NASA Technical Reports Server (NTRS)
Doolittle, Russell F.; Meyer, Michael (Technical Monitor)
2003-01-01
Plasmodium falciparum, the protozoan parasite responsible for most human malaria, is among the most studied pathogens of all time, probably only exceeded by the human immunodeficiency virus HTV and the bacterium Mycobacterium tuberculosis. The extent of human suffering and the devastating costs of malaria have long been recognized by world bodies, and numerous initiatives have been taken over the years in an effort to defeat this insidious microbe. Beginning in 1996, an international consortium of scientists from more than a dozen institutions set about to determine the sequence of the organism's 23-megabase genome. Their massive effort-which ended up going well beyond simple sequencing is reported in this special issue of Nature. The avowed goal of the project was to search for chinks in the parasite's armor so that new and effective drugs and vaccines might be developed.
Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.
Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina
2016-11-23
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.
Social Motility in African Trypanosomes
McLelland, Bryce T.; Hill, Kent L.
2010-01-01
African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions. PMID:20126443
Mechanisms of CNS invasion and damage by parasites.
Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina
2013-01-01
Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy
Fichorova, Raina N.; Takagi, Yuko; Hayes, Gary R.; Goodman, Russell P.; Chepa-Lotrea, Xenia; Buck, Olivia R.; Murray, Ryan; Kula, Tomasz; Beach, David H.; Singh, Bibhuti N.; Nibert, Max L.
2012-01-01
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae. PMID:23144878
Neglected parasitic infections in the United States: toxocariasis.
Woodhall, Dana M; Eberhard, Mark L; Parise, Monica E
2014-05-01
Toxocariasis is a preventable parasitic disease that is caused by the dog and cat roundworms Toxocara cani and T. cati, respectively. Humans become infected when they accidently ingest infectious Toxocara eggs commonly found in contaminated soil; children are most often affected. Clinical manifestations of Toxocara infection in humans include ocular toxocariasis and visceral toxocariasis. Although infection with Toxocara can cause devastating disease, the burden of toxocariasis in the United States population remains unknown. In addition, risk factors for acquiring infection need to be better defined, and research needs to be conducted to better understand the pathophysiology and clinical course of toxocariasis. Development of diagnostic tests would enable clinicians to detect active infection, and determination of optimal drug regiments would ensure patients were appropriately treated. Addressing these public health gaps is necessary to understand and address the impact of toxocariasis in the United States.
Genetic and biochemical analysis of protozoal polyamine transporters.
Hasne, Marie-Pierre; Ullman, Buddy
2011-01-01
Polyamines are aliphatic polycations that function in key cellular processes such as growth, differentiation, and macromolecular biosynthesis. Intracellular polyamines pools are maintained from de novo synthesis and from transport of polyamines from the extracellular milieu. This acquisition of exogenous polyamines is mediated by cell surface transporter proteins. Protozoan parasites are the etiologic agents of a plethora of devastating and often fatal diseases in humans and their domestic animals. These pathogens accommodate de novo and/or salvage mechanisms for polyamine acquisition. Because of its therapeutic relevance, the polyamine biosynthetic pathway has been thoroughly investigated in many genera of protozoan parasites, but the polyamine permeation pathways have generally been ignored. Our group has now identified at the molecular level polyamine transporters from two species of protozoan parasites, Leishmania major and Trypanosoma cruzi, characterized these polytopic proteins with respect to ligand specificities and affinities, and determined the subcellular environments in which these transporters reside.
Adult somatic stem cells in the human parasite Schistosoma mansoni.
Collins, James J; Wang, Bo; Lambrus, Bramwell G; Tharp, Marla E; Iyer, Harini; Newmark, Phillip A
2013-02-28
Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide. The aetiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms (for example, planarians), and neoblast-like cells have been described in some parasitic tapeworms, little is known about whether similar cell types exist in any trematode species. Here we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources and RNA-seq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor orthologue. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations indicate that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes probably contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.
Neglected Parasitic Infections in the United States: Toxocariasis
Woodhall, Dana M.; Eberhard, Mark L.; Parise, Monica E.
2014-01-01
Toxocariasis is a preventable parasitic disease that is caused by the dog and cat roundworms Toxocara cani and T. cati, respectively. Humans become infected when they accidently ingest infectious Toxocara eggs commonly found in contaminated soil; children are most often affected. Clinical manifestations of Toxocara infection in humans include ocular toxocariasis and visceral toxocariasis. Although infection with Toxocara can cause devastating disease, the burden of toxocariasis in the United States population remains unknown. In addition, risk factors for acquiring infection need to be better defined, and research needs to be conducted to better understand the pathophysiology and clinical course of toxocariasis. Development of diagnostic tests would enable clinicians to detect active infection, and determination of optimal drug regiments would ensure patients were appropriately treated. Addressing these public health gaps is necessary to understand and address the impact of toxocariasis in the United States. PMID:24808249
Zhou, Jiao; Zhao, Li-Lin; Yu, Hai-Ying; Wang, Yan-Hong; Zhang, Wei; Hu, Song-Nian; Zou, Zhen; Sun, Jiang-Hua
2018-04-02
Immune response of insect vectors to transmitted pathogens or insect hosts against parasites are well studied, whereas the mechanism of tripartite interactions remains elusive. In this study, we investigated the immune interactions of the vector beetle Monochamus alternatus ( Ma) to the devastating plant parasitic nematode Bursaphelenchus xylophilus ( Bx) and the insect parasitic nematode Howardula phyllotretae ( Hp). We report the unique immune mechanism by which the vector beetle tolerates many devastating Bx in its trachea, yet that immune tolerance is compromised by the parasitic nematode Hp. Contact with either nematode species triggers epithelial reactive oxygen species (ROS) production in Ma. Only the entry of Bx, not Hp, infection, induces increased expression of antioxidative genes, through which the ROS levels are balanced in the trachea of beetles. Furthermore, we found that up-regulation of antioxidative genes was induced by the interaction of Toll receptors. In contrast, beetles infected by Hp retain high levels of oxidative stress and melanization in trachea, and as a result, decrease Bx loading. This study highlights the role of Toll receptors in mediating the activation of antioxidative genes in immune tolerance to plant parasitic nematodes, and suggests the use of insect parasites as a biologic control.-Zhou, J., Zhao, L.-L., Yu, H.-Y., Wang, Y.-H., Zhang, W., Hu, S.-N., Zou, Z., Sun, J.-H. Immune tolerance of vector beetle to its partner plant parasitic nematode modulated by its insect parasitic nematode.
Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.
Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert
2017-04-01
Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.
The flagellum of Trypanosoma brucei: new tricks from an old dog
Ralston, Katherine S.; Hill, Kent L.
2010-01-01
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102
Heitlinger, Emanuel; Spork, Simone; Lucius, Richard; Dieterich, Christoph
2014-08-20
The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.
A sensory code for host seeking in parasitic nematodes
Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.
2011-01-01
Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558
Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents
Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Al-Adhroey, Abdulelah H.; Suhaimi, Anwar; Sivanandam, S.
2013-01-01
Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented. PMID:24298292
Implications of bioactive solute transfer from hosts to parasitic plants.
Smith, Jason D; Mescher, Mark C; De Moraes, Consuelo M
2013-08-01
Parasitic plants--which make their living by extracting nutrients and other resources from other plants--are important components of many natural ecosystems; and some parasitic species are also devastating agricultural pests. To date, most research on plant parasitism has focused on nutrient transfer from host to parasite and the impacts of parasites on host plants. Far less work has addressed potential effects of the translocation of bioactive non-nutrient solutes-such as phytohormones, secondary metabolites, RNAs, and proteins-on the development and physiology of parasitic plants and on their subsequent interactions with other organisms such as insect herbivores. A growing number of recent studies document the transfer of such molecules from hosts to parasites and suggest that they may have significant impacts on parasite physiology and ecology. We review this literature and discuss potential implications for management and priorities for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
The immune strategies of mosquito Aedes aegypti against microbial infection.
Wang, Yan-Hong; Chang, Meng-Meng; Wang, Xue-Li; Zheng, Ai-Hua; Zou, Zhen
2018-06-01
Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mangiola, Stefano; Young, Neil D; Korhonen, Pasi; Mondal, Alinda; Scheerlinck, Jean-Pierre; Sternberg, Paul W; Cantacessi, Cinzia; Hall, Ross S; Jex, Aaron R; Gasser, Robin B
2013-12-01
Compounded by a massive global food shortage, many parasitic diseases have a devastating, long-term impact on animal and human health and welfare worldwide. Parasitic helminths (worms) affect the health of billions of animals. Unlocking the systems biology of these neglected pathogens will underpin the design of new and improved interventions against them. Currently, the functional annotation of genomic and transcriptomic sequence data for socio-economically important parasitic worms relies almost exclusively on comparative bioinformatic analyses using model organism- and other databases. However, many genes and gene products of parasitic helminths (often >50%) cannot be annotated using this approach, because they are specific to parasites and/or do not have identifiable homologs in other organisms for which sequence data are available. This inability to fully annotate transcriptomes and predicted proteomes is a major challenge and constrains our understanding of the biology of parasites, interactions with their hosts and of parasitism and the pathogenesis of disease on a molecular level. In the present article, we compiled transcriptomic data sets of key, socioeconomically important parasitic helminths, and constructed and validated a curated database, called HelmDB (www.helmdb.org). We demonstrate how this database can be used effectively for the improvement of functional annotation by employing data integration and clustering. Importantly, HelmDB provides a practical and user-friendly toolkit for sequence browsing and comparative analyses among divergent helminth groups (including nematodes and trematodes), and should be readily adaptable and applicable to a wide range of other organisms. This web-based, integrative database should assist 'systems biology' studies of parasitic helminths, and the discovery and prioritization of novel drug and vaccine targets. This focus provides a pathway toward developing new and improved approaches for the treatment and control of parasitic diseases, with the potential for important biotechnological outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.
The deadly swimming of Cercariae: an unusual Stokesian swimmer
NASA Astrophysics Data System (ADS)
Prakash, Manu; Krishnamurthy, Deepak
2014-11-01
Schistosomiasis, also known as Bilharzia, is a Neglected Tropical Disease (NTD) caused by a parasitic Trematode blood fluke worm. In terms of socio-economic and public health impact, Schistosomiasis is second only to Malaria as the most devastating parasitic disease in tropical countries; with roughly 200 million people infected at any time world-wide and up to 200,000 deaths every year. The infectious form of the parasite, known as Cercariae, emerge from snails into freshwater and infect humans by directly burrowing into the skin. Thus, anyone in contact with infected waters is at risk, which mostly includes children. By establishing a safe experimental means of studying the Cercariae in our lab, we report here their unusual swimming dynamics which include both head-first and tail-first swimming modes. These swimming modes are crucial for the chemotactic activity of Cercariae which allows them to seek out and burrow into human skin. By experimental and analytical means, we demonstrate that Cercariae break symmetry and achieve locomotion at small Reynolds number differently when compared to well-known methods involving traveling waves in the flagellum or chiral beating. Although they utilize the well-known drag anisotropy of a slender body in Stokes flow, the geometry and kinematics of their propulsion mechanism is novel. Based on these results, we propose a new kind of simple Stokesian swimmer (T-joint swimmer) in an attempt to explain the evolutionary advantages of this novel swimming mechanism. Using the above physical insights from a biological and global-health standpoint, we explore ways to hinder the chemotactic capabilities of this parasite.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
Strigolactones as germination stimulants for root parasitic plants.
Yoneyama, Koichi; Awad, Ayman A; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo
2010-07-01
Witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are the two most devastating root parasitic plants belonging to the family Orobanchaceae and are causing enormous crop losses throughout the world. Seeds of these root parasites will not germinate unless they are exposed to chemical stimuli, 'germination stimulants' produced by and released from plant roots. Most of the germination stimulants identified so far are strigolactones (SLs), which also function as host recognition signals for arbuscular mycorrhizal fungi and a novel class of plant hormones inhibiting shoot branching. In this review, we focus on SLs as germination stimulants for root parasitic plants. In addition, we discuss how quantitative and qualitative differences in SL exudation among sorghum cultivars influence their susceptibility to Striga.
The past, present, and future of Leishmania genomics and transcriptomics
Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J.; Otranto, Domenico
2015-01-01
It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite–host–vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the ‘One Health’ concept may open new avenues for the control of these devastating diseases. PMID:25638444
Natural product synthesis: Making nematodes nervous
NASA Astrophysics Data System (ADS)
Snyder, Scott A.
2011-06-01
A highly inventive route for the synthesis of a key substance that stimulates potato cyst nematodes to hatch has been developed. This discovery has potential to impact food supplies, as treatment of crops with this compound could alleviate the devastating effect of these parasites.
Apoplastic interactions between plants and plant root intruders.
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Apoplastic interactions between plants and plant root intruders
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059
Zoonotic aspects of vector-borne infections.
Failloux, A-B; Moutailler, S
2015-04-01
Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.
Evolutionary Origins of Rhizarian Parasites.
Sierra, Roberto; Cañas-Duarte, Silvia J; Burki, Fabien; Schwelm, Arne; Fogelqvist, Johan; Dixelius, Christina; González-García, Laura N; Gile, Gillian H; Slamovits, Claudio H; Klopp, Christophe; Restrepo, Silvia; Arzul, Isabelle; Pawlowski, Jan
2016-04-01
The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
T cell-derived IL-10 and its impact on the regulation of host responses during malaria.
Freitas do Rosario, Ana Paula; Langhorne, Jean
2012-05-15
Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K Kucera; L Harrison; M Cappello
2011-12-31
Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 {angstrom} resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinantmore » AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-likefold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.« less
The Socioeconomic Impact of Lymphatic Filariasis in Tropical Countries
ERIC Educational Resources Information Center
Nwoke, Bertram Ekejiuba Bright; Nwoke, Eunice Anyalewechi; Dozie, Ikechukwu Nosike Simplicius
2007-01-01
Lymphatic filariasis (LF) is an endemic parasitic disease and a major cause of acute and chronic morbidity and incapacitation with devastating public health and socio-economic consequences. It exacerbates poor conditions of afflicted persons and endemic communities through reduced or lost labour supply and productivity. Stigmatisation and…
Taylor, Christina M.; Mitreva, Makedonka
2011-01-01
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html. PMID:21760913
Kwofie, Kofi D.; Tung, Nguyen Huu; Amoa-Bosompem, Michael; Adegle, Richard; Sakyiamah, Maxwell M.; Ayertey, Frederick; Owusu, Kofi Baffour-Awuah; Tuffour, Isaac; Atchoglo, Philip; Frempong, Kwadwo K.; Anyan, William K.; Uto, Takuhiro; Morinaga, Osamu; Yamashita, Taizo; Aboagye, Frederic; Appiah, Alfred A.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yamaguchi, Yasuchika; Edoh, Dominic; Koram, Kwadwo A.; Yamaoka, Shoji; Boakye, Daniel A.; Ohta, Nobuo; Shoyama, Yukihiro; Ayi, Irene
2016-01-01
Trypanosoma brucei parasites are kinetoplastid protozoa that devastate the health and economic well-being of millions of people in Africa through the disease human African trypanosomiasis (HAT). New chemotherapy has been eagerly awaited due to severe side effects and the drug resistance issues plaguing current drugs. Recently, there has been an emphasis on the use of medicinal plants worldwide. Morinda lucida Benth. is a popular medicinal plant widely distributed in Africa, and several research groups have reported on the antiprotozoal activities of this plant. In this study, we identified three novel tetracyclic iridoids, molucidin, ML-2-3, and ML-F52, from the CHCl3 fraction of M. lucida leaves, which possess activity against the GUTat 3.1 strain of T. brucei brucei. The 50% inhibitory concentrations (IC50) of molucidin, ML-2-3, and ML-F52 were 1.27 μM, 3.75 μM, and 0.43 μM, respectively. ML-2-3 and ML-F52 suppressed the expression of paraflagellum rod protein subunit 2, PFR-2, and caused cell cycle alteration, which preceded apoptosis induction in the bloodstream form of Trypanosoma parasites. Novel tetracyclic iridoids may be promising lead compounds for the development of new chemotherapies for African trypanosomal infections in humans and animals. PMID:26953191
Marine actinomycetes: a new source of compounds against the human malaria parasite.
Prudhomme, Jacques; McDaniel, Eric; Ponts, Nadia; Bertani, Stéphane; Fenical, William; Jensen, Paul; Le Roch, Karine
2008-06-04
Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria.
Parasites in algae mass culture
Carney, Laura T.; Lane, Todd W.
2014-01-01
Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200
Yersinia pestis--etiologic agent of plague.
Perry, R D; Fetherston, J D
1997-01-01
Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague. PMID:8993858
RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.
Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil
2017-01-01
Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans ; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.
Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A; Sinden, Robert E; Leroy, Didier
2012-02-01
Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.
Molyneux, David H; Ward, Steve A
2015-12-01
The award of the Nobel Prize to Dr Bill Campbell and Professor Satoshi Ōmura for their role in the discovery of avermectin and Professor Youyou Tu for her work on the development of artemisinin has been universally welcomed by the International Health community for what the Nobel Committee described as 'The discoveries of Avermectin and Artemisinin have revolutionized therapy for patients suffering from devastating parasitic diseases. Campbell, Ōmura and Tu have transformed the treatment of parasitic diseases. The global impact of their discoveries and the resulting benefit to mankind are immeasurable'. Copyright © 2015 Elsevier Ltd. All rights reserved.
N-myristoyltransferase inhibitors as new leads to treat sleeping sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frearson, Julie A.; Brand, Stephen; McElroy, Stuart P.
2010-11-05
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for {approx}30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target - T. brucei N-myristoyltransferase - leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis inmore » mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.« less
ERIC Educational Resources Information Center
Craig, James P.
2009-01-01
The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…
USDA-ARS?s Scientific Manuscript database
East Coast fever is a devastating disease of cattle caused by infection with the protozoan parasite, Theileria parva. Transmitted by the three-host tick, Rhipicephalus appendiculatus, the disease is present in 11 sub-Saharan African countries and is a major constraint to improvement of livestock pro...
Drug development against sleeping sickness: old wine in new bottles?
Stein, J; Mogk, S; Mudogo, C N; Sommer, B P; Scholze, M; Meiwes, A; Huber, M; Gray, A; Duszenko, M
2014-01-01
Atoxyl, the first medicinal drug against human African trypanosomiasis (HAT), also known as sleeping sickness, was applied more than 100 years ago. Ever since, the search for more effective, more specific and less toxic drugs continued, leading to a set of compounds currently in use against this devastating disease. Unfortunately, none of these medicines fulfill modern pharmaceutical requirements and may be considered as therapeutic ultima ratio due to the many, often severe side effects. Starting with a historic overview on drug development against HAT, we present a selection of trypanosome specific pathways and enzymes considered as highly potent druggable targets. In addition, we describe cellular mechanisms the parasite uses for differentiation and cell density regulation and present our considerations how interference with these steps, elementary for life cycle progression and infection, may lead to new aspects of drug development. Finally we refer to our recent work about CNS infection that offers novel insights in how trypanosomes hide in an immune privileged area to establish a chronic state of the disease, thereby considering new ways for drug application. Depressingly, HAT specific drug development has failed over the last 30 years to produce better suited medicine. However, unraveling of parasite-specific pathways and cellular behavior together with the ability to produce high resolution structures of essential parasite proteins by X-ray crystallography, leads us to the optimistic view that development of an ultimate drug to eradicate sleeping sickness from the globe might just be around the corner.
N-Myristoyltransferase inhibitors as new leads to treat sleeping sickness
Frearson, Julie A.; Brand, Stephen; McElroy, Stuart P.; Cleghorn, Laura A.T.; Smid, Ondrej; Stojanovski, Laste; Price, Helen P.; Guther, M. Lucia S.; Torrie, Leah S.; Robinson, David A.; Hallyburton, Irene; Mpamhanga, Chidochangu P.; Brannigan, James A.; Wilkinson, Anthony J.; Hodgkinson, Michael; Hui, Raymond; Qiu, Wei; Raimi, Olawale G.; van Aalten, Daan M. F.; Brenk, Ruth; Gilbert, Ian H.; Read, Kevin D.; Fairlamb, Alan H.; Ferguson, Michael A. J.; Smith, Deborah F.; Wyatt, Paul G.
2010-01-01
African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT. PMID:20360736
Advances in imaging the innate and adaptive immune response to Toxoplasma gondii
John, Beena; Weninger, Wolfgang; Hunter, Christopher A
2011-01-01
Toxoplasma gondii is an intracellular protozoan parasite that infects a wide variety of warm-blooded hosts and can have devastating effects in the developing fetus as well as the immunocompromised host. An appreciation of how this organism interacts with the host immune system is crucial to understanding the pathogenesis of this disease. The last decade has been marked by the application of various imaging techniques, such as bioluminescent imaging as well as confocal and multiphoton microscopy to study toxoplasmosis. The ability to manipulate parasites to express fluorescent/bioluminescent markers or model antigens/enzymes combined with the development of reporter mice that allow the detection of distinct immune populations have been crucial to the success of many of these studies. These approaches have permitted the visualization of parasites and immune cells in real-time and provided new insights into the nature of host–pathogen interactions. This article highlights some of the advances in imaging techniques, their strengths and weaknesses, and how these techniques have impacted our understanding of the interaction between parasites and various immune populations during toxoplasmosis. PMID:20860479
Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier
2012-01-01
Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID:22363211
Shinya, Ryoji; Morisaka, Hironobu; Kikuchi, Taisei; Takeuchi, Yuko; Ueda, Mitsuyoshi; Futai, Kazuyoshi
2013-01-01
Since it was first introduced into Asia from North America in the early 20(th) century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine's proteins. These proteins could have been acquired by host-parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.
Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.
2011-01-01
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.
Epidemic pox and malaria in native forest birds
Atkinson, C. T.; Dusek, R. J.; Iko, W. M.
1993-01-01
Studies by Warner in the 1950’s and van Riper in the 1970’s identified disease as a potential limiting factor in the distribution and abundance of Hawaii’s native forest birds. Mosquito-transmitted protozoan and viral infections caused by malarial parasites and pox virus were especially significant. Both organisms were introduced to the islands after the arrival of Europeans and are thought to have affected avian communities the same way that measles devastated native Hawaiian peoples.
da Silva, Marcelo S; Pavani, Raphael S; Damasceno, Jeziel D; Marques, Catarina A; McCulloch, Richard; Tosi, Luiz Ricardo Orsini; Elias, Maria Carolina
2017-11-01
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.
Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I
2018-01-01
Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.
The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria
Zuck, Meghan; Austin, Laura S.; Danziger, Samuel A.; Aitchison, John D.; Kaushansky, Alexis
2017-01-01
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication. PMID:29201016
Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles
Scullion, Paul; del Pino, Ricardo C.; Vincent, Isabel M.; Zhang, Yong-Kang; Alley, Michael R. K.; Jacobs, Robert T.; Read, Kevin D.
2018-01-01
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. PMID:29425238
The effect of octopaminergic compounds on the behaviour and transmission of Gyrodactylus.
Brooker, Adam J; Grano Maldonado, Mayra I; Irving, Stephen; Bron, James E; Longshaw, Matthew; Shinn, Andrew P
2011-10-27
The high transmission potential of species belonging to the monogenean parasite genus Gyrodactylus, coupled with their high fecundity, allows them to rapidly colonise new hosts and to increase in number. One gyrodactylid, Gyrodactylus salaris Malmberg, 1957, has been responsible for devastation of Altantic salmon (Salmo salar L.) populations in a number of Norwegian rivers. Current methods of eradicating G. salaris from river systems centre around the use of non-specific biocides, such as rotenone and aluminium sulphate.Although transmission routes in gyrodactylids have been studied extensively, the behaviour of individual parasites has received little attention. Specimens of Gyrodactylus gasterostei Gläser, 1974 and G. arcuatus Bychowsky, 1933, were collected from the skin of their host, the three-spined stickleback (Gasterosteus aculeatus L.), and permitted to attach to the substrate. The movements of individual parasites were recorded and analysed. The behaviour patterns of the two species were similar and parasites were more active in red light and darkness than in white light. Four octopaminergic compounds were tested and all four inhibited the movements of parasites. Treatment ultimately led to death at low concentrations (0.2 μM), although prolonged exposure was necessary in some instances. Octopaminergic compounds may affect the parasite's ability to locate and remain on its host and these or related compounds might provide alternative or supplementary treatments for the control of G. salaris infections. With more research there is potential for use of octopaminergic compounds, which have minimal effects on the host or its environment, as parasite-specific treatments against G. salaris infections.
Shinya, Ryoji; Takeuchi, Yuko; Ueda, Mitsuyoshi; Futai, Kazuyoshi
2013-01-01
Since it was first introduced into Asia from North America in the early 20th century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine’s proteins. These proteins could have been acquired by host–parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes. PMID:23805310
How do humans affect wildlife nematodes?
Weinstein, Sara B.; Lafferty, Kevin D.
2015-01-01
Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.
Sokolow, S. H.; Ngonghala, C. N.; Jocque, M.; Lund, A.; Barry, M.; Mordecai, E. A.; Daily, G. C.; Andrews, J. R.; Bendavid, E.; Luby, S. P.; LaBeaud, A. D.; Seetah, K.; Guégan, J. F.; De Leo, G. A.
2017-01-01
Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438917
Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".
Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana
2017-02-01
The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.
Quinoline hybrids and their antiplasmodial and antimalarial activities.
Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng
2017-10-20
Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The challenge of cholangiocarcinoma: dissecting the molecular mechanisms of an insidious cancer
Zabron, Abigail; Edwards, Robert J.; Khan, Shahid A.
2013-01-01
Cholangiocarcinoma is a fatal cancer of the biliary epithelium and has an incidence that is increasing worldwide. Survival beyond a year of diagnosis is less than 5%, and therapeutic options are few. Known risk factors include biliary diseases such as primary sclerosing cholangitis and parasitic infestation of the biliary tree, but most cases are not associated with any of these underlying diseases. Numerous in vitro and in vivo models, as well as novel analytical techniques for human samples, are helping to delineate the many pathways implicated in this disease, albeit at a frustratingly slow pace. As yet, however, none of these studies has been translated into improved patient outcome and, overall, the pathophysiology of cholangiocarcinoma is still poorly understood. There remains an urgent need for new approaches and models to improve management of this insidious and devastating disease. In this review, we take a bedside-to-bench approach to discussing cholangiocarcinoma and outline research opportunities for the future in this field. PMID:23520144
Crompton, Peter D.; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S.; Miller, Louis H.; Barillas, Carolina; Pierce, Susan K.
2014-01-01
Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite’s complex life cycle with a view towards developing the tools that will contribute to the prevention of disease and death and ultimately the goal of malaria eradication. In so doing we hope to inspire immunologists to participate in defeating this devastating disease. PMID:24655294
Aguirre-Macedo, María Leopoldina; Vidal-Martínez, Victor M; Lafferty, Kevin D
2011-11-01
In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.
Major trends in human parasitic diseases in China.
Li, Ting; He, Shenyi; Zhao, Hong; Zhao, Guanghui; Zhu, Xing-Quan
2010-05-01
Tremendous progress has been made in the control and prevention of human parasitic diseases in mainland China in the past 30 years because of China's Reform and Opening to the Outside Policies initiated in 1978. However, parasitic diseases remain a major human health problem, with significant morbidity and mortality as well as adverse socioeconomic consequences. Although soil-transmitted parasitic diseases are in the process of being gradually controlled, food-borne parasitic diseases and emerging parasitic diseases are becoming the focus of new campaigns for control and prevention. This article reviews major trends in human parasitic diseases in mainland China, with perspectives for control.
Kikuchi, Taisei; Cotton, James A.; Dalzell, Jonathan J.; Hasegawa, Koichi; Kanzaki, Natsumi; McVeigh, Paul; Takanashi, Takuma; Tsai, Isheng J.; Assefa, Samuel A.; Cock, Peter J. A.; Otto, Thomas Dan; Hunt, Martin; Reid, Adam J.; Sanchez-Flores, Alejandro; Tsuchihara, Kazuko; Yokoi, Toshiro; Larsson, Mattias C.; Miwa, Johji; Maule, Aaron G.; Sahashi, Norio; Jones, John T.; Berriman, Matthew
2011-01-01
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite. PMID:21909270
Kikuchi, Taisei; Cotton, James A; Dalzell, Jonathan J; Hasegawa, Koichi; Kanzaki, Natsumi; McVeigh, Paul; Takanashi, Takuma; Tsai, Isheng J; Assefa, Samuel A; Cock, Peter J A; Otto, Thomas Dan; Hunt, Martin; Reid, Adam J; Sanchez-Flores, Alejandro; Tsuchihara, Kazuko; Yokoi, Toshiro; Larsson, Mattias C; Miwa, Johji; Maule, Aaron G; Sahashi, Norio; Jones, John T; Berriman, Matthew
2011-09-01
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
Perfus-Barbeoch, Laetitia; Da Rocha, Martine; Sallet, Erika; Bailly-Bechet, Marc; Castagnone-Sereno, Philippe; Flot, Jean-François; Kozlowski, Djampa K.; Cazareth, Julie; Couloux, Arnaud; Da Silva, Corinne; Guy, Julie; Kim-Jo, Yu-Jin; Rancurel, Corinne; Abad, Pierre; Wincker, Patrick
2017-01-01
Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis. PMID:28594822
El Kouni, Mahmoud H
2017-11-01
Schistosomes are responsible for the parasitic disease schistosomiasis, an acute and chronic parasitic ailment that affects >240 million people in 70 countries worldwide. It is the second most devastating parasitic disease after malaria. At least 200,000 deaths per year are associated with the disease. In the absence of the availability of vaccines, chemotherapy is the main stay for combating schistosomiasis. The antischistosomal arsenal is currently limited to a single drug, Praziquantel, which is quite effective with a single-day treatment and virtually no host-toxicity. Recently, however, the question of reduced activity of Praziquantel has been raised. Therefore, the search for alternative antischistosomal drugs merits the study of new approaches of chemotherapy. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Pyrimidine metabolism is an excellent target for such studies. Schistosomes, unlike most of the host tissues, require a very active pyrimidine metabolism for the synthesis of DNA and RNA. This is essential for the production of the enormous numbers of eggs deposited daily by the parasite to which the granulomas response precipitates the pathogenesis of schistosomiasis. Furthermore, there are sufficient differences between corresponding enzymes of pyrimidine metabolism from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Specificities of pyrimidine transport also diverge significantly between parasites and their mammalian host. This review deals with studies on pyrimidine metabolism in schistosomes and highlights the unique characteristic of this metabolism that could constitute excellent potential targets for the design of safe and effective antischistosomal drugs. In addition, pyrimidine metabolism in schistosomes is compared with that in other parasites where studies on pyrimidine metabolism have been more elaborate, in the hope of providing leads on how to identify likely chemotherapeutic targets which have not been looked at in schistosomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Strigolactones: Chemical Signals for Fungal Symbionts and Parasitic Weeds in Plant Roots
AKIYAMA, KOHKI; HAYASHI, HIDEO
2006-01-01
• Aims Arbuscular mycorrhizae are formed between >80 % of land plants and arbuscular mycorrhizal (AM) fungi. This Botanical Briefing highlights the chemical identification of strigolactones as a host-recognition signal for AM fungi, and their role in the establishment of arbuscular mycorrhizae as well as in the seed germination of parasitic weeds. • Scope Hyphal branching has long been described as the first morphological event in host recognition by AM fungi during the pre-infection stages. Host roots release signalling molecules called ‘branching factors’ that induce extensive hyphal branching in AM fungi. Strigolactones exuded from host roots have recently been identified as an inducer of hyphal branching in AM fungi. Strigolactones are a group of sesquiterpenes, previously isolated as seed germination stimulants for the parasitic weeds Striga and Orobanche. Parasitic weeds might find their potential hosts by detecting strigolactones, which are released from plant roots upon phosphate deficiency in communication with AM fungi. In addition to acting as a signalling molecule, strigolactones might stimulate the production of fungal symbiotic signals called ‘Myc factors’ in AM fungi. • Conclusions Isolation and identification of plant symbiotic signals open up new ways for studying the molecular basis of plant–AM-fungus interactions. This discovery provides a clear answer to a long-standing question in parasitic plant biology: what is the natural role for germination stimulants? It could also provide a new strategy for the management and control of beneficial fungal symbionts and of devastating parasitic weeds in agriculture and natural ecosystems. PMID:16574693
[Parasitic zoonotic disease agents in human and animal drinking water].
Karanis, P
2000-08-01
Human- and veterinary important parasites of the subkingdom of protozoans and helminths infect humans and animals by ingestion of parasites in contaminated water. The parasites are excreted from the body of infected humans, livestock, zoo animals, companion animals or wild animals in the feces. Recreational waters, agricultural practices and wild animals serve as vehicles of transmission of the parasites in the water supplies. The following topics are addressed: a) the life cycles of parasitic diseases-causing agents with proven or potential transmission via water b) the development and the current research status of the analytical techniques for the detection of parasitic diseases-causing agents from water c) the occurrence of Cryptosporidium and Giardia in surface water supplies and in treated water d) the possible water sources and transmission ways of the parasites into the water supplies e) the behaviour and the possibilities for the removal or elimination of the parasites by water treatment.
2015-01-01
Infectious uveitis is one of the most common and visually devastating causes of uveitis in the US and worldwide. This review provides a summary of the identification, treatment, and complications associated with certain forms of viral, bacterial, fungal, helminthic, and parasitic uveitis. In particular, this article reviews the literature on identification and treatment of acute retinal necrosis due to herpes simplex virus, varicella virus, and cytomegalovirus. While no agreed-upon treatment has been identified, the characteristics of Ebola virus panuveitis is also reviewed. In addition, forms of parasitic infection such as Toxoplasmosis and Toxocariasis are summarized, as well as spirochetal uveitis. Syphilitic retinitis is reviewed given its increase in prevalence over the last decade. The importance of early identification and treatment of infectious uveitis is emphasized. Early identification can be achieved with a combination of maintaining a high suspicion, recognizing certain clinical features, utilizing multi-modal imaging, and obtaining specimens for molecular diagnostic testing. PMID:26618074
Parasites of wild animals as a potential source of hazard to humans.
Gałęcki, Remigiusz; Sokół, Rajmund; Koziatek, Sylwia
2015-01-01
The decline in wild animal habitats and the uncontrolled growth of their population make these animals come closer to human settlements. The aim of the study was to identify parasitic infections in wild animals in the selected area, and to specify the hazards they create for humans. In more than 66% of the analysed faecal samples from wild boar, hares, roe deer, deer and fallow deer various developmental forms of parasites were found. These included parasites dangerous for humans: Toxocara canis, Capillaria hepatica, Capillaria bovis, Trichuris suis, Trichuris ovis, Trichuris globulosus, Eimeria spp., and Trichostongylus spp. It is necessary to monitor parasitic diseases in wild animals as they can lead to the spread of parasites creating a hazard to humans, pets and livestock.
Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D
2015-01-01
The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.
Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.
2015-01-01
Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350
An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.
Ponte-Sucre, Alicia
2016-01-01
Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.
