent for R. ferrugineus. PMID:27468401

  16. GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis.

    PubMed

    Mouyna, Isabelle; Aimanianda, Vishukumar; Hartl, Lukas; Prevost, Marie-Christine; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Legendre, Rachel; Coppee, Jean-Yves; Latgé, Jean-Paul

    2016-09-01

    The fungal cell wall is a rigid structure because of fibrillar and branched β-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on β-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-β-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo β-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation. PMID:27306610

  17. Photodynamic inactivation of mold fungi spores by newly developed charged corroles.

    PubMed

    Preuß, Annegret; Saltsman, Irena; Mahammed, Atif; Pfitzner, Michael; Goldberg, Israel; Gross, Zeev; Röder, Beate

    2014-04-01

    The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia.

  18. Ultrastructural exploration on the histopathological change in Phenacoccus fraxinus infected with Lecanicillium lecanii.

    PubMed

    Gao, Ying; Xie, Ying Ping; Xiong, Qi; Liu, Wei Min; Xue, Jiao Liang

    2015-01-01

    The histopathological changes of the second instar nymph of the mealybug Phenacoccus fraxinus infected with Lecanicillium lecanii strain 3.4505 were investigated using light, scanning and transmission electron microscopy. The results demonstrated that L. lecanii 3.4505 could infect P. fraxinus in a short period. At 24 h post-inoculation, the conidia of L. lecanii 3.4505 adhered to the indented gloves or intersegmental folds of the insect body surface. Subsequently, the germinated conidia produced germ-tubes, appressoria and extended hyphae, which tightly adhered to the cuticle. Penetration of cuticle could be achieved either by peg form appressoria or directly by hyphae. Also, the conidia and hyphae could secrete massive mucilages causing visible damage to the host cuticle. After 48 h, the body wall, tissues and organs, including cuticle, trachea, fat body, muscle, Malpighian tubules and nerve ganglion, were destroyed by ramification of hyphae as a result of infection. The endoplasmic reticulum hypertrophied and formed obvious fingerprint agglomerates, and the mitochondria swelled and deformed in the haemocytes. Finally, the mycelium fully occupied the entire haemocoel. The entire bodies were wrapped in a white mycelium, with the mycelium extending radically outward. PMID:25629309

  19. Maize leaf trichomes represent an entry point of infection for Fusarium species.

    PubMed

    Nguyen, Thi Thanh Xuan; Dehne, Heinz-Wilhelm; Steiner, Ulrike

    2016-08-01

    Fifteen day old maize seedlings were inoculated with Fusarium graminearum, Fusarium proliferatum, and Fusarium verticillioides. More than 90 % F. proliferatum and F. verticillioides conidia and 50 % of F. graminearum formed one germ tube whereas the other 50 % of F. graminearum conidia formed two to three germ tubes. The germ tubes of F. graminearum conidia were longer than those of F. proliferatum and F. verticillioides. The three species of Fusarium infected bi-cellular trichomes by adhering and growing along the trichomes or by attaching to the cap cell of the trichomes 48 h after inoculation. Hyphae penetrated into the trichomes at the base, the side or at the top of the cap cells. The hyphae colonized the cap cells and then spread to base cells. Prickle trichomes were infected 72 h after inoculation. The hyphae either wrapped around prickle trichomes or formed a mass of hyphae around the top of prickle trichomes or formed appressorium. Macro trichomes were infected by F. graminearum 7 d after inoculation. Following penetration, the fungus spread to adjacent epidermal cells and to the subcuticle. This investigation provides the first assessment of F. graminearum, F. proliferatum, and F. verticillioides infection via trichomes of maize leaves. PMID:27521623

  20. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

    PubMed Central

    González-Domínguez, Elisa; Caffi, Tito; Ciliberti, Nicola; Rossi, Vittorio

    2015-01-01

    A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period (“inflorescences clearly visible” to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period (“majority of berries touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control. PMID:26457808

  1. Ultrastructural Exploration on the Histopathological Change in Phenacoccus fraxinus Infected with Lecanicillium lecanii

    PubMed Central

    Gao, Ying; Xie, Ying Ping; Xiong, Qi; Liu, Wei Min; Xue, Jiao Liang

    2015-01-01

    The histopathological changes of the second instar nymph of the mealybug Phenacoccus fraxinus infected with Lecanicillium lecanii strain 3.4505 were investigated using light, scanning and transmission electron microscopy. The results demonstrated that L. lecanii 3.4505 could infect P. fraxinus in a short period. At 24 h post-inoculation, the conidia of L. lecanii 3.4505 adhered to the indented gloves or intersegmental folds of the insect body surface. Subsequently, the germinated conidia produced germ-tubes, appressoria and extended hyphae, which tightly adhered to the cuticle. Penetration of cuticle could be achieved either by peg form appressoria or directly by hyphae. Also, the conidia and hyphae could secrete massive mucilages causing visible damage to the host cuticle. After 48 h, the body wall, tissues and organs, including cuticle, trachea, fat body, muscle, Malpighian tubules and nerve ganglion, were destroyed by ramification of hyphae as a result of infection. The endoplasmic reticulum hypertrophied and formed obvious fingerprint agglomerates, and the mitochondria swelled and deformed in the haemocytes. Finally, the mycelium fully occupied the entire haemocoel. The entire bodies were wrapped in a white mycelium, with the mycelium extending radically outward. PMID:25629309

  2. Fungal formulations to control Rhipicephalus sanguineus engorged females.

    PubMed

    Reis, Rosana C S; Fernandes, Everton K K; Bittencourt, Vânia R E P

    2008-12-01

    Entomopathogenic fungi are promising alternatives to chemical acaricides in controlling tick populations; however, biological formulations are required to improve conidial performance of these pathogens in the field. This study evaluated the effect of in vitro treatment of Rhipicephalus sanguineus with conidial formulations of Beauveria bassiana (Bb) or Metarhizium anisopliae (Ma). Conidia were formulated (at 10(8) conidia mL(-1)) in (1) emulsifiable concentrate (EC), (2) polymerized cellulose gel (PCG), or both (3) emulsifiable concentrate and polymerized cellulose gel combined (EC+PCG). Engorged females were weighed and exposed to one of six treatment groups: EC+Bb, EC+Ma, PCG+Bb, PCG+Ma, EC+PCG+Bb, EC+PCG+Ma; or to control groups: C1 (untreated) or (C2) treated with Tween 80 aqueous solution, EC or PCG. After exposure, ticks were placed in petri plates and kept at 27 +/- 1 degrees C and 80% relative humidity (RH). Ticks treated with formulated conidia of entomopathogenic fungi showed significantly higher control percentage in comparison to that of control groups. The formulation of B. bassiana with EC and PCG combined (EC+PCG+Bb) caused the highest control percentage (86.79%) of R. sanguineus. This study concludes that entomopathogenic fungus conidial formulations are important to ensure effective tick control.

  3. Characterization and virulence of Beauveria bassiana associated with auger beetle (Sinoxylon anale) infesting allspice (Pimenta dioica).

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; D'Silva, Sharon; Nandeesh, P G

    2016-09-01

    The incidence of auger beetle, Sinoxylon anale Lesne (Bostrichidae: Coleoptera), a destructive pest of cosmopolitan occurrence is reported for the first time on allspice trees, Pimenta dioica (L.) Merr. in Kerala, India. The insects bored through the basal region of fresh twigs resulting in dieback symptoms. Morphological characterization and sequencing of a partially amplified fragment of the mitochondrial CO1 gene (696bp) revealed the insect to be Sinoxylon anale. An entomopathogenic fungus was isolated from infected cadavers of S. anale that was identified as Beauveria bassiana (Bals.-Criv.) Vuill., sensu stricto (s.s.) (Ascomycota: Hypocreales) based on morphological and molecular studies. The partial sequences of the ITS, TUB, TEF and Bloc gene regions were sequenced. The fungus grew well in ambient room temperature conditions (28-32±2°C; 60-70% relative humidity) and the infection process on the insect was documented by scanning electron microscopy. Bioassay studies with the isolate indicated that the fungus was virulent against adult beetles as evidenced by the LC50 (3.6×10(6)conidia/ml) and ST50 values (6.8days at a dose of 1×10(7)conidia/ml and 5.8days at a dose of 1×10(8)conidia/ml, respectively). This is the first record of B. bassiana naturally infecting S. anale and the fungus holds promise to be developed as a mycoinsecticide.

  4. Rapid isolation of the Trichoderma strain with higher degrading ability of a filter paper and superior proliferation characteristics using avicel plates and the double-layer selection medium.

    PubMed

    Toyama, Hideo; Nakano, Megumi; Satake, Yuuki; Toyama, Nobuo

    2008-03-01

    The cost of cellulase is still a problem for bioethanol production. As the cellulase of Trichoderma reesei is applicable for producing ethanol from cellulosic materials, the cellulase productivity of this fungus should be increased. Therefore, we attempted to develop a system to isolate the strain with higher degrading ability of a filter paper and superior proliferation characteristics among the conidia treated with the mitotic arrester, colchicine. When green mature conidia of T. reesei RUT C-30 were swollen, autopolyploidized, and incubated in the double-layer selection medium containing Avicel, colonies appeared on the surface earlier than the original strain. When such colonies and the original colony were incubated on the Avicel plates, strain B5, one of the colonies derived from the colchicine-treated conidia, showed superior proliferation characteristics. Moreover, when strain B5 and the original strain were compared in the filter paper degrading ability and the cellulose hydrolyzing activity, strain B5 was also superior to the original strain. It was suspected that superior proliferation characteristics of strain B5 reflects higher filter paper degrading ability. Thus, we concluded that the Trichoderma strain with higher degrading ability of a filter paper and superior proliferation characteristics can be isolated using Avicel plates and the double-layer selection medium.

  5. Horizontal Transmission of the Entomopathogen Fungus Metarhizium anisopliae in Microcerotermes diversus Groups

    PubMed Central

    Cheraghi, Amir; Habibpour, Behzad; Mossadegh, Mohammad Saied; Sharififard, Mona

    2012-01-01

    An experiment was carried out in order to investigate fungal conidia transmission of Metarhizium anisopliae (Metschnikoff) Sorokin from vector (donor) to healthy Microcerotermes diversus Silvestri (Iso.: Termitidae) and determine the best donor/concentration ratio for transmission. After preliminary trials, concentrations of 3.1 × 104, 3.9 × 105, 3.2 × 106 and 3.5 × 108 conidia mL−1 were selected for testing. The experiment was performed at three donor : Recipient ratios of 10, 30 and 50%. The highest mortality of recipient workers was observed after 14 days at the concentration of 3.5 × 108 conidia mL−1 and donor ratio of 50%. The mortality of recipient workers was less than 20% at all concentrations at a donor ratio of 10%. Our observations indicate social behavior of M. diversus, such as grooming, can be effective in promoting epizootic outbreaks in a colony. While the current results suggest good potential for efficacy, the use of M. anisopliae as a component of integrated pest management of M. diversus still needs to be proven under field conditions. PMID:26466624

  6. Horizontal Transmission of the Entomopathogen Fungus Metarhizium anisopliae in Microcerotermes diversus Groups.

    PubMed

    Cheraghi, Amir; Habibpour, Behzad; Mossadegh, Mohammad Saied; Sharififard, Mona

    2012-08-08

    An experiment was carried out in order to investigate fungal conidia transmission of Metarhizium anisopliae (Metschnikoff) Sorokin from vector (donor) to healthy Microcerotermes diversus Silvestri (Iso.: Termitidae) and determine the best donor/concentration ratio for transmission. After preliminary trials, concentrations of 3.1 × 10⁴, 3.9 × 10⁵, 3.2 × 10⁶ and 3.5 × 10(8) conidia mL(-1) were selected for testing. The experiment was performed at three donor : Recipient ratios of 10, 30 and 50%. The highest mortality of recipient workers was observed after 14 days at the concentration of 3.5 × 10⁸ conidia mL(-1) and donor ratio of 50%. The mortality of recipient workers was less than 20% at all concentrations at a donor ratio of 10%. Our observations indicate social behavior of M. diversus, such as grooming, can be effective in promoting epizootic outbreaks in a colony. While the current results suggest good potential for efficacy, the use of M. anisopliae as a component of integrated pest management of M. diversus still needs to be proven under field conditions.

  7. Nest sanitation through defecation: antifungal properties of wood cockroach feces

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Mead, Kerry; Du Comb, William S.; Benson, Ryan W.; Godoy, Veronica G.

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations.

  8. Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae).

    PubMed

    Behle, Robert W; Jackson, Mark A; Flor-Weiler, Lina B

    2013-02-01

    Technical improvements in the production and formulation of microbial agents will increase the potential for development of biological pesticides that are able to compete with chemical insecticides in the marketplace. Here we report the efficacy of a simple granule formulation containing microsclerotia of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) for control of unfed and fed nymphs of Ixodes scpaularis Say (Acari: Ixoididae). Microsclerotial granules of M. brunneum applied to moist potting mix produce infective conidia within 2 wk and conidia remained viable for up to 8 wk after application. Microsclerotial granules produced from 3.05 x 10(9) to 1.24 x 10(10) conidia g(-1) granules in potting mix. Both unfed and fed nymphs were susceptible to infection when exposed to treated potting soil with up to 56 and 74% mortality, respectively. M. brunneum demonstrated a transtadial infection for fed nymphs exposed to treated potting mix with signs of a fungal infection becoming apparent only after molting into adults. High conidial production rates from microsclerotial granules of M. brunneum combined with significant tick mortality support the need for additional research to evaluate the efficacy of this treatment technology as a biopesticide option for control of ticks.

  9. Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae).

    PubMed

    Behle, Robert W; Jackson, Mark A; Flor-Weiler, Lina B

    2013-02-01

    Technical improvements in the production and formulation of microbial agents will increase the potential for development of biological pesticides that are able to compete with chemical insecticides in the marketplace. Here we report the efficacy of a simple granule formulation containing microsclerotia of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) for control of unfed and fed nymphs of Ixodes scpaularis Say (Acari: Ixoididae). Microsclerotial granules of M. brunneum applied to moist potting mix produce infective conidia within 2 wk and conidia remained viable for up to 8 wk after application. Microsclerotial granules produced from 3.05 x 10(9) to 1.24 x 10(10) conidia g(-1) granules in potting mix. Both unfed and fed nymphs were susceptible to infection when exposed to treated potting soil with up to 56 and 74% mortality, respectively. M. brunneum demonstrated a transtadial infection for fed nymphs exposed to treated potting mix with signs of a fungal infection becoming apparent only after molting into adults. High conidial production rates from microsclerotial granules of M. brunneum combined with significant tick mortality support the need for additional research to evaluate the efficacy of this treatment technology as a biopesticide option for control of ticks. PMID:23448015

  10. Selection and characterization of Beauveria spp. isolates to control the broad mite Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae).

    PubMed

    Martins, C C; Alves, L F A; Mamprim, A P; Souza, L P A

    2016-01-01

    This study was performed under laboratory conditions to identify isolates of the fungus Beauveria spp. that can control Polyphagotarsonemus latus in the greenhouse and field. Thirty Beauveria spp. isolates were tested by spraying 1 mL conidia (1 × 108 conidia/mL) on pepper leaf discs containing 15 mites. Evaluations were performed on the 3rd and 6th day post application by counting the number of dead mites. Vegetative growth and conidial production were measured from the selected isolates, and bioassays were conducted in the greenhouse on bean seedlings in plastic pots. The isolate Unioeste 53 was selected, and a conidial suspension (1 × 108 conidia/mL) was applied with a backpack sprayer. The evaluation consisted of pre- and post-treatment counts of the number of live mites on ten leaflets in both the plots treated with the fungus and control plots, and the same procedure was followed for the field experiment. In the laboratory, the Unioeste 53 isolate resulted in total and confirmed mortality rates of 70% and 57.7%, respectively. In the greenhouse, the population decreased by 76.71% by the 16th day after application. In the field, the population decreased by 66% by the 12th day after application, demonstrating the potential of this fungus for mite management. PMID:27332672

  11. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae.

    PubMed

    Liu, Xiao-Hong; Chen, Si-Miao; Gao, Hui-Min; Ning, Guo-Ao; Shi, Huan-Bin; Wang, Yao; Dong, Bo; Qi, Yao-Yao; Zhang, Dong-Mei; Lu, Guo-Dong; Wang, Zong-Hua; Zhou, Jie; Lin, Fu-Cheng

    2015-11-01

    Rab GTPases are required for vesicle-vacuolar fusion during vacuolar biogenesis in fungi. To date, little is known about the biological functions of the Rab small GTPase components in Magnaporthe oryzae. In this study, we investigated MoYpt7 of M. oryzae, a homologue of the small Ras-like GTPase Ypt7 in Saccharomyces cerevisiae. Cellular localization assays showed that MoYpt7 was predominantly localized to vacuolar membranes. Using a targeted gene disruption strategy, a ΔMoYPT7 mutant was generated that exhibited defects in mycelial growth and production of conidia. The conidia of the ΔMoYPT7 mutant were malformed and defective in the formation of appressoria. Consequently, the ΔMoYPT7 mutant failed to cause disease in rice and barley. Furthermore, the ΔMoYPT7 mutant showed impairment in autophagy, breached cell wall integrity, and higher sensitivity to both calcium and heavy metal stress. Transformants constitutively expressing an active MoYPT7 allele (MoYPT7-CA, Gln67Leu) exhibited distinct phenotypes from the ΔMoYPT7 mutant. Expression of MoYPT7-CA in MoYpt7 reduced pathogenicity and produced more appressoria-forming single-septum conidia. These results indicate that MoYPT7 is required for fungal morphogenesis, vacuole fusion, autophagy, stress resistance and pathogenicity in M. oryzae.

  12. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk.

  13. Fungal infection of mantis shrimp (Oratosquilla oratoria) caused by two anamorphic fungi found in Japan.

    PubMed

    Duc, Pham Minh; Hatai, Kishio; Kurata, Osamu; Tensha, Kozue; Yoshitaka, Uchida; Yaguchi, Takashi; Udagawa, Shun-ichi

    2009-05-01

    Two fungal pathogens of the mantis shrimp (Oratosquilla oratoria) in Yamaguchi and Aichi Prefectures, Japan are described as the new species Plectosporium oratosquillae and Acremonium sp. (a member of the Emericellopsis marine clade). Both fungi infect the gills of the mantis shrimp, which become brown or black due to melanization. The former species is characterized by its slow growth on artificial seawater yeast extract peptone glucose (PYGS) agar, pale yellow to pale orange or grayish yellow colonies, short cylindrical solitary phialides with a wavy tip, and one-celled ellipsoidal conidia. Although lacking the two-celled conidia demonstrated by the type species Plectosporium tabacinum, the taxonomic placement of the new species was confirmed by DNA sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA (ITS1, 5.8S rDNA and ITS2). Acremonium sp., the other causal pathogen, differs from P. oratosquillae by its fast growth on PYGS agar, pale orange to salmon-colored colonies, long, slender conidiophores consisting of solitary phialides with tips lacking an undulate outline, and typically cylindrical conidia. Analysis of ITS and beta-tubulin gene sequences placed this fungus within the phylogenetically distinct Emericellopsis (anam. Acremonium) marine clade. Various physiological characteristics of both pathogens were also investigated. This is the first report of a fungal infection found on the mantis shrimp in Japan. PMID:19169846

  14. Survival of Microorganisms under the Extreme Conditions of the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Dose, Klaus; Bieger-Dose, Angelika; Ernst, Birgit; Feister, Uwe; Gómez-Silva, Benito; Klein, Anke; Risi, Sergio; Stridde, Christine

    2001-06-01

    Spores of Bacillus subtilis, conidia of Aspergillus niger, versicolor and ochraceus andcells of Deinococcus radiodurans have been exposed in the dark at two locations (at about 23°S and 24°S) in the Atacama Desert for up to 15 months. B. subtilis spores (survival ˜15%) and A. niger conidia (survival ˜30%) outlived the other species. The survival of the conidiaand spores species was only slightly poorer than that of thecorresponding laboratory controls. However, the Deinococcus radiodurans cells did not survive the desertexposure, because they are readily inactivated at relativehumidities between 40 and 80% which typically occurduring desert nights. Cellular monolayers of the dry sporesand conidia have in addition been exposed to the full sunlight for up to several hours. The solar fluences causing 63% loss in viability (F37-values) have been determined.These F37-values are compared with those determined atother global locations such as Punta Arenas (53°S), Key Largo (25°N) or Mainz (50°N) during the same season. Thesolar UVB radiation kills even the most resistantmicroorganisms within a few hours due to DNA damages. Thedata are also discussed with respect to possible similaritiesbetween the climatic conditions of the recent Atacama Desertand the deserts of early Mars.

  15. Susceptibility of adult pigeons and hybrid falcons to experimental aspergillosis.

    PubMed

    Van Waeyenberghe, L; Fischer, D; Coenye, T; Ducatelle, R; Haesebrouck, F; Pasmans, F; Lierz, M; Martel, A

    2012-12-01

    Aspergillosis caused by Aspergillus fumigatus seems to be more prevalent in some avian species than in others. We compared the development of aspergillosis in 8-month-old Gyr-Saker hybrid falcons and 8-month-old pigeons after a single intratracheal inoculation of different dosages of A. fumigatus conidia (10(7), 10(5) and 10(3)). Clinical signs, including vomiting, discoloration of the urates, loss of appetite and dyspnoea, were observed in four out of five falcons and in four out of five pigeons inoculated with 10(7) A. fumigatus conidia. Necropsy revealed the presence of granulomas in the air sacs and/or lungs in four out of five falcons and in four out of five pigeons in the high dosage group. A. fumigatus was isolated from these granulomas in three falcons and in three pigeons. The presence of fungal hyphae was detected with Periodic acid Shiff reagent staining in three out of five falcons and in three out of five pigeons in the high dosage group. Avian respiratory macrophages were clearly present in and around the fungal granulomas. In the other dosage groups, no granulomas, positive A. fumigatus cultures or fungal hyphae were present, except for one falcon in the middle dosage group in which a sterile granuloma without fungal hyphae was noticed. In conclusion, the study shows that adult falcons and pigeons are susceptible to aspergillosis after inoculation of a single dose of conidia intratracheally.

  16. Critical Values of Porosity in Rice Cultures of Isaria fumosorosea by Adding Water Hyacinth: Effect on Conidial Yields and Quality.

    PubMed

    Angel-Cuapio, Alejandro; Figueroa-Montero, Arturo; Favela-Torres, Ernesto; Viniegra-González, Gustavo; Perraud-Gaime, Isabelle; Loera, Octavio

    2015-09-01

    Conidia of the entomopathogenic fungus Isaria fumosorosea are used to control insect pests in crops. Commercially available mycoinsecticides manufactured with this fungus are produced on a large scale via solid-state cultures (SSC). In order to favour gaseous exchange in SCC, texturizers can be added to increase porosity fraction (ε). This work presents results of water hyacinth (Eichhornia crassipes) as a novel texturizer. A mixture of parboiled rice (PR), with a ε = 0.23, was used as a substrate, which was then mixed with water hyacinth (WH amendment) as a texturizer at different proportions affecting ε. Strains CNRCB1 and ARSEF3302 of I. fumosorosea yielded 1.6 (1.49-1.71) × 10(9) and 7.3 (7.02-7.58) × 10(9) conidia per gram of initial dry rice after 8 days, at ε values of 0.34 and 0.36, respectively. Improvement of conidial yields corresponded to 1.33 and 1.55 times, respectively, compared to rice alone using WH amendment in the mixtures PR:WH (%) at 90-10 and 80-20. In addition, infectivity against Galleria mellonella larvae was maintained. This is the first report of the use of water hyacinth as a texturizer in SSC, affecting ε, which is proposed a key parameter in conidia production by I. fumosorosea, without affecting conidial infectivity. PMID:26184013

  17. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov.

    PubMed

    Hubka, Vit; Nováková, Alena; Kolařík, Miroslav; Jurjević, Željko; Peterson, Stephen W

    2015-01-01

    Aspergillus section Flavipedes contains species found worldwide in soils and rhizospheres, indoor and cave environments, as endophytes, food contaminants and occasionally as human pathogens. They produce many extensively studied bioactive secondary metabolites and biotechnologically relevant enzymes. The taxa were revised based on phylogenetic analysis of sequences from four loci (β-tubulin, calmodulin, RPB2, ITS rDNA), two PCR fingerprinting methods, micro- and macromorphology and physiology. Section Flavipedes includes three known and seven new species: A. ardalensis, A. frequens, A. luppii, A. mangaliensis, A. movilensis, A. polyporicola and A. spelaeus. The name A. neoflavipes was proposed for Fennellia flavipes a distinct species from its supposed asexual state A. flavipes. Aspergillus iizukae, A. frequens and A. mangaliensis are the most common and widely distributed species, whereas A. flavipes s. str. is rare. A dichotomous key based on the combination of morphology and physiology is provided for all recognized species. Aspergillus section Jani is established to contain A. janus and A. brevijanus, species previously classified as members of sect. Versicolores, Terrei or Flavipedes. This new section is strongly supported by phylogenetic data and morphology. Section Jani species produce three types of conidiophores and conidia, and colonies have green and white sectors making them distinctive. Accessory conidia found in pathogenic A. terreus were found in all members of sects. Flavipedes and Jani. Our data indicated that A. frequens is a clinically relevant and produces accessory conidia during infection.

  18. Rapid Isolation of the Trichoderma Strain with Higher Degrading Ability of a Filter Paper and Superior Proliferation Characteristics Using Avicel Plates and the Double-Layer Selection Medium

    NASA Astrophysics Data System (ADS)

    Toyama, Hideo; Nakano, Megumi; Satake, Yuuki; Toyama, Nobuo

    The cost of cellulase is still a problem for bioethanol production. As the cellulase of Trichoderma reesei is applicable for producing ethanol from cellulosic materials, the cellulase productivity of this fungus should be increased. Therefore, we attempted to develop a system to isolate the strain with higher degrading ability of a filter paper and superior proliferation characteristics among the conidia treated with the mitotic arrester, colchicine. When green mature conidia of T. reesei RUT C-30 were swollen, autopolyploidized, and incubated in the double-layer selection medium containing Avicel, colonies appeared on the surface earlier than the original strain. When such colonies and the original colony were incubated on the Avicel plates, strain B5, one of the colonies derived from the colchicinetreated conidia, showed superior proliferation characteristics. Moreover, when strain B5 and the original strain were compared in the filter paper degrading ability and the cellulose hydrolyzing activity, strain B5 was also superior to the original strain. It was suspected that superior proliferation characteristics of strain B5 reflects higher filter paper degrading ability. Thus, we concluded that the Trichoderma strain with higher degrading ability of a filter paper and superior proliferation characteristics can be isolated using Avicel plates and the double-layer selection medium.

  19. Nest sanitation through defecation: antifungal properties of wood cockroach feces.

    PubMed

    Rosengaus, Rebeca B; Mead, Kerry; Du Comb, William S; Benson, Ryan W; Godoy, Veronica G

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations. PMID:24271031

  20. Characterization and virulence of Beauveria bassiana associated with auger beetle (Sinoxylon anale) infesting allspice (Pimenta dioica).

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; D'Silva, Sharon; Nandeesh, P G

    2016-09-01

    The incidence of auger beetle, Sinoxylon anale Lesne (Bostrichidae: Coleoptera), a destructive pest of cosmopolitan occurrence is reported for the first time on allspice trees, Pimenta dioica (L.) Merr. in Kerala, India. The insects bored through the basal region of fresh twigs resulting in dieback symptoms. Morphological characterization and sequencing of a partially amplified fragment of the mitochondrial CO1 gene (696bp) revealed the insect to be Sinoxylon anale. An entomopathogenic fungus was isolated from infected cadavers of S. anale that was identified as Beauveria bassiana (Bals.-Criv.) Vuill., sensu stricto (s.s.) (Ascomycota: Hypocreales) based on morphological and molecular studies. The partial sequences of the ITS, TUB, TEF and Bloc gene regions were sequenced. The fungus grew well in ambient room temperature conditions (28-32±2°C; 60-70% relative humidity) and the infection process on the insect was documented by scanning electron microscopy. Bioassay studies with the isolate indicated that the fungus was virulent against adult beetles as evidenced by the LC50 (3.6×10(6)conidia/ml) and ST50 values (6.8days at a dose of 1×10(7)conidia/ml and 5.8days at a dose of 1×10(8)conidia/ml, respectively). This is the first record of B. bassiana naturally infecting S. anale and the fungus holds promise to be developed as a mycoinsecticide. PMID:27480402

  1. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta

    PubMed Central

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  2. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation.

    PubMed

    Hillmann, Falk; Novohradská, Silvia; Mattern, Derek J; Forberger, Tilmann; Heinekamp, Thorsten; Westermann, Martin; Winckler, Thomas; Brakhage, Axel A

    2015-08-01

    Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators. PMID:25684622

  3. Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion.

    PubMed

    Lacroix, Hélène; Whiteford, James R; Spanu, Pietro D

    2008-09-01

    Hydrophobins are amphipathic molecules which form part of fungal cell walls and extracellular matrices and perform a variety of roles in fungal growth and development. The tomato pathogen Cladosporium fulvum has six hydrophobin genes, HCf-1 to -6. We have devised an epitope tagging approach for establishing hydrophobin localization during growth in culture and in plants. In this paper we localize HCf-2, -3, -4 and -5 and compare the data to our previous observations for HCf-1 and -6. In culture, HCf-1, -2, -3 and 4 localize to conidia and also appear on aerial hyphae. HCf-4 is unique in that it appears on submerged hyphae. HCf-5 expression is tightly regulated and appears on aerial hyphae early on during growth. Only HCf-1, -3 and -6 were observed during infection; HCf-3 appears on both conidia and emerging germ tubes. We also show that HCf-6 is secreted and coats surfaces under and around growing hyphae and demonstrate the effect of deleting HCf-6 on the adhesion of germinating C. fulvum conidia to glass slides.

  4. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination.

    PubMed

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

  5. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii.