Garchitorena, A; Sokolow, S H; Roche, B; Ngonghala, C N; Jocque, M; Lund, A; Barry, M; Mordecai, E A; Daily, G C; Jones, J H; Andrews, J R; Bendavid, E; Luby, S P; LaBeaud, A D; Seetah, K; Guégan, J F; Bonds, M H; De Leo, G A
2017-06-05
Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).
Winter, Jakob; Rehbein, Steffen; Joachim, Anja
2018-01-01
Helminth infections of the gastrointestinal tract and lungs can lead to devastating economical losses to the pastoral based animal production. Farm animals can suffer from malnutrition, tissue damage, and blood loss resulting in impaired production traits and reproduction parameters. In Austria, pastures grazed by sheep, goats, and cattle overlap with the habitats of several species of wild cervids (roe deer, red deer, sika deer, and fallow deer) and bovids (mouflon, chamois, and ibex), and transmission of parasites between different ruminant species seems likely. A complete and updated overview on the occurrence of helminths of domestic and wild ruminants in Austria is presented. Based on these data, intersections of the host spectrum of the determined parasites were depicted. The “liability index” was applied to identify the ruminant species, which most likely transmit parasites between each other. A degree for host specificity was calculated for each parasite species based on the average taxonomic distance of their host species. Of the 73 identified helminth species 42 were identified as generalists, and 14 transmission experiments supported the assumed broad host specificity for 14 generalists and 1 specialist helminth species. Overall, 61 helminths were found to infect more than one host species, and 4 were found in all 10 ruminant species investigated. From these analyses, it can be concluded that a number of helminth parasites of the gastrointestinal tract and the lungs are potentially transmitted between domestic and wild ruminants in Austria. For some parasites and host species, experimental evidence is in support for possible transmission, while for other such studies are lacking. Host preference of different genotypes of the same parasite species may have a confounding effect on the evaluation of cross-transmission, but so far this has not been evaluated systematically in helminths in Austria. Further studies focusing on experimental cross-transmission and genetic characterization are needed to define the potential consequences for the epidemiology of those parasites, animal welfare, and economic impact. PMID:29662884
African origin of the malaria parasite Plasmodium vivax.
Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M
2014-01-01
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
African origin of the malaria parasite Plasmodium vivax
Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.
2014-01-01
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500
Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E
2010-12-23
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.
Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T
2016-06-10
The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.
The search for the missing link: a relic plastid in Perkinsus?
Fernández Robledo, José A; Caler, Elisabet; Matsuzaki, Motomichi; Keeling, Patrick J; Shanmugam, Dhanasekaran; Roos, David S; Vasta, Gerardo R
2011-10-01
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata. Copyright © 2011. Published by Elsevier Ltd.
Cox, F. E. G.
2002-01-01
Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis. PMID:12364371
History of human parasitology.
Cox, F E G
2002-10-01
Humans are hosts to nearly 300 species of parasitic worms and over 70 species of protozoa, some derived from our primate ancestors and some acquired from the animals we have domesticated or come in contact with during our relatively short history on Earth. Our knowledge of parasitic infections extends into antiquity, and descriptions of parasites and parasitic infections are found in the earliest writings and have been confirmed by the finding of parasites in archaeological material. The systematic study of parasites began with the rejection of the theory of spontaneous generation and the promulgation of the germ theory. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and the recognition of a disease and the subsequent discovery that it was caused by a parasite. This review is concerned with the major helminth and protozoan infections of humans: ascariasis, trichinosis, strongyloidiasis, dracunculiasis, lymphatic filariasis, loasis, onchocerciasis, schistosomiasis, cestodiasis, paragonimiasis, clonorchiasis, opisthorchiasis, amoebiasis, giardiasis, African trypanosomiasis, South American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, cryptosporidiosis, cyclosporiasis, and microsporidiosis.
USDA-ARS?s Scientific Manuscript database
Foodborne parasites pose a risk to human health in virtually all regions of the world. In addition to the direct effect that these parasites have on human health, zoonotic parasites found in food animals often serve as trade barriers for countries where these parasites occur. A considerable body o...
The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism.
Roth, E; Joulin, V; Miwa, S; Yoshida, A; Akatsuka, J; Cohen-Solal, M; Rosa, R
1988-05-01
The in vitro growth of Plasmodium falciparum malaria parasites was assayed in mutant red cells deficient in either diphosphoglycerate mutase (DPGM) or phosphoglycerate kinase (PGK). In addition, cDNA probes developed for human DNA sequences coding for these enzymes were used to examine the parasite genome by means of restriction endonuclease digestion and Southern blot analysis of parasite DNA. In both types of enzymopathic red cells, parasite growth was normal. In infected DPGM deficient red cells, no DPGM activity could be detected, and in normal red cells, DPGM activity declined slightly in a manner suggestive of parasite catabolism of host protein. However, in infected PGK deficient red cells, there was a 100-fold increase in PGK activity, and in normal red cells, a threefold increase in PGK activity was observed. Parasite PGK could be recovered from isolated parasites, and a marked increase in heat instability of parasite PGK as compared with the host cell enzyme was noted. Neither cDNA probe was found to cross-react with DNA sequences in the parasite genome. It is concluded that the parasite has no requirement for DPGM, and probably has no gene for this enzyme. On the other hand, the parasite does require PGK, (an adenosine triphosphate [ATP] generating enzyme) and synthesizes its own enzyme, which must have been encoded in the parasite genome. The parasite PGK gene most likely lacks sufficient homology to be detected by a human cDNA probe. Enzymopathic red cells are useful tools for elucidating the glycolytic enzymology of parasites and their co-evolution with their human hosts.
The Plasmodium bottleneck: malaria parasite losses in the mosquito vector
Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo
2014-01-01
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005
Toxoplasma gondii as a parasite in food: analysis and control
USDA-ARS?s Scientific Manuscript database
Toxoplasmosis, caused by Toxoplasma gondii, is one of the most common parasitic infections of humans and other warmblooded animals. Nearly one third of humans have been exposed to the parasite. Congenital infection occurs when a woman becomes infected during pregnancy and transmits the parasite to t...
Nagayasu, Eiji; Aung, Myo Pa Pa Thet Hnin Htwe; Hortiwakul, Thanaporn; Hino, Akina; Tanaka, Teruhisa; Higashiarakawa, Miwa; Olia, Alex; Taniguchi, Tomoyo; Win, Soe Moe Thu; Ohashi, Isao; Odongo-Aginya, Emmanuel Igwaro; Aye, Khin Myo; Mon, Mon; Win, Kyu Kyu; Ota, Kei; Torisu, Yukari; Panthuwong, Siripen; Kimura, Eisaku; Palacpac, Nirianne M Q; Kikuchi, Taisei; Hirata, Tetsuo; Torisu, Shidow; Hisaeda, Hajime; Horii, Toshihiro; Fujita, Jiro; Htike, Wah Win; Maruyama, Haruhiko
2017-07-07
Humans and dogs are the two major hosts of Strongyloides stercoralis, an intestinal parasitic nematode. To better understand the phylogenetic relationships among S. stercoralis isolates infecting humans and dogs and to assess the zoonotic potential of this parasite, we analyzed mitochondrial Cox1, nuclear 18S rDNA, 28S rDNA, and a major sperm protein domain-containing protein genes. Overall, our analyses indicated the presence of two distinct lineages of S. stercoralis (referred to as type A and type B). While type A parasites were isolated both from humans and dogs in different countries, type B parasites were found exclusively in dogs, indicating that the type B has not adapted to infect humans. These epidemiological data, together with the close phylogenetic relationship of S. stercoralis with S. procyonis, a Strongyloides parasite of raccoons, possibly indicates that S. stercoralis originally evolved as a canid parasite, and later spread into humans. The inability to infect humans might be an ancestral character of this species and the type B might be surmised to be an origin population from which human-infecting strains are derived.
The most important parasites in Serbia involving the foodborne route of transmission
NASA Astrophysics Data System (ADS)
Petrović, J. M.; Prodanov-Radulović, J. Z.; Vasilev, S. D.
2017-09-01
Food can be an important route for transmission of parasites to humans. Compared to other foodborne pathogens in Serbia, foodborne (or potentially foodborne) parasites do not get the attention they undoubtedly deserve. The aim of this article is to give an overview of the most important parasitic pathogens that can be transmitted by food, and that cause disease in humans: Echinococcus, Trichinella, Taenia solium and Toxoplasma gondii. For each of these pathogens, the severity of human diseases they cause, incidence, mortality and case fatality rate among humans in Serbia as well as their prevalence in animal species in Serbia are described. Some of the described foodborne parasites can induce severe disease symptoms in humans associated with high case fatality rates, while others can cause massive outbreaks. All of the aforementioned parasites occur throughout Serbia and cause both severe public health problems and substantial economic losses in livestock production. In conclusion, the control measures of foodborne parasites certainly need to include education of farmers and improvement of veterinary sanitary measures in animal farming and animal waste control.
Anthropogenics: Human influence on global and genetic homogenization of parasite populations
USDA-ARS?s Scientific Manuscript database
The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...
Species loss on spatial patterns and composition of zoonotic parasites
Harris, Nyeema C.; Dunn, Robert R.
2013-01-01
Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356
Liu, Xuewu; Huang, Yuxiao; Liang, Jiao; Zhang, Shuai; Li, Yinghui; Wang, Jun; Shen, Yan; Xu, Zhikai; Zhao, Ya
2014-11-30
The invasion of red blood cells (RBCs) by malarial parasites is an essential step in the life cycle of Plasmodium falciparum. Human-parasite surface protein interactions play a critical role in this process. Although several interactions between human and parasite proteins have been discovered, the mechanism related to invasion remains poorly understood because numerous human-parasite protein interactions have not yet been identified. High-throughput screening experiments are not feasible for malarial parasites due to difficulty in expressing the parasite proteins. Here, we performed computational prediction of the PPIs involved in malaria parasite invasion to elucidate the mechanism by which invasion occurs. In this study, an expectation maximization algorithm was used to estimate the probabilities of domain-domain interactions (DDIs). Estimates of DDI probabilities were then used to infer PPI probabilities. We found that our prediction performance was better than that based on the information of D. melanogaster alone when information related to the six species was used. Prediction performance was assessed using protein interaction data from S. cerevisiae, indicating that the predicted results were reliable. We then used the estimates of DDI probabilities to infer interactions between 490 parasite and 3,787 human membrane proteins. A small-scale dataset was used to illustrate the usability of our method in predicting interactions between human and parasite proteins. The positive predictive value (PPV) was lower than that observed in S. cerevisiae. We integrated gene expression data to improve prediction accuracy and to reduce false positives. We identified 80 membrane proteins highly expressed in the schizont stage by fast Fourier transform method. Approximately 221 erythrocyte membrane proteins were identified using published mass spectral datasets. A network consisting of 205 interactions was predicted. Results of network analysis suggest that SNARE proteins of parasites and APP of humans may function in the invasion of RBCs by parasites. We predicted a small-scale PPI network that may be involved in parasite invasion of RBCs by integrating DDI information and expression profiles. Experimental studies should be conducted to validate the predicted interactions. The predicted PPIs help elucidate the mechanism of parasite invasion and provide directions for future experimental investigations.
Relationship between toxoplasmosis and schizophrenia: A review.
Fuglewicz, Aleksander J; Piotrowski, Patryk; Stodolak, Anna
2017-09-01
A growing body of evidence suggests a correlation between schizophrenia and exposure to infectious agents. The majority of studied cases concerns the infection caused by T. gondii, an obligatory intracellular parasite that infects about 1/3 of the entire human population, according to the available data. The acute stage of the disease, predominantly short-lived and transient, transforms into the latent and chronic phase in which the parasite localizes within tissue cysts, mainly in the central nervous system. The chronic toxoplasmosis, primarily regarded as benign and asymptomatic, might be responsible, in light of current scientific evidence, for a vast array of neuropsychiatric symptoms. Numerous epidemiological case-control studies show a higher prevalence of T. gondii infestation in individuals with various psychiatric and behavior disorders, including schizophrenia. This paper tends to review the relevant studies that demonstrate links between schizophrenia and T. gondii infestation, of which the latter may be acquired in different developmental phases. Apart from epidemiological correlation studies, some papers on other associations were also presented, describing putative patophysiological mechanisms that might be at least partly responsible for chronic infection-induced neuromediator disturbances, together with morphological and functional alterations, e.g., low-grade neuroinflammation, which are likely to induce psychopathological symptoms. Toxoplasmosis is only one of the putative infectious agents that derange correct brain growth and differentiation, alongside genetic and environmental factors. All of them may lead eventually to schizophrenia. A better knowledge of infection mechanisms and its influence on neurobiochemical and neuropathological pathways may enable more efficient therapy and the prevention of this devastating disease.
Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa
Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic
2009-01-01
Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742
Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.
Mitchell, Piers D
2015-01-01
Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cotton, James A; Lilley, Catherine J; Jones, Laura M; Kikuchi, Taisei; Reid, Adam J; Thorpe, Peter; Tsai, Isheng J; Beasley, Helen; Blok, Vivian; Cock, Peter J A; Eves-van den Akker, Sebastian; Holroyd, Nancy; Hunt, Martin; Mantelin, Sophie; Naghra, Hardeep; Pain, Arnab; Palomares-Rius, Juan E; Zarowiecki, Magdalena; Berriman, Matthew; Jones, John T; Urwin, Peter E
2014-03-03
Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A
2017-01-19
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Griffiths, Emily C; Pedersen, Amy B; Fenton, Andy; Petchey, Owen L
2014-05-07
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite-resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.
Hussain, Shaik; Ram, Muthuvarmadam Subramanian; Kumar, Ajith; Shivaji, Sisinthy; Umapathy, Govindhaswamy
2013-01-01
Background Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. Methods The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. Results Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. Conclusion The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load partially explains the reason for the decline in immature survival and birth rate in small and isolated rainforest fragments in Anamalai Hills. PMID:23717465
Hussain, Shaik; Ram, Muthuvarmadam Subramanian; Kumar, Ajith; Shivaji, Sisinthy; Umapathy, Govindhaswamy
2013-01-01
Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load partially explains the reason for the decline in immature survival and birth rate in small and isolated rainforest fragments in Anamalai Hills.
Biodiversity inhibits parasites: Broad evidence for the dilution effect.
Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R
2015-07-14
Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.
Imaging host-Leishmania interactions: significance in visceral leishmaniasis.
Forestier, C-L
2013-01-01
Leishmaniasis is a neglected disease that is associated with a spectrum of clinical manifestations ranging from self-healing cutaneous lesions to fatal visceral infections, which primarily depends on the parasite species. In visceral leishmaniasis (VL), as opposed to cutaneous leishmaniasis (CL), parasites that infect host cells at the sand fly bite site have the striking ability to disseminate to visceral organs where they proliferate and persist for long periods of time. Imaging the dynamics of the host-Leishmania interaction in VL provides a powerful approach to understanding the mechanisms underlying host cell invasion, Leishmania dissemination and persistence within visceral organs and, to dissecting the immune responses to infection. Therefore, by allowing the visualization of the critical steps involved in the pathogenesis of VL, state-of-the-art microscopy technologies have the great potential to aid in the identification of better intervention strategies for this devastating disease. In this review, we emphasize the current knowledge and the potential significance of imaging technologies in understanding the infection process of visceralizing Leishmania species. Then, we discuss how application of innovative microscopy technologies to the study of VL will provide rich opportunities for investigating host-parasite interactions at a previously unexplored level and elucidating visceral disease-promoting mechanisms. © 2013 John Wiley & Sons Ltd.
The use of transgenic parasites in malaria vaccine research.
Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M
2017-07-01
Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M
2016-05-10
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly. Copyright © 2016 Fernandes et al.
Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites.
Paul, Richard E; Bonnet, Sarah; Boudin, Christian; Tchuinkam, Timoleon; Robert, Vincent
2007-09-12
Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat.
1987-06-05
Economy Through 1989 (Jan Magnus Fahlstrom; DAGENS NYHETER, 9 Apr 87) 98 SOCIAL SWEDEN Lapps Weigh Emigration Following Chernobyl Devastation...after Chernobyl the Soviet state is a bogeyman for the rest of the world—in human terms, economically and in the area of envir- onmental technology...election year." 11798 , CS0: 3650/102 99 „«„■P»T SWEDEN SOCIAL LAPPS WEIGH EMIGRATION FOLLOWING CHERNOBYL DEVASTATION Stockholm DAGENS NYHETER
Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G
2015-09-01
The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.
Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G.
2015-01-01
Background The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. Methods We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Findings Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. Interpretation This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts. PMID:26501116
Odeniran, Paul Olalekan; Ademola, Isaiah Oluwafemi; Jegede, Henry Olanrewaju
2018-06-14
The recent increase of parasitic diseases associated with wildlife tourism can be traced to human contact with wildlife and intense modification of wildlife habitat. The continental estimates of parasitic diseases among visited wildlife-tourists and mammalian wildlife present in conservation areas are lacking; therefore, a general review was necessary to provide insights into Africa's parasitic disease burden and transmission between humans and wildlife. A two-step analysis was conducted with searches in Ovid MEDLINE, EMBASE, PubMed, Web of Science and Global Health. All diseases reported without prevalence were grouped and analysed as categorical data while meta-analysis of prevalence rates of parasitic diseases in wildlife from national parks and reserves in Africa was conducted. Only 4.7% of the tourist centres reported routine wildlife diagnosis for parasitic diseases. Disease intensity shows that cryptosporidiosis and seven other parasitic diseases were observed in both human and wildlife; however, no significant difference in intensity between human and wildlife hosts was observed. Schistosomiasis intensity reports showed a significant increase (P < 0.05) while entamoebiasis showed a significant decrease (P < 0.05) in humans as compared to wildlife. Visiting tourists were more infected with malaria, while wildlife was more infected with parasitic gastroenteritis (PGE). The meta-analysis of wildlife revealed the highest prevalence of PGE with mixed parasites and lowest prevalence of Giardia spp. at 99.9 and 5.7%, respectively. The zoonotic and socioeconomic impact of some of these parasites could pose a severe public threat to tourism. Pre- and post-travel clinical examinations are important for tourists while routine examination, treatment and rational surveillance are important for these animals to improve wildlife tourism.
Gastrointestinal parasites of canids, a latent risk to human health in Tunisia.
Oudni-M'rad, Myriam; Chaâbane-Banaoues, Raja; M'rad, Selim; Trifa, Fatma; Mezhoud, Habib; Babba, Hamouda
2017-06-05
Although data on the parasite environmental contamination are crucial to implement strategies for control and treatment, information about zoonotic helminths is very limited in Tunisia. Contamination of areas with canid faeces harboring infective parasite elements represents a relevant health-risk impact for humans. The aim of this study was to assess the environmental contamination with eggs and oocysts of gastrointestinal parasites of dogs and wild canids in Tunisia with special attention to those that can be transmitted to humans. One thousand two hundred and seventy faecal samples from stray dogs and 104 from wild canids (red foxes and golden jackals) were collected from different geographical regions throughout Tunisia. The helminth eggs and protozoan oocysts were concentrated by sucrose flotation and identified by microscopic examination. The most frequently observed parasites in dog samples were Toxocara spp. (27.2%), E. granulosus (25.8%), and Coccidia (13.1%). For wild canid faeces, the most commonly encountered parasites were Toxocara spp. (16.3%) followed by Capillaria spp. (9.6%). The parasite contamination of dog faeces varied significantly from one region to another in function of the climate. To our knowledge, the study highlights for the first time in Tunisia a serious environmental contamination by numerous parasitic stages infective to humans. Efforts should be made to increase the awareness of the contamination risk of such parasites in the environment and implement a targeted educational program.
Grignard, Lynn; Gonçalves, Bronner P; Early, Angela M; Daniels, Rachel F; Tiono, Alfred B; Guelbéogo, Wamdaogo M; Ouédraogo, Alphonse; van Veen, Elke M; Lanke, Kjerstin; Diarra, Amidou; Nebie, Issa; Sirima, Sodiomon B; Targett, Geoff A; Volkman, Sarah K; Neafsey, Daniel E; Wirth, Dyann F; Bousema, Teun; Drakeley, Chris
2018-05-05
Plasmodium falciparum malaria infections often comprise multiple distinct parasite clones. Few datasets have directly assessed infection complexity in humans and mosquitoes they infect. Examining parasites using molecular tools may provide insights into the selective transmissibility of isolates. Using capillary electrophoresis genotyping and next generation amplicon sequencing, we analysed complexity of parasite infections in human blood and in the midguts of mosquitoes that became infected in membrane feeding experiments using the same blood material in two West African settings. Median numbers of clones in humans and mosquitoes were higher in samples from Burkina Faso (4.5, interquartile range 2-8 for humans; and 2, interquartile range 1-3 for mosquitoes) than in The Gambia (2, interquartile range 1-3 and 1, interquartile range 1-3, for humans and mosquitoes, respectively). Whilst the median number of clones was commonly higher in human blood samples, not all transmitted alleles were detectable in the human peripheral blood. In both study sample sets, additional parasite alleles were identified in mosquitoes compared with the matched human samples (10-88.9% of all clones/feeding assay, n = 73 feeding assays). The results are likely due to preferential amplification of the most abundant clones in peripheral blood but confirm the presence of low density clones that produce transmissible sexual stage parasites. Copyright © 2018. Published by Elsevier Ltd.
Gisbert Algaba, Ignacio; Verhaegen, Bavo; Jennes, Malgorzata; Rahman, Mizanur; Coucke, Wim; Cox, Eric; Dorny, Pierre; Dierick, Katelijne; De Craeye, Stéphane
2018-06-01
Toxoplasma gondii is an ubiquitous apicomplexan parasite which can infect any warm-blooded animal including humans. Humans and carnivores/omnivores can also become infected by consumption of raw or undercooked infected meat containing muscle cysts. This route of transmission is considered to account for at least 30% of human toxoplasmosis cases. To better assess the role of pork as a source of infection for humans, the parasite burden resulting from experimental infection with different parasite stages and different strains of T. gondii during the acute and chronic phases was studied. The parasite burden in different tissues was measured with a ISO 17025 validated Magnetic Capture-quantitative PCR. A high burden of infection was found in heart and lungs during the acute phase of infection and heart and brain were identified as the most parasitised tissues during the chronic phase of infection, independent of the parasite stage and the strain used. Remarkably, a higher parasite burden was measured in different tissues following infection with oocysts of a type II strain compared with a tissue cyst infection with three strains of either type II or a type I/II. However, these results could have been affected by the use of different strains and euthanasia time points. The parasite burden resulting from a tissue cyst infection was not significantly different between the two strains. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.
2015-05-01
The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.
Wood, Chelsea L; Zgliczynski, Brian J; Haupt, Alison J; Guerra, Ana Sofía; Micheli, Fiorenza; Sandin, Stuart A
2018-05-20
Human impacts on ecosystems can decouple the fundamental ecological relationships that create patterns of diversity in free-living species. Despite the abundance, ubiquity, and ecological importance of parasites, it is unknown whether the same decoupling effects occur for parasitic species. We investigated the influence of fishing on the relationship between host diversity and parasite diversity for parasites of coral reef fishes on three fished and three unfished islands in the central equatorial Pacific. Fishing was associated with a shallowing of the positive host-diversity-parasite-diversity relationship. This occurred primarily through negative impacts of fishing on the presence of complex life-cycle parasites, which created a biologically impoverished parasite fauna of directly transmitted parasites resilient to changes in host biodiversity. Parasite diversity appears to be decoupled from host diversity by fishing impacts in this coral reef ecosystem, which suggests that such decoupling might also occur for parasites in other ecosystems affected by environmental change. © 2018 John Wiley & Sons Ltd.
HOW HUMAN HISTORY HAS INFLUENCED GEOGRAPHY AND GENETICS OF PARASITE POPULATIONS
USDA-ARS?s Scientific Manuscript database
Human beings have radically altered agricultural landscapes, establishing a limited repertoire of plants and animals over vast expanses. Here, I consider what impact such a history may have had on the distribution and diversity of animal parasite, hypothesizing that certain parasites may have been '...
Griffiths, Emily C.; Pedersen, Amy B.; Fenton, Andy; Petchey, Owen L.
2014-01-01
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite–resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread. PMID:24619434
Wendte, Jered M.; Miller, Melissa A.; Lambourn, Dyanna M.; Magargal, Spencer L.; Jessup, David A.; Grigg, Michael E.
2010-01-01
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks. PMID:21203443
Gonzales Santana, Bibiana; Vasquez Camargo, Fabio; Parkinson, Michael
2013-01-01
Background Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Methodology/Principal findings Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. Conclusions/Significance A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this zoonosis is suspected. PMID:24069474
Gonzales Santana, Bibiana; Dalton, John P; Vasquez Camargo, Fabio; Parkinson, Michael; Ndao, Momar
2013-01-01
Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this zoonosis is suspected.
Tuberculosis-resistant transgenic cattle
USDA-ARS?s Scientific Manuscript database
Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...
Controlling and Coordinating Development in Vector-Transmitted Parasites
Matthews, Keith R.
2013-01-01
Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread. PMID:21385707
Animals are key to human toxoplasmosis.
Schlüter, Dirk; Däubener, Walter; Schares, Gereon; Groß, Uwe; Pleyer, Uwe; Lüder, Carsten
2014-10-01
Toxoplasma gondii is an extremely sucessfull protozoal parasite which infects almost all mamalian species including humans. Approximately 30% of the human population worldwide is chronically infected with T. gondii. In general, human infection is asymptomatic but the parasite may induce severe disease in fetuses and immunocompromised patients. In addition, T. gondii may cause sight-threatening posterior uveitis in immunocompetent patients. Apart from few exceptions, humans acquire T. gondii from animals. Both, the oral uptake of T. gondii oocysts released by specific hosts, i.e. felidae, and of cysts persisting in muscle cells of animals result in human toxoplasmosis. In the present review, we discuss recent new data on the cell biology of T. gondii and parasite diversity in animals. In addition, we focus on the impact of these various parasite strains and their different virulence on the clinical outcome of human congenital toxoplasmosis and T. gondii uveitis. Copyright © 2014 Elsevier GmbH. All rights reserved.
Trypanosome resistance to human innate immunity: targeting Achilles’ heel
Stephens, Natalie A.; Kieft, Rudo; MacLeod, Annette; Hajduk, Stephen L.
2015-01-01
Trypanosome lytic factors (TLFs) are powerful, naturally-occurring toxins in humans that provide sterile protection against infection by several African trypanosomes. These trypanocidal complexes predominantly enter the parasite by binding to the trypanosome haptoglobin/hemoglobin receptor (HpHbR), trafficking to the lysosome, causing membrane damage and ultimately, cell lysis. Despite TLF-mediated immunity, the parasites that cause human African Trypanosomiasis (HAT), Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have developed independent mechanisms of resistance to TLF killing. Here we describe the parasite defenses that allow trypanosome infections of humans and discuss how targeting these apparent strengths of the parasite may reveal their Achilles’ heel, leading to new approaches in the treatment of HAT. PMID:23059119
Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins
Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell
2017-01-01
ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum. Our findings suggest that parasite adhesion traits associated with both mild and severe malaria have much earlier origins than previously appreciated and have important implications for virulence evolution in a major human pathogen. PMID:28101534
Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins.
Brazier, Andrew J; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Smith, Joseph D
2017-01-01
Plasmodium falciparum , the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi . We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum . Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum -infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum , it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum . Our findings suggest that parasite adhesion traits associated with both mild and severe malaria have much earlier origins than previously appreciated and have important implications for virulence evolution in a major human pathogen.
Global change, parasite transmission and disease control: lessons from ecology
Boag, Brian; Ellison, Amy R.; Morgan, Eric R.; Murray, Kris; Pascoe, Emily L.; Sait, Steven M.; Booth, Mark
2017-01-01
Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289256
In vivo response of Mesocestoides vogae to human insulin.
Canclini, L; Esteves, A
2009-02-01
Successful host invasion by parasitic helminths involves detection and appropriate response to a range of host-derived signals. Insulin signal response pathways are ancient and highly-conserved throughout the metazoans. However, very little is known about helminth insulin signalling and the potential role it may play in host-parasite interactions. The response of Mesocestoides vogae (Cestoda: Cyclophyllidea) larvae to human insulin was investigated, focusing on tyrosine-phosphorylation status, glucose content, survival and asexual reproduction rate. Parasite larvae were challenged with different levels of insulin for variable periods. The parameters tested were influenced by human insulin, and suggested a host-parasite molecular dialogue.
Mobile phones and malaria: modeling human and parasite travel
Buckee, Caroline O.; Wesolowski, Amy; Eagle, Nathan; Hansen, Elsa; Snow, Robert W.
2013-01-01
Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation. PMID:23478045
Whole parasite blood stage malaria vaccines: a convergence of evidence.
McCarthy, James S; Good, Michael F
2010-01-01
There is a growing realization of the limitations of recombinant protein-based malaria vaccines. This, coupled with a better understanding of the protective immunity to malaria, both in animal models and in naturally exposed human populations and experimentally infected volunteers, as well as the increased capacity to manipulate parasites provides new impetus to evaluate whole blood stage parasite approaches to malaria vaccine development. In this review previous studies in rodents and primates of whole killed and attenuated blood stage vaccines, and recent work on the effect of genetically attenuated parasites on immunity in rodent models of blood stage immunity are discussed. The relationship between these findings and what is now known about protective immunity in human populations, specifically against the blood stages of the parasite lifecycle is discussed and recent findings from human experimental infection are be reviewed. Finally, the prospect for and impediments to the development whole blood stage parasites are reviewed.
The Origin of Malarial Parasites in Orangutans
Pacheco, M. Andreína; Reid, Michael J. C.; Schillaci, Michael A.; Lowenberger, Carl A.; Galdikas, Biruté M. F.; Jones-Engel, Lisa; Escalante, Ananias A.
2012-01-01
Background Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. Methodology/Principal Findings We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. Conclusion The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates. PMID:22536346
Complement C2 receptor inhibitor trispanning: from man to schistosome.
Inal, Jameel M
2005-11-01
Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.
Vitamin and co-factor biosynthesis pathways in Plasmodium and other apicomplexan parasites
Müller, Sylke; Kappes, Barbara
2007-01-01
Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesise certain vitamins, de novo, either completely or in parts. The occurrence of the various biosynthesis pathways is specific to different apicomplexan parasites, emphasising their distinct requirements for nutrients and growth factors. The absence of vitamin biosynthesis from the human host implies that inhibition of the parasite pathways may be a way to interfere specifically with parasite development. However, the precise role of biosynthesis and potential uptake of vitamins for the overall regulation of vitamin homeostasis in the parasites needs to be established first. In this review Sylke Müller and Barbara Kappes focus mainly on the procurement of vitamin B1, B5 and B6 by Plasmodium and other apicomplexan parasites. PMID:17276140
Loy, Dorothy E; Liu, Weimin; Li, Yingying; Learn, Gerald H; Plenderleith, Lindsey J; Sundararaman, Sesh A; Sharp, Paul M; Hahn, Beatrice H
2017-02-01
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Records of ticks on humans in Rio Grande do Sul state, Brazil.
Reck, José; Souza, Ugo; Souza, Getúlio; Kieling, Eduardo; Dall'Agnol, Bruno; Webster, Anelise; Michel, Thais; Doyle, Rovaina; Martins, Thiago F; Labruna, Marcelo B; Marks, Fernanda; Ott, Ricardo; Martins, João Ricardo
2018-05-18
More than seventy tick species have been reported in Brazil. Despite the emergence of tick-borne diseases in Neotropical region, there are still limited data available on tick species parasitizing humans in Brazil. Rio Grande do Sul is the southernmost state of Brazil, comprising the only part of Brazilian territory inside the Pampa biome, as well as the transition between subtropical and temperate zones. Here, we report on human parasitism by ticks in Rio Grande do Sul state between 2004 and 2017. Seventy cases of human parasitism by ticks were recorded, with a total of 81 tick specimens collected. These included 11 tick species belonging to three genera of Ixodidae (hard-ticks), Amblyomma, Haemaphysalis and Rhipicephalus; and one genus of Argasidae, Ornithodoros. The most prevalent tick species associated to cases of human parasitism were Amblyomma parkeri (24%), Rhipicephalus sanguineus sensu lato (22%), Amblyomma aureolatum (15%) and Amblyomma ovale (12%). A spatial analysis showed two major hot spots of human parasitism by ticks in Rio Grande do Sul state. The findings of this study highlight the need for permanent monitoring of human parasitism by ticks in order to provide a better understanding of tick and tick-borne disease eco-epidemiology, and the early identification of potential cases of tick-borne diseases, particularly in spotted fever endemic regions. Copyright © 2018 Elsevier GmbH. All rights reserved.
Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang
2018-05-02
Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract genes highly transcribed at the trophozoite stage. Finally, 55 candidate genes were identified. Considering that parasite-infected erythrocyte surface protein 2 (PIESP2) contains gap-junction-related Neuromodulin_N domain and that anti-PIESP2 might provide protection against malaria, we chose PIESP2 for further experimental study. Our analysis revealed a limited number of genes linked to human disease in P. falciparum genome. These genes could be interesting targets for further functional characterization.
A survey for potentially zoonotic gastrointestinal parasites of dogs and pigs in Cambodia.
Inpankaew, Tawin; Murrell, K Darwin; Pinyopanuwat, Nongnuch; Chhoun, Chamnan; Khov, Kuong; Sem, Tharin; Sorn, San; Muth, Sinuon; Dalsgaard, Anders
2015-12-01
There is little information available on parasites of zoonotic significance in Cambodia. In 2011, in an effort to obtain data on potentially zoonotic gastrointestinal parasites in domestic animals, 50 dogs and 30 pigs residing in 38 households located in Ang Svay Check village, Takeo province, Cambodia were examined for parasites from faecal samples. The samples were processed using the formalin-ethyl acetate concentration technique (FECT). Hookworms were the most common zoonotic parasite found in dogs (80.0%) followed by Echinostomes (18.0%). While, in pigs, Fasciolopsis buski was the most common zoonotic parasite (30.0%) followed by Ascaris suum (13.3%). This study provides baseline data on gastrointestinal parasites in dogs and pigs from Cambodia and underscores the importance of domestic animals as reservoir hosts for human parasites for Cambodian veterinary and public health agencies. Follow-up studies are required to further taxonomically characterize these dog and pig parasites and to determine their role in human parasites in this community.
Human intestinal parasites in non-biting synanthropic flies in Ogun State, Nigeria.