    PubMed

    Fravel, Deborah R; Connick, William J; Grimm, Casey C; Lloyd, Steven W

    2002-06-19

    Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii were identified by solid phase microextraction followed by gas chromatography and mass spectometry. Both S. minor and S. sclerotiorum emitted 2-methylenebornane and 2-methylisoborneol. In addition, S. minor emitted mesityl oxide, gamma-butyrolactone, cis- and trans-linalool oxide, linalool, and trans-nerolidol. S. sclerotiorum emitted 2-methyl-2-bornene, 1-methylcamphene, and a diterpene with a molecular weight of 272. Sclerotium rolfsii did not emit any of these compounds but did emit delta-cadinene and cis-calamenene. Chemicals emitted by S. minor and S. sclerotiorum were tested to determine if they could stimulate germination of conidia of Sporidesmium sclerotivorum, a mycoparasite on sclerotia of Sclerotinia spp. Chemicals were tested at 1 part per billion to 100 parts per million, both in direct contact with conidia and near, but not in, physical contact. None of the chemicals alone nor a combination of all chemicals induced germination of conidia of S. sclerotivorum. PMID:12059156

  6. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    PubMed Central

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. PMID:25589426

  7. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.

    PubMed

    Wu, Yuncheng; Yuan, Jun; E, Yaoyao; Raza, Waseem; Shen, Qirong; Huang, Qiwei

    2015-09-01

    A Streptomyces albulus strain NJZJSA2 was isolated from the forest soil sample of Tzu-chin Mountain (Nanjing China) and identified based on its morphological and physiological properties and 16S rDNA gene sequence analysis. The strain S. albulus NJZJSA2 was evaluated for the production of antifungal volatile organic compounds (VOCs) against two fungal pathogens. Results showed that the VOCs generated by S. albulus NJZJSA2 inhibited mycelial growth of Sclerotinia sclerotiorum (SS) and Fusarium oxysporum (FO) by 100 and 56.3%, respectively. The germination of SS sclerotia and FO conidia was completely inhibited in the presence of VOCs produced by S. albulus NJZJSA2 in vitro. In soil, the VOCs delayed the germination of SS sclerotia and inhibited the germination of FO conidia for 45 days. The strain S. albulus NJZJSA2 was able to produce 13 VOCs based on GC/MS analyses. Among those, six compounds were purchased and used for the antifungal activity assay. Three relatively abundant VOCs, 4-methoxystyrene, 2-pentylfuran, and anisole were proved to have antifungal activity. Microscopy analysis showed that the pathogen hyphae were shriveled and damaged after treatment with 4-methoxystyrene. These results suggest that the S. albulus strain NJZJSA2 produce VOCs that not only reduce the growth of SS and FO, but also significantly inhibit the SS sclerotia and FO conidia. The results are useful for the better understanding of biocontrol mechanisms by S. albulus strains and will help to improve the biological control efficiency of lethal plant diseases.

  8. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    PubMed Central

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  9. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    PubMed

    Alkhaibari, Abeer M; Carolino, Aline T; Yavasoglu, Sare I; Maffeis, Thierry; Mattoso, Thalles C; Bull, James C; Samuels, Richard I; Butt, Tariq M

    2016-07-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae

  10. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    PubMed

    Alkhaibari, Abeer M; Carolino, Aline T; Yavasoglu, Sare I; Maffeis, Thierry; Mattoso, Thalles C; Bull, James C; Samuels, Richard I; Butt, Tariq M

    2016-07-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae

  11. A technique for the prevention of greenhouse whitefly (Trialeurodes vaporariorum) using the entomopathogenic fungus Beauveria bassiana M130.

    PubMed

    Kim, Chang-Su; Lee, Jung-Bok; Kim, Beam-Soo; Nam, Young-Ho; Shin, Kee-Sun; Kim, Jin-Won; Kim, Jang-Eok; Kwon, Gi-Seok

    2014-01-01

    The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides.

  12. Fungal Planet description sheets: 107-127.

    PubMed

    Crous, P W; Summerell, B A; Shivas, R G; Burgess, T I; Decock, C A; Dreyer, L L; Granke, L L; Guest, D I; Hardy, G E St J; Hausbeck, M K; Hüberli, D; Jung, T; Koukol, O; Lennox, C L; Liew, E C Y; Lombard, L; McTaggart, A R; Pryke, J S; Roets, F; Saude, C; Shuttleworth, L A; Stukely, M J C; Vánky, K; Webster, B J; Windstam, S T; Groenewald, J Z

    2012-06-01

    Novel species of microfungi described in the present study include the following from Australia: Phytophthora amnicola from still water, Gnomoniopsis smithogilvyi from Castanea sp., Pseudoplagiostoma corymbiae from Corymbia sp., Diaporthe eucalyptorum from Eucalyptus sp., Sporisorium andrewmitchellii from Enneapogon aff. lindleyanus, Myrmecridium banksiae from Banksia, and Pilidiella wangiensis from Eucalyptus sp. Several species are also described from South Africa, namely: Gondwanamyces wingfieldii from Protea caffra, Montagnula aloes from Aloe sp., Diaporthe canthii from Canthium inerne, Phyllosticta ericarum from Erica gracilis, Coleophoma proteae from Protea caffra, Toxicocladosporium strelitziae from Strelitzia reginae, and Devriesia agapanthi from Agapanthus africanus. Other species include Phytophthora asparagi from Asparagus officinalis (USA), and Diaporthe passiflorae from Passiflora edulis (South America). Furthermore, novel genera of coelomycetes include Chrysocrypta corymbiae from Corymbia sp. (Australia), Trinosporium guianense, isolated as a contaminant (French Guiana), and Xenosonderhenia syzygii, from Syzygium cordatum (South Africa). Pseudopenidiella piceae from Picea abies (Czech Republic), and Phaeocercospora colophospermi from Colophospermum mopane (South Africa) represent novel genera of hyphomycetes. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa. PMID:23105159

  13. Effect of trophic status in lakes on fungal species diversity and abundance.

    PubMed

    Pietryczuk, A; Cudowski, A; Hauschild, T

    2014-11-01

    The objective of this study was to determine the species diversity and abundance of fungi in relation to the hydrochemical conditions, with special emphasis on the trophic status and degree of pollution of lakes. The study was conducted in 14 lakes of the Augustów Lakeland (central Europe, NE Poland) with different hydrological conditions, type of stratification and trophic status. The analyses were performed in the hydrological year 2013. In the waters of the studied lakes, the mean abundance of fungi was 5600±3600 CFU/mL. The minimum value (800 CFU/mL) was recorded for the mesotrophic Płaskie Lake, and the maximum value (14,000 CFU/mL) was recorded for the eutrophic Pobojno Lake. A total of 38 species of fungi were identified, including 11 belonging to the aquatic hyphomycetes; up to 14 species were potentially pathogenic fungi. The potentially pathogenic fungi, particularly Candida albicans and Scopulariopsis fusca, were found in lakes with increased concentrations of chloride and sulphate(VI) ions and may thus serve as indicators of the degree of water pollution. This paper illustrates that the species diversity and abundance of fungi in limnic waters depend on the concentration of organic matter, chlorophyll a concentration, and the degree of water pollution. The results suggest that aquatic fungi can be a valuable indicator of the degree of pollution and the sanitary quality of the water. PMID:25145569

  14. A fissitunicate ascus mechanism in the Calosphaeriaceae, and novel species of Jattaea and Calosphaeria on Prunus wood.

    PubMed

    Damm, U; Crous, P W; Fourie, P H

    2008-06-01

    During a survey of Prunus wood from South Africa, isolations were made of three presumably Calosphaerialean fungi that formed hyphomycetous, phialidic anamorphs in culture. In order to reveal the phylogenetic relationship of these fungi, they were characterised on a morphological and molecular (LSU and ITS rDNA) basis. Two isolates that formed a teleomorph in culture are newly described as Calosphaeria africana sp. nov. Although asci of Calosphaeria are characterised by having non-amyloid apical rings, two functional wall layers were observed in asci of C. africana, which has hitherto not been observed in any member of the Calosphaeriaceae. However, Calosphaeriaceae (Calosphaeriales, Sordariomycetes) are not closely related to other bitunicate fungi like Dothideomycetes, Chaetothyriales and bitunicate lichens. Possession of two separating wall layers is considered to be a result of both inherited abilities and convergent evolution under a strong selection pressure of the environmental conditions that favour an extension of the ascus. The other two species represented a separate lineage within Calosphaeriaceae, and formed phialophora-like anamorphs. By obtaining the teleomorph in culture, one of them could be identified as a species of Jattaea, described here as Jattaea prunicola sp. nov., while the second, which only produced the anamorph, is named as Jattaea mookgoponga sp. nov. These findings suggest that some species of Jattaea are true members of the Calosphaeriaceae, though the phylogenetic relation of the type, J. algeriensis, remains unknown. Furthermore, it also represents the first report of Jattaea on Prunus wood, and from South Africa.

  15. Fungal microbiota in air-conditioning installed in both adult and neonatal intensive treatment units and their impact in two university hospitals of the central western region, Mato Grosso, Brazil.

    PubMed

    Simões, Sara de Almeida Alves; Leite Júnior, Diniz Pereira; Hahn, Rosane Christine

    2011-08-01

    To evaluate fungal microbiota in air-conditioning units installed in intensive care units in two university hospitals in Cuiaba city, Mato Grosso, central western region of Brazil, 525 solid environmental samples were collected, 285 from Hospital A and 240 from Hospital B. Collections were performed using sterile swabs on air-conditioning unit components: cooling coils, ventilators, and filters. Mycelial fungi identification was achieved by observation of the macroscopic and micromorphological characteristics in different culture mediums (maize meal, oatmeal and potato dextrose agars and malt extract) using the Ridell technique. Eleven genera and 27 distinct species belonging to the hyphomycetes and ascomycetes classes were isolated and identified. The most frequently detected genera in both hospitals were Aspergillus spp, Penicillium spp, and Cladosporium spp. Values for colony-forming units per gram were 64 and 75%, well above the limits recommended by Health Ministry resolution 176/00 at the locations selected for analysis in Hospitals A and B, respectively. In conclusion, evaluation of fungal microbiota in the air-conditioning units indirectly determined that the air quality was compromised in both university hospitals analyzed, which constitutes a risk factor for the acquisition of infection in the intensive care units. PMID:21424438

  16. Mycobiota of the weed Conyza canadensis (Asteraceae) in Brazil.

    PubMed

    Duarte, Lidiane Leal; Santos, Fabiana Maria Coutinho; Barreto, Robert Weingart

    2016-09-01

    Conyza canadensis is a noxious and notably problematic weed in Brazil whose control is greatly challenging due to the appearance, in the last years, of herbicide resistant populations. An investigation regarding the associated pathogenic fungi of this plant was conducted in Brazil aimed at starting a biological control program to help mitigate its economic impact. Ten fungal species were yielded and described: two ascomycetes (Leptosphaerulina conyzicola sp. nov. and Wentiomyces melioloides), five hyphomycete asexual morphs (Alternaria tenuissima, Cercospora conyzicola sp. nov., Cercosporella virgaureae, and Fusarium fujikuroi), two coelomycete asexual morphs (Phoma conyzaphthora sp. nov., Septoria erigerontis), one rust fungus (Aecidium conyzicola sp. nov.), and one oomycete (Basidiophora entospora). Four among the fungi that were collected represent new taxa, and the others represented either new host-records of known fungal species or new geographic records or both, except for C. virgaureae that had already been recorded on C. canadensis in Brazil. None of the discovered species have any potential to be used as a mycoherbicide or to be introduced somewhere else, nevertheless, the knowledge about this mycobiota will help guide the selection of potential biocontrol agents to be introduced in Brazil. PMID:27567718

  17. A molecular, morphological and ecological re-appraisal of Venturiales—a new order of Dothideomycetes

    PubMed Central

    Zhang, Ying; Crous, Pedro W.; Schoch, Conrad L.; Bahkali, Ali H.; Guo, Liang Dong

    2012-01-01

    The Venturiaceae was traditionally assigned to Pleosporales although its diagnostic characters readily distinguish it from other pleosporalean families. These include a parasitic or saprobic lifestyle, occurring on leaves or stems of dicotyledons; small to medium-sized ascomata, often with setae; deliquescing pseudoparaphyses; 8-spored, broadly cylindrical to obclavate asci; 1-septate, yellowish, greenish or pale brown to brown ascospores; and hyphomycetous anamorphs. Phylogenetically, core genera of Venturiaceae form a monophyletic clade within Dothideomycetes, and represent a separate sister lineage from current orders, thus a new order—Venturiales is introduced. A new family, Sympoventuriaceae, is introduced to accommodate taxa of a well-supported subclade within Venturiales, which contains Sympoventuria, Veronaeopsis simplex and Fusicladium-like species. Based on morphology and DNA sequence analysis, eight genera are included in Venturiaceae, viz. Acantharia, Apiosporina (including Dibotryon), Caproventuria, Coleroa, Pseudoparodiella, Metacoleroa, Tyrannosorus and Venturia. Molecular phylogenetic information is lacking for seven genera previously included in Venturiales, namely Arkoola, Atopospora, Botryostroma, Lasiobotrys, Trichodothella, Trichodothis and Rhizogenee and these are discussed, but their inclusion in Venturiaceae is doubtful. Crotone, Gibbera, Lineostroma, Phaeocryptopus, Phragmogibbera, Platychora, Polyrhizon, Rosenscheldiella, Uleodothis and Xenomeris are excluded from Venturiales, and their ordinal placement needs further investigation. Zeuctomorpha is treated as a synonym of Acantharia. PMID:22368534

  18. Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi.

    PubMed Central

    Pujol, I; Guarro, J; Llop, C; Soler, L; Fernández-Ballart, J

    1996-01-01

    An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test. PMID:8878589

  19. Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase.

    PubMed

    Sawai-Hatanaka, H; Ashikari, T; Tanaka, Y; Asada, Y; Nakayama, T; Minakata, H; Kunishima, N; Fukuyama, K; Yamada, H; Shibano, Y

    1995-07-01

    To understand the relationship between the structure and functions of the peroxidase of Arthromyces ramosus, a novel taxon of hyphomycete, and the evolutionary relationship of the A.ramosus peroxidase (ARP) with the other peroxidases, we isolated complementary and genomic DNA clones encoding ARP and characterized them. The sequence analyses of the ARP and cDNA coding for ARP showed that a mature ARP consists of 344 amino acids with a N-terminal pyroglutamic acid preceded by a signal peptide of 20 amino acid residues. The amino acid sequence of ARP was 99% identical to that of the peroxidase of Coprinus cinereus, a basidiomycete, and also had very high similarities (41-43% identity) to those of basidiomycetous lignin peroxidases, although we could find no lignin peroxidase activities for ARP when assayed with lignin model compounds. We could identified His184 and His56 as proximal and distal ligands to heme, respectively, and Arg52 as an essential Arg. Comparison of the sequences of complementary and genomic DNAs found that protein-encoding DNA is interrupted by 14 intervening sequences. The ARP cDNA was expressed in the yeast Saccharomyces cerevisiae under the promoter of the glyceraldehyde 3-phosphate dehydrogenase gene, yielding 0.02 units/ml of a secreted active peroxidase.

  20. [Microbiological studies of waste from medical practice and household refuse].