Adenusi, Adedotun Adesegun; Adewoga, Thomas O Sunday
2013-01-01
Filth-feeding and breeding, non-biting synanthropic flies have been incriminated in the dissemination of human enteropathogens in the environment. This study determined the species of non-biting synanthropic flies associated with four filthy sites in Ilishan, Ogun State, southwest Nigeria, and assessed their potentials for mechanical transmission of human intestinal parasites. 7190 flies identified as Musca domestica (33.94%), Chrysomya megacephala (26.01%), Musca sorbens (23.23%), Lucilia cuprina (8.76%), Calliphora vicina (4.59%), Sarcophaga sp. (2.78%) and Fannia scalaris (0.70%) were examined for human intestinal parasites by the formol-ether concentration and modified Ziehl-Neelsen techniques. Eggs of the following parasites: Ascaris lumbricoides (34.08%), Trichuris trichiura (25.87%), hookworms (20.45%), Taenia sp. (2.36%), Hymenolepis nana (1.11%), Enterobius vermicularis (0.56%), Strongyloides stercoralis (larvae; 3.89%) and cysts of Entamoeba histolytica/dispar (27.26%), Entamoeba coli (22.67%), Giardia lamblia (3.34%) and Cryptosporidium sp. (1.81%) were isolated from the body surfaces and or gut contents of 75.24% of 719 pooled fly batches. The helminths A. lumbricoides and T. trichiura and the protozoans, E. histolytica/dispar and E. coli were the dominant parasites detected, both on body surfaces and in the gut contents of flies. C. megacephala was the highest carrier of parasites (diversity and number). More parasites were isolated from the gut than from body surfaces (P < 0.05). Flies from soiled ground often carried more parasites than those from abattoir, garbage or open-air market. Synanthropic fly species identified in this study can be of potential epidemiological importance as mechanical transmitters of human intestinal parasites acquired naturally from filth and carried on their body surfaces and or in the gut, because of their vagility and feeding mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Effect of control program of human intestinal parasitic diseases in Nanping City].
Ming-Ying, Zhuo; Zhi-Ping, Zhang; Hong-Mei, Zhu; Hui, Zhang; Jia-Mei, Huang; Hui, Wen; Han-Guo, Xie
2016-01-22
To understand the epidemic status of human intestinal parasitic diseases and evaluate the effect of the control program in Nanping City, so as to provide an evidence for improving the disease control. The villages were selected by the stratified cluster sampling method and the residents in these villages were surveyed for human intestinal parasitic diseases, and kindergartens were also selected and the children in these kindergartens were surveyed for Enterobius vermicularis infection. In 2007, before the control program, 9 851 residents of Nanping City were surveyed, with the parasitic infection rate of 9.10% (896 infection cases), and the infection rate of E. vermicularis of children was 18.56% (328/1 767). From 2011 to 2014, when the control program was performed, 4 679 residents were surveyed, with the infection rate of 4.06% (190 infection cases), and the infection rate of E. vermicularis of children was 3.87% (33/853). After the control program was launched, the infection rates of human intestinal parasites were decreased. The overall parasitic infection rate and hookworm infection rate showed increasing trends by age ( χ 2 = 49.03 and 53.58 respectively, both P < 0.01). The infection situation of human intestinal parasites is decreased after the implementation of the control program but the infection rate is still at a high level, and the control work should be strengthened.
Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.
Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C
2016-01-06
Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.
Proteomic analysis of the Theileria annulata schizont
Witschi, M.; Xia, D.; Sanderson, S.; Baumgartner, M.; Wastling, J.M.; Dobbelaere, D.A.E.
2013-01-01
The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites. PMID:23178997
Tyagi, Rahul; Joachim, Anja; Ruttkowski, Bärbel; Rosa, Bruce A; Martin, John C; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Ozersky, Philip; Wilson, Richard K; Ranganathan, Shoba; Sternberg, Paul W; Gasser, Robin B; Mitreva, Makedonka
2015-11-01
Many infectious diseases caused by eukaryotic pathogens have a devastating, long-term impact on animal health and welfare. Hundreds of millions of animals are affected by parasitic nematodes of the order Strongylida. Unlocking the molecular biology of representatives of this order, and understanding nematode-host interactions, drug resistance and disease using advanced technologies could lead to entirely new ways of controlling the diseases that they cause. Oesophagostomum dentatum (nodule worm; superfamily Strongyloidea) is an economically important strongylid nematode parasite of swine worldwide. The present article reports recent advances made in biology and animal biotechnology through the draft genome and developmental transcriptome of O. dentatum, in order to support biological research of this and related parasitic nematodes as well as the search for new and improved interventions. This first genome of any member of the Strongyloidea is 443 Mb in size and predicted to encode 25,291 protein-coding genes. Here, we review the dynamics of transcription throughout the life cycle of O. dentatum, describe double-stranded RNA interference (RNAi) machinery and infer molecules involved in development and reproduction, and in inducing or modulating immune responses or disease. The secretome predicted for O. dentatum is particularly rich in peptidases linked to interactions with host tissues and/or feeding activity, and a diverse array of molecules likely involved in immune responses. This research progress provides an important resource for future comparative genomic and molecular biological investigations as well as for biotechnological research toward new anthelmintics, vaccines and diagnostic tests. Copyright © 2015 Elsevier Inc. All rights reserved.
Frech, Christian; Chen, Nansheng
2011-01-01
Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. PMID:22215999
Hayakawa, Eri H; Matsuoka, Hiroyuki
2016-10-01
Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Sex steroids, immune system, and parasitic infections: facts and hypotheses.
Nava-Castro, Karen; Hernández-Bello, Romel; Muñiz-Hernández, Saé; Camacho-Arroyo, Ignacio; Morales-Montor, Jorge
2012-07-01
It has been widely reported that the incidence and the severity of natural parasitic infections are different between males and females of several species, including humans. This sexual dimorphism involves a distinct exposure of males and females to various parasite infective stages, differential effects of sex steroids on immune cells, and direct effects of these steroids on parasites, among others. Typically, for a large number of parasitic diseases, the prevalence and intensity is higher in males than females; however, in several parasitic infections, males are more resistant than females. In the present work, we review the effects of sex hormones on immunity to protozoa and helminth parasites, which are the causal agents of several diseases in humans, and discuss the most recent research related to the role of sex steroids in the complex host-parasite relationship. © 2012 New York Academy of Sciences.
Mbora, David N M; McPeek, Mark A
2009-01-01
1. Habitat loss and fragmentation are the principal causes of the loss of biological diversity. In addition, parasitic diseases are an emerging threat to many animals. Nevertheless, relatively few studies have tested how habitat loss and fragmentation influence the prevalence and richness of parasites in animals. 2. Several studies of nonhuman primates have shown that measures of human activity and forest fragmentation correlate with parasitism in primates. However, these studies have not tested for the ecological mechanism(s) by which human activities or forest fragmentation influence the prevalence and richness of parasites. 3. We tested the hypothesis that increased host density due to forest fragmentation and loss mediates increases in the prevalence and richness of gastrointestinal parasites in two forest primates, the Tana River red colobus (Procolobus rufomitratus, Peters 1879) and mangabey (Cercocebus galeritus galeritus, Peters 1879). We focused on population density because epidemiological theory states that host density is a key determinant of the prevalence and richness of directly transmitted parasites in animals. 4. The Tana River red colobus and mangabey are endemic to a highly fragmented forest ecosystem in eastern Kenya where habitat changes are caused by a growing human population increasingly dependent on forest resources and on clearing forest for cultivation. 5. We found that the prevalence of parasites in the two monkeys was very high compared to primates elsewhere. Density of monkeys was positively associated with forest area and disturbance in forests. In turn, the prevalence and richness of parasites was significantly associated with monkey density, and attributes indicative of human disturbance in forests. 6. We also found significant differences in the patterns of parasitism between the colobus and the mangabey possibly attributable to differences in their behavioural ecology. Colobus are arboreal folivores while mangabeys are terrestrial habitat generalists.
Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera)
Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert
2016-01-01
Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061
Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.
2016-01-01
ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796
El Bissati, Kamal; Zufferey, Rachel; Witola, William H; Carter, Nicola S; Ullman, Buddy; Ben Mamoun, Choukri
2006-06-13
The human malaria parasite Plasmodium falciparum relies on the acquisition of host purines for its survival within human erythrocytes. Purine salvage by the parasite requires specialized transporters at the parasite plasma membrane (PPM), but the exact mechanism of purine entry into the infected erythrocyte, and the primary purine source used by the parasite, remain unknown. Here, we report that transgenic parasites lacking the PPM transporter PfNT1 (P. falciparum nucleoside transporter 1) are auxotrophic for hypoxanthine, inosine, and adenosine under physiological conditions and are viable only if these normally essential nutrients are provided at excess concentrations. Transport measurements across the PPM revealed a severe reduction in hypoxanthine uptake in the knockout, whereas adenosine and inosine transport were only partially affected. These data provide compelling evidence for a sequential pathway for exogenous purine conversion into hypoxanthine using host enzymes followed by PfNT1-mediated transport into the parasite. The phenotype of the conditionally lethal mutant establishes PfNT1 as a critical component of purine salvage in P. falciparum and validates PfNT1 as a potential therapeutic target.
Cross-species malaria immunity induced by chemically attenuated parasites
Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia
2013-01-01
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622
Extracellular vesicles in parasitic diseases
Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.
2014-01-01
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932
Foodborne parasites from wildlife: how wild are they?
Kapel, Christian M O; Fredensborg, Brian L
2015-04-01
The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schistosomiasis: Traverers in Africa.
Strohmayer, Jeremy; Matthews, Ian; Locke, Robert
2016-01-01
Schistosomiasis is a parasitic infection acquired through freshwater exposure in the tropics. It is an infection that can have devastating implications to military personnel if it is not recognized and treated, especially later in life. While there is an abundance of information available about schistosomiasis in endemic populations, the information on nonendemic populations, such as deployers, is insufficient. Definitive studies for this population are lacking, but there are actions that can and should be taken to prevent infection and to treat patients. This literary review presents a case study, reviews basic science, and explores the information available about schistosomiasis in nonendemic populations. Specifically, the authors provide recommendations for the prevention, diagnosis, and postexposure management in military personnel. 2016.
Fish tapeworm infection is an intestinal infection with a parasite found in fish. ... The fish tapeworm ( Diphyllobothrium latum ) is the largest parasite that infects humans. Humans become infected when they eat raw ...
Returning to Humanity's Moral Heritages
ERIC Educational Resources Information Center
Narvaez, Darcia
2016-01-01
The main arguments of my lecture were how humans are failing themselves and devastating earth's biosphere, at least in part, because they became uncooperative with two key ecological inheritances: raising the young within the human evolved developmental niche and, as part of this, facilitating the development of a deep attachment to, knowledge of…
Bordbar, Ali; Parvizi, Parviz
2014-03-01
Only Leishmania major is well known as a causative agent of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Our objective was to find Leishmania parasites circulating in reservoir hosts, sand flies and human simultaneously. Sand flies, rodents and prepared smears of humans were sampled. DNA of Leishmania parasites was extracted, and two fragments of ITS-rDNA gene amplified by PCR. RFLP and sequencing were employed to identify Leishmania parasites. Leishmania major and L. turanica were identified unequivocally by targeting and sequencing ITS-rDNA from humans, rodents and sand flies. The new Leishmania species close to gerbilli (GenBank Accession Nos. EF413076; EF413087) was discovered only in sand flies. Based on parasite detection of ITS-rDNA in main and potential reservoir hosts and vectors and humans, we conclude that at least two Leishmania species are common in the Turkmen Sahra ZCL focus. Phylogenetic analysis proved that the new Leishmania is closely related to Leishmania mammal parasites (Leishmania major, Leishmania turanica, Leishmania gerbilli). Its role as a principal agent of ZCL is unknown because it was found only in sand flies. Our findings shed new light on the transmission cycles of several Leishmania parasites in sand flies, reservoir hosts and humans. © 2014 John Wiley & Sons Ltd.
Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges
2010-01-01
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187
Teichroeb, Julie A; Kutz, Susan J; Parkar, Unaiza; Thompson, R C Andrew; Sicotte, Pascale
2009-11-01
Parasite richness and prevalence in wild animals can be used as indicators of population and ecosystem health. In this study, the gastrointestinal parasites of ursine colobus monkeys (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary (BFMS), Ghana, were investigated. BFMS is a sacred grove where monkeys and humans have long lived in relatively peaceful proximity. Fecal samples (n = 109) were collected opportunistically from >27 adult and subadult males in six bisexual groups and one all-male band from July 2004 to August 2005. Using fecal floatation, we detected three protozoans (two Entamoeba sp., Isospora sp.), five nematodes (Ascaris sp., Enterobius sp., Trichuris sp., two strongyle sp.), and one digenean trematode. Using fluorescein labeled antibodies, we detected an additional protozoan (Giardia sp.), and with PCR techniques, we characterized this as G. duodenalis Assemblage B and also identified a protistan (Blastocystis sp., subtype 2). The most prevalent parasite species were G. duodenalis and Trichuris sp. Parasites were more prevalent in the long wet season than the long dry. Parasite prevalence did not vary by age, and average parasite richness did not differ by rank for males whose status remained unchanged. However, males that changed rank tended to show higher average parasite richness when they were lower ranked. Individuals that spent more time near human settlements had a higher prevalence of Isospora sp. that morphologically resembled the human species I. belli. The presence of this parasite and G. duodenalis Assemblage B indicates possible anthropozoonotic and/or zoonotic transmission between humans and colobus monkeys at this site.
Laboratory Diagnosis of Parasites from the Gastrointestinal Tract.
Garcia, Lynne S; Arrowood, Michael; Kokoskin, Evelyne; Paltridge, Graeme P; Pillai, Dylan R; Procop, Gary W; Ryan, Norbert; Shimizu, Robyn Y; Visvesvara, Govinda
2018-01-01
This Practical Guidance for Clinical Microbiology document on the laboratory diagnosis of parasites from the gastrointestinal tract provides practical information for the recovery and identification of relevant human parasites. The document is based on a comprehensive literature review and expert consensus on relevant diagnostic methods. However, it does not include didactic information on human parasite life cycles, organism morphology, clinical disease, pathogenesis, treatment, or epidemiology and prevention. As greater emphasis is placed on neglected tropical diseases, it becomes highly probable that patients with gastrointestinal parasitic infections will become more widely recognized in areas where parasites are endemic and not endemic. Generally, these methods are nonautomated and require extensive bench experience for accurate performance and interpretation. Copyright © 2017 American Society for Microbiology.
Emergence of polycystic neotropical echinococcosis.
Tappe, Dennis; Stich, August; Frosch, Matthias
2008-02-01
Echinococcosis is a parasitic zoonosis of increasing concern. In 1903, the first cases of human polycystic echinococcosis, a disease resembling alveolar echinococcosis, emerged in Argentina. One of the parasites responsible, Echinococcus oligarthrus, had been discovered in its adult strobilar stage before 1850. However, >100 years passed from the first description of the adult parasite to the recognition that this species is responsible for some cases of human neotropical polycystic echinococcosis and the elucidation of the parasite's life cycle. A second South American species, E. vogeli, was described in 1972. Obtaining recognition of the 2 species and establishing their connection to human disease were complicated because the life cycle of tapeworms is complex and comprises different developmental stages in diverse host species. To date, at least 106 human cases have been reported from 12 South and Central American countries.
[Where do the parasites of man come from?].
Combes, C
1990-01-01
The Hominids have come in contact, over the last few million years, with the infective stages of many parasites which had up to then evolved in non Primate hosts; this is because Hominids have occupied multiple environments and acquired diversified behaviour. The high number of these lateral transfers explains the multiplicity of current human parasitic diseases whereas their youth on an evolutionary scale accounts for the seriousness of most of these diseases. The basic questions arising from the exceptional opportunities offered to parasites by the evolution of the human lineage concern: the precise role played by human behaviour, the mechanisms of alterations in specificity, the identity of the original host phyla, the dynamic and genetic consequences for parasites, the relationship with the evolutionary history of the ancestors of Homo sapiens sapiens; for instance, it is suggested that man's mastery of fire, allowing him to cook his food, dramatically reduced his contamination by certain parasites and that this contributed to the subsequent success of Hominids.
Calgranulin C Has Filariacidal and Filariastatic Activity
Gottsch, John D.; Eisinger, Steven W.; Liu, Sammy H.; Scott, Alan L.
1999-01-01
The calgranulins are a family of calcium- and zinc-binding proteins produced by neutrophils, monocytes, and other cells. Calgranulins are released during inflammatory responses and have antimicrobial activity. Recently, one of the calgranulins, human calgranulin C (CaGC), has been implicated as an important component of the host responses that limit the parasite burden during filarial nematode infections. The goal of this work was to test the hypothesis that human CaGC has biologic activity against filarial parasites. Brugia malayi microfilariae and adults were exposed in vitro to 0.75 to 100 nM recombinant human CaGC. Recombinant CaGC affected adult and larval parasites in a dose-dependent fashion. Microfilariae were more sensitive to the action of CaGC than were adult parasites. At high levels, CaGC was both macrofilariacidal and microfilariacidal. At lower levels, the percentage of parasites killed was dependent on the level of CaGC in the culture system. The larvae not killed had limited motility. The filariastatic effect of low-level CaGC was reversed when the CaGC was removed from the culture system. Immunohistochemical analysis demonstrated that human CaGC accumulated in the cells of the hypodermis-lateral chord of adult and larval parasites. The antifilarial activity of CaGC was not due to the sequestration of zinc. Thus, the cellular and molecular mechanisms that result in the production and release of CaGC in humans may play a key role in the regulation of filarial parasite numbers. PMID:10569784
Are adequate methods available to detect protist parasites on fresh produce?
USDA-ARS?s Scientific Manuscript database
Human parasitic protists such as Cryptosporidium, Giardia and microsporidia contaminate a variety of fresh produce worldwide. Existing detection methods lack sensitivity and specificity for most foodborne parasites. Furthermore, detection has been problematic because these parasites adhere tenacious...
Trichinella spiralis in human muscle (image)
This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of ...
Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter
2014-08-01
In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.
2016-01-01
Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019
Recent Advances in Human Protozoan Parasites of Gastrointestinal Tract
1987-02-01
biology of the parasites, the epidemiology , diagnosis, pathogenesis and treatment. Furthermore, protozoan parasites formerly considered of no human...gastrointestinal tract and the epidemiology and pathogenesis of the diseases they cause; in most cases only papers published since 1980 were included. FLAGELLATES...are diarrhea, abdominal pain and occasionally anal pruritis. There have also been several reports of eosinophilia associated with D. fragilis
Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil
2014-03-01
Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.
Rossouw, Ingrid; Maritz-Olivier, Christine; Niemand, Jandeli; van Biljon, Riette; Smit, Annel; Olivier, Nicholas A; Birkholtz, Lyn-Marie
2015-05-01
Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.
Di Giorgio, C; Delmas, F; Ollivier, E; Elias, R; Balansard, G; Timon-David, P
2004-01-01
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.
Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.
Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza
2014-07-01
Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.
Benamrouz, S.; Conseil, V.; Creusy, C.; Calderon, E.; Dei-Cas, E.; Certad, G.
2012-01-01
The International Agency for Research on Cancer (IARC) identifies ten infectious agents (viruses, bacteria, parasites) able to induce cancer disease in humans. Among parasites, a carcinogenic role is currently recognized to the digenetic trematodes Schistosoma haematobium, leading to bladder cancer, and to Clonorchis sinensis or Opisthorchis viverrini, which cause cholangiocarcinoma. Furthermore, several reports suspected the potential association of other parasitic infections (due to Protozoan or Metazoan parasites) with the development of neoplastic changes in the host tissues. The present work shortly reviewed available data on the involvement of parasites in neoplastic processes in humans or animals, and especially focused on the carcinogenic power of Cryptosporidium parvum infection. On the whole, infection seems to play a crucial role in the etiology of cancer. PMID:22348213
Benamrouz, S; Conseil, V; Creusy, C; Calderon, E; Dei-Cas, E; Certad, G
2012-05-01
The International Agency for Research on Cancer (IARC) identifies ten infectious agents (viruses, bacteria, parasites) able to induce cancer disease in humans. Among parasites, a carcinogenic role is currently recognized to the digenetic trematodes Schistosoma haematobium, leading to bladder cancer, and to Clonorchis sinensis or Opisthorchis viverrini, which cause cholangiocarcinoma. Furthermore, several reports suspected the potential association of other parasitic infections (due to Protozoan or Metazoan parasites) with the development of neoplastic changes in the host tissues. The present work shortly reviewed available data on the involvement of parasites in neoplastic processes in humans or animals, and especially focused on the carcinogenic power of Cryptosporidium parvum infection. On the whole, infection seems to play a crucial role in the etiology of cancer.
AIDS-associated parasitic diarrhoea.
Arora, D R; Arora, B
2009-01-01
Since the advent of human immunodeficiency virus infection, with its profound and progressive effect on the cellular immune system, a group of human opportunistic pathogens has come into prominence. Opportunistic parasitic infection can cause severe morbidity and mortality. Because many of these infections are treatable, an early and accurate diagnosis is important. This can be accomplished by a variety of methods such as direct demonstration of parasites and by serological tests to detect antigen and/or specific antibodies. However, antibody response may be poor in these patients and therefore immunodiagnostic tests have to be interpreted with caution. Cryptosporidium parvum, Isospora belli, Cyclospora cayetanensis, Microsporidia, Entamoeba histolytica and Strongyloides stercoralis are the commonly detected parasites. Detection of these parasites will help in proper management of these patients because drugs are available for most of these parasitic infections.
Siciliano, Giulia; Alano, Pietro
2015-01-01
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Parasite Zoonoses and Wildlife: Emerging Issues
Thompson, R.C. Andrew; Kutz, Susan J.; Smith, Andrew
2009-01-01
The role of wildlife as important sources, reservoirs and amplifiers of emerging human and domestic livestock pathogens, in addition to well recognized zoonoses of public health significance, has gained considerable attention in recent years. However, there has been little attention given to the transmission and impacts of pathogens of human origin, particularly protozoan, helminth and arthropod parasites, on wildlife. Substantial advances in molecular technologies are greatly improving our ability to follow parasite flow among host species and populations and revealing valuable insights about the interactions between cycles of transmission. Here we present several case studies of parasite emergence, or risk of emergence, in wildlife, as a result of contact with humans or anthropogenic activities. For some of these parasites, there is growing evidence of the serious consequences of infection on wildlife survival, whereas for others, there is a paucity of information about their impact. PMID:19440409
[A case of human dirofilariasis (D. repens) of the spermatic cord].
Fini, M; Perrone, A; Vagliani, G; Andreini, C; Salvi, G; Misuriello, G; Di Silverio, A
1992-01-01
A 52 year old man, living in the province of Trapani (Sicily), presented with right hydrocele and slight orchialgia. The patient underwent epididymectomy and resection of T. vaginalis. The "tunica" was involved by a granulomatous process, containing a parasite of genus Dirofilaria (D. repens). Dirofilaria repens is a filarial nematode. Dogs, foxes and cats are the definitive hosts and principal reservoirs of the parasite. In humans the parasite dies before reaching sexual maturity and the result is an inconspicuous granulomatous reaction in the subcutaneous tissue. S. Pampiglione et al. (Cattedra di Parassitologia Veterinaria dell'Università di Bologna-Italy) reported from 1971 more than 30 cases of human Dirofilariasis in Italy, suggesting that the parasite is able to migrate from the inoculation site to other districts (lung, eye etc.). The case is exceptional for the localization of the parasite (never reported) and can contribute to a better knowledge of the disease.
Yera, Hélène; Kuchta, Roman; Brabec, Jan; Peyron, François; Dupouy-Camet, Jean
2013-06-01
We report the first case of egg isolation of the Asian fish tapeworm Bothriocephalus acheilognathi (Bothriocephalidea) from human stool. A male patient from Saint Laurent du Maroni (French Guiana) presenting abdominal pain was examined in France for the diagnosis of intestinal parasites. Diphyllobothrium-like eggs were observed in his stool. However, molecular phylogenetic analyses based on sequences of rDNA and COI genes showed that the eggs observed belong to a bothriocephalidean cestode B. acheilognathi. The adult life stages of B. acheilognathi cestodes are known as invasive parasites of a wide spectrum of fish; however, they have not been described to parasitize any mammals. This human infection seems to be accidental and represents a parasite passage through human intestine after the consumption of an infected fish host. Copyright © 2013. Published by Elsevier Ireland Ltd.
CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes.
Hayashi, Takeshi; Unno, Akihiro; Baba, Minami; Ohno, Tamio; Kitoh, Katsuya; Takashima, Yasuhiro
2014-04-01
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood. In this study, we demonstrate that T. gondii-invaded human and mouse leukocytes express higher level of CD44, a ligand of hyaluronan (HA), and its expression on myeloid and non-myeloid leukocytes causes T. gondii-invaded human and mouse leukocyte to adhere to HA more effectively than non-invaded leukocytes. The specific adherence of parasite-invaded leukocytes was inhibited by anti CD44 antibody. Leukocytes of CD44 knockout mice did not show parasite-invaded leukocyte specific adhesion. Our results indicate that parasite-invaded leukocytes, regardless of whether myeloid or not, gain higher ability to adhere to HA than non-invaded leukocytes, via upregulation of CD44 expression and/or selective invasion to CD44 highly expressing cells. The difference in ability to adhere to HA between parasite-invaded cells and non-invaded neighboring cells might facilitate effective delivery of parasite-invaded leukocytes to the HA-producing endothelial cell surface and/or HA-rich extra cellular matrix. © 2013.
Dogs, cats, parasites, and humans in Brazil: opening the black box
2014-01-01
Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii, Dipylidium caninum, Ancylostoma caninum, Strongyloides stercoralis, and Toxocara canis) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed. PMID:24423244
Søe, Martin Jensen; Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen
2018-01-01
High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology.
Lima, Victor Fernando Santana; Ramos, Rafael Antonio Nascimento; Lepold, Raphael; Borges, João Carlos Gomes; Ferreira, Carlos Diógenes; Rinaldi, Laura; Cringoli, Giuseppe; Alves, Leucio Câmara
2017-01-01
Gastrointestinal parasites are important pathogens affecting animals, some of them are of medical and veterinary concern. Although the dynamic of parasitic infections is a complex phenomenon that has been studied under experimental conditions, it shows several gaps in knowledge, especially in insular regions where a confined population of animals and parasites co-exists. In this study was assessed the parasitism by endoparasite gastrointestinal in feral cats (n = 37) and rodents (n = 30) from the Fernando de Noronha Archipelago; in addition, the risk of human infection and ecological implications of these findings were discussed. Out of all samples analysed, 100% scored positive for the presence of gastrointestinal parasites in both feral cats and rodents. A total 17 genera and/or species of endoparasite gastrointestinal were identified, Ancylostoma sp., Strongyloides sp., Trichuris campanula and Toxocara cati were the parasites more frequently in feral cats. In rodents Eimeria sp., Strongyloides sp. and Trichuris muris were parasites more frequently herein detected. Human population living in this area are at risk of parasite infections due to the population of rodents and feral cats in the archipelago.
Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen
2018-01-01
High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology. PMID:29694397
Biology Today: Parasites and Human Ecology.
ERIC Educational Resources Information Center
Flannery, Maura C.
1984-01-01
Offers various reasons why the study of parasites and the diseases they cause should be incorporated into classroom biology discussions. Examples of several parasitic diseases and their ecological significance are provided. (JN)
Teaching human parasitology in China
2012-01-01
China has approximately one-fifth of the world’s population. Despite the recent success in controlling major parasitic diseases, parasitic diseases remain a significant human health problem in China. Hence, the discipline of human parasitology is considered as a core subject for undergraduate and postgraduate students of the medical sciences. We consider the teaching of human parasitology to be fundamental to the training of medical students, to the continued research on parasitic diseases, and to the prevention and control of human parasitic diseases. Here, we have summarized the distribution of educational institutions in China, particularly those that teach parasitology. In addition, we have described some existing parasitology courses in detail as well as the teaching methods used for different types of medical students. Finally, we have discussed the current problems in and reforms to human parasitology education. Our study indicates that 304 regular higher education institutions in China offer medical or related education. More than 70 universities have an independent department of parasitology that offers approximately 10 different parasitology courses. In addition, six universities in China have established excellence-building courses in human parasitology. PMID:22520237
Foreyt, William J.; Abbott, Rachel C.; van Riper, Charles
2013-01-01
Trichinosis, or trichinellosis, is one of the most widespread global parasitic diseases of humans and animals. This ancient disease is caused by the larval stage of parasitic roundworms (nematodes) in the genus Trichinella. Often called the “trichina worm,” this parasite is considered to be the king of the parasite community, because it has adapted to an extremely wide range of hosts including domestic animals, wildlife, and humans. Trichinella spiralis is the usual cause of the disease in humans, but humans and many other mammals, birds, and reptiles also can be infected with other species or strains of Trichinella. Regardless of climate and environments, a wide variety of hosts on most continents are infected. Trichinella is transmitted through the ingestion of infected meat, primarily through predation or cannibalism of raw meat, and this ensures survival of the parasite in a wide variety of hosts. Humans become infected only by eating improperly cooked meat that contains infective larvae. While most people have only mild symptoms after infection, when high numbers of larvae are ingested trichinosis can cause serious disease, as well as death. Although trichinosis has been historically associated with pork, it is now emerging as a more widespread food-borne zoonosis as the consumption of wild game meat increases.
Jennes, Malgorzata; De Craeye, Stéphane; Devriendt, Bert; Dierick, Katelijne; Dorny, Pierre; Cox, Eric
2017-01-01
Toxoplasma gondii is a worldwide prevalent parasite of humans and animals. The global infection burden exceeds yearly one million disability-adjusted life years (DALY's) in infected individuals. Therefore, effective preventive measures should be taken to decrease the risk of infection in humans. Although human toxoplasmosis is predominantly foodborne by ingestion of tissue cysts in meat from domestic animals such as pigs, the incidence risk is difficult to estimate due to the lack of screening of animals for infection and insights in location and persistence of the parasite in the tissues. Hence, experimental infections in pigs can provide more information on the risk for zoonosis based on the parasite burden in meat products intended for human consumption and on the immune responses induced by infection. In the present study, homo- and heterologous infection experiments with two distinct T. gondii strains (IPB-LR and IPB-Gangji) were performed. The humoral and cellular immune responses, the presence of viable parasites and the parasite load in edible meat samples were evaluated. In homologous infection experiments the parasite persistence was clearly strain-dependent and inversely correlated with the infection dose. The results strongly indicate a change in the amount of parasite DNA and viable cysts in porcine tissues over time. Heterologous challenge infections demonstrated that IPB-G strain could considerably reduce the parasite burden in the subsequent IPB-LR infection. A strong, however, not protective humoral response was observed against GRA7 and TLA antigens upon inoculation with both strains. The in vitro IFN-γ production by TLA-stimulated PBMCs was correlated with the infection dose and predominantly brought about by CD3+CD4−CD8αbright T-lymphocytes. The described adaptive cellular and humoral immune responses in pigs are in line with the induced or natural infections in mice and humans. Previous studies underscored the heterogeneity of T. gondii strains and the corresponding virulence factors. These findings suggest the potential of the IPB-G strain to elicit a partially protective immune response and to reduce the parasite burden upon a challenge infection. The IPB-G strain could be used as a promising tool in limiting the number of viable parasites in edible tissues and, hence, in lowering the risk for human toxoplasmosis. PMID:28642841
Beaurepaire, Alexis L; Krieger, Klemens J; Moritz, Robin F A
2017-06-01
Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level. Copyright © 2017 Elsevier B.V. All rights reserved.
Olds, Cassandra L; Mwaura, Stephen; Odongo, David O; Scoles, Glen A; Bishop, Richard; Daubenberger, Claudia
2016-09-02
Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination.
Human seizures couple across spatial scales through travelling wave dynamics
NASA Astrophysics Data System (ADS)
Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.
2017-04-01
Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.
Human fascioliasis: a parasitic health problem in Dakahlia Governorate, Egypt.
el Shazly, A M; Handousa, A E; Youssef, M E; Rizk, H; Hamouda, M M
1991-08-01
Fascioliasis has a cosmopolitan distribution and is prevalent in sheep-raising countries. Now, it is an increasingly important parasite of man in the Mediterranean countries. In Dakahlia G., human fascioliasis has imposed itself as a parasitic health problem. In this paper, 23 human cases were selected to throw some light on the signs, symptoms and diagnosis of the disease. It was concluded that painful hepatomegaly, fever, anaemia and marked eosinophilia are tetrad suggesting fascioliasis in patient who has consumed watercress as green salade. Data concerning treatment and follow up will be published later.
Medical Service Clinical Laboratory Procedures--Parasitology.
ERIC Educational Resources Information Center
Department of the Army, Washington, DC.
This manual presents techniques for the collection and examination of specimens in the diagnosis of parasitic disease and in field surveys conducted to determine the extent of parasitic infections in human and animal populations. It discusses areas in which parasites are most likely to be found and the relationships of parasites, vectors, and…
Surveillance and diagnosis of zoonotic foodborne parasites.
Zolfaghari Emameh, Reza; Purmonen, Sami; Sukura, Antti; Parkkila, Seppo
2018-01-01
Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal-derived foods.
Luzio, Álvaro; Belmar, Pablo; Troncoso, Ignacio; Luzio, Patricia; Jara, Alexis; Fernández, Ítalo
2015-08-01
The contamination of public squares and parks with dog feces poses a risk to the population, since it may contain parasitic elements of zoonotic importance. To identify human pathogenic parasites in samples of dog feces collected from parks and public squares. 452 fecal dog samples collected from 65 squares and public parks were analyzed using the technique of Burrows. 60% (39/65) of the samples contained some parasitic forms with a zoonotic potential. Parasitic taxa with zoonotic risk were Toxocara sp., Ancylostoma sp., Dipylidium caninum, Giardia sp., Taenia sp., Toxascaris sp., Strongyloides sp., and Uncinaria sp. The detected parasites present a risk to human health, so it seems necessary to implement health education activities in the community, develop deworming plans, and control the canine overpopulation.
The role played by alternative splicing in antigenic variability in human endo-parasites.
Hull, Rodney; Dlamini, Zodwa
2014-01-28
Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host's immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.