    PubMed

    Trost, M; Filip, Z

    1985-06-01

    Microbiological investigations were made during a one year period on refuse from consulting rooms of general practitioners, E.N.T.-specialists, dermatologists, dentists, and veterinarians. Concentrations of total aerobic bacteria, hyphomycetes, yeasts, actinomycetes, indicator bacteria (Escherichia coli, feacal streptococci, anaerobic sulfite reducing spore-forming bacteria), of some facultative pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus), and pathogens (Salmonella sp.) were estimated. The refuse from medical consulting rooms showed definitely differences in microbiological properties. Usually the highest counts of microorganisms were found in the refuse from veterinarian consulting rooms. In generally, refuse from medical consulting rooms had lower microbial counts as compared to the municipal refuse. Feacal indicators and facultative pathogenic bacteria, however, were found more frequently, and usually at higher concentrations in refuse from medical consulting rooms. Salmonella sp. was not found in the refuse samples under test. Conclusively, refuse from medical consulting rooms should be handled with caution. However, the results of this study do not indicate those kinds of refuse as a source of acute hygienic risk.

  1. Alternaria infections: laboratory diagnosis and relevant clinical features.

    PubMed

    Pastor, F J; Guarro, J

    2008-08-01

    The genus Alternaria contains several species of melanized hyphomycetes that cause opportunistic human infections. The published literature contains 210 reported cases of human alternarioses between 1933 and the present day. The most frequent clinical manifestations are cutaneous and subcutaneous infections (74.3%), followed by oculomycosis (9.5%), invasive and non-invasive rhinosinusitis (8.1%) and onychomycosis (8.1%). Immunosuppression is frequently associated with cutaneous and subcutaneous infections and rhinosinusitis. The most important risk factors for cutaneous and subcutaneous infections are solid organ transplantation and Cushing's syndrome, and those for rhinosinusitis are bone marrow transplants. Having been exposed to soil and garbage is common in all cases of oculomycosis, with corticotherapy being a risk factor in 50% of these cases. Previous contact with soil and/or trauma to the nails is associated with most cases of onychomycosis. In general, alternariosis shows a good response to conventional antifungal drugs. On some occasions, steroid suppression or reduction is sufficient to resolve an infection. Itraconazole is the antifungal drug used most frequently to successfully treat onychomycosis and cutaneous and subcutaneous infections. Posaconazole and voriconazole are promising therapeutic options, with the latter being especially so for oculomycosis.

  2. A molecular, morphological and ecological re-appraisal of Venturiales-a new order of Dothideomycetes.

    PubMed

    Zhang, Ying; Crous, Pedro W; Schoch, Conrad L; Bahkali, Ali H; Guo, Liang Dong; Hyde, Kevin D

    2011-11-01

    The Venturiaceae was traditionally assigned to Pleosporales although its diagnostic characters readily distinguish it from other pleosporalean families. These include a parasitic or saprobic lifestyle, occurring on leaves or stems of dicotyledons; small to medium-sized ascomata, often with setae; deliquescing pseudoparaphyses; 8-spored, broadly cylindrical to obclavate asci; 1-septate, yellowish, greenish or pale brown to brown ascospores; and hyphomycetous anamorphs. Phylogenetically, core genera of Venturiaceae form a monophyletic clade within Dothideomycetes, and represent a separate sister lineage from current orders, thus a new order-Venturiales is introduced. A new family, Sympoventuriaceae, is introduced to accommodate taxa of a well-supported subclade within Venturiales, which contains Sympoventuria, Veronaeopsis simplex and Fusicladium-like species. Based on morphology and DNA sequence analysis, eight genera are included in Venturiaceae, viz. Acantharia, Apiosporina (including Dibotryon), Caproventuria, Coleroa, Pseudoparodiella, Metacoleroa, Tyrannosorus and Venturia. Molecular phylogenetic information is lacking for seven genera previously included in Venturiales, namely Arkoola, Atopospora, Botryostroma, Lasiobotrys, Trichodothella, Trichodothis and Rhizogenee and these are discussed, but their inclusion in Venturiaceae is doubtful. Crotone, Gibbera, Lineostroma, Phaeocryptopus, Phragmogibbera, Platychora, Polyrhizon, Rosenscheldiella, Uleodothis and Xenomeris are excluded from Venturiales, and their ordinal placement needs further investigation. Zeuctomorpha is treated as a synonym of Acantharia.

  3. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco.

    PubMed

    Yang, Xingyong; Xiao, Yuehua; Wang, Xiaowen; Pei, Yan

    2007-02-01

    Medicinal plants are valuable resources of natural antimicrobial materials. A novel small protein with antimicrobial activities, designated LJAMP1, was purified from the seeds of a medicinal herb, motherwort (Leonurus japonicus Houtt). LJAMP1 is a heat-stable protein with a molecular mass of 7.8 kDa and a determined isoelectric point of 8.2. In vitro assays showed that LJAMP1 inhibits the growth of an array of fungi and bacteria. The hyphal growth inhibition by LJAMP1 was more evident against hyphomycete fungi, such as Alternaria alternata, Cercospora personata, and Aspergillus niger. The N-terminal amino acid sequence of LJAMP1 was determined, and its coding gene was consequently cloned by the rapid amplification of cDNA ends. The gene LJAMP1 has no intron and encodes a polypeptide of 95 amino acids, in which the first 27 residues was deduced as a signal peptide. The mature LJAMP1 shows relatively low identity to plant napin-like storage proteins. Northern blot assays revealed that LJAMP1 is expressed preferentially in seeds. Bioassays in transgenic tobacco demonstrated that that overexpression of LJAMP1 significantly enhanced the resistance of tobacco against not only the fungal pathogen A. alternata but also the bacterial pathogen Ralstonia solanacearum, while no visible alteration in plant growth and development was observed.

  4. Expression of a Novel Small Antimicrobial Protein from the Seeds of Motherwort (Leonurus japonicus) Confers Disease Resistance in Tobacco▿†

    PubMed Central

    Yang, Xingyong; Xiao, Yuehua; Wang, Xiaowen; Pei, Yan

    2007-01-01

    Medicinal plants are valuable resources of natural antimicrobial materials. A novel small protein with antimicrobial activities, designated LJAMP1, was purified from the seeds of a medicinal herb, motherwort (Leonurus japonicus Houtt). LJAMP1 is a heat-stable protein with a molecular mass of 7.8 kDa and a determined isoelectric point of 8.2. In vitro assays showed that LJAMP1 inhibits the growth of an array of fungi and bacteria. The hyphal growth inhibition by LJAMP1 was more evident against hyphomycete fungi, such as Alternaria alternata, Cercospora personata, and Aspergillus niger. The N-terminal amino acid sequence of LJAMP1 was determined, and its coding gene was consequently cloned by the rapid amplification of cDNA ends. The gene LJAMP1 has no intron and encodes a polypeptide of 95 amino acids, in which the first 27 residues was deduced as a signal peptide. The mature LJAMP1 shows relatively low identity to plant napin-like storage proteins. Northern blot assays revealed that LJAMP1 is expressed preferentially in seeds. Bioassays in transgenic tobacco demonstrated that that overexpression of LJAMP1 significantly enhanced the resistance of tobacco against not only the fungal pathogen A. alternata but also the bacterial pathogen Ralstonia solanacearum, while no visible alteration in plant growth and development was observed. PMID:17158620

  5. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    PubMed

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  6. A technique for the prevention of greenhouse whitefly (Trialeurodes vaporariorum) using the entomopathogenic fungus Beauveria bassiana M130.

    PubMed

    Kim, Chang-Su; Lee, Jung-Bok; Kim, Beam-Soo; Nam, Young-Ho; Shin, Kee-Sun; Kim, Jin-Won; Kim, Jang-Eok; Kwon, Gi-Seok

    2014-01-01

    The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides. PMID:24002449

  7. New remarkable records of microfungi from Sardinia (Italy).

    PubMed

    Jensen, M; Nerat, N; Ale-Agha, N

    2010-01-01

    In June 2009 we organized a botanical student excursion to the eastern part of Sardinia, Italy. On this occasion we were able to collect and identify over 80 species of microfungi growing on higher plants. The collecting sites were spread over a large area, among them were La Caletta, Capo Comino, Monte Albo, Cala Gonone, Monte Maccione, San Teodoro, Capo Testa. The collected microfungi were parasitic or saprophytic; Basidiomycotina (Uredinales), Ascomycotina and Deuteromycotina (Hyphomycetes, Coelomycetes) were predominant. Examples are Pezicula corticola (Jörg.) NANNF. (new for Sardinia), on Pyrus communis. Puccinia chamaecyparissi TROTT. (new for Sardinia), on Santolina insularis. Sphaceloma oleae CICC. and GRANITI (new for Sardinia) and Phlyctema vagabunda DESM. (new for Sardinia), on Olea europaea and Arbutus unedo. Puccinia pseudosphaeria MONT. (new for Sardinia), on Sonchus oleraceus. Discula umbrinella (BERK. and BR.) SUTTON (new for Sardinia)(D. quercina WEST. and BARK), on Quercus coccifera. Zaghouania phillyreae PAT. (new for Sardinia), on Phillyrea angustifolia. Phymatotrichum omnivorum (DUGGAR) HENNEBERT, new on Verbascum thapsus for Sardinia. Guignardia punctoidea (COOKE) SCHROTER (new for Sardinia), on Quercus ilex. Many of the collected species are rare or unknown for the area of investigation until now. All specimens are located in the Herbarium ESS, Mycotheca Parva collection G.B. Feige and N. Ale-Agha. PMID:21534478

  8. The effects of motorway runoff on freshwater ecosystems. 1: Field study

    SciTech Connect

    Maltby, L.; Forrow, D.M.; Boxall, A.B.A.; Calow, P.; Betton, C.I.

    1995-06-01

    The effects of motorway runoff on the water quality, sediment quality, and biota of small streams were investigated over a 12-month period. Downstream of motorway runoff discharges there was an increase in the sediment concentrations of total hydrocarbons, aromatic hydrocarbons, and heavy metals and an increase in the water concentrations of heavy metals and selected anions. Hydrocarbon contamination of sediments was positively correlated with potential contaminant loading (i.e., length of road drained/stream size). The greatest effect was observed at Pigeon Bridge Brook, a small stream receiving drainage from a 1,500-m stretch of the M1 motorway. The dominant PAHs in contaminated sediment at this site were phenanthrene, pyrene, and fluoranthene, whereas the dominant metals were zinc, cadmium, chromium, and lead. Differences between the station upstream and downstream of discharges in the diversity and composition of the macroinvertebrate assemblages were detected in four out of the seven streams surveyed. However, there was no evidence of an effect on either the diversity of abundance of epilithic algae. The diversity of the aquatic hyphomycete assemblage was only affected at the most impacted site. Reductions in macroinvertebrate diversity were associated with reductions in the processing of leaf litter and a change from an assemblage based on benthic algae and coarse particulate organic matter to one dependent upon fine particulate organic matter.

  9. Fungal Planet description sheets: 107-127.

    PubMed

    Crous, P W; Summerell, B A; Shivas, R G; Burgess, T I; Decock, C A; Dreyer, L L; Granke, L L; Guest, D I; Hardy, G E St J; Hausbeck, M K; Hüberli, D; Jung, T; Koukol, O; Lennox, C L; Liew, E C Y; Lombard, L; McTaggart, A R; Pryke, J S; Roets, F; Saude, C; Shuttleworth, L A; Stukely, M J C; Vánky, K; Webster, B J; Windstam, S T; Groenewald, J Z

    2012-06-01

    Novel species of microfungi described in the present study include the following from Australia: Phytophthora amnicola from still water, Gnomoniopsis smithogilvyi from Castanea sp., Pseudoplagiostoma corymbiae from Corymbia sp., Diaporthe eucalyptorum from Eucalyptus sp., Sporisorium andrewmitchellii from Enneapogon aff. lindleyanus, Myrmecridium banksiae from Banksia, and Pilidiella wangiensis from Eucalyptus sp. Several species are also described from South Africa, namely: Gondwanamyces wingfieldii from Protea caffra, Montagnula aloes from Aloe sp., Diaporthe canthii from Canthium inerne, Phyllosticta ericarum from Erica gracilis, Coleophoma proteae from Protea caffra, Toxicocladosporium strelitziae from Strelitzia reginae, and Devriesia agapanthi from Agapanthus africanus. Other species include Phytophthora asparagi from Asparagus officinalis (USA), and Diaporthe passiflorae from Passiflora edulis (South America). Furthermore, novel genera of coelomycetes include Chrysocrypta corymbiae from Corymbia sp. (Australia), Trinosporium guianense, isolated as a contaminant (French Guiana), and Xenosonderhenia syzygii, from Syzygium cordatum (South Africa). Pseudopenidiella piceae from Picea abies (Czech Republic), and Phaeocercospora colophospermi from Colophospermum mopane (South Africa) represent novel genera of hyphomycetes. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

  10. Interactive effects of aluminium and phosphorus on microbial leaf litter processing in acidified streams: a microcosm approach.

    PubMed

    Clivot, Hugues; Charmasson, Faustine; Felten, Vincent; Boudot, Jean-Pierre; Guérold, François; Danger, Michael

    2014-03-01

    Decline in pH, elevated aluminium (Al) concentrations, and base cations depletion often covary in acidified headwater streams. These parameters are considered as the main factors reducing microbial activities involved in detritus processing, but their individual and interactive effects are still unclear. In addition to its direct toxicity, Al can also reduce the bioavailability of phosphorus (P) in ecosystems through the formation of stable chemical complexes. A three week microcosm experiment was carried out in acid conditions to assess the interactive effects of Al (three levels: 0, 200, and 1,000 μg L(-1)) and P (25, 100, and 1,000 μg L(-1)) on alder leaf litter processing by an aquatic hyphomycete consortium. Our results showed that Al alone reduced fungal growth and altered fungal decomposer activities. High P levels, probably through an alleviation of Al-induced P limitation and a reduction of Al toxic forms, suppressed the negative effects of Al on detritus decomposition. PMID:24361567

  11. Mycoparasitism of sclerotial fungi by Teratosperma oligocladum.

    PubMed

    Ayers, W A; Adams, P B

    1981-09-01

    Sclerotia of Sclerotinia minor were parasitized by Teratosperma oligocladum, a recently described dematiaceous hyphomycete. The mycoparasite was cultured on living sclerotia placed on water agar and on sclerotia in moist sand. It grew poorly on several common laboratory media but growth in vitro was enhanced by supplements of soil extract and, especially, by aqueous extracts of sclerotia. Sclerotia of S. minor, S. sclerotiorum, S. trifoliorum, Sclerotium cepivorum, and Botrytis cinerea were parasitized in vitro, but sclerotia of Sclerotium rolfsii and Macrophomina phaseolina were not. Macroconidia of T. oligocladum germinated on membrane filters placed on soil containing sclerotia of S. minor but not on soil without sclerotia. Sclerotia of three Sclerotinia spp. were infected within 2 weeks in soil infested with the mycoparasite. Teratosperma oligocladum parasitized and destroyed all of the sclerotia of S. minor buried in a natural soil by 10 weeks. Parasitism was equally good at 20 and 25 degrees C, but occurred more slowly at 15 degrees C. No parasitic activity occurred at 30 degrees C. The morphology, cultural characteristics, and mycoparasitic habit of T. oligocladum indicated that it was similar in many respects to the mycoparasite, Sporidesmium sclerotivorum, and that it is a potentially useful agent fo the biological control for sclerotial plant pathogens. PMID:7198002

  12. Interactive effects of aluminium and phosphorus on microbial leaf litter processing in acidified streams: a microcosm approach.