The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery
2010-01-01
Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism) within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs) derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5). Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence for the presence of a relict plastid. Further, although P. marinus sequences display significant similarity to those from both apicomplexans and dinoflagellates, the presence of trans-spliced transcripts confirms the previously established affinities with the latter. The EST analysis reported herein, together with the recently completed sequence of the P. marinus genome and the development of transfection methodology, should result in improved intervention strategies against dermo disease. PMID:20374649
Economic Holobiont: Influence of Parasites, Microbiota and Chemosignals on Economic Behavior
Houdek, Petr
2018-01-01
The article is a perspective on utilization of microorganisms and chemosignals in studying human economic behavior. Research in biological roots of economic development has already confirmed that parasitic pressure influenced the creation and development of cultural norms and institutions. However, other effects of microorganisms on human groups and individual decision-making and behavior are heavily understudied. The perspective discusses how parasitic infections, sexually transmitted organisms and microbiota (i.e., “human holobiont”) could causally influence risk-seeking behavior, impulsivity, social dominance, empathy, political views and gender differences. As a case study, the parasite Toxoplasma gondii and its influence on economic preferences, personal characteristics and human appearance are examined. I also briefly review how chemosignals influence decision-making, particularly in the social preferences domain. I mention some predictions that arise from the paradigm of economic holobiont for the economic science. The conclusion summarizes limitations of the discussed findings and the stated speculations. PMID:29765310
TOXOPLASMOSIS IN MEXICO: EPIDEMIOLOGICAL SITUATION IN HUMANS AND ANIMALS
HERNÁNDEZ-CORTAZAR, Ivonne; ACOSTA-VIANA, Karla Y.; ORTEGA-PACHECO, Antonio; GUZMAN-MARIN, Eugenia del S.; AGUILAR-CABALLERO, Armando J.; JIMÉNEZ-COELLO, Matilde
2015-01-01
Toxoplasmosis is a parasitic disease widely distributed throughout the world, infecting a wide variety of animal species including humans. In Mexico, this parasite has been detected in different parts of the country, particularly in the tropical areas where the parasite can remain infective for long periods of time due to the environmental conditions (i.e. high temperature and humidity over the whole year). Several epidemiological studies have been conducted in both human and animal populations, but despite the wide distribution of the agent in the country, there is a significant lack of knowledge on the parasite transmission, treatment alternatives and control measures. The lack of feral cat populations and control measures in sites of meat production for human consumption are playing a role that has led to the wide spread of the disease in the country, particularly in tropical areas of Southeastern Mexico. For these reasons, this manuscript aims to review the published information on relevant epidemiological aspects of infection with T. gondii in humans and animals from Mexico. PMID:25923887
Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Peng, Li
2018-01-10
To understand the current status of human resources of parasitic disease control and prevention organizations in Henan Province, so as to provide the reference for promoting the integrative ability of the prevention and control of parasitic diseases in Henan Province. The questionnaires were designed and the method of census was adopted. The information, such as the amounts, majors, education background, technical titles, working years, and turnover in each parasitic disease control and prevention organization was collected by the centers for disease control and prevention (CDCs) at all levels. The data were descriptively analyzed. Totally 179 CDCs were investigated, in which only 19.0% (34/179) had the independent parasitic diseases control institution (department) . There were only 258 full-time staffs working on parasitic disease control and prevention in the whole province, in which only 61.9% (159/258) were health professionals. Those with junior college degree or below in the health professionals accounted for 60.3% (96/159) . Most of them (42.1%) had over 20 years of experience, but 57.9% (92/159) of their technical post titles were at primary level or below. The proportion of the health professionals is low in the parasitic disease control and prevention organizations in Henan Province. The human resource construction for parasitic disease control and prevention at all levels should be strengthened.
Teaching for Epistemological Difference: Decentring Norms in Environmental Studies
ERIC Educational Resources Information Center
Barrett, M. J.
2012-01-01
Many environmental educators and philosophers have identified anthropocentrism and the socially constructed separation between humans and "the more-than-human world" (Abram, 1996) as primary root causes of current ecological devastation. This separation is embedded in Western schooling content and structures and is often unintentionally…
Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia
2014-09-30
Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates of protection and to identify protective malaria antigens.
Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.
Darani, Hossein Yousofi; Yousefi, Morteza
2012-12-01
An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.
Mechanisms of cellular invasion by intracellular parasites.
Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R
2014-04-01
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.
Hailu, Gebremedhin S; Robaa, Dina; Forgione, Mariantonietta; Sippl, Wolfgang; Rotili, Dante; Mai, Antonello
2017-06-22
Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn 2+ - and NAD + -dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.
Medicinal plants: a source of anti-parasitic secondary metabolites.
Wink, Michael
2012-10-31
This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation), membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.
Nine Human Sparganosis Cases in Thailand with Molecular Identification of Causative Parasite Species
Boonyasiri, Adhiratha; Cheunsuchon, Pornsuk; Suputtamongkol, Yupin; Yamasaki, Hiroshi; Sanpool, Oranuch; Maleewong, Wanchai; Intapan, Pewpan M.
2014-01-01
Human sparganosis is one of the neglected diseases but important food-borne parasitic zoonoses. The disease is caused by larvae (spargana) of diphyllobothriidean tapeworm. Here, we describe nine cases of human sparganosis, caused by Spirometra erinaceieuropaei in a hospital in Thailand during 2001–2012. Clinical characteristics, treatment, and outcome of cases were revealed. Diagnosis and identification of causative parasite species was made by histopathological investigations followed by a polymerase chain reaction-based molecular method using formalin-fixed paraffin embedded tissues. The DNA samples were extracted from tissues and a partial fragment of cytochrome c oxidase subunit 1 (cox1) gene was amplified for the detection of parasitic DNA. Infection could be prevented by increasing activities on health communication by responsible public health agencies. PMID:24842879
Alam, Mohd. Shoeb; Choudhary, Vandana; Zeeshan, Mohammad; Tyagi, Rupesh K.; Rathore, Sumit; Sharma, Yagya D.
2015-01-01
Plasmodium tryptophan-rich proteins are involved in host-parasite interaction and thus potential drug/vaccine targets. Recently, we have described several P. vivax tryptophan-rich antigens (PvTRAgs), including merozoite expressed PvTRAg38, from this noncultivable human malaria parasite. PvTRAg38 is highly immunogenic in humans and binds to host erythrocytes, and this binding is inhibited by the patient sera. This binding is also affected if host erythrocytes were pretreated with chymotrypsin. Here, Band 3 has been identified as the chymotrypsin-sensitive erythrocyte receptor for this parasite protein. Interaction of PvTRAg38 with Band 3 has been mapped to its three different ectodomains (loops 1, 3, and 6) exposed at the surface of the erythrocyte. The binding region of PvTRAg38 to Band3 has been mapped to its sequence, KWVQWKNDKIRSWLSSEW, present at amino acid positions 197–214. The recombinant PvTRAg38 was able to inhibit the parasite growth in in vitro Plasmodium falciparum culture probably by competing with the ligand(s) of this heterologous parasite for the erythrocyte Band 3 receptor. In conclusion, the host-parasite interaction at the molecular level is much more complicated than known so far and should be considered during the development of anti-malarial therapeutics. PMID:26149684
More than just immune evasion: Hijacking complement by Plasmodium falciparum.
Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong
2015-09-01
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Melanin-based coloration and host–parasite interactions under global change
Côte, J.; Boniface, A.; Blanchet, S.; Hendry, A. P.; Gasparini, J.
2018-01-01
The role of parasites in shaping melanin-based colour polymorphism, and the consequences of colour polymorphism for disease resistance, remain debated. Here we review recent evidence of the links between melanin-based coloration and the behavioural and immunological defences of vertebrates against their parasites. First we propose that (1) differences between colour morphs can result in variable exposure to parasites, either directly (certain colours might be more or less attractive to parasites) or indirectly (variations in behaviour and encounter probability). Once infected, we propose that (2) immune variation between differently coloured individuals might result in different abilities to cope with parasite infection. We then discuss (3) how these different abilities could translate into variable sexual and natural selection in environments varying in parasite pressure. Finally, we address (4) the potential role of parasites in the maintenance of melanin-based colour polymorphism, especially in the context of global change and multiple stressors in human-altered environments. Because global change will probably affect both coloration and the spread of parasitic diseases in the decades to come, future studies should take into account melanin-based coloration to better predict the evolutionary responses of animals to changing disease risk in human-altered environments. PMID:29848644
Castillo, Andreína I; Andreína Pacheco, M; Escalante, Ananias A
2017-06-01
Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax. Copyright © 2017 Elsevier B.V. All rights reserved.
A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.
Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E
2010-02-10
The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.
Mandong, B M; Ngbea, J A; Raymond, Vhriterhire
2013-01-01
In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.
Inca expansion and parasitism in the lluta valley: preliminary data.
Santoro, Calogero; Vinton, Sheila Dorsey; Reinhard, Karl J
2003-01-01
Assessing the impact of cultural change on parasitism has been a central goal in archaeoparasitology. The influence of civilization and the development of empires on parasitism has not been evaluated. Presented here is a preliminary analysis of the change in human parasitism associated with the Inca conquest of the Lluta Valley in Northern Chile. Changes in parasite prevalence are described. It can be seen that the change in life imposed on the inhabitants of the Lluta Valley by the Incas caused an increase in parasitism.
Interactions between parasites and microbial communities in the human gut.
Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano
2012-01-01
The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites.
Interactions between parasites and microbial communities in the human gut
Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano
2012-01-01
The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802
Hamu, Haji; Debalke, Serkadis; Zemene, Endalew; Birlie, Belay; Mekonnen, Zeleke; Yewhalaw, Delenasaw
2014-01-01
Cockroaches are claimed to be mechanical transmitters of disease causing microorganisms such as intestinal parasites, bacteria, fungi, and viruses. This study assessed the potential of the German cockroach Blattella germanica in the mechanical transmission of intestinal parasites of public health importance. A total of 2010 cockroaches were collected from 404 households in Jimma Town, southwestern Ethiopia. All the collected cockroaches were identified to species as B. germanica. The contents of their gut and external body parts were examined for the presence of intestinal parasites. Overall, 152 (75.6%) of the 210 batches were found to harbor at least one species of human intestinal parasite. Ascaris lumbricoides, Trichuris trichiura, Taenia spp, Strongyloides-like parasite, Entamoeba histolytica/dispar/moshkovski, Giardia duodenalis and Balantidium coli were detected from gut contents. Moreover, parasites were also isolated from the external surface in 22 (10.95%) of the batches. There was significant difference in parasite carriage rate of the cockroaches among the study sites (P = 0.013). In conclusion, B. germanica was found to harbor intestinal parasites of public health importance. Hence, awareness on the potential role of cockroaches in the mechanical transmission of human intestinal parasites needs to be created. Moreover, further identification of the Strongyloides-like worm is required using molecular diagnostics.
USDA-ARS?s Scientific Manuscript database
Toxoplasmosis, caused by Toxoplasma gondii, is one of the most common parasitic infections of humans and other warmblooded animals. It has been found worldwide, and nearly one third of humans have been exposed to the parasite. Congenital infection occurs when a woman becomes infected during pregnanc...
Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15.
Gov, Lanny; Karimzadeh, Alborz; Ueno, Norikiyo; Lodoen, Melissa B
2013-07-09
Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a "master regulator" of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.
Learning That Makes a Difference: Pedagogy and Practice for Learning Abroad
ERIC Educational Resources Information Center
Benham Rennick, Joanne
2015-01-01
Society faces significant new challenges surrounding issues in human health; global security; environmental devastation; human rights violations; economic uncertainty; population explosion and regression; recognition of diversity, difference and special populations at home and abroad. In light of these challenges, there is a great opportunity, and…
USDA-ARS?s Scientific Manuscript database
Insects and their arthropod relatives including mites, spiders, and crustaceans, play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazo...
USDA-ARS?s Scientific Manuscript database
Throughout the developing world, the long-term consequences of insufficient amounts of essential micronutrients in the human diet can be more devastating than low energy intake. Micronutrients are involved in all aspects of development, growth, and physiology of the human body (including from early ...
Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.
Faust, Christina; Dobson, Andrew P
2015-12-01
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
COMPARISON OF MICROSCOPIC VERSUS MOLECULAR DIAGNOSIS OF CYCLOSPORA CAYETANENSIS
Objective: to investigate several ways to diagnose the food and waterborne protozoan parasite Cyclospora cayetanensis. Cyclospora cayetanensis is a protozoan parasite that infects human beings and causes gastroenteritis. Diagnosis of this parasite is complicated by the fact th...
Li, Xin-Xu; Chen, Jia-Xu; Wang, Li-Xia; Tian, Li-Guang; Zhang, Yu-Ping; Dong, Shuang-Pin; Hu, Xue-Guang; Liu, Jian; Wang, Feng-Feng; Wang, Yue; Yin, Xiao-Mei; He, Li-Jun; Yan, Qiu-Ye; Zhang, Hong-Wei; Xu, Bian-Li; Zhou, Xiao-Nong
2014-01-01
Epidemiologic studies of co-infection with tuberculosis (TB) and intestinal parasites in humans have not been extensively investigated in China. A cross-section study was conducted in a rural county of Henan Province, China. Pulmonary TB (PTB) case-patients receiving treatment for infection with Mycobacterium tuberculosis and healthy controls matched for geographic area, age, and sex were surveyed by using questionnaires. Fecal and blood specimens were collected for detection of intestinal parasites, routine blood examination, and infection with human immunodeficiency virus. The chi-square test was used for univariate analysis and multivariate logistic regression models were used to adjust for potential confounding factors. A total of 369 persons with PTB and 366 healthy controls were included; all participants were negative for human immunodeficiency virus. The overall prevalence of intestinal parasites in persons with PTB was 14.9%, including intestinal protozoa (7.9%) and helminthes (7.6%). The infection spectrum of intestinal parasites was Entamoeba spp. (1.4%), Blastocystis hominis (6.2%), Trichomonas hominis (0.3%), Clonorchis sinensis (0.3%), Ascaris lumbricoides (0.5%), Trichuris trichiura (2.2%), and hookworm (4.6%). The prevalence of intestinal parasites showed no significant difference between persons with PTB and healthy controls after adjusting for potential confounding factors. There was no factor that affected infection rates for intestinal parasites between the two groups. Infection with intestinal parasites of persons with PTB was associated with female sex (adjusted odds ratio [AOR] = 2.05, 95% confidence interval [CI] = 1.01–4.17), body mass index ≤ 19 (AOR = 3.02, 95% CI = 1.47–6.20), and anemia (AOR = 2.43, 95% CI = 1.17–5.03). Infection of healthy controls was only associated with an annual labor time in farmlands > 2 months (AOR = 4.50, 95% CI = 2.03–10.00). In addition, there was no significant trend between rates of infection with intestinal parasites and duration of receiving treatment for infection with M. tuberculosis in persons with PTB. The prevalence of intestinal parasites was not higher in persons with PTB, and there was no evidence that PTB increased susceptibility to intestinal parasites in this study. However, for patients with PTB, women and patients with comorbidities were more likely to be infected with intestinal parasites. PMID:24166044
Santiago-Alarcon, Diego; Palinauskas, Vaidas; Schaefer, Hinrich Martin
2012-11-01
Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human populations into contact with novel parasite sources, we stress that the best way to avoid emergent and reemergent diseases is through a program encompassing ecological restoration, environmental education, and enhanced understanding of the value of ecosystem services. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Smith, Anya F; Semeniuk, Christina A D; Rock, Melanie J; Massolo, Alessandro
2015-07-01
Associations between park use and infections with gastrointestinal (GI) parasites in dogs (Canis familiaris) have been previously observed, suggesting park use may pose risks for infection in dogs, and potentially, in humans. This study was conducted to establish the overall level of perceived risk of parasitism in dogs, the frequency of unleashing dogs in parks, and to determine if dog owners' risk perceptions of parasite transmission among humans and dogs are associated with the reported frequency of unleashing dogs. From June to September 2010, 635 surveys were administered to dog owners in nine city parks in Calgary, Alberta, by the lead author to explore dog-walking behaviors in parks under differing leashing regulations. From these, a subset of 316 questionnaires were analyzed to examine associations between behavioral and dog demographic factors, risk perception and acceptability of perceived risks of dog and human parasitism, and education regarding parasitism in dogs and humans. Multivariate statistics were conducted using three separate Chi-Square Automatic Interaction Detection (CHAID) decision trees to model risk perception of dogs becoming parasitized while in the park, risk perception of zoonotic transmission, and off-leash frequency. Predictors included recreational behaviors, dog demographics, risk perception of park-based and zoonotic transmission, education regarding parasites, and leashing regulations (e.g. on-leash, off-leash, or mixed management parks). The perceived risk of park-based transmission was relatively higher than perception of zoonotic transmission and the majority of people unleashed their dogs at least some of the time. Risk perception was not associated with off-leash frequency in dogs and risk perception and off-leash frequency were associated with factors other than each other. The results suggest owners may underestimate the potential risks for parasitism related to some dog-walking behaviours, and are relevant for public and animal health. Copyright © 2015 Elsevier B.V. All rights reserved.
The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife.
Adlard, Robert D; Miller, Terrence L; Smit, Nico J
2015-04-01
Aquatic wildlife is increasingly subjected to emerging diseases often due to perturbations of the existing dynamic balance between hosts and their parasites. Accelerating changes in environmental factors, together with anthropogenic translocation of hosts and parasites, act synergistically to produce hard-to-predict disease outcomes in freshwater and marine systems. These outcomes are further complicated by the intimate links between diseases in wildlife and diseases in humans and domestic animals. Here, we explore the interactions of parasites in aquatic wildlife in terms of their biodiversity, their response to environmental change, their emerging diseases, and the contribution of humans and domestic animals to parasitic disease outcomes. This work highlights the clear need for interdisciplinary approaches to ameliorate disease impacts in aquatic wildlife systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing
Culleton, Richard; Coban, Cevayir; Zeyrek, Fadile Yildiz; Cravo, Pedro; Kaneko, Akira; Randrianarivelojosia, Milijaona; Andrianaranjaka, Voahangy; Kano, Shigeyuki; Farnert, Anna; Arez, Ana Paula; Sharp, Paul M.; Carter, Richard; Tanabe, Kazuyuki
2011-01-01
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa. PMID:22195007
Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)
2013-01-01
Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria. PMID:23731624
Origin of the human malaria parasite Plasmodium falciparum in gorillas
Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.
2010-01-01
Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995
Shu-Mei, Li; Dao-Kuan, Sun; Cui-Ping, Zhang; De-Zhen, Chen; Qian, Li
2016-03-08
To understand the epidemiological situation of human parasitic diseases in Jinhu County, so as to provide the evidence for formulating further control strategy. The investigated local residents were sampled by the random cluster sampling method in 1989, 1999 and 2015. The infections of intestinal helminthes were detected by Kato-Katz technique, the eggs of Enterubius vermicularis were examined by cellophane anal swab for children, the intestinal protozoa were examined by the saline smear and iodine staining methods. The total rates of parasitic infections were 62.57%, 9.32% and 0.49% in 1989, 1999 and 2015, respectively. Compared to those in 1989 and in 1999, the infection rate in 2015 was decreased by 99.22% and 94.74%, respectively. The numbers of detected parasite species were 14, 10 and 4 in 1989, 1999 and 2015, respectively. The intensities of infections were mainly mild in three investigations, and the intensities of all the infections in 2015 were mild. The species of infected parasites were mainly single, however, multiple infections were observed in 1989, including 4 parasite species (0.72%) and 3 parasite species (7.02%). Only in 1989, the difference between sexes was significant and the infection rate of the female was higher than that of the male ( χ 2 =18.01, P <0.01). The infection rates of human parasites are decreased gradually and stabilized at the low level in Jinhu County. However, the surveillance work still should be strengthened to consolidate the achievement.
Nkenfou, Céline Nguefeu; Tchameni, Sandrine Mboula; Nkenfou, Carine Nguefeu; Djataou, Patrice; Simo, Ulrich Florian; Nkoum, Alexandre Benjamin; Estrin, William
2017-09-01
The problem of intestinal parasitic infection in human immunodeficiency virus (HIV)-infected people requires careful consideration in the developing world where poor nutrition is associated with poor hygiene and several coinfecting diseases. Studies have addressed this issue in Cameroon, especially in the low HIV prevalence area. The current study was conducted to determine the prevalence of intestinal parasitosis in people living with HIV (PLHIV) in Adamaoua and to identify associated risk factors. Stool and blood specimens from study participants were screened for intestinal parasites and anti-HIV antibodies, respectively. Of 235 participants, 68 (28.9%) were HIV positive, 38 of them on antiretroviral treatment (ART). The overall prevalence of intestinal parasites was 32.3%. Of 68 PLHIV, 32.3% (22/68) were infected with intestinal parasites, compared with 32.3% (54/167) of the HIV-negative patients. Univariate analysis showed no difference between the prevalence of intestinal parasites among PLHIV and HIV-negative patients ( P = 0.69). ART was not associated with the prevalence of intestinal parasites. Multivariate analysis showed that the quality of water and the personal hygiene were the major risk factors associated to intestinal parasitosis. The level of education was associated with HIV serostatus: the higher the level of education, the lower the risk of being infected with HIV ( P = 0.00). PLHIV and the general population should be screened routinely for intestinal parasites and treated if infected.
Survival of Plasmodium falciparum in human blood during refrigeration.
Chattopadhyay, Rana; Majam, Victoria F; Kumar, Sanjai
2011-03-01
Transfusion-transmitted malaria remains a serious concern for blood safety. Viable Plasmodium parasites must be present in human blood to transmit malaria, but their survival in blood over time stored under refrigeration has never been carefully investigated. We spiked leukoreduced normal human blood with Plasmodium falciparum (3D7 strain) asexual ring-stage parasites and stored it at 4 °C for 28 days, taking samples at different days intervals. We evaluated the samples for parasitemia by blood film microscopy and by culturing red blood cells (RBCs) to allow further development of parasites. We observed a significant reduction in parasitemia (0.5% vs. 0.12%) after only 1 day in storage at 4 °C. Thereafter, reduction in parasitemia was relatively gradual. Microscopically detectable parasites were present even after 28 days of storage. However, after storing for more than 14 days at 4 °C, parasites no longer replicated when cultured in vitro. Although the storage of asexual blood-stage P. falciparum parasites at 4 °C is detrimental to their survival (a 7.1-fold reduction in parasitemia after 14 days in storage), parasites remained microscopically detectable for 28 days, the end time point of our study. Further in vitro and in vivo studies will be needed to confirm loss of viability of P. falciparum after 14 days in storage, but our initial efforts repeatedly failed to show maturation and development of the parasites in cultured RBCs after that time. © 2010 American Association of Blood Banks.
Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James
2015-12-01
Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Weinstein, Sara B.; Lake, Camille M.; Chastain, Holly M.; Fisk, David; Handali, Sukwan; Kahn, Philip L.; Montgomery, Susan P.; Wilkins, Patricia P.; Kuris, Armand M.; Lafferty, Kevin D.
2017-01-01
Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur.
Lafferty, Kevin D.
2010-01-01
Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).
Prevalence of intestinal parasites in Isfahan city, central Iran, 2014.
Jafari, Rasool; Sharifi, Forough; Bagherpour, Bahram; Safari, Marzieh
2016-09-01
Intestinal parasites are important enteric pathogens. Poverty, low quality of food and water supply and poor sanitation systems are the important factors associated with intestinal parasitic infections. These kinds of infections can be a good index for hygienic and sanitation status of the society. This study aimed to determine the prevalence of intestinal parasitic infections among humans referred to Dr. Sharifi Clinical Laboratory, Isfahan, Iran, 2014. In this cross sectional study, 652 fecal samples (286 males and 366 females) from humans who had stool examination test from January to August 2014 were chosen. Microscopic examination for parasitic infections has been carried out using wet mount method. Indistinguishable samples underwent trichrome staining method for accurate identification of protozoa. Intestinal parasitic infections were observed in 68 (10.42 %) out of 652 studied humans. Forty eight Blastocystis hominis (7.36 %), thirteen Endolimax nana (1.99 %), nine Giardia lamblia (1.38 %), five Entamoeba coli (0.76 %), four Chilomastix mesnili (0.61 %) and two Iodamoeba butschlii (0.15 %) were the observed protozoa in the studied population. B. hominis, E. nana and C. mesnili were found to be significantly more prevalent in people with loose stool specimen. Considering the helminthic infections, only one case (0.15 %) that was excreted Taenia saginata proglottids has been documented among 652 studied humans. Based on the findings of the present study intestinal parasitic infections in Isfahan city has been dramatically decreased over the past years and shows a good hygienic and sanitation status of the city.
Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.
Ngô, Huân M; Zhou, Ying; Lorenzi, Hernan; Wang, Kai; Kim, Taek-Kyun; Zhou, Yong; El Bissati, Kamal; Mui, Ernest; Fraczek, Laura; Rajagopala, Seesandra V; Roberts, Craig W; Henriquez, Fiona L; Montpetit, Alexandre; Blackwell, Jenefer M; Jamieson, Sarra E; Wheeler, Kelsey; Begeman, Ian J; Naranjo-Galvis, Carlos; Alliey-Rodriguez, Ney; Davis, Roderick G; Soroceanu, Liliana; Cobbs, Charles; Steindler, Dennis A; Boyer, Kenneth; Noble, A Gwendolyn; Swisher, Charles N; Heydemann, Peter T; Rabiah, Peter; Withers, Shawn; Soteropoulos, Patricia; Hood, Leroy; McLeod, Rima
2017-09-13
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Molecular epidemiology of Cryptosporidium and Giardia in cattle
USDA-ARS?s Scientific Manuscript database
Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide range of vertebrate hosts including humans. Infections with both parasites are known as one of the most common causes of diarrhea in humans and livestock. The epidemiology of cryptosporidiosis and giardias...
DETECTION OF CYCLOSPORA CAYETANESIS USING A QUANTITATIVE REAL-TIME PCR ASSAY
Cyclosporal cayetanensis, a coccidian parasite of humans, has been recognized worldwide as an emerging pathogen in both immunocompromised (Ortega et al.1993) and immunocompetent individuals (Berlin et al.1994). Presently, humans apear to be the primary host for this parasite (Eb...
Human lagochilascariasis—A rare helminthic disease
Campos, Dulcinea Maria Barbosa; Barbosa, Alverne Passos; de Oliveira, Jayrson Araújo; Tavares, Giovana Galvão; Cravo, Pedro Vitor Lemos; Ostermayer, Alejandro Luquetti
2017-01-01
Lagochilascariasis is a parasitic disease caused by a helminth of the order Ascaroidea, genus Lagochilascaris that comprises 6 species, among which only Lagochilascaris minor Leiper, 1909, is implicated in the human form of the disease. It is remarkable that the majority of cases of human lagochilascariasis in the Americas have been reported in Brazil. The natural definitive hosts of this parasite seem to be wild felines and canines. Lagochilascariasis is mostly a chronic human disease that can persist for several years, in which the parasite burrows into the subcutaneous tissues of the neck, paranasal sinuses, and mastoid. L. minor exhibits remarkable ability to migrate through the tissues of its hosts, destroying even bone tissue. Fatal cases have been described in which the parasite was found in the lungs or central nervous system. Treatment is often palliative, with recurrence of lesions. This paper summarizes the main features of the disease and its etiologic agent, including prevalence, life cycle, clinical course, and treatment. PMID:28640884
Zanzani, Sergio Aurelio; Gazzonis, Alessia Libera; Scarpa, Paola; Berrilli, Federica; Manfredi, Maria Teresa
2014-01-01
Intestinal parasites of dogs and cats are cosmopolitan pathogens with zoonotic potential for humans. Our investigation considered their diffusion in dogs and cats from northern Italy areas, specifically the metropolitan area of Milan and two micropolitan areas of neighboring provinces. It included the study of the level of awareness in pet owners of the zoonotic potential from these parasites. A total of 409 fresh fecal samples were collected from household dogs and cats for copromicroscopic analysis and detection of Giardia duodenalis coproantigens. The assemblages of Giardia were also identified. A questionnaire about intestinal parasites biology and zoonotic potential was submitted to 185 pet owners. The overall prevalence of intestinal parasites resulted higher in cats (47.37%-60.42%) and dogs (57.41%-43.02%) from micropolitan areas than that from the metropolis of Milan (dogs: P = 28.16%; cats: P = 32.58 %). The zoonotic parasites infecting pets under investigation were T. canis and T. cati, T. vulpis, Ancylostomatidae, and G. duodenalis assemblage A. Only 49.19% of pet owners showed to be aware of the risks for human health from canine and feline intestinal parasites. Parasitological results in pets and awareness determination in their owners clearly highlight how the role of veterinarians is important in indicating correct and widespread behaviors to reduce risks of infection for pets and humans in urban areas.
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii counts among the most consequential food-borne parasites, and although the parasite occurs in a wide range of wild and domesticated animals, farms may constitute a specific and important locus of transmission. If so, parasites in animals that inhabit agricultural landscapes might b...
Putaporntip, Chaturong; Jongwutiwes, Somchai; Thongaree, Siriporn; Seethamchai, Sunee; Grynberg, Priscila; Hughes, Austin L.
2010-01-01
Although malaria parasites infecting non-human primates are important models for human malaria, little is known of the ecology of infection by these parasites in the wild. We extensively sequenced cytochrome b (cytb) of malaria parasites (Apicomplexa: Haemosporida) from free-living Southeast Asian monkeys Macaca nemestrina and M. fascicularis. The two most commonly observed taxa were P. inui and Hepatocystis sp., but certain other sequences did not cluster closely with any previously sequenced species. Most of the major clades of parasites were found in both Macaca species; and the two most commonly occurring parasite infected the two Macaca species at approximately equal levels. However, P. inui showed evidence of genetic differentiation between the populations infecting the two Macaca species, suggesting limited movement of this parasite among hosts. Moreover, coinfection with Plasmodium and Hepatocystis species occurred significantly less frequently than expected on the basis of the rates of infection with either taxon alone, suggesting the possibility of competitive exclusion. The results revealed unexpectedly complex communities of Plasmodium and Hepatocystis taxa infecting wild Southeast Asian monkeys. Parasite taxa differed with respect to both the frequency of between-host movement and their frequency of coinfection. PMID:20646216
Targeted mutagenesis in a human-parasitic nematode
Gang, Spencer S.; Castelletto, Michelle L.
2017-01-01
Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680
[The frequency of the presence of intestinal parasites in students of Arslanbey Primary School].
Tamer, Gülden Sönmez; Erdoğan, Sarper; Willke, Ayşe
2008-01-01
We investigated the frequency of the presence of intestinal parasites and the factors affecting this frequency in an elementary school. We tried to discover whether there was a relationship between the presence of intestinal parasites and sanitary habits such as hand washing, toilet flushing, and use of human manure, cleanness of drinking water and also the educational level of the parents. A total of 114 students participated in this study. Samples were collected using cellophane tape preparations. All fecal samples were examined using native-Lugol and the trichrome staining. Fecal samples taken from 111 students were examined, 37 (33.3%) of them contained one or more parasites. The parasites encountered most often were E. vermicularis 16 (14.4%), G. intestinalis 10 (9.0%), and E. coli 4 (3.6%). In addition children carrying intestinal parasites complained about abdominal pain (22 students), itchy nose and the accumulation of saliva around their mouths (9 students). Although no meaningful relationship was found between the use of human manure/toilet flushing with the presence of parasites, the educational level of the parents, cleanness of the drinking water and hand washing habits seem to be related to the presence of parasites. Our findings indicate that elementary students should be educated in the prevention of parasitic infections.
Parasitic nematode interactions with mammals and plants.
Jasmer, Douglas P; Goverse, Aska; Smant, Geert
2003-01-01
Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.
Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.
Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem
2015-01-01
The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.
Update on pathology of ocular parasitic disease
Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba
2016-01-01
Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field. PMID:27958200
Update on pathology of ocular parasitic disease.
Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba
2016-11-01
Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.
Intensive Farming: Evolutionary Implications for Parasites and Pathogens
Nilsen, Frank; Ebert, Dieter; Skorping, Arne
2010-01-01
An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be ‘under control’ are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers. PMID:21151485
Examining the causes of a devastating debris flow
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2014-08-01
Storm-triggered landslides cause loss of life, property damage, and landscape alterations. For instance, the remnants of Hurricane Camille in 1969 caused 109 deaths in central Virginia, after 600 millimeters of rain fell in mountainous terrain in 6 hours. More recently, on 8 August 2010, a rainstorm-induced landslide devastated the Chinese county of Zhouqu, causing more than 1000 deaths. A new modeling study by Ren examines the multiple factors, natural and human caused, that came together to produce this event. Three things contribute to storm-triggered landslides: geological condition, surface loading and vegetation roots, and extreme precipitation.
Don't forget about the Christchurch earthquake: Lessons learned from this disaster
Hamburger, Michael W.; Mooney, Walter D.
2011-01-01
In the aftermath of the devastating magnitude-9.0 earthquake and tsunami that struck the Tohoku region of Japan on March 11, attention quickly turned away from a much smaller, but also highly destructive earthquake that struck the city of Christchurch, New Zealand, just a few weeks earlier, on Feb. 22. Both events are stark reminders of human vulnerability to natural disasters and provide a harsh reality check: Even technologically advanced countries with modern building codes are not immune from earthquake disasters. The Christchurch earthquake carried an additional message: Urban devastation can be triggered even by moderate-sized earthquakes.
Mammalian gastrointestinal parasites in rainforest remnants of Anamalai Hills, Western Ghats, India.
Chakraborty, Debapriyo; Hussain, Shaik; Reddy, D Mahendar; Raut, Sachin; Tiwari, Sunil; Kumar, Vinod; Umapathy, Govindhaswamy
2015-06-01
Habitat fragmentation is postulated to be a major factor influencing infectious disease dynamics in wildlife populations and may also be responsible, at least in part, for the recent spurt in the emergence, or re-emergence, of infectious diseases in humans. The mechanism behind these relationships are poorly understood due to the lack of insights into the interacting local factors and insufficient baseline data in ecological parasitology of wildlife. Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastrointestinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 nematode taxa. Twenty of these parasites are known parasites of humans. We also found that as much as 73% of all infected samples were infected by multiple parasites. In addition, the smallest and most fragmented forest patches recorded the highest parasite richness; the pattern across fragments, however, seemed to be less straightforward, suggesting potential interplay of local factors.
Neglected wild life: Parasitic biodiversity as a conservation target☆
Gómez, Andrés; Nichols, Elizabeth
2013-01-01
Parasites appropriate host resources to feed and/or to reproduce, and lower host fitness to varying degrees. As a consequence, they can negatively impact human and animal health, food production, economic trade, and biodiversity conservation. They can also be difficult to study and have historically been regarded as having little influence on ecosystem organization and function. Not surprisingly, parasitic biodiversity has to date not been the focus of much positive attention from the conservation community. However, a growing body of evidence demonstrates that parasites are extremely diverse, have key roles in ecological and evolutionary processes, and that infection may paradoxically result in ecosystem services of direct human relevance. Here we argue that wildlife parasites should be considered meaningful conservation targets no less relevant than their hosts. We discuss their numerical and functional importance, current conservation status, and outline a series of non-trivial challenges to consider before incorporating parasite biodiversity in conservation strategies. We also suggest that addressing the key knowledge gaps and communication deficiencies that currently impede broad discussions about parasite conservation requires input from wildlife parasitologists. PMID:24533340
Mason Dentinger, Rachel
2016-04-01
In 1960, American parasitologist Don Eyles was unexpectedly infected with a malariaparasite isolated from a macaque. He and his supervisor, G. Robert Coatney of the National Institutes of Health, had started this series of experiments with the assumption that humans were not susceptible to "monkey malaria." The revelation that a mosquito carrying a macaque parasite could infect a human raised a whole range of public health and biological questions. This paper follows Coatney's team of parasitologists and their subjects: from the human to the nonhuman; from the American laboratory to the forests of Malaysia; and between the domains of medical research and natural history. In the course of this research, Coatney and his colleagues inverted Koch's postulate, by which animal subjects are used to identify and understand human parasites. In contrast, Coatney's experimental protocol used human subjects to identify and understand monkey parasites. In so doing, the team repeatedly followed malaria parasites across the purported boundary separating monkeys and humans, a practical experience that created a sense of biological symmetry between these separate species. Ultimately, this led Coatney and his colleagues make evolutionary inferences, concluding "that monkeys and man are more closely related than some of us wish to admit." In following monkeys, men, and malaria across biological, geographical, and disciplinary boundaries, this paper offers a new historical narrative, demonstrating that the pursuit of public health agendas can fuel the expansion of evolutionary knowledge.
Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.
Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique
2015-07-24
Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.
Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C
2012-12-13
Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.