    PubMed

    Clivot, Hugues; Charmasson, Faustine; Felten, Vincent; Boudot, Jean-Pierre; Guérold, François; Danger, Michael

    2014-03-01

    Decline in pH, elevated aluminium (Al) concentrations, and base cations depletion often covary in acidified headwater streams. These parameters are considered as the main factors reducing microbial activities involved in detritus processing, but their individual and interactive effects are still unclear. In addition to its direct toxicity, Al can also reduce the bioavailability of phosphorus (P) in ecosystems through the formation of stable chemical complexes. A three week microcosm experiment was carried out in acid conditions to assess the interactive effects of Al (three levels: 0, 200, and 1,000 μg L(-1)) and P (25, 100, and 1,000 μg L(-1)) on alder leaf litter processing by an aquatic hyphomycete consortium. Our results showed that Al alone reduced fungal growth and altered fungal decomposer activities. High P levels, probably through an alleviation of Al-induced P limitation and a reduction of Al toxic forms, suppressed the negative effects of Al on detritus decomposition.

  13. Effects of fungal inocula and habitat conditions on alder and eucalyptus leaf litter decomposition in streams of northern Spain.

    PubMed

    Pérez, Javier; Galán, Javier; Descals, Enrique; Pozo, Jesús

    2014-02-01

    We investigated how fungal decomposer (aquatic hyphomycetes) communities colonizing alder and eucalyptus leaf litter respond to changes in habitat characteristics (transplantation experiment). We examined the breakdown of leaf materials and the associated fungal communities at two contrasting sites, a headwater stream (H) and a midreach (M). Agroforestry increased from headwater to midreach. One month after the start of experiments at both sites, some leaf samples from the midreach site were transplanted to the headwater site (M-H treatment). Although both sites showed similar dissolved inorganic nutrient concentrations, eucalyptus leaves initially incubated at the midreach site (M, M-H) increased their breakdown rate compared to those incubated along the experiment at the headwater site (H). Alder breakdown rate was not enhanced, suggesting that their consumption was not limited by nutrient availability. Sporulation rates clearly differed between leaf types (alder > eucalyptus) and streams (H > M), but no transplantation effect was detected. When comparing conidial assemblages after transplantation, an inoculum effect (persistence of early colonizing species) was clear in both leaf species. Substrate preference and shifts in the relative importance of some fungal species along the process were also observed. Overall, our results support the determining role of the initial conditioning phase on the whole litter breakdown process, highlighting the importance of intrinsic leaf characteristics and those of the incubation habitat.

  14. [Evaluation of interactive efficacy of two mycoinsecticides and low application rate imidacloprid in controlling greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae)].

    PubMed

    Chen, Bin; Feng, Mingguang

    2003-11-01

    The interactive effects of pure emulsifiable formulations (10(10) conidia.ml-1) of Beauveria bassiana and Paecilomyces fumosoroseus conidia and 1% and 3% of imidacloprid 10% WP were tested for controlling greenhouse whitefly, Trialeurodes vaporariorum, on lettuce grown in four polyethylene film-covered greenhouses (5 m x 100 m) in Kunming, Yunnan. Six fungal treatments, two imidacloprid ones, and one water-spray control were included in the experiment, with each being replicated in three plots (7 m x 5 m.plot-1). For each of the treatments, 1000-fold aqueous dilution (10(7) conidia.ml-1) was sprayed twice at a 15-d interval, with the first spray given on day 11 after lettuce transplantation. Counts of live and dead whiteflies from each treatment were made on the initial day, and then, once every five days. During a 30-d period of observation from August 20, the two applications of the fungal formulations alone or those containing low rates of imidacloprid 10% WP effectively protected the lettuce from damage by T. vaporariorum, and generated relative efficacies. Whitefly density decreased > 95%, which was significantly higher than that attributed to the low application rates of imidacloprid 10% WP. Based on the estimations of relative efficacy and percent density decrease, P. fumosoroseus treatments controlled the whiteflies better than B. bassiana ones, and the effects of both fungi on the pest population were apparently enhanced with the quantity of imidacloprid added. The differences among the fungal treatments in the two estimations were larger during the first 10 days, but decreased thereafter, becoming insignificant on day 10 after the second spray. The results indicated that the fungal formulations tested in this study are of great potential for practical use in whitefly control, and their efficacy could be enhanced with low rates of imidacloprid.

  15. Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides.

    PubMed

    Duarte, R T; Gonçalves, K C; Espinosa, D J L; Moreira, L F; De Bortoli, S A; Humber, R A; Polanczyk, R A

    2016-04-01

    The objectives were to evaluate the efficiency of entomopathogenic fungi against Plutella xylostella (L.) and the compatibility of the most virulent isolates with some of the insecticides registered for use on cabbage crops. Pathogenicity tests used isolates of Beauveria bassiana, Metarhizium rileyi, Isaria fumosorosea, Isaria sinclairii, and Lecanicillium muscarium standardized at a concentration of 10(7) conidia/ml. Cabbage leaf discs were immersed in these suspensions, and after evaporation of the excess water, were placed 10 second-instar larvae of P. xylostella, totaling 10 leaf discs per treatment. Mortality was assessed 7 d after treatment, and the isolates that caused mortality>80% were used to estimate LC50 and LT50. The compatibilities of the most virulent isolates and the insecticides were tested from the mixture of these into the culture medium, and after solidifying, the medium was inoculated with an aliquot of the isolated suspension. The following parameters were evaluated: growth of the colony, number and viability of conidia after 7 d. The isolated IBCB01, IBCB18, IBCB66, and IBCB87 of B. bassiana, LCMAP101 of M. rileyi, and ARSEF7973 of I. sinclairii caused mortality between 80 and 100%, with LC50 and LT50 between 2.504 to 6.775×10(4) conidia/ml and 52.22 to 112.13 h, respectively. The active ingredients thiamethoxam and azadirachtin were compatible with the entomopathogenic fungi. The results suggest that the use of these isolates is an important alternative in the pesticidal management of P. xylostella, with the possible exception of the associated use of chemical controls using the active ingredients thiamethoxam or azadirachtin. PMID:26850733

  16. Histopathologic criteria to confirm white-nose syndrome in bats

    USGS Publications Warehouse

    Meteyer, C.U.; Buckles, E.L.; Blehert, D.S.; Hicks, A.C.; Green, D.E.; Shearn-Bochsler, V.; Thomas, N.J.; Gargas, A.; Behr, M.J.

    2009-01-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 ??m in diameter to irregular walls measuring 3-5 ??m in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 ??m wide and 7.5 ??m in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  17. [Efficacy of emulsifiable formulations of two entomopathogenic fungi against small green leafhoppers on tea plant].

    PubMed

    Pu, Xiaoying; Feng, Mingguang

    2004-04-01

    A field trial was conducted to test the efficacy of emulsifiable formulations of Beauveria bassiana (Bb) and Paecilomyces fumosoroseus (Pf) conidia in controlling small green leafhoppers (Empoasca spp.) on tea plant in a hillside tea garden located in Shuichang, Zhejiang during mid-summer 2002. Both Bb and Pf formulations contained 10(10) conidia x ml(-1). Adding 3% of imidacloprid 10% WP to each fungal formulation (W/V) resulted in two other formulations, i.e., Bb-imidacloprid mixture (BbIM) and Pf-imidacloprid mixture (PfIM). Besides the four formulations, a mineral oil-based liquid used to formulate the fungal conidia and containing 3% of imidacloprid 10% WP (OBLI) was also tested, and water spray was used as control (CK). Each of the treatments included three 60-m2 plots (replicates), which were sprayed twice with a 500-fold aqueous dilution of the corresponding formulation or preparation at a 12-d interval. Based on the leafhopper densities estimated by sampling in all plots at 3- or 4-d intervals after the first spray, the spray of BbIM or PfIM could better control the leafhoppers than the spray of Bb or Pf formulation. The maximal efficacy relative to CK reached 83.4% and 71.3% in the BbIM and PfIM treatments, respectively. Estimates of field efficacy obtained during the 25-d period after the first spray was 66.8% for BbIM, 62.1% for PfIM, 50.3% for OBLI, 49.5% for Bb, and 19.0% for Pf, respectively. A discussion was also given on the effect of local weather pattern and leafhopper population age structure on the results of the field trial, and on the application techniques to enhance the efficacy of mycoinsecticides against Empoasca species on tea plant.

  18. Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?

    NASA Astrophysics Data System (ADS)

    Moser, John C.; Konrad, Heino; Blomquist, Stacy R.; Kirisits, Thomas

    2010-02-01

    Dutch elm disease (DED) is a destructive vascular wilt disease of elm ( Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this study was to record and quantify conidia and ascospores of O. novo-ulmi on phoretic mites on the three elm bark beetle species Scolytus multistriatus, Scolytus pygmaeus, and Scolytus scolytus. Spores of O. novo-ulmi were found on four of the ten mite species phoretic on Scolytus spp. These included Elattoma fraxini, Proctolaelaps scolyti, Pseudotarsonemoides eccoptogasteri, and Tarsonemus crassus. All four species had spores attached externally to their body surfaces. However, T. crassus carried most spores within its sporothecae, two paired pocket-like structures adapted for fungal transmission. Individuals of Pr. scolyti also had O. novo-ulmi conidia and ascospores frequently in their digestive system, where they may remain viable. While E. fraxini and P. eccoptogasteri rarely had spores attached to their bodies, large portions of Pr. scolyti and T. crassus carried significant numbers of conidia and/or ascospores of O. novo-ulmi. P. scolyti and T. crassus, which likely are fungivores, may thus contribute to the transmission of O. novo-ulmi, by increasing the spore loads of individual Scolytus beetles during their maturation feeding on twigs of healthy elm trees, enhancing the chance for successful infection with the pathogen. Only S. scolytus, which is the most efficient vector of O. novo-ulmi in Europe, carried high numbers of Pr. scolyti and T. crassus, in contrast to S. multistriatus and S. pygmaeus, which are known as less efficient vectors. The high efficiency of S. scolytus in spreading Dutch elm disease may be partly due to its association with these two mites and the hyperphoretic spores of O. novo-ulmi they carry.

  19. Distribution and pathogen identification of cassava brown leaf spot in China.

    PubMed

    Pei, Y L; Shi, T; Li, C P; Liu, X B; Cai, J M; Huang, G X

    2014-01-01

    Cassava brown leaf spot surveys were conducted in the main cassava plantation areas of China between 2007 and 2012 in order to understand the distribution of the disease. Cassava plants were damaged by the disease to different degrees in most of the survey sites. Samples were collected and seven strains were isolated from lesions. The mycelium-breaking plus black light induction method was applied for sporulation. Microconidia were formed by means of fragmentation on artificial medium plates. When the leaf was stabbed and inoculated with conidia solution, similar symptoms were formed 14 days later. Morphological characteristics of the specimens and conidia were similar to descriptions of Passalora henningsii infection. The internal transcribed spacer (ITS) regions of rDNA were obtained with primer pair ITS1/ITS4 and deposited in GenBank, which differed by three base pairs from that of the P. henningsii isolate (AF284389). The ITS sequences of related species were downloaded from the NCBI database, and phylogenetic analysis showed that the sequences originating from our strains clustered in the same clade as the AF284389 isolate. Biological characteristics were evaluated in two strains from different sites, which indicated that the optimum conditions for mycelia growth were a temperature of 26° to 28°C, carrot agar medium, pH 6, and continuous dark; cassava leaf juice added to malt extract and cassava leaf juice added to potato dextrose agar were the best media for conidia production. The optimal and lethal temperatures for macroconidia germination were 26° to 28°C, and 60°C for 10 min, respectively.

  20. Chemoraces and Habitat Specialization of Claviceps purpurea Populations

    PubMed Central

    Pažoutová, Sylvie; Olšovská, Jana; Linka, Marek; Kolínská, Renata; Flieger, Miroslav

    2000-01-01

    We studied genetic variability of 100 isolates of Claviceps purpurea by using randomly amplified polymorphic DNA (RAPD), an EcoRI restriction site polymorphism in the 5.8S ribosomal DNA (rDNA), the alkaloids produced, and conidial morphology. We identified three groups: (i) group G1 from fields and open meadows (57 isolates), (ii) group G2 from shady or wet habitats (41 isolates), and (iii) group G3 from Spartina anglica from salt marshes (2 isolates). The sclerotia of G1 isolates contained ergotamines and ergotoxines; G2 isolates produced ergosine and ergocristine along with small amounts of ergocryptine; and G3 isolates produced ergocristine and ergocryptine. The conidia of G1 isolates were 5 to 8 μm long, the conidia of G2 isolates were 7 to 10 μm long, and the conidia of G3 isolates were 10 to 12 μm long. Sclerotia of the G2 and G3 isolates floated on water. In the 5.8S rDNA analysis, an EcoRI site was found in G1 and G3 isolates but not in G2 isolates. The host preferences of the groups were not absolute, and there were host genera that were common to both G1 and G2; the presence of members of different groups in the same locality was rare. Without the use of RAPD or rDNA polymorphism, it was not possible to distinguish the three groups solely on the basis of phenotype, host, or habitat. In general, populations of C. purpurea are not host specialized, as previously assumed, but they are habitat specialized, and collecting strategies and toxin risk assessments should be changed to reflect this paradigm shift. PMID:11097923

  1. Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species.

    PubMed

    Stchigel, A M; Sutton, D A; Cano-Lira, J F; Cabañes, F J; Abarca, L; Tintelnot, K; Wickes, B L; García, D; Guarro, J

    2013-12-01

    We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including representatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C. Nannizziopsis draconii is able to grow on bromocresol purple-milk solids-glucose (BCP-MS-G) agar alkalinizing the medium, is resistant to 0.2 % cycloheximide but does not grow on Sabouraud dextrose agar (SDA) with 3 % NaCl. Nannizziopsis arthrosporioides is characterised by the production of very long arthroconidia. Nannizziopsis pluriseptata produces 1- to 5-celled sessile conidia, alkalinizes the BCP-MS-G agar and grows on SDA supplemented with 5 % NaCl. Chrysosporium longisporum shows long sessile conidia (up to 13 μm) and does not produce lipase. PMID:24761037

  2. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein.

    PubMed

    Cho, Eun-Min; Boucias, Drion; Keyhani, Nemat O

    2006-09-01

    In the accompanying paper [Cho, E.-M., Liu, L., Farmerie, W. & Keyhani, N. O. (2006). Microbiology 152, 2843-2854], the analysis of expressed sequence tag (EST) libraries derived from homogeneous single-cell populations of aerial conidia, in vitro blastospores and submerged conidia of the entomopathogenic fungus Beauveria (Cordyceps) bassiana has been reported. Here an extended EST analysis is presented of complex cell mixtures derived from fungal cells sporulating on chitin or grown under culture conditions inducing the production of the B. bassiana secondary metabolite, oosporein. Fungal material used for the construction of the libraries included germinating conidia and blastospores, mycelia, as well as cells in various developmental stages. Approximately 2,500 5' end sequences were determined from random sequencing of clones from each library, and were clustered into 277 contigs with 1,069 singlets, and 306 contigs with 1,064 singlets, for the chitin and oosporein libraries, respectively. Almost half (45-50 %) of the sequences in each library displayed either no significant similarity (e value >10(-4)) or similarity to hypothetical proteins found in the NCBI database. Approximately 20-25 % of the sequences in each library could be annotated by gene ontology terms. A comparative analysis between the two libraries, as well as the libraries in the accompanying paper, is presented. A set of 4,360 clustered and unique sequences was characterized. The data are indicative of a highly plastic gene expression repertoire being available to B. bassiana for growth during different environmental and developmental conditions, and provides a dataset for gene discovery and genome annotation.

  3. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum.

    PubMed

    Cerioni, Luciana; Rapisarda, Viviana Andrea; Hilal, Mirna; Prado, Fernando Eduardo; Rodríguez-Montelongo, Luisa

    2009-08-01

    Oxidizing compounds such as sodium hypochlorite (NaCIO) and hydrogen peroxide (H2O2) are widely used in food sanitization because of their antimicrobial effects. We applied these compounds and metals to analyze their antifungal activity against Penicillium digitatum, the causal agent of citrus green mold. The MICs were 300 ppm for NaClO and 300 mM for H2O2 when these compounds were individually applied for 2 min to conidia suspensions. To minimize the concentration of these compounds, we developed and standardized a sequential treatment for conidia that resulted in loss of viability on growth plates and loss of infectivity on lemons. The in vitro treatment consists of preincubation with 10 ppm of NaClO followed by incubation with 100 mM H2O2 and 6 mM CuSO4 (cupric sulfate). The combination of NaClO and H2O2 in the presence of CuSO4 produces a synergistic effect (fractional inhibitory concentration index of 0.36). The sequential treatment applied in situ on lemon peel 24 h after the fruit was inoculated with conidia produced a significant delay in the fungal infection. The in vitro treatment was effective on both imazalil-sensitive and imazalil-resistant strains of P. digitatum and Geotrichum candidum, the causal agent of citrus sour rot. However, this treatment inhibited 90% of mycelial growth for Penicillium italicum (citrus blue mold). These results indicate that sequential treatment may be useful for postharvest control of citrus fruit diseases.

  4. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions.

    PubMed

    Lara-Rojas, Fernando; Sánchez, Olivia; Kawasaki, Laura; Aguirre, Jesús

    2011-04-01

    Fungi utilize a phosphorelay system coupled to a MAP kinase module for sensing and processing environmental signals. In Aspergillus nidulans, response regulator SskA transmits osmotic and oxidative stress signals to the stress MAPK (SAPK) SakA. Using a genetic approach together with GFP tagging and molecular bifluorescence we show that SakA and ATF/CREB transcription factor AtfA define a general stress-signalling pathway that plays differential roles in oxidative stress responses during growth and development. AtfA is permanently localized in the nucleus, while SakA accumulates in the nucleus in response to oxidative or osmotic stress signals or during normal spore development, where it physically interacts with AtfA. AtfA is required for expression of several genes, the conidial accumulation of SakA and the viability of conidia. Furthermore, SakA is active (phosphorylated) in asexual spores, remaining phosphorylated in dormant conidia and becoming dephosphorylated during germination. SakA phosphorylation in spores depends on certain (SskA) but not other (SrrA and NikA) components of the phosphorelay system. Constitutive phosphorylation of SakA induced by the fungicide fludioxonil prevents both, germ tube formation and nuclear division. Similarly, Neurospora crassa SakA orthologue OS-2 is phosphorylated in intact conidia and gets dephosphorylated during germination. We propose that SakA-AtfA interaction regulates gene expression during stress and conidiophore development and that SAPK phosphorylation is a conserved mechanism to regulate transitions between non-growing (spore) and growing (mycelia) states.

  5. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  6. Laboratory evaluation of a native strain of Beauveria bassiana for controlling Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Immediato, Davide; Camarda, Antonio; Iatta, Roberta; Puttilli, Maria Rita; Ramos, Rafael Antonio Nascimento; Di Paola, Giancarlo; Giangaspero, Annunziata; Otranto, Domenico; Cafarchia, Claudia

    2015-09-15

    The poultry red mite, Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae) is one of the most economically important ectoparasites of laying hens worldwide. Chemical control of this mite may result in environmental and food contamination, as well as the development of drug resistance. High virulence of Beauveria bassiana sensu lato strains isolated from naturally infected hosts or from their environment has been demonstrated toward many arthropod species, including ticks. However, a limited number of studies have assessed the use of B. bassiana for the control of D. gallinae s.l. and none of them have employed native strains. This study reports the pathogenicity of a native strain of B. bassiana (CD1123) against nymphs and adults of D. gallinae. Batches of nymph and adult mites (i.e., n=720 for each stage) for treated groups (TGs) were placed on paper soaked with a 0.1% tween 80 suspension of B. bassiana (CIS, 10(5), 10(7) and 10(9) conidia/ml), whilst 240 untreated control mites for each stage (CG) were exposed only to 0.1% tween 80. The mites in TG showed a higher mortality at all stages (p<0.01) when compared to CG, depending on the time of exposure and the conidial concentration. A 100% mortality rate was recorded using a CIS of 10(9) conidia/ml 12 days post infection (DPI) in adults and 14 DPI in nymphs. B. bassiana suspension containing 10(9) conidia/ml was highly virulent towards nymph and adult stages of D. gallinae, therefore representing a possible promising natural product to be used in alternative or in combination to other acaricidal compounds currently used for controlling the red mite.

  7. Enhancing the Thermotolerance of Entomopathogenic Isaria fumosorosea SFP-198 Conidial Powder by Controlling the Moisture Content Using Drying and Adjuvants

    PubMed Central

    Lee, Se Jin; Lee, Hyang Burm

    2014-01-01

    Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at 10℃, 20℃, 30℃, and 40℃ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at 10℃ and 20℃ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at 30℃ and 40℃ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to 50℃ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% H2O) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon. PMID:24808736

  8. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  9. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs

    PubMed Central

    Tanaka, K.; Hirayama, K.; Yonezawa, H.; Hatakeyama, S.; Harada, Y.; Sano, T.; Shirouzu, T.; Hosoya, T.

    2009-01-01

    A new pleosporalean family Tetraplosphaeriaceae is established to accommodate five new genera; 1) Tetraplosphaeria with small ascomata and anamorphs belonging to Tetraploa s. str., 2) Triplosphaeria characterised by hemispherical ascomata with rim-like side walls and anamorphs similar to Tetraploa but with three conidial setose appendages, 3) Polyplosphaeria with large ascomata surrounded by brown hyphae and anamorphs producing globose conidia with several setose appendages, 4) Pseudotetraploa, an anamorphic genus, having obpyriform conidia with pseudosepta and four to eight setose appendages, and 5) Quadricrura, an anamorphic genus, having globose conidia with one or two long setose appendages at the apex and four to five short setose appendages at the base. Fifteen new taxa in these genera mostly collected from bamboo are described and illustrated. They are linked by their Tetraploa s. l. anamorphs. To infer phylogenetic placement in the Pleosporales, analyses based on a combined dataset of small- and large-subunit nuclear ribosomal DNA (SSU+LSU nrDNA) was carried out. Tetraplosphaeriaceae, however, is basal to the main pleosporalean clade and therefore its relationship with other existing families was not completely resolved. To evaluate the validity of each taxon and to clarify the phylogenetic relationships within this family, further analyses using sequences from ITS-5.8S nrDNA (ITS), transcription elongation factor 1-α (TEF), and β-tubulin (BT), were also conducted. Monophyly of the family and that of each genus were strongly supported by analyses based on a combined dataset of the three regions (ITS+TEF+BT). Our results also suggest that Tetraplosphaeria (anamorph: Tetraploa s. str.) is an ancestral lineage within this family. Taxonomic placement of the bambusicolous fungi in Astrosphaeriella, Kalmusia, Katumotoa, Massarina, Ophiosphaerella, Phaeosphaeria, Roussoella, Roussoellopsis, and Versicolorisporium, are also discussed based on the SSU

  10. Aspergillus fumigatus diffusates suppress polymorphonuclear neutrophil phagocytic functions and respiratory burst levels in hematopoietic stem cell transplantation patients.

    PubMed

    Chen, X H; Deng, Y C; Zhong, B Y; Hao, F

    2015-08-10

    Invasive aspergillosis (IA) is a severe infection that commonly occurs in immunocompromised patients after hematopoietic stem cell transplantation (HSCT). The present study explores the effect of Aspergillus fumigatus diffusates (AfDs) on phagocytic function and superoxide anion (O2(-)) burst levels in polymorphonuclear neutrophils (PMNs) from post-HSCT patients. A. fumigatus conidia with or without AfD were used to stimulate the PMN from healthy donor or HSCT patient for two hours. PMN morphology was visualized by scanning electron microscopy. The levels of respiratory burst O2(-) produced by the PMNs were determined by flow cytometry. PMN phagocytic rates and phagocytic indexes were observed and calculated using periodic acid-Schiff (PAS) staining under a light-field microscope. No difference was found between the PMN phagocytic rates, phagocytic indexes, or O2(-) respiratory burst levels in health donor PMNs following treatments of A. fumigatus conidia with or without AfD. However, significant inhibition of these indices was seen in the PMNs from HSCT patients following treatment of A. fumigatus conidia plus AfD, compared to that with conidium treatment alone (P < 0.05). Therefore, AfD significantly inhibited the phagocytic function of PMNs from HSCT patients, potentially through inhibition of intracellular respiratory burst levels during phagocytosis. This suggests that the reason underlying the greater susceptibility of HSCT patients to aspergillosis might be the existence of AfD in vivo during infection. Further research on the mechanisms by which AfD affects the phagocytic function of PMNs from HSCT patients is therefore of great significance for the prevention of IA.

  11. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid

    PubMed Central

    Zhang, Qing-Yu; Zhang, Li-Qing; Song, Li-Li; Duan, Ke; Li, Na; Wang, Yan-Xiu; Gao, Qing-Hua

    2016-01-01

    The disease symptoms recognized as ‘Anthracnose’ are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry–Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens. PMID:27004126

  12. Laboratory evaluation of a native strain of Beauveria bassiana for controlling Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Immediato, Davide; Camarda, Antonio; Iatta, Roberta; Puttilli, Maria Rita; Ramos, Rafael Antonio Nascimento; Di Paola, Giancarlo; Giangaspero, Annunziata; Otranto, Domenico; Cafarchia, Claudia

    2015-09-15

    The poultry red mite, Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae) is one of the most economically important ectoparasites of laying hens worldwide. Chemical control of this mite may result in environmental and food contamination, as well as the development of drug resistance. High virulence of Beauveria bassiana sensu lato strains isolated from naturally infected hosts or from their environment has been demonstrated toward many arthropod species, including ticks. However, a limited number of studies have assessed the use of B. bassiana for the control of D. gallinae s.l. and none of them have employed native strains. This study reports the pathogenicity of a native strain of B. bassiana (CD1123) against nymphs and adults of D. gallinae. Batches of nymph and adult mites (i.e., n=720 for each stage) for treated groups (TGs) were placed on paper soaked with a 0.1% tween 80 suspension of B. bassiana (CIS, 10(5), 10(7) and 10(9) conidia/ml), whilst 240 untreated control mites for each stage (CG) were exposed only to 0.1% tween 80. The mites in TG showed a higher mortality at all stages (p<0.01) when compared to CG, depending on the time of exposure and the conidial concentration. A 100% mortality rate was recorded using a CIS of 10(9) conidia/ml 12 days post infection (DPI) in adults and 14 DPI in nymphs. B. bassiana suspension containing 10(9) conidia/ml was highly virulent towards nymph and adult stages of D. gallinae, therefore representing a possible promising natural product to be used in alternative or in combination to other acaricidal compounds currently used for controlling the red mite. PMID:26206607

  13. Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana.

    PubMed

    Meschke, Holger; Schrempf, Hildgund

    2010-07-01

    Verticillium wilt, a vascular disease in more than 200 dicotyledonous plants, is due to the ascomycete fungus Verticillium dahliae. As documented by video-microscopy, the soil bacterium Streptomyces lividans strongly reduces the germination of V. dahliae conidia, and the subsequent growth of hyphae. Quantification by the use of DNA-intercalating dyes and Calcofluor-staining revealed that during prolonged co-cultivation, bacterial hyphae proliferate to a dense network, provoke a poor development of V. dahliae vegetative hyphae and lead to an enormous reduction of conidia and microsclerotia. Upon individual application to seeds of the model plant Arabidopsis thaliana, either the bacterial spores or the fungal conidia germinate at or within the mucilage, including its volcano-shaped structures. The extension of hyphae from each individual strain correlates with the reduction of the pectin-containing mucilage-layer. Proliferating hyphae then spread to roots of the emerging seedlings. Plants, which arise in the presence of V. dahliae within agar or soil, have damaged root cells, an atrophied stem and root, as well as poorly developed leaves with chlorosis symptoms. In contrast, S. lividans hyphae settle in bunches preferentially at the outer layer near tips and alongside roots. Resulting plants have a healthy appearance including an intact root system. Arabidopsis thaliana seeds, which are co-inoculated with V. dahliae and S. lividans, have preferentially proliferating bacterial hyphae within the mucilage, and at roots of the outgrowing seedlings. As a result, plants have considerably reduced disease symptoms. As spores of the beneficial S. lividans strain are obtainable in large quantity, its application is highly attractive.

  14. Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions.

    PubMed

    Skalický, Aleš; Bohatá, Andrea; Šimková, Jana; Osborne, Lance S; Landa, Zdeněk

    2014-07-01

    Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67-44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat.

  15. Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media.