Del Pilar-Morales, Esteban A; Cardona-Rodríguez, Zaydalee; Bertrán-Pasarell, Jorge; Soto-Malave, Ruth; De León-Borras, Rafeal
2016-06-01
Patients with the human immunodeficiency virus (HIV) infection are at high risk for gastrointestinal infections causing diarrhea, particularly when those infections are parasitic in nature. This propensity is more pronounced in AIDS, where opportunistic parasitic infections may cause severe diarrhea, marked absorptive dysfunction, and significant risk of mortality. There are scant data regarding parasitic infections among HIV patients in the developed world; most studies and research come from povertystricken areas of South Africa, India, Iran, and the South Pacific. Although multiple infections with the same or different parasites have been reported, simultaneous infections are rare. We present the case of a 35-year-old man who developed a co-infection with Giardia, Cryptosporidium, and Strongyloides, simultaneously, the diagnosis being made after the judicious evaluation of a stool sample. Given the associated morbidity, prompt diagnosis and treatment are needed to avoid further complications in patients with HIV. To our knowledge this is the first reported case of triple parasitic infection in a patient with HIV.
Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization
USDA-ARS?s Scientific Manuscript database
An intricate history of human dispersal and geographic colonization has strongly affected the distribution of obligate parasites circulating among people. Among these parasites, the pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serio...
Parasites, Plants, and People.
Johnson, Marion; Moore, Tony
2016-06-01
Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Avramenko, Russell W; Redman, Elizabeth M; Lewis, Roy; Yazwinski, Thomas A; Wasmuth, James D; Gilleard, John S
2015-01-01
Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal "nemabiome". The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the 'nemabiome' have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs.
Tapeworm Diphyllobothrium dendriticum (Cestoda)—Neglected or Emerging Human Parasite?
Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš
2013-01-01
Background A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. Methodology and Results On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. Conclusions The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites. PMID:24386497
Tapeworm Diphyllobothrium dendriticum (Cestoda)--neglected or emerging human parasite?
Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš
2013-01-01
A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites.
Glucose-6-phosphate metabolism in Plasmodium falciparum.
Preuss, Janina; Jortzik, Esther; Becker, Katja
2012-07-01
Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based. Copyright © 2012 Wiley Periodicals, Inc.
Pafčo, Barbora; Benavides, Julio A; Pšenková-Profousová, Ilona; Modrý, David; Červená, Barbora; Shutt, Kathryn A; Hasegawa, Hideo; Fuh, Terence; Todd, Angelique F; Petrželková, Klára J
2017-12-01
Increased anthropogenic activity can result in parasite exchanges and/or general changes in parasite communities, imposing a health risk to great apes. We studied protist and helminth parasites of wild western lowland gorilla groups in different levels of habituation, alongside humans inhabiting Dzanga-Sangha Protected Areas in the Central African Republic. Faeces were collected yearly during November and December from 2007 to 2010 and monthly from November 2010 to October 2011. Protist and helminth infections were compared among gorilla groups habituated, under habituation and unhabituated, and the effect of host traits and seasonality was evaluated. Zoonotic potential of parasites found in humans was assessed. No significant differences in clinically important parasites among the groups in different stages of habituation were found, except for Entamoeba spp. However, humans were infected with four taxa which may overlap with taxa found in gorillas. Females were less infected with spirurids, and adults had higher intensities of infection of Mammomonogamus sp. We found seasonal differences in the prevalence of several parasite taxa, but most importantly, the intensity of infection of unidentified strongylids was higher in the dry season. This study highlights that habituation may not necessarily pose a greater risk of protist and helminth infections in gorilla groups.
Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities.
Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael
2018-02-02
Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.
[Survey and analysis of major human parasitic diseases in Chongqing City].
Shan-Shan, Li; Fei, Luo; Jun, Xie; Yi, Yuan
2018-03-02
To investigate the epidemic of major human parasitic diseases in Chongqing City, so as to provide a reference for developing prevention and control strategies. According to the unified methods formulated by the national investigation scheme and stratified cluster random sampling, 36 rural pilots and 50 urban pilots were selected in Chongqing City. The number of the objects investigated in individual pilot was defined over 250. Totally 22 263 residents were detected. The overall infection rate of intestinal parasites was 5.41%. The infection rates of Ascaris lumbricoides , hookworm, Trichuris trichiura , and Enterobius vermicularis were 1.20%, 4.23%, 0.13% and 0.47% respectively. Only 0.22% of the infections were co-infections. The infection rate of overall intestinal parasites was statistically higher in the females than that in the males ( χ 2 = 15.19, P < 0.05), and the infection rates were significantly different among various age groups, occupations, education levels, and regions ( χ 2 = 15.19, 396.72, 421.07, 347.79, all P < 0.05). The infection rates of major human parasites in Chongqing show an obviously decreasing tendency compared with the rates of the past twice of national surveys. In the future, the controlling practices are obliged to focus on reducing the infection rates of soil-borne parasites.
Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Xi-Meng, Lin; Peng, Li; Hong-Wei, Zhang
2017-07-24
To understand the epidemic status of principal human parasitosis in the ecological region of Huaiyang hills of Henan Province. According to the scheme of The 3rd National Survey of Principal Human Parasites made by National Institute of Parasitic Diseases, the survey was performed based on the ecological regions. The stratified cluster sampling was made combined with the economic and geographical conditions. The infections of intestinal helminths and protozoans in permanent residents were respectively detected by Kato-Kats technique and iodine solution. Trichuris trichiura infection was detected by the cellophane swab method in children aged 3 to 6 years. Totally 6 710 residents in 26 survey spots from 9 counties were detected, in which 528 children aged 3 to 6 years were detected for T. trichiura infection. Eleven kinds of parasites were found in this survey, including 5 species of helminthes and 6 species of protozoans. The infection rates of overall parasites, helminthes and protozoans were respectively 1.65%, 1.07% and 0.61%. The infection rate of T. trichiura in the children aged 3 to 6 years was 3.79%. Only 0.10 percent of the infections were co-infection, and all were infected by 2 kinds of parasites. The principal parasites in this district were Ascaris lumbricoides (0.31%), Blastocystis hominis (0.28%) and hookworm (0.27%). The T. trichiura infection rate among children was 3.79% by the cellophane swab method. The infections of protozoans were found in all age groups. In the group aged 9 years and below, the maximum kinds of parasites were found. The infection rates of principal human parasites in Huaiyang hilly ecological region of Henan have decreased sharply, but more efforts still should be paid on the prevention and control of parasitosis in children.
[Stratified sampling survey of major human parasitic diseases in Henan province].
Xu, B L; Zhang, H W; Deng, Y; Chen, Z L; Chen, W Q; Lu, D L; Zhang, Y L; Zhao, Y L; Lin, X M; Huang, Q; Yang, C Y; Liu, Y; Zhou, R M; Li, P; Chen, J S; He, L J; Qian, D
2018-03-10
Objective: To understand the prevalence of major human parasitic diseases and related factors in Henan province. Methods: This stratified sampling survey was carried out according to the requirement of national survey protocol of major human parasitic diseases, 2014-2015. The prevalence of soil-transmitted helminths infection, taeniasis and intestinal protozoiasis were surveyed in 104 sites selected from 35 counties (districts) and the prevalence of clonorchiasis was surveyed in 62 sites selected from 37 townships. In each survey spot, 250 persons were surveyed. A total of 26 866 persons and 15 893 persons were surveyed. Modified Kato-Katz thick smear was used to detect the eggs of intestinal helminthes. Tube fecal culture was used to identify the species of hookworm. The Enterobius eggs were detected in children aged 3 to 6 years by using adhesive tape. The cyst and trophozoite of intestinal protozoa were examined with physiological saline direct smear method and iodine stain method. Results: The overall infestation rate of intestinal parasites was2.02% in Henan, and the worm infection rate was higher than protozoa infection rate. Fourteen kinds of intestinal parasites were found, including nematode (5 species), trematode (2 species), and protozoan (7 species). The infection rate of Enterobius vermicularis was highest, and Qinba Mountain ecological area had the highest infestation rate of intestinal parasites in 4 ecological areas of Henan. There was no significant difference in intestinal parasite infection rate between males and females ( χ (2)=3.630, P =0.057), and the differences in intestinal parasite infection rate among different age groups had significance ( χ (2)=124.783, P =0.000 1). The infection rate reached the peak in age group ≤9 years and the major parasite was Enterobius vermicularis . Furthermore the overall human infection rate of parasite showed a downward trend with the increase of educational level of the people ( χ (2)=70.969, P =0.000 1), the differences had significance ( χ (2)=120.118, P =0.000 1). For different populations, the infection rate of intestinal parasites was highest among preschool children. The infection of intestinal helminth was mainly mild, only 2 severe cases were detected. The infection rate of Clonorchis sinensis in urban residents was only 0.006%. Logistic regression analysis showed that being preschool children ( χ (2)=15.765, P =0.000 1) and drinking well water ( χ (2)=45.589, P =0.000 1) were the risk factors for intestinal parasite infection, and annual income per capita of farmers was the protective factor against intestinal parasite infection. The infection rates of protozoa and intestinal parasites decreased sharply compared with the results of previous two surveys, and the rate of intestinal helminth infection also dropped sharply compared with the second survey. The numbers of protozoa, helminth and intestinal parasites detected in this survey were all less than the numbers found in the previous two surveys. Conclusions: Compared the results of three surveys in Henan, the infection rate of protozoa and intestinal parasites showed a downward trend. The prevention and treatment of Enterobius vermicularis infection in children should be the key point of parasitic disease control in the future.
Microfluidics-Based Approaches to the Isolation of African Trypanosomes
Barrett, Michael P.; Regnault, Clément; Tegenfeldt, Jonas O.; Hochstetter, Axel
2017-01-01
African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening. PMID:28981471
Drug repurposing and human parasitic protozoan diseases
Andrews, Katherine T.; Fisher, Gillian; Skinner-Adams, Tina S.
2014-01-01
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis. PMID:25057459
Morley, Neil J
2009-03-01
Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.
Figueiredo, Ana; Oliveira, Lucia; Madeira de Carvalho, Luís; Fonseca, Carlos; Torres, Rita Tinoco
2016-08-01
Parasites have a profound impact on wildlife population dynamics. However, until some years ago, studies on the occurrence and prevalence of wildlife parasites were neglected comparatively with the studies on humans and domestic animals. In this study, we determined the parasite prevalence of two sympatric wild canids: the endangered Iberian wolf (Canis lupus signatus) and the widespread red fox (Vulpes vulpes), in central Portugal. From November 2014 to July 2015, fresh fecal samples from both species were collected monthly in several transects distributed throughout the study area. All samples were submitted to several coprological techniques. In total, 6 helminth parasites (Crenosoma vulpis, Angiostrongylus vasorum, Toxocara canis, Trichuris vulpis, Ancylostomatidae, Toxascaris leonina), and a protozoa (Balantidium coli) were identified based on size and morphology. The red fox was infected by seven different parasites while the Iberian wolf was infected by four. All parasites present in wolf were also present in the red fox. C. vulpis had the higher prevalence in red fox, while Ancylostomatidae were the most prevalent parasites in wolf. To our knowledge, this is the first study in this isolated subpopulation of the Iberian wolf. Our results show that both carnivores carry parasites that are of concern as they are pathogenic to humans and other wild and domestic animals. We suggest that surveillance programs must also include monitoring protocols of wildlife; particularly endangered species.
Yusof, Afzan Mat; Mohammad, Mardhiah; Abdullahi, Muna Abshir; Mohamed, Zeehaida; Zakaria, Robaiza; Wahab, Ridhwan Abdul
2017-01-01
Intestinal parasitic infections are one of the most common causes of human diseases that result in serious health and economic issues in many developing and developed countries. Raw vegetables and fruits play an important role in transmitting parasites to humans. Hence, the aim of this study was to investigate the parasitological contamination of select commonly consumed local leafy vegetables and fruits in Kuantan, Malaysia. One kilogram of locally consumed raw vegetables and fruits were collected randomly from the Kuantan wet market (Pasar Tani) during the monsoon season (November 2014–January 2015) and the dry season (February 2015–April 2015). A standard wet mount procedure and modified Ziehl-Neelsen staining were used for the detection of parasites. In the present study, the examination of vegetables revealed five different parasite species. The vegetable samples collected from Kuantan’s wet market were positive for both helminthes and protozoa. However, the fruits samples were negative for parasitic contamination. Pegaga was the most contaminated leafy vegetable in this study, and Strongyloides was the parasite found most frequently. Furthermore, there was a high diversity in the type of parasites observed during the dry season compared to the monsoon season. Therefore, further action should be taken to reduce the occurrence of parasitic contamination in vegetables by implementing the principles of good agricultural practice and improving water treatment efficacy. PMID:28228914
Nagaraj, Shivashankar H.; Gasser, Robin B.; Ranganathan, Shoba
2008-01-01
Background Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets. Methods and Findings In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans. Conclusions We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of novel drugs or vaccines for parasite intervention and control. PMID:18820748
Dogs and intestinal parasites: a public health problem.
Seah, S K; Hucal, G; Law, C
1975-05-17
The stools of 239 stray dogs were examined for intestinal parasites. Of the helminths found, Toxocara canis (43.5%), tapeworms (25.5%), Ascaris species (21.3%) and hookworms (12.5%) were the commonest. Of the protozoans found, Isospora species and Entamoeba coli were the most prevalent. An unusual feature of the present study was the finding of Ascaris species. The importance of the high prevalence of intestinal parasites in dogs, the close contact of humans with dogs' excreta and the possible role of this environmental pollution in the spread of human disease are discussed.
Live attenuated pre-erythrocytic malaria vaccines.
Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing
2014-01-01
Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.
Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.
Jones, P M; George, A M
2005-04-30
Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.
LOPES, Valeriana Valadares; dos SANTOS, Hudson Andrade; da SILVA, Amália Verônica Mendes; FONTES, Gilberto; VIEIRA, Gabriela Lisboa; FERREIRA, Arilton Carlos; da SILVA, Eduardo Sergio
2015-01-01
SUMMARY Cestodes of the Bertiella genus are parasites of non-human primates found in Africa, Asia, Oceania and the Americas. Species Bertiella studeri and Bertiella mucronata could, accidentally, infect human beings. The infection occurs from ingestion of mites from the Oribatida order containing cysticercoid larvae of the parasite. The objective of this report is to register the first case of human infection by Bertiella studeri in Brazil. Proglottids of the parasite, found in the stool sample of a two-and-a-half-year-old child, were fixed, stained and microscopically observed to evaluate its morphological characteristics. Eggs obtained from the proglottids were also studied. The gravid proglottids examined matched the description of the genus Bertiella. The eggs presented a round shape, with the average diameter of 43.7 µm, clearly showing the typical pyriform apparatus of B. studeri. The authors concluded that the child was infected with Bertiella studeri, based on Stunkard's (1940) description of the species. This is the fifth case of human Bertiellosis described in Brazil through morphometric analysis of the parasite, the third in Minas Gerais State and the first diagnosed case of Bertiella studeri in Brazil. PMID:26603236
Li, Danlei; Wang, Zhiying; Dong, Airong; Chen, Qiaoli; Liu, Xiaohan
2014-01-01
Background The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Methodology and Principal Findings Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. Conclusions and Significance The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species. PMID:24637831
Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci.
Charles, Lauren; Carbone, Ignazio; Davies, Keith G; Bird, David; Burke, Mark; Kerry, Brian R; Opperman, Charles H
2005-08-01
Pasteuria penetrans is a gram-positive, endospore-forming eubacterium that apparently is a member of the Bacillus-Clostridium clade. It is an obligate parasite of root knot nematodes (Meloidogyne spp.) and preferentially grows on the developing ovaries, inhibiting reproduction. Root knot nematodes are devastating root pests of economically important crop plants and are difficult to control. Consequently, P. penetrans has long been recognized as a potential biocontrol agent for root knot nematodes, but the fastidious life cycle and the obligate nature of parasitism have inhibited progress on mass culture and deployment. We are currently sequencing the genome of the Pasteuria bacterium and have performed amino acid level analyses of 33 bacterial species (including P. penetrans) using concatenation of 40 housekeeping genes, with and without insertions/deletions (indels) removed, and using each gene individually. By application of maximum-likelihood, maximum-parsimony, and Bayesian methods to the resulting data sets, P. penetrans was found to cluster tightly, with a high level of confidence, in the Bacillus class of the gram-positive, low-G+C-content eubacteria. Strikingly, our analyses identified P. penetrans as ancestral to Bacillus spp. Additionally, all analyses revealed that P. penetrans is surprisingly more closely related to the saprophytic extremophile Bacillus haladurans and Bacillus subtilis than to the pathogenic species Bacillus anthracis and Bacillus cereus. Collectively, these findings strongly imply that P. penetrans is an ancient member of the Bacillus group. We suggest that P. penetrans may have evolved from an ancient symbiotic bacterial associate of nematodes, possibly as the root knot nematode evolved to be a highly specialized parasite of plants.
Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte
Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard
2014-01-01
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340
Paladini, Giuseppe; Hansen, Haakon; Williams, Chris F; Taylor, Nick G H; Rubio-Mejía, Olga L; Denholm, Scott J; Hytterød, Sigurd; Bron, James E; Shinn, Andrew P
2014-12-20
Gyrodactylus salaris Malmberg, 1957 has had a devastating impact on wild Norwegian stocks of Atlantic salmon Salmo salar L., and it is the only Office International des Epizooties (OIE) listed parasitic pathogen of fish. The UK is presently recognised as G. salaris-free, and management plans for its containment and control are currently based on Scandinavian studies. The current study investigates the susceptibility of British salmonids to G. salaris, and determines whether, given the host isolation since the last glaciation and potential genetic differences, the populations under test would exhibit different levels of susceptibility, as illustrated by the parasite infection trajectory over time, from their Scandinavian counterparts. Populations of S. salar, brown trout Salmo trutta L., and grayling Thymallus thymallus (L.), raised from wild stock in UK government hatcheries, were flown to Norway and experimentally challenged with a known pathogenic strain of G. salaris. Each fish was lightly anaesthetised and marked with a unique tattoo for individual parasite counting. A single Norwegian population of S. salar from the River Lærdalselva was used as a control. Parasite numbers were assessed every seven days until day 48 and then every 14 days. Gyrodactylus salaris regularly leads to high mortalities on infected juveniles S. salar. The number of G. salaris on British S. salar rose exponentially until the experiment was terminated at 33 days due to fish welfare concerns. The numbers of parasites on S. trutta and T. thymallus increased sharply, reaching a peak of infection on days 12 and 19 post-infection respectively, before declining to a constant low level of infection until the termination of the experiment at 110 days. The ability of S. trutta and T. thymallus to carry an infection for long periods increases the window of exposure for these two hosts and the potential transfer of G. salaris to other susceptible hosts. This study demonstrates that G. salaris can persist on S. trutta for longer periods than previously thought, and that the role that S. trutta could play in disseminating G. salaris needs to be considered carefully and factored into management plans and epidemics across Europe.
Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).
Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A
2010-04-01
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.
O'Brien, Chris; van Riper, Charles
2009-01-01
Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human activities alter these associations, scientists usually make inferences by methods of statistical hypotheses testing. This type of hypothesis testing places additional importance on the analysis and interpretation of parasite-host interactions. We address these ideas in this report, focusing on the following questions: (1) How do two parasites with complex life cycles alter the behavior of a novel amphipod host, and how do host and non-host predators respond to infected amphipod prey? (2) Does human recreation affect spatial patterns of infection in an otherwise natural ecosystem? (3) How is hypothesis-testing applied in studies of wildlife disease? (4) What conclusions can we make about the relative usefulness of these methodologies? and (5) How can the analysis and interpretation of wildlife disease studies be improved? Each chapter of this report contains its own literature-cited section, with tables included in appendixes at the end of the full report.
Canine and feline parasitic zoonoses in China
2012-01-01
Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in China. This article comprehensively reviews the current status of major canine and feline parasitic zoonoses in mainland China, discusses the risks dogs and cats pose with regard to zoonotic transmission of canine and feline parasites, and proposes control strategies and measures. PMID:22839365
Fretes, Ricardo E.; Kemmerling, Ulrike
2012-01-01
Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi) crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms. PMID:22701129
USDA-ARS?s Scientific Manuscript database
In Toxoplasma gondii, an intracellular parasite of humans and other warm-blooded animals, the ability to associate with host mitochondria (HMA) is driven by a locally expanded gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. The importance of copy number in the e...
Malaria Theranostics using Hemozoin-Generated Vapor Nanobubbles
Hleb, Ekaterina Y. Lukianova-; Lapotko, Dmitri O.
2014-01-01
Malaria remains a widespread and deadly infectious human disease, with increasing diagnostic and therapeutic challenges due to the drug resistance and aggressiveness of malaria infection. Early detection and innovative approaches for parasite destruction are needed. The high optical absorbance and nano-size of hemozoin crystals have been exploited to detect and mechanically destroy the malaria parasite in a single theranostic procedure. Transient vapor nanobubbles are generated around hemozoin crystals in malaria parasites in infected erythrocytes in response to a single short laser pulse. Optical scattering signals of the nanobubble report the presence of the malaria parasite. The mechanical impact of the same nanobubble physically destroys the parasite in nanoseconds in a drug-free manner. Laser-induced nanobubble treatment of human blood in vitro results in destruction of up to 95% of parasites after a single procedure, and delivers an 8-fold better parasiticidal efficacy compared to standard chloroquine drug treatment. The mechanism of destruction is highly selective for malaria infected red cells and does not harm neighboring, uninfected erythrocytes. Thus, laser pulse-induced vapor nanobubble generation around hemozoin supports both rapid and highly specific detection and destruction of malaria parasites in one theranostic procedure. PMID:24883125
Malaria theranostics using hemozoin-generated vapor nanobubbles.
Lukianova-Hleb, Ekaterina Y; Lapotko, Dmitri O
2014-01-01
Malaria remains a widespread and deadly infectious human disease, with increasing diagnostic and therapeutic challenges due to the drug resistance and aggressiveness of malaria infection. Early detection and innovative approaches for parasite destruction are needed. The high optical absorbance and nano-size of hemozoin crystals have been exploited to detect and mechanically destroy the malaria parasite in a single theranostic procedure. Transient vapor nanobubbles are generated around hemozoin crystals in malaria parasites in infected erythrocytes in response to a single short laser pulse. Optical scattering signals of the nanobubble report the presence of the malaria parasite. The mechanical impact of the same nanobubble physically destroys the parasite in nanoseconds in a drug-free manner. Laser-induced nanobubble treatment of human blood in vitro results in destruction of up to 95% of parasites after a single procedure, and delivers an 8-fold better parasiticidal efficacy compared to standard chloroquine drug treatment. The mechanism of destruction is highly selective for malaria infected red cells and does not harm neighboring, uninfected erythrocytes. Thus, laser pulse-induced vapor nanobubble generation around hemozoin supports both rapid and highly specific detection and destruction of malaria parasites in one theranostic procedure.
Review of Parasitic Zoonoses in Egypt
Youssef, Ahmed I.; Uga, Shoji
2014-01-01
This review presents a comprehensive picture of the zoonotic parasitic diseases in Egypt, with particular reference to their relative prevalence among humans, animal reservoirs of infection, and sources of human infection. A review of the available literature indicates that many parasitic zoonoses are endemic in Egypt. Intestinal infections of parasitic zoonoses are widespread and are the leading cause of diarrhea, particularly among children and residents of rural areas. Some parasitic zoonoses are confined to specific geographic areas in Egypt, such as cutaneous leishmaniasis and zoonotic babesiosis in the Sinai. Other areas have a past history of a certain parasitic zoonoses, such as visceral leishmaniasis in the El-Agamy area in Alexandria. As a result of the implementation of control programs, a marked decrease in the prevalence of other zoonoses, such as schistosomiasis and fascioliasis has been observed. Animal reservoirs of parasitic zoonoses have been identified in Egypt, especially in rodents, stray dogs and cats, as well as vectors, typically mosquitoes and ticks, which constitute potential risks for disease transmission. Prevention and control programs against sources and reservoirs of zoonoses should be planned by public health and veterinary officers based on reliable information from systematic surveillance. PMID:24808742
When parasites become prey: ecological and epidemiological significance of eating parasites
Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.
2010-01-01
Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.
Malmquist, Nicholas A.; Moss, Thomas A.; Mecheri, Salah; Scherf, Artur; Fuchter, Matthew J.
2012-01-01
Epigenetic factors such as histone methylation control the developmental progression of malaria parasites during the complex life cycle in the human host. We investigated Plasmodium falciparum histone lysine methyltransferases as a potential target class for the development of novel antimalarials. We synthesized a compound library based upon a known specific inhibitor (BIX-01294) of the human G9a histone methyltransferase. Two compounds, BIX-01294 and its derivative TM2-115, inhibited P. falciparum 3D7 parasites in culture with IC50 values of ∼100 nM, values at least 22-fold more potent than their apparent IC50 toward two human cell lines and one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day. Importantly, treatment of P. falciparum parasites in culture with BIX-01294 or TM2-115 resulted in significant reductions in histone H3K4me3 levels in a concentration-dependent and exposure time-dependent manner. Together, these results suggest that BIX-01294 and TM2-115 inhibit malaria parasite histone methyltransferases, resulting in rapid and irreversible parasite death. Our data position histone lysine methyltransferases as a previously unrecognized target class, and BIX-01294 as a promising lead compound, in a presently unexploited avenue for antimalarial drug discovery targeting multiple life-cycle stages. PMID:23011794
Lustigman, Sara; Geldhof, Peter; Grant, Warwick N; Osei-Atweneboana, Mike Y; Sripa, Banchob; Basáñez, María-Gloria
2012-01-01
Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host-parasite interactions and immunopathology; and 4) (invertebrate) host-parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases.
Alcântara-Neves, Neuza Maria; de S G Britto, Gabriela; Veiga, Rafael Valente; Figueiredo, Camila A; Fiaccone, Rosimeire Leovigildo; da Conceição, Jackson S; Cruz, Álvaro Augusto; Rodrigues, Laura Cunha; Cooper, Philip John; Pontes-de-Carvalho, Lain C; Barreto, Maurício Lima
2014-11-19
Helminths are modulators of the host immune system, and infections with these parasites have been associated with protection against allergies and autoimmune diseases. The human host is often infected with multiple helminth parasites and most studies to date have investigated the effects of helminths in the context of infections with single parasite or types of parasites (e.g. geohelminths). In this study, we investigated how co-infections with three nematodes affect markers of allergic inflammation and asthma in children. We selected Ascaris lumbricoides and Trichuris trichiura, two parasites that inhabit the human intestine and Toxocara spp (Toxocara canis and/or T. cati), intestinal roundworms of dogs and cats that cause systemic larval infection in humans. These parasites were selected as the most prevalent helminth parasites in our study population. 36.4% of children were infected with one parasite; 12.7% with 2 and 5.2% with 3. Eosinophilia>4% and >10% was present in 74.3% and 25.5% of the children, respectively. Total IgE>200 IU/mL, sIgE≥0.70 kU/L and SPT positivity were present in 59.7%, 37.1% and 30% of the children, respectively. 22.7% had recent asthma (12.0% non-atopic and 10.7% atopic). Helminth infections were associated in a dose-dependent way to decrease in the prevalence of SPT and increase in eosinophilia, total IgE, and the production of the regulatory cytokine IL-10 by unstimulated peripheral blood leukocytes. No association with asthma was observed. Helminth co-infections in this population were associated with increased markers of the Th2 immune response, and with a host immune regulatory phenotype that may suppress allergic effector responses such as immediate hypersensitivity reactions in the skin.
Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund; Kapel, Christian Moliin Outzen
2015-02-01
Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura , using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology. The identification of T. trichiura eggs indicates that human fecal material is present and, hence, that the Ascaris sp. haplotype 07 was most likely a human variant in Viking-age Denmark. The location of the F. hepatica finding suggests that sheep or cattle are the most likely hosts. Further, we sequenced the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past.
An Impossible Journey? The Development of Plasmodium falciparum NF54 in Culex quinquefasciatus
Knöckel, Julia; Molina-Cruz, Alvaro; Fischer, Elizabeth; Muratova, Olga; Haile, Ashley; Barillas-Mury, Carolina; Miller, Louis H.
2013-01-01
Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species–among them culicines (Culex spp., Aedes spp.)–present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito’s immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito’s blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph. PMID:23658824
Gallet, Romain; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Tharreau, Didier; Fournier, Elisabeth
2014-01-01
Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated. PMID:24474958
Gallet, Romain; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Tharreau, Didier; Fournier, Elisabeth
2013-01-01
Frequent and devastating epidemics of parasites are one of the major issues encountered by modern agriculture. To manage the impact of pathogens, resistant plant varieties have been selected. However, resistances are overcome by parasites requiring the use of pesticides and causing new economical and food safety issues. A promising strategy to maintain the epidemic at a low level and hamper pathogen's adaptation to varietal resistance is the use of mixtures of varieties such that the mix will form a heterogeneous environment for the parasite. A way to find the good combination of varieties that will actually constitute a heterogeneous environment for pathogens is to look for genotype × genotype (G × G) interactions between pathogens and plant varieties. A pattern in which pathogens have a high fitness on one variety and a poor fitness on other varieties guarantees the efficiency of the mixture strategy. In the present article, we inoculated 18 different genotypes of the fungus Magnaporthe oryzae on three rice plant varieties showing different levels of partial resistance in order to find a variety combination compatible with the requirements of the variety mixture strategy, i.e., showing appropriate G × G interactions. We estimated the success of each plant-fungus interaction by measuring fungal fitness and three fungal life history traits: infection success, within-host growth, sporulation capacity. Our results show the existence of G × G interactions between the two varieties Ariete and CO39 on all measured traits and fungal fitness. We also observed that these varieties have different resistance mechanisms; Ariete is good at controlling infection success of the parasite but is not able to control its growth when inside the leaf, while CO39 shows the opposite pattern. We also found that Maratelli's resistance has been eroded. Finally, correlation analyses demonstrated that not all infectious traits are positively correlated.
Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...
2015-03-12
Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Aprajita; Lukk, Tiit; Kumar, Vidya
Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less
Nolan, Matthew J; Unger, Melisa; Yeap, Yuen-Ting; Rogers, Emma; Millet, Ilary; Harman, Kimberley; Fox, Mark; Kalema-Zikusoka, Gladys; Blake, Damer P
2017-07-18
Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in humans, other mammals, the environment, and water in this highly impoverished area.
Lafferty, Kevin D.; Hopkins, Skylar R.
2018-01-01
Having split early from Gondwana, Zealandia (now modern New Zealand) escaped discovery until the late 13th century, and therefore remains an important glimpse into a human-free world. Without humans or other land mammals, diverse and peculiar birds evolved in isolation, including several flightless moa species, the giant pouakai eagle (Harpagornis moorei), the kiwi (Apteryx mantelli), and the kakapo parrot (Strigops habroptila). This unique community has fascinated paleoecologists, who have spent almost two centuries devising new ways to glean information from ancient bird remains. In PNAS, Boast et al. (1) apply one recent technological advance, ancient DNA (aDNA) metabarcoding, to confirm previous discoveries and report new details about moa and kakapo diets, parasites, and niches. Their efforts confirm Zealandia was a lot different before humans arrived.
Emergence of Polycystic Neotropical Echinococcosis
Stich, August; Frosch, Matthias
2008-01-01
Echinococcosis is a parasitic zoonosis of increasing concern. In 1903, the first cases of human polycystic echinococcosis, a disease resembling alveolar echinococcosis, emerged in Argentina. One of the parasites responsible, Echinococcus oligarthrus, had been discovered in its adult strobilar stage before 1850. However, >100 years passed from the first description of the adult parasite to the recognition that this species is responsible for some cases of human neotropical polycystic echinococcosis and the elucidation of the parasite’s life cycle. A second South American species, E. vogeli, was described in 1972. Obtaining recognition of the 2 species and establishing their connection to human disease were complicated because the life cycle of tapeworms is complex and comprises different developmental stages in diverse host species. To date, at least 106 human cases have been reported from 12 South and Central American countries. PMID:18258123
Human innate lymphoid cells (ILCs) in filarial infections.
Bonne-Année, S; Nutman, T B
2018-02-01
Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
A synoptic overview of golden jackal parasites reveals high diversity of species.
Gherman, Călin Mircea; Mihalca, Andrei Daniel
2017-09-15
The golden jackal (Canis aureus) is a species under significant and fast geographic expansion. Various parasites are known from golden jackals across their geographic range, and certain groups can be spread during their expansion, increasing the risk of cross-infection with other carnivores or even humans. The current list of the golden jackal parasites includes 194 species and was compiled on the basis of an extensive literature search published from historical times until April 2017, and is shown herein in synoptic tables followed by critical comments of the various findings. This large variety of parasites is related to the extensive geographic range, territorial mobility and a very unselective diet. The vast majority of these parasites are shared with domestic dogs or cats. The zoonotic potential is the most important aspect of species reported in the golden jackal, some of them, such as Echinococcus spp., hookworms, Toxocara spp., or Trichinella spp., having a great public health impact. Our review brings overwhelming evidence on the importance of Canis aureus as a wild reservoir of human and animal parasites.
Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis.
Wawrzyniak, Ivan; Poirier, Philippe; Viscogliosi, Eric; Dionigia, Meloni; Texier, Catherine; Delbac, Frédéric; Alaoui, Hicham El
2013-10-01
Blastocystis sp. is among the few enteric parasites with a prevalence that often exceeds 5% in the general population of industrialized countries and can reach 30-60% in developing countries. This parasite is frequently found in people who are immunocompromised (patients with human immunodeficiency virus/acquired immunodeficiency syndrome or cancer) and a higher risk of Blastocystis sp. infection has been found in people with close animal contact. Such prevalence in the human population and the zoonotic potential naturally raise questions about the impact of these parasites on public health and has increased interest in this area. Recent in vitro and in vivo studies have shed new light on the pathogenic power of this parasite, suggesting that Blastocystis sp. infection is associated with a variety of gastrointestinal disorders, may play a significant role in irritable bowel syndrome, and may be linked with cutaneous lesions (urticaria). Despite recent significant advances in the knowledge of the extensive genetic diversity of this species, the identification of extracellular proteases as virulence factors and the publication of one isolate genome, many aspects of the biology of Blastocystis sp. remain poorly investigated. In this review, we investigate several biological aspects of Blastocystis sp. (diversity and epidemiology, diagnosis tools and pathophysiology). These data pave the way for the following challenges concerning Blastocystis sp. research: deciphering key biological mechanisms and pathways of this parasite and clarification of its clinical impact in humans.
Pentastomiasis and other parasitic zoonoses from reptiles and amphibians.
Pantchev, Nikola; Tappe, Dennis
2011-01-01
Reptiles are growing in popularity as pets.The colonization of reptiles and amphibians by parasites and the resulting disease conditions are the most common problems seen in captive animals.This review focuses on pentastomiasis and sparganosis, important parasitic zoonoses of reptiles and amphibians, respectively, and free living-amoebae. Humans are suitable accidental hosts for some pentastomid species (particularly Armillifer and Porocephalus). In geographical areas with special ethnics, such as in West and Central Africa, and East Asia, 8-45% of the human population can be affected. Usually the larvae are coincidentally found during abdominal surgeries. However, fatalities have been described. Extreme caution is necessary when handling infected reptiles. Ocular or cerebral sparganosis is not uncommonly found in humans in East Asia. This disease is caused by spargana, tapeworm larvae (plerocercoids) of Spirometra sp. The infection occurs when uncooked meat from reptiles or amphibians is applied to wounds or eyes and the parasites migrate directly to human tissue, or by consumption of contaminated food or water. As a consequence of the reptile's predatory behaviour, the full spectrum of endo- and ectoparasites from potential prey animals can be found as transiting parasites in the intestinal tract, e. g. Hymenolepis nana, Cryptosporidium (C.) muris, C parvum or Capillaria hepatica. Occasionally, free-living amoebae are also found in reptile faeces (Acanthamoeba, Naegleria, Hartmanella, Vahlkampfia or Echinamoeba sp.).
Survey of the parasite Toxoplasma gondii in human consumed ovine meat in Tunis City.
Boughattas, Sonia; Ayari, Khaled; Sa, Tongmin; Aoun, Karim; Bouratbine, Aida
2014-01-01
Toxoplasmosis has been recognized as parasitic zoonosis with the highest human incidence. The human infection by the parasite can lead to severe clinical manifestations in congenital toxoplasmosis and immunocompromised patients. Contamination occurs mainly by foodborne ways especially consumption of raw or undercooked meat. In contrast to other foodborne infections, toxoplasmosis is a chronic infection which would make its economic and social impact much higher than even previously anticipated. Ovine meat was advanced as a major risk factor, so we investigated its parasite survey, under natural conditions. Serological MAT technique and touchdown PCR approaches were used for prevalence determination of the parasite in slaughtered sheep intended to human consumption in Tunis City. The genotyping was carried by SNPs analysis of SAG3 marker. Anti-Toxoplasma antibodies were present in 38.2% of young sheep and in 73.6% of adult sheep. Molecular detection revealed the contamination of 50% of ewes' tissue. Sequencing and SNPs analysis enabled unambiguous typing of meat isolates and revealed the presence of mixed strains as those previously identified from clinical samples in the same area. Our findings conclude that slaughtered sheep are highly infected, suggesting them as a major risk factor of Toxoplasma gondii transmission by meat consumption. Special aware should target consequently this factor when recommendations have to be established by the health care commanders.
Barkway, Christopher P.; Pocock, Rebecca L.; Vrba, Vladimir; Blake, Damer P.
2015-01-01
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable. PMID:25741643
Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P
2015-02-20
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.
Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa
2018-03-19
Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.
Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis
Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.
2018-01-01
T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891
Valero, M Adela; Periago, M Victoria; Pérez-Crespo, Ignacio; Rodríguez, Esperanza; Perteguer, M Jesús; Gárate, Teresa; González-Barberá, Eva M; Mas-Coma, Santiago
2012-05-01
To improve the diagnosis of human fascioliasis caused by Fasciola hepatica and Fasciola gigantica, we evaluated the diagnostic accuracy of an enzyme-linked immunosorbent assay (ELISA), with Fasciola antigen from the adult liver fluke, for the detection of IgG against fascioliasis in human sera. The sera of 54 fascioliasis cases, originating from three endemic areas, were used in this evaluation: (i) a hyperendemic F. hepatica area where humans usually shed a great number of parasite eggs in faeces (11 sera); (ii) an epidemic F. hepatica area where humans usually shed small amounts of parasite eggs (24 sera) and (iii) an overlap area of both Fasciola species and where human shedding of parasite eggs in faeces is usually scarce or non-existent (19 sera). One hundred and sixty-eight patients with other parasitic infections and 89 healthy controls were also analysed. The respective sensitivity and specificity of this assay were 95.3% (95% confidence intervals, 82.9-99.2%) and 95.7% (95% confidence intervals, 92.3-97.5%). No correlation between egg output and the OD450 values of the F. hepatica IgG ELISA test was observed. This test could be used both as an individual serodiagnostic test for human fascioliasis when backed up by a compatible clinical history together with a second diagnostic technique for other cross-reactive helminth infections, and in large-scale epidemiological studies of human fascioliasis worldwide. © 2012 Blackwell Publishing Ltd.
Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.
Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg
2017-01-01
Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores.
Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany
Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg
2017-01-01
Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health risks arising from wild and domesticated carnivores. PMID:28278269
COST EFFECTIVE SEAWATER DESALINATION WITH FICP ELEMENT ARRAYS - PHASE II
Lack of fresh water hinders economic development, devastates human health, leads to environmental degradation and foments political instability. We obtain our water from limited and unevenly distributed surface and underground freshwater sources. Over withdrawal from these ...
Methionine transport in the malaria parasite Plasmodium falciparum.
Cobbold, Simon A; Martin, Rowena E; Kirk, Kiaran
2011-01-01
The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na(+) and H(+). Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Curi, N H A; Paschoal, A M O; Massara, R L; Santos, H A; Guimarães, M P; Passamani, M; Chiarello, A G
2017-01-01
Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation), 13 parasite taxa (11 helminths and two protozoans) were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47%) followed by Toxocara (18%) and Trichuris (8%). Other less prevalent (<2%) parasites found were Capillaria, Ascaridia, Spirocerca, Taeniidae, Acantocephala, Ascaris, Dipylidium caninum, Toxascaris, and the protozoans Cystoisospora and Eimeria. Mixed infections were found in 36% of samples, mostly by Ancylostoma and Toxocara. Previous deworming had no association with infections, meaning that this preventive measure is being incorrectly performed by owners. Regarding risk factors, dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.
A world without parasites: exploring the hidden ecology of infection
Johnson, Pieter TJ
2016-01-01
Parasites have historically been considered a scourge, deserving of annihilation. Although parasite eradications rank among humanity's greatest achievements, new research is shedding light on the collateral effects of parasite loss. Here, we explore a “world without parasites”: a thought experiment for illuminating the ecological roles that parasites play in ecosystems. While there is robust evidence for the effects of parasites on host individuals (eg affecting host vital rates), this exercise highlights how little we know about the influence of parasites on communities and ecosystems (eg altering energy flow through food webs). We present hypotheses for novel, interesting, and general effects of parasites. These hypotheses are largely untested, and should be considered a springboard for future research. While many uncertainties exist, the available evidence suggests that a world without parasites would be very different from the world we know, with effects extending from host individuals to populations, communities, and even ecosystems. PMID:28077932
Parasites or Cohabitants: Cruel Omnipresent Usurpers or Creative “Éminences Grises”?
Vannier-Santos, Marcos A.; Lenzi, Henrique L.
2011-01-01
This paper presents many types of interplays between parasites and the host, showing the history of parasites, the effects of parasites on the outcome of wars, invasions, migrations, and on the development of numerous regions of the globe, and the impact of parasitic diseases on the society and on the course of human evolution. It also emphasizes the pressing need to change the look at the parasitism phenomenon, proposing that the term “cohabitant” is more accurate than parasite, because every living being, from bacteria to mammals, is a consortium of living beings in the pangenome. Even the term parasitology should be replaced by cohabitology because there is no parasite alone and host alone: both together compose a new adaptive system: the parasitized-host or the cohabitant-cohabited being. It also suggests switching the old paradigm based on attrition and destruction, to a new one founded on adaptation and living together. PMID:21785696
Dogs and intestinal parasites: a public health problem.
Seah, S. K.; Hucal, G.; Law, C.
1975-01-01
The stools of 239 stray dogs were examined for intestinal parasites. Of the helminths found, Toxocara canis (43.5%), tapeworms (25.5%), Ascaris species (21.3%) and hookworms (12.5%) were the commonest. Of the protozoans found, Isospora species and Entamoeba coli were the most prevalent. An unusual feature of the present study was the finding of Ascaris species. The importance of the high prevalence of intestinal parasites in dogs, the close contact of humans with dogs' excreta and the possible role of this environmental pollution in the spread of human disease are discussed. PMID:1125888
Gastrodiscoides hominis infection in a Nigerian-case report.
Dada-Adegbola, H O; Falade, C O; Oluwatoba, O A; Abiodun, O O
2004-01-01
Gastrodiscoides hominis is a large fluke of pig and human and constitutes an important parasite of human in Assam, Indian, the Philippines and Southeast Asia. This parasite has not been reported in Nigeria and possibly other parts of Africa. This is a case report of a seven year old Nigerian child who presented with features of malnutrition and anaemia and was found to have Gastrodiscoides hominis and Ascaris lumbricoides. Following clearance of the worms there was tremendous improvement of the health status of the child. The detailed epidemiology of this parasite still remains to be studied in this environment.
Pandemic Threat Posed by Avian Influenza A Viruses
Horimoto, Taisuke; Kawaoka, Yoshihiro
2001-01-01
Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006
The High-Level Radioactive Waste Policy Dilemma: Prospects for a Realistic Management Policy
ERIC Educational Resources Information Center
Hadjilambrinos, Constantine
2006-01-01
Since the dawn of the atomic age, the United States and every other nation that has chosen to use nuclear power have created hazardous substances that have the capacity to outlast human civilization, and possibly even the human species, and the potential to devastate the environment. The management of these substances that make up what has been…
Oliveira, Katia C.; Carvalho, Mariana L. P.; Venancio, Thiago M.; Miyasato, Patricia A.; Kawano, Toshie; DeMarco, Ricardo; Verjovski-Almeida, Sergio
2009-01-01
Background Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-α) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-α pathway and its downstream molecular effects is lacking. Methodology/Principal Findings In the present work we describe a possible TNF-α receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (±0.7) times higher than in adult worms. Downstream members of the known human TNF-α pathway were identified by an in silico analysis, revealing a possible TNF-α signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-α just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-α caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance We describe the possible molecular elements and targets involved in human TNF-α effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin. PMID:19956564
Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells.
Deponte, Marcel; Hoppe, Heinrich C; Lee, Marcus C S; Maier, Alexander G; Richard, Dave; Rug, Melanie; Spielmann, Tobias; Przyborski, Jude M
2012-12-01
Quite aside from its immense importance as a human pathogen, studies in recent years have brought to light the fact that the malaria parasite Plasmodium falciparum is an interesting eukaryotic model system to study protein trafficking. Studying parasite cell biology often reveals an overrepresentation of atypical cell biological features, possibly driven by the parasites' need to survive in an unusual biological niche. Malaria parasites possess uncommon cellular compartments to which protein traffic must be directed, including secretory organelles such as rhoptries and micronemes, a lysosome-like compartment referred to as the digestive vacuole and a complex (four membrane-bound) plastid, the apicoplast. In addition, the parasite must provide proteins to extracellular compartments and structures including the parasitophorous vacuole, the parasitophorous vacuolar membrane, the Maurer's clefts and both cytosol and plasma membrane of the host cell, the mature human red blood cell. Although some of these unusual destinations are possessed by other cell types, only Plasmodium parasites contain them all within one cell. Here we review what is known about protein and membrane transport in the P. falciparum-infected cell, highlighting novel features of these processes. A growing body of evidence suggests that this parasite is a real "box of tricks" with regards to protein traffic. Possibly, these tricks may be turned against the parasite by exploiting them as novel therapeutic targets. Copyright © 2012 Elsevier B.V. All rights reserved.
Okwor, Ifeoma; Uzonna, Jude
2008-01-01
Despite a plethora of publications on the murine model of cutaneous leishmaniasis and their contribution to our understanding of the factors that regulate the development of CD4+ T cell immunity in vivo, there is still no effective vaccine against the human disease. While recovery from natural or experimental infection with Leishmania major, the causative agent of human cutaneous leishmaniasis, results in persistence of parasites at the primary infection site and the development of long-lasting immunity to reinfection, vaccination with killed parasites or recombinant proteins induces only short-term protection. The reasons for the difference in protective immunity following recovery from live infection and vaccination with heat-killed parasites are not known. This may in part be related to persistence of live parasites following healing of primary cutaneous lesions, because complete clearance of parasites leads to rapid loss of infection-induced immunity. Recent reports indicate that in addition to persistent parasites, IL-10-producing natural regulatory T cells may also play critical roles in the maintenance and loss of infection-induced immunity. This review focuses on current understanding of the factors that regulate the development, maintenance and loss of anti-Leishmania memory responses and highlights the role of persistent parasites and regulatory T cells in this process. Understanding these factors is crucial for designing effective vaccines and vaccination strategies against cutaneous leishmaniasis.
Seroprevalence of Toxoplasma gondii in Western Romania.
Olariu, Tudor Rares; Petrescu, Cristina; Darabus, Gheorghe; Lighezan, Rodica; Mazilu, Octavian
2015-08-01
Toxoplasma gondii is an obligate intracellular parasite that most commonly causes asymptomatic infection in immunocompetent hosts, but can have devastating consequences in congenitally infected infants and immunocompromised patients. We evaluated the seroprevalence of T. gondii in the general population in Western Romania. Sera from 304 individuals were analysed with the Pastorex Toxo test, which allows the simultaneous detection of T. gondii IgG and/or IgM antibodies. T. gondii antibodies were demonstrated in 197 individuals (64.8%) and the prevalence increased with age: 35.0% in those < 20 years versus 76.8% in those ≥ 70 years (p < 0.001). There was a higher prevalence of T. gondii antibodies in rural areas (76.9%) than in urban regions (55.3%) (p < 0.001). Our results suggest a high prevalence of T. gondii antibodies in Western Romania.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-07-05
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-01-01
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV–host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus–host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding. PMID:28678154
Trafficking arms: oomycete effectors enter host plant cells.
Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L
2006-01-01
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.
Zoonotic Malaria – Global Overview and Research and Policy Needs
Ramasamy, Ranjan
2014-01-01
The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118
Quantifying the impact of human mobility on malaria
Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.
2013-01-01
Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082
Magez, S; Caljon, G
2011-08-01
African trypanosomiasis is a parasitic disease that affects a variety of mammals, including humans, on the sub-Saharan African continent. To understand the diverse parameters that govern the host-parasite-vector interactions, mouse models for the disease have proven to be a cornerstone. Despite the fact that most trypanosomes cannot be considered natural pathogens for rodents, experimental infections in mice have shed a tremendous amount of light on the general biology of these parasites and their interaction with and evasion of the mammalian immune system. Different aspects including inflammation, vaccine failure, antigenic variation, resistance/sensitivity to normal human serum and the influence of tsetse compounds on parasite transmission have all been addressed using mouse models. In more recent years, the introduction of various 'knock-out' mouse strains has allowed to analyse the implication of various cytokines, particularly TNF, IFNγ and IL-10, in the regulation of parasitaemia and induction of pathological conditions during infection. © 2011 Blackwell Publishing Ltd.
Sarcoptes-World Molecular Network (Sarcoptes-WMN): integrating research on scabies.
Alasaad, Samer; Walton, Shelley; Rossi, Luca; Bornstein, Set; Abu-Madi, Marawan; Soriguer, Ramón C; Fitzgerald, Scott; Zhu, Xing-Quan; Zimmermann, Werner; Ugbomoiko, Uade Samuel; Pei, Kurtis Jai-Chyi; Heukelbach, Jörg
2011-05-01
Parasites threaten human and animal health globally. It is estimated that more than 60% of people on planet Earth carry at least one parasite, many of them several different species. Unfortunately, parasite studies suffer from duplications and inconsistencies between different investigator groups. Hence, groups need to collaborate in an integrated manner in areas including parasite control, improved therapy strategies, diagnostic and surveillance tools, and public awareness. Parasite studies will be better served if there is coordinated management of field data and samples across multidisciplinary approach plans, among academic and non-academic organizations worldwide. In this paper we report the first 'Living organism-World Molecular Network', with the cooperation of 167 parasitologists from 88 countries on all continents. This integrative approach, the 'Sarcoptes-World Molecular Network', seeks to harmonize Sarcoptes epidemiology, diagnosis, treatment, and molecular studies from all over the world, with the aim of decreasing mite infestations in humans and animals. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Epidemiology and history of human parasitic diseases in Romania.
Neghina, Raul; Neghina, Adriana M; Marincu, Iosif; Iacobiciu, Ioan
2011-06-01
Intestinal parasitic diseases such as enterobiasis, giardiasis, and ascariasis are detected most frequently in Romania, but their importance is definitely surpassed by trichinellosis, cystic echinococcosis, and toxoplasmosis. Malaria was common until its eradication in 1963, and only imported cases are reported nowadays. The aim of this review was to bring together essential data on the epidemiology and history of human parasitoses in Romania. Information on 43 parasitic diseases was collected from numerous sources, most of them unavailable abroad or inaccessible to the international scientific community. Over time, Romanian people of all ages have paid a significant tribute to the pathogenic influences exerted by the parasites. Sanitary and socio-economical consequences of the parasites diseases have great negative impact on the quality of life of affected individuals and the overall well-being of the population. Implementation of efficient public health measures and informative campaigns for the masses as well as changing the inadequate habits that are deeply rooted in the population are mandatory for cutting successfully this Gordian knot.
Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens.
Amberg-Johnson, Katherine; Hari, Sanjay B; Ganesan, Suresh M; Lorenzi, Hernan A; Sauer, Robert T; Niles, Jacquin C; Yeh, Ellen
2017-08-18
The malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. Pf FtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.
Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I
2012-12-01
Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo
2018-02-01
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Prasetyo, R H
2016-03-01
The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia
Dressed for success: the surface coats of insect-borne protozoan parasites.
Roditi, Isabel; Liniger, Matthias
2002-03-01
Three major human diseases, malaria, sleeping sickness and leishmaniasis, are caused by protozoan parasites that are transmitted by blood-sucking insects. These insects are not mere 'flying syringes' that mechanically transfer parasites from one mammal to the next. Instead, they provide a specific environment--albeit not a particularly hospitable one--in which the parasites differentiate, proliferate and migrate to the correct tissues to ensure transmission to the next mammalian host. Recent studies on the role of parasite surface molecules in insect vectors have delivered some surprises and could provide insights on ways to interrupt transmission.
Major parasitic diseases of poverty in mainland China: perspectives for better control.
Wang, Jin-Lei; Li, Ting-Ting; Huang, Si-Yang; Cong, Wei; Zhu, Xing-Quan
2016-08-01
Significant progress has been made in the prevention, control, and elimination of human parasitic diseases in China in the past 60 years. However, parasitic diseases of poverty remain major causes of morbidity and mortality, and inflict enormous economic costs on societies.In this article, we review the prevalence rates, geographical distributions, epidemic characteristics, risk factors, and clinical manifestations of parasitic diseases of poverty listed in the first issue of the journal Infectious Diseases of Poverty on 25 October 2012. We also address the challenges facing control of parasitic diseases of poverty and provide suggestions for better control.
Tsuji, Masayoshi; Wei, Qiang; Zamoto, Aya; Morita, Chiharu; Arai, Satoru; Shiota, Tsunezo; Fujimagari, Masato; Itagaki, Asao; Fujita, Hiromi; Ishihara, Chiaki
2001-01-01
We have carried out epizootiologic surveys at various sites in Japan to investigate wild animals that serve as reservoirs for the agents of human babesiosis in the country. Small mammals comprising six species, Apodemus speciosus, Apodemus argenteus, Clethrionomys rufocanus, Eothenomys smithii, Crocidura dsinezumi, and Sorex unguiculatus, were trapped at various places, including Hokkaido, Chiba, Shiga, Hyogo, Shimane, and Tokushima Prefectures. Animals harboring Babesia microti-like parasites were detected in all six prefectures. Inoculation of their blood samples into hamsters gave rise to a total of 20 parasite isolates; 19 were from A. speciosus, and the other 1 was from C. rufocanus. Sequencing of the parasite small-subunit rRNA gene (rDNA) sequence revealed that 2 of the 20 isolates were classified as Kobe type because their rDNAs were identical to that of the Kobe strain (the strain from the Japanese index case). The other 18 isolates were classified as a new type, designated the Hobetsu type, because they all shared an identical rDNA sequence which differed significantly from both that of Kobe-type isolates and that of northeastern United States B. microti (U.S. type). The parasites with Kobe-, Hobetsu- and U.S.-type rDNAs were phylogenetically closely related to each other but clearly different from each other antigenically. The isolates from rodents were demonstrated to be infective for human erythrocytes by inoculation into SCID mice whose erythrocytes had been replaced with human erythrocytes. The results suggest that a new type of B. microti-like parasite, namely, the Hobetsu type, is the major one which is prevalent among Japanese wild rodents, that A. speciosus serves as a major reservoir for both Kobe- and Hobetsu-type B. microti-like parasites, and that C. rufocanus may also be an additional reservoir on Hokkaido Island. PMID:11724838
The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.
Morin-Adeline, Victoria; Šlapeta, Jan
2016-03-01
The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.
The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes
Hunt, Vicky L.; Tsai, Isheng J.; Coghlan, Avril; Reid, Adam J.; Holroyd, Nancy; Foth, Bernardo J.; Tracey, Alan; Cotton, James A.; Stanley, Eleanor J.; Beasley, Helen; Bennett, Hayley M.; Brooks, Karen; Harsha, Bhavana; Kajitani, Rei; Kulkarni, Arpita; Harbecke, Dorothee; Nagayasu, Eiji; Nichol, Sarah; Ogura, Yoshitoshi; Quail, Michael A.; Randle, Nadine; Xia, Dong; Brattig, Norbert W.; Soblik, Hanns; Ribeiro, Diogo M.; Sanchez-Flores, Alejandro; Hayashi, Tetsuya; Itoh, Takehiko; Denver, Dee R.; Grant, Warwick; Stoltzfus, Jonathan D.; Lok, James B.; Murayama, Haruhiko; Wastling, Jonathan; Streit, Adrian; Kikuchi, Taisei; Viney, Mark; Berriman, Matthew
2016-01-01
Soil transmitted nematodes, including Strongyloides, cause one of the most prevalent Neglected Tropical Diseases. Here we compare the genomes of four Strongyloides spp., including the human pathogen S. stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp). A significant paralogous expansion of key gene families – astacin-like and SCP/TAPS coding gene families – is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle we compare the transcriptome of its parasitic and free-living stages and find that these same genes are upregulated in the parasitic stages, underscoring their role in nematode parasitism. PMID:26829753
Plant-based strategies for mosquito control
USDA-ARS?s Scientific Manuscript database
Mosquitoes transmit some of the most devastating emerging infectious diseases of humans, domestic animals, and wildlife. Although vector control by use of chemical insecticides has played an important role in prevention and management of these diseases, their sustained use remains questionable due t...
Machine learning for characterization of insect vector feeding
USDA-ARS?s Scientific Manuscript database
Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting phytopathogenic and zoonotic pathogens. The feeding processes required for successful disease transmission by sucking insects can be recorded by ...
Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi
Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.
2017-01-01
Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705
Schurer, Janna M; Hamblin, Brie; Davenport, Laura; Wagner, Brent; Jenkins, Emily J
2014-12-01
We report the results of fecal parasite surveillance in dogs surrendered to the Regina Humane Society, Saskatchewan, Canada, between May and November 2013. Overall, 23% of 231 dogs were infected with at least 1 intestinal parasite. Endoparasite infection was positively associated with rural origin (P = 0.002) and age (< 12 months; P < 0.001).
Weiss, Robin A
2009-01-01
Although most epidemic human infectious diseases are caused by recently introduced pathogens, cospeciation of parasite and host is commonplace for endemic infections. Occasional host infidelity, however, provides the endemic parasite with an opportunity to survive the potential extinction of its host. Such infidelity may account for the survival of certain types of human lice, and it is currently exemplified by viruses such as HIV.
Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal.
Alves, Margarida; Xiao, Lihua; Antunes, Francisco; Matos, Olga
2006-08-01
To investigate the transmission of cryptosporidiosis in Portugal, Cryptosporidium hominis and Cryptosporidium parvum from HIV-infected patients, cattle, and wild ruminants were characterized by sequence analysis of the 60-kDa glycoprotein (GP60) gene. Fourteen subtypes within nine subtype families were identified, and three of the subtype families (If, IIb, and IId) were restricted or largely limited to Portugal. Parasites from cattle from various regions in Portugal and wild ruminants in Lisbon showed limited genetic heterogeneity (only two subtype families). All wild ruminants had the same subtype, which was also the predominant subtype in cattle all over Portugal and was found in nine HIV-infected patients in Lisbon. Two other C. parvum subtypes were only restricted to limited locations. In contrast, human parasites displayed 13 subtypes in nine subtype families, with most of the infections caused by parasites in Ib, IIa, IIc, and IId families. Two of the C. parvum subtype families (IIc and IIb) had only been found in humans. The high overall parasite diversity and high percentage of C. hominis infections attributable to Ib and C. parvum infections to IId represent unique characteristics of Cryptosporidium transmission in humans in Portugal.
Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin
2014-02-01
Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.
Photosensitized inactivation of infectious blood-borne human parasites
NASA Astrophysics Data System (ADS)
Judy, Millard M.; Sogandares-Bernal, Franklin M.; Matthews, James Lester
1995-05-01
Blood-borne viruses and protozoan parasites that are infectious to humans pose risk world-wide of infection transmission through blood and blood product transfusion. Blood-borne infectious viruses include human immunodeficiency virus (HIV-I), which causes AIDS; hepatitis C virus, which can cause chronic hepatitis; and cytomegalovirus, which can be dangerous to immunocompromised patients, e.g., the newborn, transplant recipients, and AIDS patients. Infectious blood-borne protozoan parasites include Trypanosoma cruzi, which causes Chagas' disease, endemic throughout Central and South America; the Trypanosoma species causing African sleeping sickness endemic in Central Africa; and Plasmodium falciparum, which causes malignant and increasingly drug- resistant human malaria prevalent throughout the tropics. Some researchers have focused on using photosensitizers to inactivate HIV-I and other viruses in whole blood, packed red cells, and platelet concentrates without compromising blood product function. Our group previously has reported photosensitized in vitro inactivation of P. falciparum and the mouse malaria organism Plasmodium berghei in whole blood using hematoporphyrin derivative (HPD) and of T. cruzi using benzoporphyrin derivatives BPDMA and BPDDA, dihematoporphyrin ether (DHE), and hydroxyethylvinyldeuteroporphyrin (HEVD). These results suggest that continued investigation is warranted to evaluate the potential for photosensitized inactivation of blood-borne parasites in blood banking.
Awadallah, Maysa A. I.; Salem, Lobna M. A.
2015-01-01
Aim: This work aimed to study the role played by dogs in transmitting zoonotic enteric parasites to humans in Egypt and to analyze the risk factors associated with the occurrence of such infection in dogs. Serodiagnosis of anti-Toxocara immunoglobulin G (IgG) antibodies among human beings as well as analyzing risk factors predispose to Toxocara canis infection in human beings are another objectives of this study. Materials and Methods: From June to December 2013, a total of 130 fecal samples from 4 dog populations (Military, nomadic and domiciled dogs from rural and high standard districts) and 150 stool samples of 6 occupational groups were examined for the presence of enteric parasitic infection. Moreover, 150 serum samples were collected from humans from whom stool samples were collected and examined for the presence of anti-T. canis antibodies. Results: Enteric parasites were detected in 30% of fecal samples from 4 dog populations in Egypt. High infectivity had been reported in nomadic dogs (63.33%) (Crude odds ratios [COR]=67.36, 95% confidence interval [CI]=8.09-560.8, p<0.000), followed by domiciled dogs from rural areas (40%) (COR=26, 95% CI=3.14-215.54, p=0.003), domiciled dogs from high standard areas (23.33%) (COR=11.87, 95% CI=1.37-102.69, p=0.025) and military dogs (2.5%). Twelve species of enteric parasites were identified, Ancylostomatidae (6.15%), T. canis and Cryptosporidium spp. (5.38%, each), Heterophyes spp. (3.85%), Toxocara leonina and Blastocystis spp. (3.07%), Taenidae eggs (2.31%), Hymenolepis diminuta (1.54%) and Entamoeba canis, Cyclospora cayetanensis, and Paragonimus spp. (0.77%, each). Univariate logestic regression revealed significant association of age (COR=4.73, 95% CI=2.13-10.53, p<0.000), gender (COR=2.63, 95% CI=1.22-5.68, p<0.014), housing system (COR=5.10, 95% CI=2.04-12.75), p<0.000) with enteric parasitic infection in dogs. However, breeds (COR=6.91, 95% CI=0.88-54.52, p=0.067) and type of feeding (COR ranged from 3.5 to 7.62, p>0.05) did not seem to have a significant association among the examined dogs. Enteric parasitic infection was reported in 31/150 human stools (20.67%). Students were the most affected groups (37.14%), followed by nomadic people (24%), house wives (20%), house guarders and military workers (12%, each), and employees (10%). The identified parasites were Cryptosporidium spp. (9.33%), Ascaris lumbercoides (3.33%), Heterophyes spp. and Ancylostoma spp. (2.66%, each) and Paragonimus spp. and Hymenolepis nana (1.33%, each). Toxocara IgG antibodies were detected in 36/150 (24%) serum samples investigated. Toxocara IgG antibodies were more prevalent in males (26.66%) than females (20%). Seroprevalence was highest (17/35, 48.57%) in 7-15 years old (COR=6.93, 95% CI=1.75-27.43, p=0.006). Seroprevalence values for T. canis antibodies were higher in those; raising dogs (29.85%), eating raw vegetables (25.21%) and not washing hands before meals (25.45%). T. canis antibodies were detected in 25% of those contacted with soil compared to 30% of those did not. Students were mostly affected (34.29%), followed by nomadic people (32%), house guarders (28%), housewives (20%), military workers (13%), and employees (10%). Conclusion: Detection of enteric parasites in dogs and humans in Egypt substantiates the role posed by dogs in transmitting zoonotic parasites to humans and knock an alarm for common sources of infection for humans and dogs. Common sources may be infected fish or contaminated vegetables that are consumed by dogs or humans or even infected rodents that may contaminate their feed. This pilot study necessitate the need for similar studies and tracing such infection in fish, vegetables, rodent that may be responsible for infecting humans and dogs in order to understand the epidemiology of zoonotic parasitic infection transmitted from dogs to humans. PMID:27047182
... Z Index Laboratory Diagnostic Assistance Parasitic Disease and Malaria Strategic Priorities: 2015—2020 About our Division Get ... human immunodeficiency virus (HIV) infection. Pregnant women in malaria-endemic countries are at increased risk for adverse ...
Food Safety-Related Aspects of Parasites in Foods.
Watthanakulpanich, Dorn
2015-01-01
As natural foods derive from soil or water environments, they may contain the infective stages of parasites endemic to these environments. Infective stages may enter the human food supply via infected animal hosts so there is a need for increased awareness of the impact of parasites on the food supply. Safe handling of food and good kitchen hygiene can prevent or reduce the risk posed by contaminated foodstuffs. In addition, parasites cannot cause a health problem in any thoroughly cooked foods.
Interplay of parasite-driven immune responses and autoimmunity.
Zaccone, Paola; Burton, Oliver T; Cooke, Anne
2008-01-01
As more facts emerge regarding the ways in which parasite-derived molecules modulate the host immune response, it is possible to envisage how a lack of infection by agents that once infected humans commonly might contribute to the rise in autoimmune disease. Through effects on cells of both the innate and adaptive arms of the immune response, parasites can orchestrate a range of outcomes that are beneficial not only to parasites, in terms of facilitating their life cycles, but also to their host, in limiting pathology.
The Paleoparasitology in Brazil and Findings in Human Remains from South America: A Review
Novo, Shênia Patrícia Corrêa; Ferreira, Luiz Fernando
2016-01-01
The review article presents some of the history of how paleoparasitology started in Brazil, making highlight the great responsible Dr. Luiz Fernando Ferreira and Dr. Adauto Araújo, the trajectory of paleoparasitology in Brazil since 1978 and its performance in science to the present day. In sequence, it is made a presentation of parasitological findings on human remains found in archaeological sites in South America, highlighting Brazil, Argentina, Chile, and Peru, where major discoveries have occurred. Many of the parasites found in archaeological material and mentioned in this review went out of Africa with the peopling of Europe and from there they dispersed around the world, where climatic conditions allow the transmission. However, humans have acquired other parasites of animals, since humans invaded new habitats or creating new habits adopting new technologies, thus expanding its range of influence on the environment. Thus, this review article is finalized with information that explain the importance of these findings in the interaction between parasites, human host, and ambient. PMID:27853114
The Paleoparasitology in Brazil and Findings in Human Remains from South America: A Review.
Novo, Shênia Patrícia Corrêa; Ferreira, Luiz Fernando
2016-10-01
The review article presents some of the history of how paleoparasitology started in Brazil, making highlight the great responsible Dr. Luiz Fernando Ferreira and Dr. Adauto Araújo, the trajectory of paleoparasitology in Brazil since 1978 and its performance in science to the present day. In sequence, it is made a presentation of parasitological findings on human remains found in archaeological sites in South America, highlighting Brazil, Argentina, Chile, and Peru, where major discoveries have occurred. Many of the parasites found in archaeological material and mentioned in this review went out of Africa with the peopling of Europe and from there they dispersed around the world, where climatic conditions allow the transmission. However, humans have acquired other parasites of animals, since humans invaded new habitats or creating new habits adopting new technologies, thus expanding its range of influence on the environment. Thus, this review article is finalized with information that explain the importance of these findings in the interaction between parasites, human host, and ambient.
Joshi, Manju B.; Rogers, Matthew E.; Shakarian, Alison M.; Yamage, Mat; Al-Harthi, Saeed A.; Bates, Paul A.; Dwyer, Dennis M.
2010-01-01
SUMMARY Chitinases have been implicated to be of importance in the life cycle development and transmission of a variety of parasitic organisms. Using a molecular approach, we identified and characterized the structure of a single copy LmexCht1-chitinase gene from the primitive trypanosomatid pathogen of humans, Leishmania mexicana. The LmexCht1 encodes an ~50 kDa protein, with well-conserved substrate-binding and catalytic domains characteristic of members of the Chitinase-18 protein family. Further, we showed that LmexCht1 mRNA is constitutively expressed by both the insect vector (i.e. promastigote) and mammalian (i.e. amastigote) life cycle developmental forms of this protozoan parasite. Interestingly, however, amastigotes were found to secrete/release ~ >2-4 fold higher levels of chitinase activity during their growth in vitro than promastigotes. Moreover, a homologous episomal-expression system was devised and used to express an epitope–tagged LmexCht1 chimeric construct in these parasites. Expression of the LmexCht1 chimera was verified in these transfectants by RT-PCR, Western blots and indirect immunofluorescence analyses. Further, results of coupled-immunoprecipitation/ enzyme activity experiments demonstrated that the LmexCht1 chimeric protein was secreted/released by these transfected L. mexicana parasites and that it possessed functional chitinase enzyme activity. Such transfectants were also evaluated for their infectivity both in human macrophages in vitro and in two different strains of mice. Results of those experiments demonstrated that the LmexCht1 transfectants survived significantly better in human macrophages and also produced significantly larger lesions in mice than control parasites. Taken together, our results indicate that the LmexCht1-chimera afforded a definitive survival advantage to the parasite within these mammalian hosts. Thus, the LmexCht1 could potentially represent a new virulence determinant in the mammalian phase of this important human pathogen PMID:15561707
Steel, Ryan WJ; Kappe, Stefan HI; Sack, Brandon K
2016-01-01
Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts. PMID:27855488
Steel, Ryan Wj; Kappe, Stefan Hi; Sack, Brandon K
2016-12-01
Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.