    PubMed

    Aerts, R; De Schutter, B; Rombouts, L

    2002-01-01

    In the Flemish horticulture Pythium spp. is an important pathogen of tomato plants (Lycopersicon esculenthum) in soilless growing media. Therefore some experiments were conducted to evaluate the possibility of decreasing the damage caused by Pythium spp. by Trichoderma spp. In a tray with several growing media, a suspension of Trichoderma conidia (10(6)/ml growing medium) was applied two weeks before sowing. On some objects, a compost extract (Biostimulus) was added. The growing media used in the experiment were rockwool, recycled rockwool and recycled coconut fibre. After sowing, the trays were covered with perlite. Three isolates of Trichoderma spp.: T. asperellum (Biofungus), T. harzianum (Tri 003) and Trichoderma sp. (KHK) and two isolates of Pythium spp.: P. ultimum (MUCL) en P. aphanidermatum (HRI, UK) were used. Propamocarb was used as a chemical standard. The use of coconut fibre growing medium resulted in a higher percentage (36%) of germination than the rockwool media when only Pythium spp. was used. The presence of the spontaneous developing microflora in the coconut fibre medium gave probably also a suppression of Pythium spp. For that reason the results of the suppression by Trichoderma spp. are not easy to explain and very variable on the different objects. Pythium ultimum was more suppressed than P. aphanidermatum on all the growing media and the application of all the Trichoderma isolates increased the germination percentage of tomato seeds. T. asperellum (Biofungus) gave on rockwool also a good result for the suppression of P. aphanidermatum (increasing of germination with 48%). This effect was comparable with the propamocarb treatment (48%). T. harzianum (Tri 003) gave a small suppression (22%) and Trichoderma sp. (KHK) gave almost no suppression of P. aphanidermatum (7%). When less Trichoderma conidia were applied the germination percentage decreased. The adding of a compost extract (Biostimulus) had no influence on the results. This experiment

  16. Persistence and Viability of Lecanicillium lecanii in Chinese Agricultural Soil

    PubMed Central

    Peng, De-Liang; Zhou, Jie; Zhang, Xiao-Lin; Zhang, Zhao-Rong; Zhao, Jin-Jin; Wu, Yu-Huan

    2015-01-01

    The entomopathogenic fungus L. lecanii has been developed as biopesticides and used widely for biological control of several insects in agricultural practice. Due to the lack of isolation/count methods for L. lecanii in soil, the persistence of this fungus in soil appears to have attracted no attention. A selective medium and count method for L. lecanii in soil based on cetyl trimethyl ammonium bromide (CTAB) was developed, and then the persistence and viability of this fungus in soil were investigated under field conditions between 2012 and 2014. The results showed that the rate of recovery for L. lecanii in soil on the selective CTAB medium was satisfactory. The minimum CFUs for L. lecanii on the selective medium (0.5 g/L CTAB) was about 102 conidia/g soil. The L. lecanii density in soil declined quickly in the first month after inoculation with fungal conidia, kept stable for 6 to 10 months, and then decreased gradually until undetectable. L. lecanii could persist for at least 14 months in the agricultural soil of northern China. The colony growth, conidia yield and germination rate on plates, as well as the median lethal concentration or times (LC50 or LT50) to aphids, mycelium growth in aphids and sporulation on aphids of L. lecanii did not change significantly during the persistence in soil. In general, the count method developed here was a very useful tool for monitoring the dynamics of natural or introduced L. lecanii populations in soil, and the data on the persistence of L. lecanii in soil reported here were helpful for biological control and environmental risk assessment. PMID:26375030

  17. Biological control of major postharvest pathogens on apple with Candida sake.

    PubMed

    Viñas, I; Usall, J; Teixidó, N; Sanchis, V

    1998-03-01

    Epiphytic microorganisms isolated from apples, pears and the surfaces of apple leaves were screened for antagonistic activity against Penicillium expansum (blue-mold), Botrytis cinerea (gray-mold) and Rhizopus nigricans (Rhizopus rot) on apple (Malus domestica). A total of 933 bacteria and yeasts were tested in primary screening against P. expansum. Ninety-two strains reduced the lesion size on apples by more than 50%, 72 of which were isolated from the surface of apples. For secondary screening against P. expansum, B. cinerea and R. nigricans, 31 strains were selected. The most promising isolate, CPA-1, was identified as Candida sake. This yeast, isolated from apples in storage season was very effective against all three diseases. Wounded Golden Delicious apples protected with the yeast suspension at a concentration of 2.6 x 10(6) CFU/ml and inoculated with conidia of B. cinerea and R. nigricans of 10(5) and 10(4) conidia/ml, respectively, did not develop rot. Complete control of P. expansum was obtained at the same concentration of the antagonist with a pathogen inoculum concentration of 10(3) conidia/ml. This strain, also provided excellent control of rot development under cold storage conditions. The strain of Candida sake can grow actively in aerobic conditions. In drop-inoculated wounds of apples, the populations of C. sake increased by more than 50-fold during the first 24 h at 20 degrees C. The maximum population of C. sake on apple wounds was the same at 20 as at 1 degrees C and was recovered after three and twenty days, respectively.

  18. Environmental contamination by Aspergillus spp. in laying hen farms and associated health risks for farm workers.

    PubMed

    Cafarchia, Claudia; Camarda, Antonio; Iatta, Roberta; Danesi, Patrizia; Favuzzi, Vincenza; Di Paola, Giancarlo; Pugliese, Nicola; Caroli, Anna; Montagna, Maria Teresa; Otranto, Domenico

    2014-03-01

    Data on the occurrence and epidemiology of Aspergillus spp. in laying hens farms are scant. With the aims of determining levels of airborne contamination in laying hen farms and evaluating the potential risk of infection for workers and animals, 57 air samples from 19 sheds (Group I), 69 from faeces (Group II), 19 from poultry feedstuffs (Group III) and 60 from three anatomical sites (i.e. nostrils, pharynx, ears) of 20 farm workers (Group IV) were cultured. The Aspergillus spp. prevalence in samples ranged from 31.6% (Group III) to 55.5% (Group IV), whereas the highest conidia concentration was retrieved in Group II (1.2 × 10(4) c.f.u. g(-1)) and in Group III (1.9 × 10(3) c.f.u. g(-1)). The mean concentration of airborne Aspergillus spp. conidia was 70 c.f.u. m(-3) with Aspergillus fumigatus (27.3%) being the most frequently detected species, followed by Aspergillus flavus (6.3%). These Aspergillus spp. were also isolated from human nostrils (40%) and ears (35%) (P<0.05) (Group IV). No clinical aspergillosis was diagnosed in hens. The results demonstrate a relationship between the environmental contamination in hen farms and presence of Aspergillus spp. on animals and humans. Even if the concentration of airborne Aspergillus spp. conidia (i.e. 70 c.f.u. m(-3)) herein detected does not trigger clinical disease in hens, it causes human colonization. Correct management of hen farms is necessary to control environmental contamination by Aspergillus spp., and could lead to a significant reduction of animal and human colonization.

  19. Therapeutic effects of recombinant forms of full-length and truncated human surfactant protein D in a murine model of invasive pulmonary aspergillosis.

    PubMed

    Singh, Mamta; Madan, Taruna; Waters, Patrick; Sonar, Sanchaita; Singh, Shiv K; Kamran, Mohammad F; Bernal, Andrés López; Sarma, P Usha; Singh, Vijay K; Crouch, Erika C; Kishore, Uday

    2009-07-01

    Aspergillus fumigatus (Afu) is an opportunistic fungal pathogen that can cause fatal invasive pulmonary aspergillosis (IPA) in immunocompromised individuals. Previously, surfactant protein D (SP-D), a surfactant-associated innate immune molecule, has been shown to enhance phagocytosis and killing of Afu conidia by phagocytic cells in vitro. An intranasal treatment of SP-D significantly increased survival in a murine model of IPA. Here we have examined mechanisms via which recombinant forms of full-length (hSP-D) or truncated human SP-D (rhSP-D) offer protection in a murine model of IPA that were immunosuppressed with hydrocortisone and challenged intranasally with Afu conidia prior to the treatment. SP-D or rhSP-D treatment increased the survival rate to 70% and 80%, respectively (100% mortality on day 7 in IPA mice), with concomitant reduction in the growth of fungal hyphae in the lungs, and increased levels of TNF-alpha and IFN-gamma in the lung suspension supernatants, as compared to untreated IPA mice. The level of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the lung cell suspension was also raised considerably following treatment with SP-D or rhSP-D. Our results appear to reaffirm the notion that under immunocompromised conditions, human SP-D or its truncated form can offer therapeutic protection against fatal challenge with Afu conidia challenge. Taken together, the SP-D-mediated protective mechanisms include enhanced phagocytosis by recruited macrophages and neutrophils and fungistatic properties, suppression of the levels of pathogenic Th2 cytokines (IL-4 and IL-5), enhanced local production of protective Th1 cytokines, TNF-alpha and IFN-gamma, and that of protective C-C chemokine, MIP-1 alpha.

  20. Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus.

    PubMed

    Wang, Rui; Leng, Yueqiang; Shrestha, Subidhya; Zhong, Shaobin

    2016-08-01

    LaeA and velvet proteins regulate fungal development and secondary metabolism through formation of multimeric complexes in many fungal species, but their functions in the cereal fungal pathogen Cochliobolus sativus are not well understood. In this study, four velvet complex genes (CsLaeA, CsVeA, CsVelB, and CsVelC) in C. sativus were identified and characterized using knockout mutants generated for each of the genes. Both ΔCsVeA and ΔCsVelB showed significant reduction in aerial mycelia growth. ΔCsVelB also exhibited a hypermorphic conidiation phenotype with indeterminate growth of the conidial tip cells and premature germination of conidia. ΔCsLaeA, ΔCsVeA, and ΔCsVelB produced more conidia under constant dark conditions than under constant light conditions whereas no differences were observed under the two conditions for the wild type. These three mutants also showed significantly reduced conidiation under constant light conditions, but produced more small sized conidia under constant dark conditions compared to the wild type. All knockout mutants (ΔCsLaeA, ΔCsVeA, ΔCsVelB and ΔCsVelC) showed some extent of reduction in virulence on susceptible barley plants compared to the wild type strain. The results revealed the conserved and unique roles of velvet-complex proteins as regulators in mediating fungal development and secondary metabolism in C. sativus. PMID:27521627

  1. Accumulation of ergot alkaloids during conidiophore development in Aspergillus fumigatus.

    PubMed

    Mulinti, Prashanthi; Allen, Natalie A; Coyle, Christine M; Gravelat, Fabrice N; Sheppard, Donald C; Panaccione, Daniel G

    2014-01-01

    Production of ergot alkaloids in the opportunistic fungal pathogen Aspergillus fumigatus is restricted to conidiating cultures. These cultures typically accumulate several pathway intermediates at concentrations comparable to that of the pathway end product. We investigated the contribution of different cell types that constitute the multicellular conidiophore of A. fumigatus to the production of ergot alkaloid pathway intermediates versus the pathway end product, fumigaclavine C. A relatively minor share (11 %) of the ergot alkaloid yield on a molar basis was secreted into the medium, whereas the remainder was associated with the conidiating colonies. Entire conidiating cultures (containing hyphae, vesicle of conidiophore, phialides of conidiophore, and conidia) accumulated higher levels of the pathway intermediate festuclavine and lower levels of the pathway end product fumigaclavine C than did isolated, abscised conidia, indicating that conidiophores and/or hyphae have a quantitatively different ergot alkaloid profile compared to that of conidia. Differences in alkaloid accumulation among cell types also were indicated by studies with conidiophore development mutants. A ∆medA mutant, in which conidiophores are numerous but develop poorly, accumulated higher levels of pathway intermediates than did the wildtype or a complemented ∆medA mutant. A ∆stuA mutant, which grows mainly as hyphae and produces very few, abnormal conidiophores, produced no detectable ergot alkaloids. The data indicated heterogeneous spatial distribution of ergot alkaloid pathway intermediates versus pathway end product in conidiating cultures of A. fumigatus. This skewed distribution may reflect differences in abundance or activity of pathway enzymes among cell types of those conidiating cultures. PMID:23925951

  2. Characterization and virulence of Beauveria spp. recovered from emerald ash borer in southwestern Ontario, Canada.

    PubMed

    Johny, Shajahan; Kyei-Poku, George; Gauthier, Debbie; Frankenhuyzen, Kees van; Krell, Peter J

    2012-09-15

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive wood boring beetle that is decimating North America's ash trees (Fraxinus spp.). To find effective and safe indigenous biocontrol agents to manage EAB, we conducted a survey in 2008-2009 of entomopathogenic fungi (EPF) infecting EAB in five outbreak sites in southwestern Ontario, Canada. A total of 78 Beauveria spp. isolates were retrieved from dead and mycosed EAB cadavers residing in the phloem tissues of dead ash barks, larval frass extracted from feeding galleries under the bark of dead trees. Molecular characterization using sequences of the ITS, 5' end of EF1-α and intergenic Bloc region fragments revealed that Beauveria bassiana and Beauveria pseudobassiana were commonly associated with EAB in the sampled sites. Based on phylogenetic analysis inferred from ITS sequences, 17 of these isolates clustered with B. bassiana, which further grouped into three different sub-clades. However, the combined EF1-α and Bloc sequences detected five genotypes among the three sub-clades. The remaining 61 isolates clustered with B. pseudobassiana, which had identical ITS sequences but were further subdivided into two genotypes by variation in the EF1-α and Bloc regions. Initial virulence screening against EAB adults of 23 isolates representing the different clades yielded 8 that produced more than 90% mortality in a single concentration assay. These isolates differed in virulence based on LC(50) values estimated from multiple concentration bioassay and based on mean survival times at a conidia concentration of 2×10(6) conidia/ml. B. bassiana isolate L49-1AA was significantly more virulent and produced more conidia on EAB cadavers compared to the other indigenous isolates and the commercial strain B. bassiana GHA suggesting that L49-1AA may have potential as a microbiological control agent against EAB.

  3. Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions.

    PubMed

    Skalický, Aleš; Bohatá, Andrea; Šimková, Jana; Osborne, Lance S; Landa, Zdeněk

    2014-07-01

    Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67-44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat. PMID:24338078

  4. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance

    PubMed Central

    Horn, Bruce W.; Gell, Richard M.; Singh, Rakhi; Sorensen, Ronald B.; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing. PMID:26731416

  5. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.

    PubMed

    Ciliberti, Nicola; Fermaud, Marc; Roudet, Jean; Rossi, Vittorio

    2015-08-01

    Effects of environment, Botrytis cinerea strain, and their interaction on the infection of mature grape berries were investigated. The combined effect of temperature (T) of 15, 20, 25, and 30°C and relative humidity (RH) of 65, 80, 90, and 100% was studied by inoculating berries with mycelium plugs. Regardless of the T, no disease occurred at 65% RH, and both disease incidence and severity increased with increasing RH. The combined effect of T (5 to 30°C) and wetness duration (WD) of 3, 6, 12, 24, and 36 h was studied by inoculating berries with conidia. At WD of 36 h, disease incidence was approximately 75% of affected berries at 20 or 25°C, 50% at 15°C, and 30 to 20% at 30 and 10°C; no infection occurred at 5°C. Under favorable conditions (100% RH or 36 h of WD) and unfavorable conditions (65% RH or 3 h of WD), berry wounding did not significantly affect disease incidence; under moderately favorable conditions (80% RH or 6 to 12 h of WD), disease incidence was approximately 1.5 to 5 times higher in wounded than in intact berries. Our data collectively showed that (i) T and RH or WD were more important than strain for mature berry infection by either mycelium or conidia and (ii) the effect of the environment on the different strains was similar. Two equations were developed describing the combined effect of T and RH, or T and WD, on disease incidence following inoculation by mycelium (R2=0.99) or conidia (R2=0.96), respectively. These equations may be useful in the development of models used to predict and control Botrytis bunch rot during berry ripening. PMID:26218433

  6. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.

    PubMed

    Wu, Yuncheng; Yuan, Jun; E, Yaoyao; Raza, Waseem; Shen, Qirong; Huang, Qiwei

    2015-09-01

    A Streptomyces albulus strain NJZJSA2 was isolated from the forest soil sample of Tzu-chin Mountain (Nanjing China) and identified based on its morphological and physiological properties and 16S rDNA gene sequence analysis. The strain S. albulus NJZJSA2 was evaluated for the production of antifungal volatile organic compounds (VOCs) against two fungal pathogens. Results showed that the VOCs generated by S. albulus NJZJSA2 inhibited mycelial growth of Sclerotinia sclerotiorum (SS) and Fusarium oxysporum (FO) by 100 and 56.3%, respectively. The germination of SS sclerotia and FO conidia was completely inhibited in the presence of VOCs produced by S. albulus NJZJSA2 in vitro. In soil, the VOCs delayed the germination of SS sclerotia and inhibited the germination of FO conidia for 45 days. The strain S. albulus NJZJSA2 was able to produce 13 VOCs based on GC/MS analyses. Among those, six compounds were purchased and used for the antifungal activity assay. Three relatively abundant VOCs, 4-methoxystyrene, 2-pentylfuran, and anisole were proved to have antifungal activity. Microscopy analysis showed that the pathogen hyphae were shriveled and damaged after treatment with 4-methoxystyrene. These results suggest that the S. albulus strain NJZJSA2 produce VOCs that not only reduce the growth of SS and FO, but also significantly inhibit the SS sclerotia and FO conidia. The results are useful for the better understanding of biocontrol mechanisms by S. albulus strains and will help to improve the biological control efficiency of lethal plant diseases. PMID:26059065

  7. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance.