Parasites, democratization, and the liberalization of values across contemporary countries.
Thornhill, Randy; Fincher, Corey L; Aran, Devaraj
2009-02-01
The countries of the world vary in their position along the autocracy-democracy continuum of values. Traditionally, scholars explain this variation as based on resource distribution and disparity among nations. We provide a different framework for understanding the autocracy-democracy dimension and related value dimensions, one that is complementary (not alternative) to the research tradition, but more encompassing, involving both evolutionary (ultimate) and proximate causation of the values. We hypothesize that the variation in values pertaining to autocracy-democracy arises fundamentally out of human (Homo sapiens) species-typical psychological adaptation that manifests contingently, producing values and associated behaviours that functioned adaptively in human evolutionary history to cope with local levels of infectious diseases. We test this parasite hypothesis of democratization using publicly available data measuring democratization, collectivism-individualism, gender egalitarianism, property rights, sexual restrictiveness, and parasite prevalence across many countries of the world. Parasite prevalence across countries is based on a validated index of the severity of 22 important human diseases. We show that, as the hypothesis predicts, collectivism (hence, conservatism), autocracy, women's subordination relative to men's status, and women's sexual restrictiveness are values that positively covary, and that correspond with high prevalence of infectious disease. Apparently, the psychology of xenophobia and ethnocentrism links these values to avoidance and management of parasites. Also as predicted, we show that the antipoles of each of the above values--individualism (hence, liberalism), democracy, and women's rights, freedom and increased participation in casual sex--are a positively covarying set of values in countries with relatively low parasite stress. Beyond the cross-national support for the parasite hypothesis of democratization, it is consistent with the geographic location at high latitudes (and hence reduced parasite stress) of the early democratic transitions in Britain, France and the U.S.A. It, too, is consistent with the marked increase in the liberalization of social values in the West in the 1950s and 1960s (in part, the sexual revolution), regions that, a generation or two earlier, experienced dramatically reduced infectious diseases as a result of antibiotics, vaccinations, food- and water-safety practices, and increased sanitation. Moreover, we hypothesize that the generation and diffusion of innovations (in thought, action and technology) within and among regions, which is associated positively with democratization, is causally related to parasite stress. Finally, we hypothesize that past selection in the context of morbidity and mortality resulting from parasitic disease crafted many of the aspects of social psychology unique to humans.
Intestinal parasites in First World War German soldiers from "Kilianstollen", Carspach, France.
Le Bailly, Matthieu; Landolt, Michaël; Mauchamp, Leslie; Dufour, Benjamin
2014-01-01
Paleoparasitological investigations revealed the presence of intestinal helminths in samples taken from the abdominal cavities of two German soldiers, recovered in the First World War site named "Kilianstollen" in Carspach, France. Eggs from roundworm, whipworm, tapeworm and capillariids were identified. The morphological and morphometrical comparison, followed by statistical analyses, showed that the Carspach capillariid eggs are similar to rodent parasites. Poor sanitary conditions in the trenches, the lack of knowledge of parasites, and the widespread presence of commensal animals, can explain the occurrence of such parasites in human intestines. This study is the second dealing with 20th century human samples. It confirms the presence of intestinal worms in First World War German soldiers. In this case study, the application of statistics to precise measurements facilitated the diagnosis of ancient helminth eggs and completed the microscopic approach.
Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection
Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.
2011-01-01
Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630
Targeting Lysine Deacetylases (KDACs) in Parasites
Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka
2015-01-01
Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. PMID:26402733
Human Parasitic Diseases in Bulgaria in Between 2013-2014.
Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora
2018-01-20
In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Cross sectional study. We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public health system the tools it needs to combat these diseases. Attention should be focused on the various imported vector-borne parasitic diseases (e.g. malaria and cutaneous leishmaniasis) for which the country is potentially endemic.
Human Parasitic Diseases in Bulgaria in Between 2013-2014
Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora
2018-01-01
Background: In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. Aims: To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Study Design: Cross sectional study. Methods: We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). Results: During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Conclusion: Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public health system the tools it needs to combat these diseases. Attention should be focused on the various imported vector-borne parasitic diseases (e.g. malaria and cutaneous leishmaniasis) for which the country is potentially endemic. PMID:28903890
Jaeger, Lauren Hubert; Iñiguez, Alena Mayo
2014-01-01
Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694
Recent advances in our knowledge of Australian anisakid nematodes
Shamsi, Shokoofeh
2014-01-01
Anisakidosis is an emerging infection associated with a wide range of clinical syndromes in humans caused by members of the family Anisakidae. Anisakid nematodes have a cosmopolitan distribution and infect a wide range of invertebrates and vertebrates during their life cycles. Since the first report of these parasites in humans during the early 60s, anisakid nematodes have attracted considerable attention as emerging zoonotic parasites. Along with rapid development of various molecular techniques during last several decades, this has caused a significant change in the taxonomy and systematics of these parasites. However, there are still huge gaps in our knowledge on various aspects of the biology and ecology of anisakid nematodes in Australia. Although the use of advanced morphological and molecular techniques to study anisakids had a late start in Australia, great biodiversity was found and unique species were discovered. Here an updated list of members within the family and the current state of knowledge on Australian anisakids will be provided. Given that the employment of advanced techniques to study these important emerging zoonotic parasites in Australia is recent, further research is needed to understand the ecology and biology of these socio economically important parasites. After a recent human case of anisakidosis in Australia, such understanding is crucial if control and preventive strategies are to be established in this country. PMID:25180162
Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico.
Rodríguez-Vivas, R I; Apanaskevich, D A; Ojeda-Chi, M M; Trinidad-Martínez, I; Reyes-Novelo, E; Esteve-Gassent, M D; Pérez de León, A A
2016-01-15
Domestic animals and wildlife play important roles as reservoirs of zoonotic pathogens that are transmitted to humans by ticks. Besides their role as vectors of several classes of microorganisms of veterinary and public health relevance, ticks also burden human and animal populations through their obligate blood-feeding habit. It is estimated that in Mexico there are around 100 tick species belonging to the Ixodidae and Argasidae families. Information is lacking on tick species that affect humans, domestic animals, and wildlife through their life cycle. This study was conducted to bridge that knowledge gap by inventorying tick species that infest humans, domestic animals and wildlife in the State of Yucatan, Mexico. Amblyomma ticks were observed as euryxenous vertebrate parasites because they were found parasitizing 17 animal species and human. Amblyomma mixtum was the most eryxenous species found in 11 different animal species and humans. Both A. mixtum and A. parvum were found parasitizing humans. Ixodes near affinis was the second most abundant species parasitizing six animal species (dogs, cats, horses, white-nosed coati, white-tail deer and black vulture) and was found widely across the State of Yucatan. Ixodid tick populations may increase in the State of Yucatan with time due to animal production intensification, an increasing wildlife population near rural communities because of natural habitat reduction and fragmentation. The diversity of ticks across host taxa documented here highlights the relevance of ecological information to understand tick-host dynamics. This knowledge is critical to inform public health and veterinary programs for the sustainable control of ticks and tick-borne diseases. Copyright © 2015. Published by Elsevier B.V.
High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA.
Lundblom, Klara; Macharia, Alex; Lebbad, Marianne; Mohammed, Adan; Färnert, Anna
2011-08-08
Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots.
Kim, Tong-Soo; Pak, Jhang Ho; Kim, Jong-Bo; Bahk, Young Yil
2016-01-01
Parasitic diseases remain an unarguable public health problem worldwide. Liver fluke Clonorchis sinensis is a high risk pathogenic parasitic helminth which is endemic predominantly in Asian countries, including Korea, China, Taiwan, Vietnam, and the far eastern parts of Russia, and is still actively transmitted. According to the earlier 8th National Survey on the Prevalence of Intestinal Parasitic Infections in 2012, C. sinensis was revealed as the parasite with highest prevalence of 1.86% in general population among all parasite species surveyed in Korea. This fluke is now classified under one of the definite Group 1 human biological agents (carcinogens) by International Agency of Research on Cancer (IARC) along with two other parasites, Opisthorchis viverrini and Schistosoma haematobium. C. sinensis infestation is mainly linked to liver and biliary disorders, especially cholangiocarcinoma (CCA). For the purposes of this mini-review, we will only focus on C. sinensis and review pathogenesis and carcinogenesis of clonorchiasis, disease condition by C. sinensis infestation, and association between C. sinensis infestation and CCA. In this presentation, we briefly consider the current scientific status for progression of CCA by heavy C. sinensis infestation from the food-borne trematode and development of CCA. PMID:27418285
2012-01-01
Control and eventual elimination of human parasitic diseases in the People's Republic of China (P.R. China) requires novel approaches, particularly in the areas of diagnostics, mathematical modelling, monitoring, evaluation, surveillance and public health response. A comprehensive effort, involving the collaboration of 188 scientists (>85% from P.R. China) from 48 different institutions and universities (80% from P.R. China), covers this collection of 29 articles published in Parasites & Vectors. The research mainly stems from a research project entitled “Surveillance and diagnostic tools for major parasitic diseases in P.R. China” (grant no. 2008ZX10004-011) and highlights the frontiers of research in parasitology. The majority of articles in this thematic series deals with the most important parasitic diseases in P.R. China, emphasizing Schistosoma japonicum, Plasmodium vivax and Clonorchis sinensis plus some parasites of emerging importance such as Angiostrongylus cantonensis. Significant achievements have been made through the collaborative research programme in the following three fields: (i) development of strategies for the national control programme; (ii) updating the surveillance data of parasitic infections both in human and animals; and (iii) improvement of existing, and development of novel, diagnostic tools to detect parasitic infections. The progress is considerable and warrants broad validation efforts. Combined with the development of improved tools for diagnosis and surveillance, integrated and multi-pronged control strategies should now pave the way for elimination of parasitic diseases in P.R. China. Experiences and lessons learned can stimulate control and elimination efforts of parasitic diseases in other parts of the world. PMID:23036110
Karshima, Solomon Ngutor
2018-02-01
Contamination of edible fruits and vegetables is now a global public health issue despite their health benefits as non-pharmacological prophylaxis against chronic diseases. Studies that will harness the extent of parasitic contaminations will ensure public health protection. Here, the prevalence and distribution of parasites of importance for human health on fruits and vegetables in Nigeria were determined through a systematic review and meta-analysis of published data. The random-effects model was used to determine pooled prevalence estimate (PPE). Heterogeneity was evaluated by the Cochran's Q-test. Parasites overall PPE of 32.4% (95% CI: 0.73, 0.91) was observed from 19 eligible studies reported across 13 Nigerian states. Sub-groups PPEs ranged between 3.5% (95% CI: 0.45, 1.86) and 58.5% (95% CI: 1.40, 4.09). A high degree of heterogeneity 97.53% (95% CI: 0.30, 0.46, P: 0.000) was observed within studies and sub-groups. Cryptosporidium species were the most prevalent, while Ancylostoma duodenale and Ascaris lumbricoides had the widest geographical distribution. Pineapple (Prev: 41.3%, 95% CI: 0.40, 0.75) and lettuce (Prev: 51.5%, 95% CI: 0.37, 0.68) recorded the highest level of parasitic contamination. Parasites of importance for human health are prevalent on edible fruits and vegetables in Nigeria. Prevalence estimates were highest in the South-eastern region and during the most recent decade. Adequate washing of fruits and vegetables, on-farm irrigation of vegetables using good sources of water and adequate hygiene by food handlers will help the general public to maximize the health benefits associated with the intake of fruits and vegetables while minimizing the risk of acquiring parasitic infections.
Human parasitic protozoan infection to infertility: a systematic review.
Shiadeh, Malihe Nourollahpour; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali
2016-02-01
Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic infections may be an important cause of infertility. Given the widespread prevalence of parasitic protozoa diseases worldwide, we suggest further studies to better understanding of relationship between such infections and infertility.
ERIC Educational Resources Information Center
Bednar, Barbara A.
1990-01-01
The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)
Machine learning for characterization of insect vector feeding
USDA-ARS?s Scientific Manuscript database
Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monito...
[SWOT Analysis of the National Survey on Current Status of Major Human Parasitic Diseases in China].
ZHU, Hui-hui; ZHOU, Chang-hai; CHEN, Ying-dan; ZANG, Wei; XIAO, Ning; ZHOU, Xiao-nong
2015-10-01
The National Survey on Current Status of Major Human Parasitic Diseases in China has been carried out since 2014 under the organization of the National Health and Family Planning Commission of the People's Republic of China. The National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (NIPD, China CDC) provided technical support and was responsible for quality control in this survey. This study used SWOT method to analyze the strengths, weaknesses, opportunities and threats that were encountered by he NIPD, China CDC during the completion of the survey. Accordingly, working strategies were proposed to facilitate the future field work.
Abou-Zied, Akram M.; Soliman, Rasha H.; Hefila, Shorouk M.; Imam, Samir A.
2014-01-01
Background and Objectives: Placenta and blood that remained in the umbilical cord is routinely available as a discarded tissue after deliveries and it is free of any legal, moral, ethical or religious objections, providing a high number of multipotent CD34+ progenitor and stem cells. Using ex vivo isolated CD34+ cells from human umbilical cord blood (hUCB) have emerged as promising candidates to treat various diseases, including exogenous pathogenic infections. We have expanded to build a rational approach to study the effect of CD34+ cells after damaged liver tissues by the devastating human parasitic flatworm Schistosoma mansoni. Methods and Results: Experimental studies were conducted in the Department of Zoology, Faculty of Science and Departments of Parasitology and Physiology, Faculty of Medicine, SCU, Egypt. We have studied the impact of ex vivo preparation of CD34+ cells from hUCB on S. mansoni-induced liver fibrosis de novo, and treated for shorter and longer periods in vivo. Ova count, ALT and albumin were measured at specific time interval and histopathological examination of liver was conducted to confirm the biochemical results. The data obtained were statistically analyzed by ANOVA between groups. It was found that the administration of CD34+ cells have modestly reduced liver damage; reduced the S. mansoni infection associated elevation in serum levels of ALT; significantly improved serum levels of albumin and reduced egg granuloma diameter in the livers. Conclusions: We demonstrated that CD34+ cells can markedly ameliorated liver fibrosis in vivo and may be beneficial for therapy to recover organ structure and/or function of S. mansoni-infected mice. PMID:25473447
Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali
NASA Astrophysics Data System (ADS)
Rian, Sigrid Katrine Eivindsdatter
The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.
Wei, Qiang; Tsuji, Masayoshi; Zamoto, Aya; Kohsaki, Masatoshi; Matsui, Toshimitsu; Shiota, Tsunezo; Telford, Sam R.; Ishihara, Chiaki
2001-01-01
To determine the source of infection for the Japanese index case of human babesiosis, we analyzed blood samples from an asymptomatic individual whose blood had been transfused into the patient. In addition, we surveyed rodents collected from near the donor's residence. Examination by microscopy and PCR failed to detect the parasite in the donor's blood obtained 8 months after the donation of the blood that was transfused. However, we were able to isolate Babesia parasites by inoculating the blood sample into SCID mice whose circulating red blood cells (RBCs) had been replaced with human RBCs. A Babesia parasite capable of propagating in human RBCs was also isolated from a field mouse (Apodemus speciosus) captured near the donor's residential area. Follow-up surveys over a 1-year period revealed that the donor continued to be asymptomatic but had consistently high immunoglobulin G (IgG) titers in serum and low levels of parasitemia which were microscopically undetectable yet which were repeatedly demonstrable by inoculation into animals. The index case patient's sera contained high titers of IgM and, subsequently, rising titers of IgG antibodies, both of which gradually diminished with the disappearance of the parasitemia. Analysis of the parasite's rRNA gene (rDNA) sequence and immunodominant antigens revealed the similarity between donor and patient isolates. The rodent isolate also had an rDNA sequence that was identical to that of the human isolates but that differed slightly from that of the human isolates by Western blot analysis. We conclude that the index case patient acquired infection by transfusion from a donor who became infected in Japan, that parasitemia in an asymptomatic carrier can persist for more than a year, and that A. speciosus serves as a reservoir of an agent of human babesiosis in Japan. PMID:11376054
Schurer, Janna M.; Hamblin, Brie; Davenport, Laura; Wagner, Brent; Jenkins, Emily J.
2014-01-01
We report the results of fecal parasite surveillance in dogs surrendered to the Regina Humane Society, Saskatchewan, Canada, between May and November 2013. Overall, 23% of 231 dogs were infected with at least 1 intestinal parasite. Endoparasite infection was positively associated with rural origin (P = 0.002) and age (< 12 months; P < 0.001). PMID:25477549
Trombiculiasis: not only a matter of animals!
Guarneri, Claudio; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Tchernev, Georgi
2017-03-01
Trombiculiasis represents a striking emerging infestation in humans. In fact, modified lifestyles and easy and quick traveling around the globe, together with the altered ecology and habits of the parasite Neotrombicula autumnalis, make this original epizoonosis an extraordinary example of synanthropic dermatosis. We present an additional clinical image of this unusual parasite transmission from animals to humans occurring in a trekker in Calabria, Italy.
Yavar, Rassi; Abedin, Saghafipour; Reza, Abai Mohammad; Ali, Oshaghi Mohammad; Sina, Rafizadeh; Mehdi, Mohebail; Reza, Yaaghobi-Ershadi Mohammad; Fatemeh, Mohtarami; Babak, Farzinnia
2011-02-01
To determine the sand flies species responsible for most transmission of Leishmania major (L. major) to human, as well as to determine the main reservoir hosts of the disease. Sand flies were collected using sticky papers and mounted in Puri's medium for species identification. Rodents were trapped by live Sherman traps. Both sand flies and rodents were subjected to molecular methods for detection of leishmanial parasite. Phlebotomus papatasi (P. papatasi) was the common species in outdoor and indoor resting places. Employing PCR technique only three specimens of 150 P. papatasi (2%) were found naturally infected by parasites with a band of 350 bp which is equal to the L. major parasite. Forty six rodents were captured by Sherman traps and identified. Microscopic investigation on blood smear of the animals for amastigote parasites revealed 1 (3.22%) infected Meriones libycus (M. libycus). Infection of this animal to L. major was confirmed by PCR against rDNA loci of the parasite. This is the first molecular report of parasite infection of both vector (P. papatasi) and reservoir (M. libycus) to L. major in the region. The results indicated that P. papatasi was the primary vector of the disease and circulating the parasite between human and reservoirs and M. libycus was the most important host reservoir for maintenance of the parasite source in the area. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Blood parasites in reptiles imported to Germany.
Halla, Ursula; Ursula, Halla; Korbel, Rüdiger; Rüdiger, Korbel; Mutschmann, Frank; Frank, Mutschmann; Rinder, Monika; Monika, Rinder
2014-12-01
Though international trade is increasing, the significance of imported reptiles as carriers of pathogens with relevance to animal and human health is largely unknown. Reptiles imported to Germany were therefore investigated for blood parasites using light microscopy, and the detected parasites were morphologically characterized. Four hundred ten reptiles belonging to 17 species originating from 11 Asian, South American and African countries were included. Parasites were detected in 117 (29%) of individual reptiles and in 12 species. Haemococcidea (Haemogregarina, Hepatozoon, Schellackia) were found in 84% of snakes (Python regius, Corallus caninus), 20% of lizards (Acanthocercus atricollis, Agama agama, Kinyongia fischeri, Gekko gecko) and 50% of turtles (Pelusios castaneus). Infections with Hematozoea (Plasmodium, Sauroplasma) were detected in 14% of lizards (Acanthocercus atricollis, Agama agama, Agama mwanzae, K. fischeri, Furcifer pardalis, Xenagama batillifera, Acanthosaura capra, Physignathus cocincinus), while those with Kinetoplastea (Trypanosoma) were found in 9% of snakes (Python regius, Corallus caninus) and 25 % of lizards (K. fischeri, Acanthosaura capra, G. gecko). Nematoda including filarial larvae parasitized in 10% of lizards (Agama agama, Agama mwanzae, K. fischeri, Fu. pardalis, Physignathus cocincinus). Light microscopy mostly allowed diagnosis of the parasites' genus, while species identification was not possible because of limited morphological characteristics available for parasitic developmental stages. The investigation revealed a high percentage of imported reptiles being carriers of parasites while possible vectors and pathogenicity are largely unknown so far. The spreading of haemoparasites thus represents an incalculable risk for pet reptiles, native herpetofauna and even human beings.
Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae)
USDA-ARS?s Scientific Manuscript database
Nematodes are roundworms in the phylum Nematoda. Although most are free-living, some nematodes are parasites of plants, humans, or livestock. Entomopathogenic nematodes in the families Steinernematidae & Heterorhabditidae only parasitize insects. These nematodes are used as environmentally friend...
A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people
Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C.
2017-01-01
Introduction Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Methods Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. Results The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Conclusion Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health approach to support water, sanitation, and hygiene development, provide education on safe food handling and preparation, and improve the health of domestic animals associated with these groups, particularly dogs. PMID:29190664
Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model.
Shaw-Saliba, Kathryn; Thomson-Luque, Richard; Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H M; Duraisingh, Manoj T; Adams, John H; Pasini, Erica M
2016-07-01
Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite development.
Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model
Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H. M.; Duraisingh, Manoj T.; Adams, John H.; Pasini, Erica M.
2016-01-01
Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite development. PMID:27463518
[Ocular dirofilariasis: a case report].
Janjetović, Zeljka; Arar, Zeljka Vuković; Paradzik, Maja Tomić; Sapina, Lidija; Bitunjac, Milan; Lojen, Gordana; Marinculić, Albert
2010-03-01
A case of ocular dirofilariasis in a female patient is presented. The zoonosis caused by parasites of the genus Dirofilaria is relatively rare in humans, with a higher incidence in south and central Europe, Asia and Africa. In Europe, dirofilariasis is mostly caused by the species Dirofilaria repens. In the past 50 years, the number of individuals involved has been on an increase, with about 780 cases reported in the literature to date. Dirofilaria is a parasite found in the dog, cat, racoon and bear. The parasite replicates in the animal's body and enters circulation in the form of microfilariae. These microfilariae reach the insect's digestive tract and are transmitted to another animal or human with subsequent mosquito bites. When transmitted to humans, the parasite is found in the skin and subcutaneous tissue, mucous membranes, and less frequently visceral organs. Concerning ocular involvement, infections of the eye and adnexa oculi and tumorous noninfectious growth of eyelid or orbit have been described to date. The symptoms of the disease vary and include local pain, proptosis, diplopia, palpebral and conjunctival edema, redness, feeling of foreign body, and impaired vision. The diagnosis is generally made by histologic identification of the parasite micro- and macroscopic characteristics, Dirofilaria DNA analysis by the method of polymerase chain reaction, and serology (ELISA) demonstrating the presence of Dirofilaria antibodies in serum. Treatment includes surgical excision of the parasite as an appropriate and efficient therapeutic procedure. A 76-old-female patient presented to outpatient ophthalmology clinic for occasional sensation of pain, rubbing and redness in her right eye. Initial therapy was introduced, resulting in short-lasting improvement. In two weeks, the patient was re-examined for recurrence of discomforts. Slit lamp examination performed temporally revealed a whitish motile, live parasite under the injected and chemotic bulbar conjunctiva. Upon surgical extirpation of the parasite, the diagnosis of dirofilariasis was verified by microbiologic identification.
Grab, Dennis J; Nikolskaia, Olga V; Inoue, Noboru; Thekisoe, Oriel M M; Morrison, Liam J; Gibson, Wendy; Dumler, J Stephen
2011-08-01
The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3) per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay. For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3) parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards. This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.
A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people.
Barnes, Amber N; Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C
2017-01-01
Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health approach to support water, sanitation, and hygiene development, provide education on safe food handling and preparation, and improve the health of domestic animals associated with these groups, particularly dogs.
Olivos-García, Alfonso; Saavedra, Emma; Nequiz, Mario; Santos, Fabiola; Luis-García, Erika Rubí; Gudiño, Marco; Pérez-Tamayo, Ruy
2016-05-01
Several species belonging to the genus Entamoeba can colonize the mouth or the human gut; however, only Entamoeba histolytica is pathogenic to the host, causing the disease amoebiasis. This illness is responsible for one hundred thousand human deaths per year worldwide, affecting mainly underdeveloped countries. Throughout its entire life cycle and invasion of human tissues, the parasite is constantly subjected to stress conditions. Under in vitro culture, this microaerophilic parasite can tolerate up to 5 % oxygen concentrations; however, during tissue invasion the parasite has to cope with the higher oxygen content found in well-perfused tissues (4-14 %) and with reactive oxygen and nitrogen species derived from both host and parasite. In this work, the role of the amoebic oxygen reduction pathway (ORP) and heat shock response (HSP) are analyzed in relation to E. histolytica pathogenicity. The data suggest that in contrast with non-pathogenic E. dispar, the higher level of ORP and HSPs displayed by E. histolytica enables its survival in tissues by diminishing and detoxifying intracellular oxidants and repairing damaged proteins to allow metabolic fluxes, replication and immune evasion.
Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.
2013-01-01
Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255
Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G
2016-11-01
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Messina, Valeria; Valtieri, Mauro; Rubio, Mercedes; Falchi, Mario; Mancini, Francesca; Mayor, Alfredo; Alano, Pietro; Silvestrini, Francesco
2018-01-01
The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages. PMID:29546035
Davelois, Kelly; Escalante, Hermes; Jara, César
2016-01-01
. To determine the diagnostic yield using western blotting to simultaneously detect antibodies in patients with human cysticercosis, hydatidosis, and human fascioliasis. Materials and methods . Cross-sectional study of diagnostic yield assessment. Excretory/secretory antigens were obtained from Taenia solium larvae, Echinococcus granulosus cysts, and the adult flukes of Fasciola hepática, which were then separated using the polyacrylamide gel electrophoresis technique, transferred, and attached to a nitrocellulose membrane to be probed with sera from the patient infected with the three parasites. The sensitivity of the technique was assessed using 300 individual serum samples, 60 pools of two parasites, and 20 pools of three parasites with 75 sera from patients with other parasites, 10 from patients with other diseases, and 15 from patients without parasites. Results . The technique revealed 13 glycoproteins (GP): GP 35, 31, 24, 23, 18, 17, 14, and 13 kDa for cysticercosis; GP 8, 16, and 21 kDa for hydatidosis; and GP 17 and 23 kDa for fascioliasis. The test detected the presence of antibodies with a sensitivity of 96% (95% confidence interval [CI] = 94.62-98.54%) in the detection of one or the thirteen bands, a specificity of 100% (95% CI = 99.50-100.00%); individually, there was a sensitivity for cysticercosis of 97% (95% CI = 93.16-100.00%), for hydatidosis of 94% (95% CI = 88.85-99.15%) and for fascioliasis of 96% (95% CI = 91.66-100.00%). Conclusions . Western blotting is effective in the simultaneous detection of antibodies in patients with human cysticercosis, hydatidosis, and fascioliasis, and it can be used as a diagnostic test to either rule out or confirm the presence of antibodies in endemic areas.
Divis, Paul C. S.; Singh, Balbir; Anderios, Fread; Hisam, Shamilah; Matusop, Asmad; Kocken, Clemens H.; Assefa, Samuel A.; Duffy, Craig W.; Conway, David J.
2015-01-01
Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. PMID:26020959
Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton
2013-01-01
The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153
Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José; Dolz, Gaby
2017-01-01
One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs.
Pafčo, Barbora; Tehlárová, Zuzana; Jirků Pomajbíková, Kateřina; Todd, Angelique; Hasegawa, Hideo; Petrželková, Klára J; Modrý, David
2018-02-01
Infectious diseases including those caused by parasites can be a major threat to the conservation of endangered species. There is thus a great need for studies describing parasite infections of these species in the wild. Here we present data on parasite diversity in an agile mangabey (Cercocebus agilis) group in Bai Hokou, Dzanga-Sangha Protected Areas (DSPA), Central African Republic. We coproscopically analyzed 140 mangabey fecal samples by concentration techniques (flotation and sedimentation). Agile mangabeys hosted a broad diversity of protistan parasites/commensals, namely amoebas (Entamoeba spp., Iodamoeba buetschlli), a Buxtonella-like ciliate and several parasitic helminths: strongylid and spirurid nematodes, Primasubulura sp., Enterobius sp., and Trichuris sp. Importantly, some of the detected parasite taxa might be of potential zoonotic importance, such as Entamoeba spp. and the helminths Enterobius sp., Trichuris sp., and strongylid nematodes. Detailed morphological examination of ciliate cysts found in mangabeys and comparison with cysts of Balantioides coli from domestic pigs showed no distinguishing structures, although significant differences in cyst size were recorded. Scanning or transmission electron microscopy combined with molecular taxonomy methods are needed to properly identify these ciliates. Further studies using molecular epidemiology are warranted to better understand cross-species transmission and the zoonotic potential of parasites in sympatric non-human primates and humans cohabiting DSPA. © 2018 Wiley Periodicals, Inc.
Identification and characterization of a Fc receptor activity on the Toxoplasma gondii tachyzoite.
Vercammen, M; el Bouhdidi, A; Ben Messaoud, A; de Meuter, F; Bazin, H; Dubremetz, J F; Carlier, Y
1998-01-01
The Immunoglobulin (Ig) binding capacity of Toxoplasma gondii tachyzoites was investigated using fluorescence flow-cytometry analysis. Polyclonal mouse, human and rat immunoglobulins without specific anti-Toxoplasma activity bound to parasites in a concentration-dependent manner, saturating them at circulating serum concentrations. The immunoglobulin class and subclass specificity of binding was investigated using irrelevant monoclonal antibodies. IgM, IgA and IgG reacted with the parasite membrane. The attachment of mouse IgM to the parasite surface was hampered by mouse IgG1, IgG2a, IgG2b and IgG3. The binding of mouse IgG was proportionally reduced with increasing concentrations of mouse monoclonal IgM. The binding of murine immunoglobulin was diminished when in presence of human IgG. Purified Fc- but not Fab portions of immunoglobulins, fixed to parasites. Using labelled calibrated beads, the Ig binding capacity of parasites was estimated to be 6900 +/- 500 sites per tachyzoite. The Kd of the T. gondii Fc Receptor (FcR) activity was determined at 1.4 +/- 0.1 microM (mean +/- SEM). Such FcR activity was reduced by phospholipase C, trypsin and pronase treatment of the parasites. These data show a low affinity FcR activity on T. gondii tachyzoites which recognizes Ig of different species and isotypes and is likely supported by a glycosyl-phosphatidylinositol (GPI)-anchored surface protein of the parasite.
Soil-transmitted helminthiases: implications of climate change and human behavior.
Weaver, Haylee J; Hawdon, John M; Hoberg, Eric P
2010-12-01
Soil-transmitted helminthiases (STHs) collectively cause the highest global burden of parasitic disease after malaria and are most prevalent in the poorest communities, especially in sub-Saharan Africa. Climate change is predicted to alter the physical environment through cumulative impacts of warming and extreme fluctuations in temperature and precipitation, with cascading effects on human health and wellbeing, food security and socioeconomic infrastructure. Understanding how the spectrum of climate change effects will influence STHs is therefore of critical importance to the control of the global burden of human parasitic disease. Realistic progress in the global control of STH in a changing climate requires a multidisciplinary approach that includes the sciences (e.g. thermal thresholds for parasite development and resilience) and social sciences (e.g. behavior and implementation of education and sanitation programs). Copyright © 2010 Elsevier Ltd. All rights reserved.
Parasites of native and exotic freshwater fishes in south-western Australia.
Lymbery, A J; Hassan, M; Morgan, D L; Beatty, S J; Doupé, R G
2010-05-01
In this study, 1429 fishes of 18 different species (12 native and six exotic) were sampled from 29 localities to compare the levels of parasitism between native and exotic fish species and to examine the relationship between environmental degradation and parasite diversity. Forty-four putative species of parasites were found and most of these appear to be native parasites, which have not previously been described. Two parasite species, Lernaea cyprinacea and Ligula intestinalis, are probably introduced. Both were found on or in a range of native fish species, where they may cause severe disease. Levels of parasitism and parasite diversity were significantly greater in native fishes than in exotic species, and this may contribute to an enhanced demographic performance and competitive ability in invading exotics. Levels of parasitism and parasite diversity in native fishes were negatively related to habitat disturbance, in particular to a suite of factors that indicate increased human use of the river and surrounding environment. This was due principally to the absence in more disturbed habitats of a number of species of endoparasites with complex life cycles, involving transmission between different host species.
Natural Products as a Source for Treating Neglected Parasitic Diseases
Ndjonka, Dieudonné; Rapado, Ludmila Nakamura; Silber, Ariel M.; Liebau, Eva; Wrenger, Carsten
2013-01-01
Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available. Here, the selection of antiparasitic drugs varies between different organisms. Some of the currently available drugs are chemically de novo synthesized, however, the majority of drugs are derived from natural sources such as plants which have subsequently been chemically modified to warrant higher potency against these human pathogens. In this review article we will provide an overview of the current status of plant derived pharmaceuticals and their chemical modifications to target parasite-specific peculiarities in order to interfere with their proliferation in the human host. PMID:23389040
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling
2016-08-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.
2016-01-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965
Macarisin, Dumitru; Bauchan, Gary; Fayer, Ronald
2010-01-01
Cryptosporidium parvum is a cosmopolitan microscopic protozoan parasite that causes severe diarrheal disease (cryptosporidiosis) in mammals, including humans and livestock. There is growing evidence of Cryptosporidium persistence in fresh produce that may result in food-borne infection, including sporadic cases as well as outbreaks. However, drinking and recreational waters are still considered the major sources of Cryptosporidium infection in humans, which has resulted in prioritization of studies of parasite etiology in aquatic environments, while the mechanisms of transmission and parasite persistence on edible plants remain poorly understood. Using laser scanning confocal microscopy together with fluorescein-labeled monoclonal antibodies, C. parvum oocysts were found to strongly adhere to spinach plants after contact with contaminated water, to infiltrate through the stomatal openings in spinach leaves, and to persist at the mesophyll level. These findings and the fact that this pathogenic parasite resists washing and disinfection raise concerns regarding food safety. PMID:19933348
Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.
Zang, X; Maizels, R M
2001-03-01
Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.
Mao, Wei; Daligaux, Pierre; Lazar, Noureddine; Ha-Duong, Tâp; Cavé, Christian; van Tilbeurgh, Herman; Loiseau, Philippe M; Pomel, Sébastien
2017-04-07
Leishmaniases are an ensemble of diseases caused by the protozoan parasite of the genus Leishmania. Current antileishmanial treatments are limited and present main issues of toxicity and drug resistance emergence. Therefore, the generation of new inhibitors specifically directed against a leishmanial target is an attractive strategy to expand the chemotherapeutic arsenal. GDP-Mannose Pyrophosphorylase (GDP-MP) is a prominent therapeutic target involved in host-parasite recognition which has been described to be essential for parasite survival. In this work, we produced and purified GDP-MPs from L. mexicana (LmGDP-MP), L. donovani (LdGDP-MP), and human (hGDP-MP), and compared their enzymatic properties. From a rationale design of 100 potential inhibitors, four compounds were identified having a promising and specific inhibitory effect on parasite GDP-MP and antileishmanial activities, one of them exhibits a competitive inhibition on LdGDP-MP and belongs to the 2-substituted quinoline series.