    PubMed

    Horn, Bruce W; Gell, Richard M; Singh, Rakhi; Sorensen, Ronald B; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.

  8. Transformation with green fluorescent protein of Trichoderma harzianum 1051, a strain with biocontrol activity against Crinipellis perniciosa, the agent of witches'-broom disease of cocoa.

    PubMed

    Inglis, Peter W.; Queiroz, Paulo R.; Valadares-Inglis, M. Cléria

    1999-04-01

    A plasmid vector for fungal expression of an enhanced, red-shifted variant of the Aequoria victoriae green fluorescent protein was constructed by fusion of the EGFP gene to the highly expressed Aspergillus nidulans gpd promoter and the A. nidulans trpC terminator. This construction was introduced by cotransformation, using benomyl selection, into Trichoderma harzianum strain 1051, a strain being evaluated for the biological control of witches'-broom disease of cocoa caused by Crinipellis perniciosa. Epifluorescence microscopy was used to monitor germination and attachment of stable transformant conidia on the surface of C. perniciosa hyphae.

  9. Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens.

    PubMed

    Luo, Jing; Walsh, Emily; Zhang, Ning

    2014-01-01

    Based on morphology and DNA sequences of SSU, ITS, LSU, MCM7, RPB1 and TEF1 genes, we describe four new species in Magnaporthaceae that are associated with grass roots collected from New Jersey Pine Barrens. A new genus, Pseudophialophora, is erected to accommodate three species, which is characterized by slow growth on potato dextrose agar, curved conidiogenous cells without a conspicuous collarette at the apex and oblong ellipsoidal conidia. Pseudophialophora eragrostis, P. panicorum and P. schizachyrii are assigned to this genus. A new species of Magnaporthiopsis also is reported and named as M. panicorum. Distinctions between them and phylogenetic relationships with other Magnaporthaceae taxa are discussed. PMID:24871590

  10. Moelleriella zhongdongii: stroma development and identification of hirsutella-like and Aschersonia synanamorphs

    PubMed Central

    TADYCH, Mariusz; CHAVERRI, Priscila; BERGEN, Marshall; WHITE, James F.

    2009-01-01

    Collections of Moelleriella zhongdongii were made at the La Selva Biological Station in Costa Rica. Fresh collections were examined to evaluate developmental stages. Isolations were made from single part-ascospores and Aschersonia conidia. Moelleriella zhongdongii produces perithecia with evanescent asci and part-ascospores, and both hirsutella-like and Aschersonia synanamorphs. Both anamorphs were produced in pure cultures under cultural conditions optimal to induce the respective anamorphs. Low-nutrient conditions favoured production of the hirsutella-like anamorph while high-nutrient conditions favoured development of the Aschersonia anamorph. The teleomorph developed on leaves of host plants but were not produced in vitro. PMID:19640402

  11. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria.

    PubMed

    Arthurs, S; Thomas, M B

    2001-08-01

    The effects of relative humidity (RH) and temperature on the sporulation of Metarhizium anisopliae var. acridum on mycosed cadavers of desert locust, Schistocerca gregaria, were assessed in the laboratory. Quantitative assessments of conidial production over 10 days under constant conditions showed that sporulation was optimized at RH > 96% and at temperatures between 20 and 30 degrees C. Under both these conditions >10(9) conidia/cadaver were produced. At 25 degrees C, conidial yield was maximized under conditions in which cadavers remained in contact with damp substrate. Relatively little sporulation occurred at 15 degrees C (< 3 x 10(7) conidia/cadaver) and 40 degrees C (< 4 x 10(6) conidia/cadaver) and no sporulation occurred at 10 or 45 degrees C. Following incubation, conidial yield was closely related to the water content of locust cadavers. In separate tests, locust cadavers were incubated for 10 days under diurnally fluctuating temperature and RH that comprised favorable (25 degrees C/100% RH) alternating with unfavorable (40 degrees C/80% RH) conditions for sporulation. In this case, fewer conidia were produced compared with cadavers that were incubated under the favorable conditions for an equal period cumulatively but were not periodically exposed to unfavorable conditions. However, this reduced sporulation observed with the fluctuating condition was not observed when cadavers were similarly incubated under favorable/unfavorable conditions of temperature but were not periodically exposed to the low RH condition. This result implies that sporulation is a dynamic process, dependent not only on periodic exposure to favorable RH but also on the interrelation of this with low RH. Associated tests and the monitoring of changes in cadaver weights imply that the mechanism driving the reduced sporulation under fluctuating RH is the net water balance of cadavers, i.e. the cumulative ability of the fungus/cadaver to adsorb water necessary for sporulation at high

  12. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Methods Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Results Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12–17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18–23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). Conclusions The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of

  13. Spermidine is required for morphogenesis in the human pathogenic fungus, Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Sakamoto, Akihiko; Terui, Yusuke; Kashiwagi, Keiko; Vanittanakom, Nongnuch

    2013-01-01

    Penicillium marneffei is a thermally dimorphic fungus that is a highly significant pathogen of immune compromised persons living or having traveled in Southeast Asia. When cultured at 25°C, the wild-type strain of P. marneffei exhibits a mycelial morphology that is marked by the development of specialized structures bearing conidia. Incubation of the wild type at 37°C, however, promotes the development of a yeast form that divides by fission. Development of the yeast morphology in vivo appears to be requisite for pathogenesis. In a prior study using Agrobacterium-mediated transformation for random mutagenesis via T-DNA integration, we generated a morphological mutant (strain I6) defective in conidiation. The T-DNA insertion site in strain I6 was determined to be within the gene encoding S-adenosylmethionine decarboxylase (sadA), an enzyme critical to spermidine biosynthesis. In the present study, we demonstrated that strain I6 was able to grow on rich media in either the mold or yeast forms at 25°C and 37°C, respectively. However, reduced growth of strain I6 was observed on minimal medium at either temperature. In addition, strain I6 produced mycelia with impaired conidiation on minimal medium at 25°C. Supplementation of minimal medium with spermidine restored the ability of strain I6 to produce conidia at 25°C and promoted yeast development at 37°C. Moreover, conidia of strain I6 exhibited poor germination frequencies in the absence of this polyamine. All three of these processes (conidiogenesis, germination, and growth) were reinstated in strain I6 by complementation of the partially deleted of sadA gene by ectopic insertion of an intact wild-type copy. These results augment prior observations that spermidine biosynthesis is essential to normal growth, conidiogenesis, spore germination, and dimorphism in a variety of fungi. Given the presumption that P. marneffei infections are initiated following inhalation of conidia, and that pathogenesis is dependent

  14. Penicillium kongii, a new terverticillate species isolated from plant leaves in China.

    PubMed

    Wang, Bo; Wang, Long

    2013-01-01

    A new Penicillium species isolated from plant leaves, characterized by restricted growth, terverticillate penicilli, ovoid to ellipsoidal conidia and a red soluble pigment on yeast extract sucrose agar is reported here. Penicillium kongii sp. nov. belongs to subgenus Penicillium section Brevicompacta and is morphologically similar to P. bialowiezense and P. brevicompactum. Phylogenetic analyses based on sequence data from calmodulin gene, β-tubulin gene and rDNA ITS1-5.8S-ITS2 show that P. kongii forms a distinctive clade.

  15. In vitro colony interactions among species of trichoderma with inference toward biological control. Forest Service research paper

    SciTech Connect

    Reaves, J.L.; Crawford, R.H.

    1994-07-01

    Colony of interactions among 15 isolates representing seven species of Trichoderma were evaluated in vitro interactions characterized by zones of inhibition, demarcation lines, ridges of conidia, overgrowth, intermingling, anastomosis, and hyphal coiling in self-pairings and intraspecific and interspecific pairings of the seven species were recorded. Antagnostic interactions such as zones of inhibition were prevelent in these pairings. An understanding of the compatibility between species of isolates of Trichoderma will provide information on the use of multiple species of Trichoderma as biological control agents.

  16. Cutaneous phaeohyphomycosis due to Alternaria tenuissima.

    PubMed

    Romano, C; Fimiani, M; Pellegrino, M; Valenti, L; Casini, L; Miracco, C; Faggi, E

    1996-01-01

    A 50-year-old gardener with a 3-year history of pemphigus vulgaris and steroid-induced diabetes complained of various papulonodular lesions on the left elbow. The lesions had appeared 11 months previously. Skin biopsy showed chronic granulomatous inflammation of the dermis which contained septate hyphae and large spores mainly free. Fragments of the biopsy specimen, cultured on Sabouraud glucose agar without cycloheximide, for 4 days, produced soft white colonies which later turned blackish brown, especially on the underside. On the basis of the microscopic characters of the conidiophores and conidia, Alternaria tenuissima was identified. This phaeohyphomycete has only been isolated previously in two other cases in Italy.

  17. Application of loop-mediated isothermal amplification assays for direct identification of pure cultures of Aspergillus flavus, A. nomius, and A. caelatus and for their rapid detection in shelled Brazil nuts.

    PubMed

    Luo, Jie; Taniwaki, Marta H; Iamanaka, Beatriz T; Vogel, Rudi F; Niessen, Ludwig

    2014-02-17

    Brazil nuts have a high nutritional content and are a very important trade commodity for some Latin American countries. Aflatoxins are carcinogenic fungal secondary metabolites. In Brazil nuts they are produced predominantly by Aspergillus (A.) nomius and A. flavus. In the present study we applied and evaluated two sets of primers previously published for the specific detection of the two species using loop-mediated isothermal amplification (LAMP) technology. Moreover, a primer set specific for A. caelatus as a frequently occurring non-aflatoxigenic member of Aspergillus section Flavi in Brazil nuts was newly developed. LAMP assays were combined with a simplified DNA release method and used for rapid identification of pure cultures and rapid detection of A. nomius and A. flavus from samples of shelled Brazil nuts. An analysis of pure cultures of 68 isolates representing the major Aspergillus species occurring on Brazil nuts showed that the three LAMP assays had individual accuracies of 61.5%, 84.4%, and 93.3% for A. flavus, A. nomius, and A. caelatus, respectively when morphological identification was used as a reference. The detection limits for conidia added directly to the individual LAMP reactions were found to be 10⁵ conidia per reaction with the primer set ID9 for A. nomius and 10⁴ conidia per reaction with the primer set ID58 for A. flavus. Sensitivity was increased to 10¹ and 10² conidia per reaction for A. nomius and A. flavus, respectively, when sample preparation included a spore disruption step. The results of LAMP assays obtained during the analysis of 32 Brazil nut samples from different regions of Brazil and from different steps in the production process of the commodity were compared with results obtained from mycological analysis and aflatoxin analysis of corresponding samples. Compared with mycological analysis of the samples, the Negative Predictive Values of LAMP assays were 42.1% and 12.5% while the Positive Predictive Values were 61

  18. Genetic relationships among Leptographium terebrantis and the mycangial fungi of three western Dendroctonus bark beetles.

    PubMed

    Six, Diana L; Harrington, Thomas C; Steimel, Joseph; McNew, Douglas; Paine, T D

    2003-01-01

    Morphology, mitochondrial DNA (mtDNA) restriction fragment polymorphisms (RFLPs) and nuclear DNA (nDNA) fingerprinting were used to clarify relationships among the morphologically similar Ophiostoma and Leptographium species associated with mycangia of three Dendroctonus bark beetles (Ophiostoma clavigerum associated with both D. ponderosae and D. jeffreyi, and L. pyrinum associated with D. adjunctus), as well as a closely related nonmycangial bark beetle associate (L. terebrantis). Most isolates of O. clavigerum form long (40-70 μm), septate conidia, while all isolates of L. terebrantis and L. pyrinum form conidia less than 17.0 μm in length. The conidia of L. pyrinum are pyriform, with truncate bases, while the conidia of the other species form only slightly truncate bases. Conidial masses of L. terebrantis are creamy yellow, while the conidial masses of the other species are white. Nuclear DNA fingerprints resulting from probing PstI restrictions with the oligonucleotide probe (CAC)(5) and HaeIII and MspI restrictions of mtDNA, exhibited three major clusters. In the dendrogram developed from mtDNA RFLPs, the L. pyrinum isolates formed one cluster, while the majority of O. clavigerum isolates, including all D. jeffreyi isolates, formed another. A third cluster was composed of all L. terebrantis isolates, as well as several O. clavigerum isolates from D. ponderosae. The inclusion of some O. clavigerum isolates in the L. terebrantis cluster suggests that horizontal transfer of mtDNA has occurred among these fungi. The nDNA dendrogram also exhibited three clusters, and most isolates of L. pyrinum, L. terebrantis and O. clavigerum grouped separately; however, one isolate of O. clavigerum grouped with the L. terebrantis isolates, while one isolate of L. terebrantis grouped with O. clavigerum. No genetic markers were found that distinguished between O. clavigerum associated with D. ponderosae and O. clavigerum associated with D. jeffreyi. Ophiostoma clavigerum might

  19. Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens.

    PubMed

    Luo, Jing; Walsh, Emily; Zhang, Ning

    2014-01-01

    Based on morphology and DNA sequences of SSU, ITS, LSU, MCM7, RPB1 and TEF1 genes, we describe four new species in Magnaporthaceae that are associated with grass roots collected from New Jersey Pine Barrens. A new genus, Pseudophialophora, is erected to accommodate three species, which is characterized by slow growth on potato dextrose agar, curved conidiogenous cells without a conspicuous collarette at the apex and oblong ellipsoidal conidia. Pseudophialophora eragrostis, P. panicorum and P. schizachyrii are assigned to this genus. A new species of Magnaporthiopsis also is reported and named as M. panicorum. Distinctions between them and phylogenetic relationships with other Magnaporthaceae taxa are discussed.

  20. [A case of broncho-pulmonary aspergillosis complicated by bronchial asthma attack].

    PubMed

    Katayama, Nobuyuki; Fujimura, Masaki; Kasahara, Kazuo; Yasui, Masahide; Kita, Toshiyuki; Abo, Miki; Yoshimi, Yuzou; Nishitsuji, Masaru; Nomura, Satoshi; Nakao, Shinji

    2003-04-01

    A 55-year-old man was hospitalized for the treatment of severe asthma. However, his condition improved with steroid chemotherapy under artificial ventilation, but high fever and multiple patchy shadows of the lung that were not responsive to antibiotics appeared. We detected aspergillus hyphae, probably inhaled with a quantity of dust in the attic of his workplace, in the sputum. We diagnosed invasive broncho-pulmonary aspergillosis complicated with allergic broncho-pulmonary aspergillosis. His condition improved with anti-fungal drug treatment. We consider that the causes of invasive broncho-pulmonary aspergillosis in this case were massive inhalation of aspergillus conidia, artifical ventilation and steroid chemotherapy.