Neglected Parasitic Infections in the United States: Trichomoniasis
Secor, W. Evan; Meites, Elissa; Starr, Michelle C.; Workowski, Kimberly A.
2014-01-01
Trichomonas vaginalis is one of the most common human parasitic infections in the United States, as well as the most prevalent non-viral sexually transmitted infection. However, it has long received much less consideration than other parasitic and sexually transmitted diseases. Much of this inattention can be attributed to a poor understanding of the public health impact of trichomoniasis. Increasing recognition of the sequelae of infection, including increased risk of infection with human immunodeficiency virus and adverse outcomes of pregnancy, has led to increased interest in T. vaginalis. Recent innovations include development of diagnostic tests that could improve detection of the parasite. A number of important questions, such as the epidemiology among men and women, the true public health burden of symptomatic and asymptomatic T. vaginalis infections, and whether current treatments will be adequate to reduce the substantial health disparities and costs associated with trichomoniasis, need consideration to remedy neglect of this important disease. PMID:24808247
Discovery of trypanosomatid parasites in globally distributed Drosophila species.
Chandler, James Angus; James, Pamela M
2013-01-01
Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts.
Fox, J C; Jordan, H E; Kocan, K M; George, T J; Mullins, S T; Barnett, C E; Glenn, B L; Cowell, R L
1986-03-01
Current methods and commercial test systems for the diagnosis of parasitic infections in both animals and humans are reviewed. Lists of test kits and their manufacturers are provided along with ordering information: the only commercially available test kits are for the diagnosis of toxoplasmosis in humans or animals and dirofilariasis (heartworm) in dogs. A partial list of diagnostic laboratories and the parasite tests they perform is also provided. Complete lists of diagnostic tests that could be obtained in the private sector are not available but would be useful. Two microfluorometric solid-phase assay systems are reviewed, and adaptations to custom assays for several kinds of parasites are briefly described. User problems in performing tests and interpreting results are stressed with emphasis placed on diagnosis of dirofilariasis in dogs. False-positive serology in dogs without heartworms and negative antibody responses in micro-filariae-positive animals are discussed with respect to proper interpretation of results.
Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites
NASA Astrophysics Data System (ADS)
Dvorak, James A.; Crane, Mark St. J.
1981-11-01
Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.
NASA Astrophysics Data System (ADS)
Miller, Louis H.; Good, Michael F.; Milon, Genevieve
1994-06-01
Malaria is a disease caused by repeated cycles of growth of the parasite Plasmodium in the erythrocyte. Various cellular and molecular strategies allow the parasite to evade the human immune response for many cycles of parasite multiplication. Under certain circumstances Plasmodium infection causes severe anemia or cerebral malaria; the expression of disease is influenced by both parasite and host factors, as exemplified by the exacerbation of disease during pregnancy. This article provides an overview of malaria pathogenesis, synthesizing the recent field, laboratory, and epidemiological data that will lead to the development of strategies to reduce mortality and morbidity.
ERIC Educational Resources Information Center
New York Governor's Advisory Committee for Black Affairs, Albany.
This document, examining critical social programs and policies impacting blacks in New York State, is the second volume of a study of the needs of the more than two million blacks in New York. The following human service issues that have a devastating impact on the black community and threaten its long-term viability are discussed: (1) Acquired…
Lima, Walter dos Santos; de Almeida, Francisco Lazaro Moreira; Coelho, Leila Inês Aguiar Raposo Câmara; Araújo, Guilherme Alfredo Novelino; Lima, Mariana Gomes; Maciel, Luiz Henrique Gonçalves; Pereira, Cíntia Aparecida de Jesus; Maciel, Thaís Costa da Silva; Guerra, Jorge Augusto de Oliveira; Santana, Rosa Amélia Gonçalves; Guerra, Maria das Graças Vale Barbosa
2018-01-01
Background Fascioliasis is an important parasitic disease. In the northern region of Brazil, a human parasite infection has been reported through a coprological survey. Eggs of Fasciola hepatica were found in fecal samples of 11 individuals. Knowledge of the infection in animals or the presence of snails is necessary to address the possibility of the parasite cycle occurrence in that region. The aim of this study was to describe the transmission of human fascioliasis in Canutama, Amazonas, in Western Amazonia, Brazil. Methods Serological (ELISA and Western Blot, WB) and parasitological analyses were carried out in humans. In addition, the presence of the intermediate snail host within the community was examined. Results A total of 434 human samples were included in the study, of which 36 (8.3%) were reactive by ELISA and 8 (1.8%) were reactive by WB. Fasciola hepatica eggs were found in one human sample. The occurrence of the intermediated host was recorded and 31/43 specimens were identified as Lymnaea columella. Conclusion. Canutama constitutes a focus of transmission of human fascioliasis. This study describes the first serological survey for human fascioliasis, as well as its simultaneous occurrence in human hosts and possible intermediates performed in northern Brazil. PMID:29593895
Rose, Hannah; Hoar, Bryanne; Kutz, Susan J.; Morgan, Eric R.
2014-01-01
Global change, including climate, policy, land use and other associated environmental changes, is likely to have a major impact on parasitic disease in wildlife, altering the spatio-temporal patterns of transmission, with wide-ranging implications for wildlife, domestic animals, humans and ecosystem health. Predicting the potential impact of climate change on parasites infecting wildlife will become increasingly important in the management of species of conservation concern and control of disease at the wildlife–livestock and wildlife–human interface, but is confounded by incomplete knowledge of host–parasite interactions, logistical difficulties, small sample sizes and limited opportunities to manipulate the system. By exploiting parallels between livestock and wildlife, existing theoretical frameworks and research on livestock and their gastrointestinal nematodes can be adapted to wildlife systems. Similarities in the gastrointestinal nematodes and the life-histories of wild and domestic ruminants, coupled with a detailed knowledge of the ecology and life-cycle of the parasites, render the ruminant-GIN host–parasite system particularly amenable to a cross-disciplinary approach. PMID:25197625
De León-Nava, Marco A; Romero-Núñez, Eunice; Luna-Nophal, Angélica; Bernáldez-Sarabia, Johanna; Sánchez-Campos, Liliana N; Licea-Navarro, Alexei F; Morales-Montor, Jorge; Muñiz-Hernández, Saé
2016-04-08
Toxins that are secreted by cone snails are small peptides that are used to treat several diseases. However, their effects on parasites with human and veterinary significance are unknown. Toxoplasma gondii is an opportunistic parasite that affects approximately 30% of the world's population and can be lethal in immunologically compromised individuals. The conventional treatment for this parasitic infection has remained the same since the 1950s, and its efficacy is limited to the acute phase of infection. These findings have necessitated the search for new drugs that specifically target T. gondii. We examined the effects of the synthetic toxin cal14.1a (s-cal14.1a) from C. californicus on the tachyzoite form of T. gondii. Our results indicate that, at micromolar concentrations, s-cal14.1a lowers viability and inhibits host cell invasion (by 50% and 61%, respectively) on exposure to extracellular parasites. Further, intracellular replication decreased significantly while viability of the host cell was unaffected. Our study is the first report on the antiparasitic activity of a synthetic toxin of C. californicus.
Hallsworth-Pepin, Kymberlie; Martin, John; Mitreva, Makedonka
2017-01-01
Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans. PMID:28644839
Jain, Vitul; Yogavel, Manickam; Kikuchi, Haruhisa; Oshima, Yoshiteru; Hariguchi, Norimitsu; Matsumoto, Makoto; Goel, Preeti; Touquet, Bastien; Jumani, Rajiv S; Tacchini-Cottier, Fabienne; Harlos, Karl; Huston, Christopher D; Hakimi, Mohamed-Ali; Sharma, Amit
2017-10-03
Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diverse Host-Seeking Behaviors of Skin-Penetrating Nematodes
Castelletto, Michelle L.; Gang, Spencer S.; Okubo, Ryo P.; Tselikova, Anastassia A.; Nolan, Thomas J.; Platzer, Edward G.; Lok, James B.; Hallem, Elissa A.
2014-01-01
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an important role for olfaction in host selection. Our results may enable the development of new strategies for combating harmful nematode infections. PMID:25121736
Kumpula, Esa Pekka; Kursula, Inari
2015-05-01
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Kumpula, Esa-Pekka; Kursula, Inari
2015-01-01
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective. PMID:25945702
NASA Astrophysics Data System (ADS)
Finney, B.
1986-10-01
Scenarios of the impact on human society of radio contact with an extraterrestrial civilization are presented. Some believe that contact with advanced extraterrestrials would quickly devastate the human spirit, while others believe that these super-intelligent beings would show the inhabitants of the earth how to live in peace. It is proposed that the possible existence of extraterrestrial civilizations and the development of means of studying and communicating with them need to be considered.
Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.
Mendes, Antonio M; Schlegelmilch, Timm; Cohuet, Anna; Awono-Ambene, Parfait; De Iorio, Maria; Fontenille, Didier; Morlais, Isabelle; Christophides, George K; Kafatos, Fotis C; Vlachou, Dina
2008-05-16
In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.
A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria.
Giddam, Ashwini Kumar; Reiman, Jennifer M; Zaman, Mehfuz; Skwarczynski, Mariusz; Toth, Istvan; Good, Michael F
2016-10-15
Although attenuated malaria parasitized red blood cells (pRBCs) are promising vaccine candidates, their application in humans may be restricted for ethical and regulatory reasons. Therefore, we developed an organic microparticle-based delivery platform as a whole parasite malaria-antigen carrier to mimic pRBCs. Killed blood stage parasites were encapsulated within liposomes that are targeted to antigen presenting cells (APCs). Mannosylated lipid core peptides (MLCPs) were used as targeting ligands for the liposome-encapsulated parasite antigens. MLCP-liposomes, but not unmannosylated liposomes, were taken-up efficiently by APCs which then significantly upregulated expression of MHC-ll and costimulatory molecules, CD80 and CD86. Two such vaccines using rodent model systems were constructed - one with Plasmodium chabaudi and the other with P. yoelii. MLCP-liposome vaccines were able to control the parasite burden and extended the survival of mice. Thus, we have demonstrated an alternative delivery system to attenuated pRBCs with similar vaccine efficacy and added clinical advantages. Such liposomes are promising candidates for a human malaria vaccine. Attenuated whole parasite-based vaccines, by incorporating all parasite antigens, are very promising candidates, but issues relating to production, storage and safety concerns are significantly slowing their development. We therefore developed a semi-synthetic whole parasite malaria vaccine that is easily manufactured and stored. Two such prototype vaccines (a P. chabaudi and a P. yoelii vaccine) have been constructed. They are non-infectious, highly immunogenic and give good protection profiles. This semi-synthetic delivery platform is an exciting strategy to accelerate the development of a licensed malaria vaccine. Moreover, this strategy can be potentially applied to a wide range of pathogens. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites
Srivastava, Anubhav; Creek, Darren J.; Evans, Krystal J.; De Souza, David; Schofield, Louis; Müller, Sylke; Barrett, Michael P.; McConville, Malcolm J.; Waters, Andrew P.
2015-01-01
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5′-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites. PMID:26042734
Yu, Zhongjia; Ruan, Yang; Zhou, Mengjie; Chen, Siyuan; Zhang, Yinxin; Wang, Liya; Zhu, Guan; Yu, Yonglan
2018-01-01
Companion animals including dogs are one of the important components in One Health. Parasites may cause not only diseases in pet animals but also many zoonotic diseases infecting humans. In this study, we performed a survey of intestinal parasites in fecal specimens (n = 485) collected from outpatient pet dogs with diarrhea in Beijing, China, for the entire year of 2015 by microscopic examination (all parasites) and SSU rRNA-based nested PCR detection (Giardia and Cryptosporidium). We observed a total of 124 (25.6%) parasite-positive specimens that contained one or more parasites, including Giardia duodenalis (12.8%), Cryptosporidium spp. (4.9%), Cystoisospora spp. (4.3%), trichomonads (4.3%), Toxocara canis (3.5%), Trichuris vulpis (0.6%), and Dipylidium caninum (0.2%). Among the 55 dog breeds, infection rates were significantly higher in border collies and bulldogs, but lower in poodles (p < 0.05). Risk factor analysis suggested that age was negatively correlated with the infection rate (p < 0.00001), while vaccination and deworming in the past 12 months could significantly reduce the parasite infections (p < 0.01). Among the 62 Giardia-positive specimens, 21 were successfully assigned into assemblages using glutamate dehydrogenase (gdh) and/or beta-giardin (bg) genes, including assemblage D (n = 15), C (n = 5), and F (n = 1). Among the 24 Cryptosporidium-positive specimens by SSU rRNA PCR, 20 PCR amplicons could be sequenced and identified as Cryptosporidium canis (n = 20). Collectively, this study indicates that parasites are a significant group of pathogens in companion dogs in Beijing, and companion dogs may potentially transmit certain zoonotic parasites to humans, particularly those with weak or weakened immunity.
Knockout of the Rodent Malaria Parasite Chitinase PbCHT1 Reduces Infectivity to Mosquitoes
Dessens, Johannes T.; Mendoza, Jacqui; Claudianos, Charles; Vinetz, Joseph M.; Khater, Emad; Hassard, Stuart; Ranawaka, Gaya R.; Sinden, Robert E.
2001-01-01
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds—an artificial situation where midgut invasion occurs before PM formation—suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions. PMID:11349074
[Survey of epidemic status of principal human parasites in Jiangxi Province in 2014].
Zeng, Xiao-jun; Li, Zhao-jun; Jiang, Wei-sheng; Xie, Shu-ying; Ge, Jun; Liu, Hong-yun; Zhang, Jing; Huang, Cheng-jian; Hang, Chun-qin
2015-12-01
To understand and analyze the epidemic status of principal human parasites in Jiangxi Province, so as to provide the evidence for formulating The 13rd Five-Year Project of Parasites Control. A survey was performed according to the scheme of The 3rd National Survey of Principal Human Parasites as well as the specific situation of Jiangxi Province. The survey of the soil-transmitted nematodes and intestinal protozoa were performed based on the ecological regions and stratified by economic and geographic situation. The survey of Clonorchis sinensis was performed along with the soil-transmitted nematodes in rural, and was performed by the sample method of random cluster in cities and towns. Totally 23 606 residents of 92 survey sites from 32 counties were surveyed, all of them were tested for the infection of soil-transmitted nematodes, in which 21,569 residents were tested for intestinal protozoa infection, and 1 486 children were tested for eggs of Enterobius vermicularis. Twenty kinds of intestinal parasites were found, with the total infection rate of 9.64%, and 4.296 millions of patients were reckoned in the whole Jiangxi Province. The infection rate of children of E. vermicularis was 13.73%. The infection rates of C. sinensis and intestinal protozoa were 0.58% and 1.42% respectively. The infection rate of Toxoplasma gondii was 7.50%. In Jiangxi Province, the infection rates of soil-transmitted nematodes are decreasing but the infection rate of C. sinensis is increasing in local areas, and the control work of parasites still should be strengthened.
Henríquez-Hernández, Luis Alberto; Boada, Luis D; Pérez-Arellano, José Luis; Carranza, Cristina; Ruiz-Suárez, Norberto; Jaén Sánchez, Nieves; Valerón, Pilar F; Zumbado, Manuel; Camacho, María; Luzardo, Octavio P
2016-10-01
Polychlorinated biphenyls (PCBs) are toxic and persistent chemicals produced between 1930s and 1980s, which accumulate in humans and wildlife. Although a decreasing trend of PCB levels in humans has been described in developed countries, mainly as a consequence of strict regulations and remediation plans, an inverse trend has been recently reported in people from developing countries. We had the opportunity of sampling a series of African immigrants recently arrived to the Spanish archipelago of the Canary Islands, in which high levels of PCBs have been described, and we studied the relationships between their level of contamination and health status. A total of 570 subjects who underwent a complete medical examination and a face-to-face interview were recruited for this study. Hematological and biochemical parameters (blood and urine) were determined in all participants. Serology for the diagnostic of infectious diseases was also performed, and direct identification of parasites was performed in feces, urine or blood samples when appropriate. It is remarkable that up to 26.0% of the population had intestinal parasites, and we found an inverse relationship between PCB levels and parasitism and parasitic diseases: median values of PCBs were lower in parasitized subjects than in subjects without parasites in stool (237.6ng/g fat vs. 154.4ng/g fat for marker PCBs, p=0.015) and median values of dioxin-like PCBs were lower in subjects carrying pathogen parasites than among subjects showing non-pathogen parasites in stool (0.0 ng/g fat vs. 13.1ng/g fat, respectively; p=0.001). Although this inverse association had been described in some vertebrates this is the first study reporting such an association in humans. Furthermore, it has been also recently described that PCBs may disrupt iron metabolism, and we found a direct relationship between serum iron and total PCBs burden (r=0.231, p=0.025), suggesting that PCBs, although at subclinical level, could play a role on iron homeostasis. Although the role of PCBs in parasitism and in the iron metabolism needs future research, our findings may help to understand the adverse health outcomes associated to environmental exposure to PCBs and they might be used in exposed populations as indicators of subtle effects due to environmental insult. Copyright © 2015 Elsevier Inc. All rights reserved.
Ghai, Ria R.; Simons, Noah D.; Chapman, Colin A.; Omeja, Patrick A.; Davies, T. Jonathan; Ting, Nelson; Goldberg, Tony L.
2014-01-01
Background Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. Methods and Findings We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Conclusions and Significance Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health. PMID:25340752
Ghai, Ria R; Simons, Noah D; Chapman, Colin A; Omeja, Patrick A; Davies, T Jonathan; Ting, Nelson; Goldberg, Tony L
2014-10-01
Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.
Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.
Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain
2012-04-01
Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna
2013-02-01
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Copyright © 2012 Wiley Periodicals, Inc.
Infection Assay of Cyst Nematodes on Arabidopsis Roots.
Bohlmann, Holger; Wieczorek, Krzysztof
2015-09-20
Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.
Recent Asian origin of chytrid fungi causing global amphibian declines.
O'Hanlon, Simon J; Rieux, Adrien; Farrer, Rhys A; Rosa, Gonçalo M; Waldman, Bruce; Bataille, Arnaud; Kosch, Tiffany A; Murray, Kris A; Brankovics, Balázs; Fumagalli, Matteo; Martin, Michael D; Wales, Nathan; Alvarado-Rybak, Mario; Bates, Kieran A; Berger, Lee; Böll, Susanne; Brookes, Lola; Clare, Frances; Courtois, Elodie A; Cunningham, Andrew A; Doherty-Bone, Thomas M; Ghosh, Pria; Gower, David J; Hintz, William E; Höglund, Jacob; Jenkinson, Thomas S; Lin, Chun-Fu; Laurila, Anssi; Loyau, Adeline; Martel, An; Meurling, Sara; Miaud, Claude; Minting, Pete; Pasmans, Frank; Schmeller, Dirk S; Schmidt, Benedikt R; Shelton, Jennifer M G; Skerratt, Lee F; Smith, Freya; Soto-Azat, Claudio; Spagnoletti, Matteo; Tessa, Giulia; Toledo, Luís Felipe; Valenzuela-Sánchez, Andrés; Verster, Ruhan; Vörös, Judit; Webb, Rebecca J; Wierzbicki, Claudia; Wombwell, Emma; Zamudio, Kelly R; Aanensen, David M; James, Timothy Y; Gilbert, M Thomas P; Weldon, Ché; Bosch, Jaime; Balloux, François; Garner, Trenton W J; Fisher, Matthew C
2018-05-11
Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis , a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, Bd ASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh
2015-01-01
Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.
Sexual reproduction and genetic exchange in parasitic protists.
Weedall, Gareth D; Hall, Neil
2015-02-01
A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the 'higher' eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.
Time for Genome Editing: Next-Generation Attenuated Malaria Parasites.
Singer, Mirko; Frischknecht, Friedrich
2017-03-01
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.
ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE
USDA-ARS?s Scientific Manuscript database
Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...
Anderson, J F
1989-06-01
Borrelia burgdorferi is transmitted from wild animals to humans by the bite of Ixodes dammini. This tick is common in many areas of southern Connecticut where it parasitizes three different host animals during its two-year life cycle. Larval and nymphal ticks have parasitized 31 different species of mammals and 49 species of birds. White-tailed deer (Odocoileus virginianus) appear to be crucial hosts for adult ticks. All three feeding stages of the tick parasitize humans, though most infections are acquired from feeding nymphs in May through early July. Reservoir hosts for the spirochete include rodents, other mammals, and even birds. White-footed mice (Peromyscus leucopus) are particularly important reservoirs, and in parts of southern Connecticut where Lyme disease is prevalent in humans, borreliae are universally present during the summer in these mice. Prevalence of infected ticks has ranged from 10-35%. Isolates of B. burgdorferi from humans, rodents, and I. dammini are usually indistinguishable, but strains of B. burgdorferi with different major proteins have been identified.
High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA
2011-01-01
Background Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. Methods High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. Results High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. Conclusions High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots. PMID:21824391
Legesse, Mengistu; Erko, Berhanu
2004-05-01
A total of 59 faecal samples from ranging Papio anubis (baboons) and another 41 from Cercopithecus aethiops (vervet) from the Rift Valley areas of Ethiopia were microscopically examined to determine the prevalence and species of major gastro-intestinal parasites of zoonotic importance. Faecal smears were prepared from fresh faecal samples, stained using modified Ziehl-Neelsen method and microscopically examined. About 3 gm of the dropping was also preserved separately in clean and properly labelled containers containing 10% formalin. The specimens were microscopically examined after formalin-ether concentration for ova, larvae, cysts and oocyst of intestinal parasites. The results of microscopic examination of faecal samples of baboons demonstrated the presence of Trichuris sp. (27.1%), Strongyloides sp. (37.3%), Trichostrongylus sp. (8.5%), Oesophagostomum sp. (10.2%), Schistosoma mansoni (20.3%), Entamoeba coli (83.1%), Entamoeba histolytica/dispar (16.9%), Blastocystis hominis (3.3%), Cyclospora sp. (13.3%) and Cryptosporidium sp. (11.9%). Likewise, the results of microscopic examination of faecal samples of vervets demonstrated the presence of Trichuris sp. (36.6%), Oesophagostomum sp. (4.9%), E. coli (61.0%), E. histolytica/dispar (24.4%), B. hominis (34.2%), Cyclospora sp. (22.0%) and Cryptosporidium sp. (29.3%). The presence of parasitic protozoa and helminths in baboons and vervets in the study areas is a high risk to human welfare because these non-human primates use the same water sources as humans and range freely in human habitats. An implication of such parasitic infection for the control programme is discussed.
Report: Unsupervised identification of malaria parasites using computer vision.
Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha
2017-01-01
Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.
Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites.
Osinaga, Eduardo
2007-01-01
Simple mucin-type O-glycan structures, such as Tn, TF, sialyl-Tn and Tk antigens, are among of the most specific human cancer-associated structures. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. In the last few years several simple mucin-type O-glycan antigens were identified in different species belonging to the main two helminth parasite phyla, and sialyl-Tn bearing glycoproteins were detected in Trypanosoma cruzi. These results are of interest to understand new aspects in parasite glycoimmunology and may help identify new biological characteristics of parasites as well of the host-parasite relationship. Considering that different groups reported a negative correlation between certain parasite infections and cancer development, we could hypothesize that simple mucin-type O-glycosylated antigens obtained from parasites could be good potential targets for cancer immunotherapy.
Margarita, Valentina; Rappelli, Paola; Dessì, Daniele; Pintus, Gianfranco; Hirt, Robert P.; Fiori, Pier L.
2016-01-01
The symbiosis between the parasitic protist Trichomonas vaginalis and the opportunistic bacterium Mycoplasma hominis is the only one currently described involving two obligate human mucosal symbionts with pathogenic capabilities that can cause independent diseases in the same anatomical site: the lower urogenital tract. Although several aspects of this intriguing microbial partnership have been investigated, many questions on the influence of this symbiosis on the parasite pathobiology still remain unanswered. Here, we examined with in vitro cultures how M. hominis could influence the pathobiology of T. vaginalis by investigating the influence of M. hominis on parasite replication rate, haemolytic activity and ATP production. By comparing isogenic mycoplasma-free T. vaginalis and parasites stably associated with M. hominis we could demonstrate that the latter show a higher replication rate, increased haemolytic activity and are able to produce larger amounts of ATP. In addition, we demonstrated in a T. vaginalis-macrophage co-culture system that M. hominis could modulate an aspect of the innate immuno-response to T. vaginalis infections by influencing the production of nitric oxide (NO) by human macrophages, with the parasite-bacteria symbiosis outcompeting the human cells for the key substrate arginine. These results support a model in which the symbiosis between T. vaginalis and M. hominis influences host-microbes interactions to the benefit of both microbial partners during infections and to the detriment of their host. PMID:27379081
Lifeboat Ethics: A Reply to Hardin
ERIC Educational Resources Information Center
Besecker, Janet; Elder, Phil
1975-01-01
This paper is a rebuttal to Garrett Hardin's thesis that long-term survival of human beings can be threatened by environmental devastation caused by brief humanitarian desires to save lives. Discussions include population dynamics, resource distribution, ecological stability, and ethics of developed nations and undeveloped nations relationships.…
Chemical analysis of plants that poison livestock: Successes, challenges, and opportunities
USDA-ARS?s Scientific Manuscript database
Poisonous plants have a devastating impact on the livestock industry, as well as human health. In order to fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, char...
Defining the Geographical Range of the Plasmodium knowlesi Reservoir
Moyes, Catherine L.; Henry, Andrew J.; Golding, Nick; Huang, Zhi; Singh, Balbir; Baird, J. Kevin; Newton, Paul N.; Huffman, Michael; Duda, Kirsten A.; Drakeley, Chris J.; Elyazar, Iqbal R. F.; Anstey, Nicholas M.; Chen, Qijun; Zommers, Zinta; Bhatt, Samir; Gething, Peter W.; Hay, Simon I.
2014-01-01
Background The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans. Methodology/Principal Findings After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region. Conclusions/Significance We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment. PMID:24676231
Look what the cat dragged in: do parasites contribute to human cultural diversity?
Lafferty, Kevin D.
2005-01-01
If human culture emerges from the modal personality of a population, can global variation in parasitism that affects personality lead to cultural diversity among nations? The answer could help explain why people seem to vary so much from one land to another. Thomas et al. (2005) review how parasites manipulate behaviour, including human behaviour. To quote them, “The rabies virus lives in the brain, affording the virus ample opportunity to directly affect host behaviour. Rabid animals do show changes in behaviour, including increased aggression and biting.” Rabies affects a wide range of mammals and the aggressive biting associated with furious rabies appears to increase transmission. The personality transformation of infected humans can be horrifying, transforming loved ones into thrashing, baying beasts. Not coincidentally, in Europe, past periods of rabies outbreaks correspond to increases in werewolf trials. Although rabies can have a dramatic effect, the present rarity of human rabies cases and the availability of a vaccine, means that the behavioural effects of rabies are primarily an illustrative curiosity.
Kim, Tong-Soo; Pak, Jhang Ho; Kim, Jong-Bo; Bahk, Young Yil
2016-11-01
Parasitic diseases remain an unarguable public health problem worldwide. Liver fluke Clonorchis sinensis is a high risk pathogenic parasitic helminth which is endemic predominantly in Asian countries, including Korea, China, Taiwan, Vietnam, and the far eastern parts of Russia, and is still actively transmitted. According to the earlier 8th National Survey on the Prevalence of Intestinal Parasitic Infections in 2012, C. sinensis was revealed as the parasite with highest prevalence of 1.86% in general population among all parasite species surveyed in Korea. This fluke is now classified under one of the definite Group 1 human biological agents (carcinogens) by International Agency of Research on Cancer (IARC) along with two other parasites, Opisthorchis viverrini and Schistosoma haematobium. C. sinensis infestation is mainly linked to liver and biliary disorders, especially cholangiocarcinoma (CCA). For the purposes of this mini-review, we will only focus on C. sinensis and review pathogenesis and carcinogenesis of clonorchiasis, disease condition by C. sinensis infestation, and association between C. sinensis infestation and CCA. In this presentation, we briefly consider the current scientific status for progression of CCA by heavy C. sinensis infestation from the food-borne trematode and development of CCA. [BMB Reports 2016; 49(11): 590-597].
Getachew, Sisay; Gebre-Michael, Teshome; Erko, Berhanu; Balkew, Meshesha; Medhin, Girmay
2007-09-01
A study was conducted to determine the role of non-biting cyclorrhaphan flies as carriers of intestinal parasites in slum areas of Addis Ababa from January 2004 to June 2004. A total of 9550 flies, comprising of at least seven species were collected from four selected sites and examined for human intestinal parasites using the formol-ether concentration method. The dominant fly species was Chrysomya rufifacies (34.9%) followed by Musca domestica (31%), Musca sorbens (20.5.%), Lucina cuprina (6.8%), Sarcophaga sp. (2.8%), Calliphora vicina (2.2%) and Wohlfahrtia sp. (1.8%). Six intestinal helminths (Ascaris lumbricoides, Trichuris trichiura, hookworms, Hymenolepis nana, Taenia spp. and Strongyloides stercoralis) and at least four protozoan parasites (Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia and Cryptosporidium sp.) were isolated from both the external and gut contents of the flies. A. lumbricoides and T. trichiura among the helminths and E. histolytica/dispar and E. coli among the protozoans were the dominant parasites detected both on the external and in the gut contents of the flies, but occurring more in the latter. Among the flies, C. rufifacies and M. sorbens were the highest carriers of the helminth and protozoan parasites, respectively. The public health significance of these findings is highlighted.
Leung, Jacqueline M.; He, Yudou; Zhang, Fangliang; Hwang, Yu-Chen; Nagayasu, Eiji; Liu, Jun; Murray, John M.; Hu, Ke
2017-01-01
The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis. PMID:28331073
Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M
2016-03-01
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.
Rushton, Jonathan; Bruce, Mieghan
2017-01-01
Human population increases, with greater food demands, have resulted in a rapid evolution of livestock food systems, leading to changes in land and water use. The scale of global livestock systems mean that changes in animal health status, particularly in parasite levels, have impacts that go beyond farm and sector levels. To quantify the true impact of parasites in livestock, frameworks that look at both resources and services valued in markets and those that have no true market value are required. Mitigating the effects of parasitic disease in livestock will not only increase productivity, but also improve animal welfare and human health, whilst reducing the environmental burden of livestock production systems. To measure these potential benefits, a One Health approach is needed. This paper discusses the types of methods and the data collection tools needed for a more holistic perspective and provides a framework with its application to coccidiosis in poultry. To build a body of knowledge that allows the ranking of parasite diseases in a wider animal health setting, such One Health frameworks need to be applied more frequently and with rigour. The outcome will improve the allocation of resources to critical constraints on parasite management.
Diagnosis of Plasmodium falciparum infection in man: detection of parasite antigens by ELISA*
Mackey, L. J.; McGregor, I. A.; Paounova, N.; Lambert, P. H.
1982-01-01
An ELISA method has been developed for the diagnosis of Plasmodium falciparum infection in man. Parasites from in vitro cultures of P. falciparum were used as source of antigen for the solid phase and the source of specific antibody was immune Gambian sera; binding of antibody in antigen-coated wells was registered by means of alkaline phosphatase-conjugated anti-human IgG. Parasites were detected on the basis of inhibition of antibody-binding. The test was applied to the detection of parasites in human red blood cells (RBC) from in vitro cultures of P. falciparum and in RBC from infected Gambians; RBC from 100 Geneva blood donors served as normal, uninfected controls. In titration experiments, the degree of antibody-binding inhibition correlated with the number of parasites in the test RBC. Parasites were detected at a level of 8 parasites/106 RBC. Samples of RBC were tested from 126 Gambians with microscopically proven infection; significant antibody-binding inhibition was found in 86% of these cases, where parasitaemia ranged from 10 to 125 000/μl of blood. The presence of high-titre antibody in the test preparations was found to reduce the sensitivity of parasite detection in infected RBC from in vitro cultures mixed with equal volumes of different antibody-containing sera. The sensitivity was restored in most cases by recovering the RBC by centrifugation before testing. In a preliminary experiment, there was no significant difference in antibody-binding inhibition using fresh infected RBC and RBC dried on filter-paper and recovered by elution, although there was greater variation in the latter samples. PMID:7044589
Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio; Kano, Shigeyuki
2018-01-01
A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.
Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran.
Beiromvand, Molouk; Akhlaghi, Lame; Fattahi Massom, Seyed Hossein; Meamar, Ahmad Reza; Motevalian, Abbas; Oormazdi, Hormozd; Razmjou, Elham
2013-04-01
Certain zoonotic parasites are enteropathogens in dogs that cause serious human disease such as cystic echinococcosis, human alveolar echinococcosis, visceral larva migrans, and ocular larva migrans. This study investigated the prevalence of intestinal parasites in dogs in the Chenaran County, Razavi Khorasan Province, Iran. Sampling was carried out randomly in 17 villages from November 2009 to January 2010. Seventy-seven fecal samples from 28 domestic and 49 stray dogs were examined using sieving/flotation and modified Ziehl-Neelsen staining. Intestinal parasites were found in 51 of the 77 (66%) dogs most common being Toxascaris leonina (29%, 22/77), Toxocara spp. (25%, 19/77), Eimeria spp. (19%, 15/77), Taenia/Echinococcus spp. (18%, 14/77), Sarcocystis spp. (17%, 13/77), and Dicrocoelium dendriticum (14%, 11/77). Lower infection rates of parasites were observed for Trichuris vulpis (6%, 5/77), Cryptosporidium spp. (5%, 4/77), and Physaloptera spp. (3%, 2/77). Prevalence of infection by Dipylidium caninum, Capillaria spp., Cystoisospora spp., and hookworms was similar (1%, 1/77). This study is the first report of the prevalence of intestinal parasites of domestic and stray dogs in Chenaran County, Northeast Iran. The higher prevalence of zoonotic intestinal parasites such as Toxascaris leonina, Toxocara spp. and Taenia/Echinococcus spp. compared to other parasites indicates the need for control programs to minimize the risk of transmission of zoonotic disease, particularly cystic echinococcosis, alveolar echinococcosis, visceral larva migrans, and ocular larva migrans to people living in these areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio
2018-01-01
A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297
Stability of within-host–parasite communities in a wild mammal system
Knowles, Sarah C. L.; Fenton, Andy; Petchey, Owen L.; Jones, Trevor R.; Barber, Rebecca; Pedersen, Amy B.
2013-01-01
Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals. PMID:23677343
Factors that affect parasitism of black-tailed prairie dogs by fleas
Eads, David A.; Hoogland, John L.
2016-01-01
Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.
Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy
2014-01-01
Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477
[Helminths of carnivores relevant to veterinary practice].
Hasslinger, M A
1986-01-01
Especially in an urban environment man and carnivores live closely together, whereby one has to pay attention not only to animal parasites, but also to human pathogenic connections regarding these parasites. Because of the infection risk the animal owner has to be competently informed by his veterinarian. While some cestodes make great demands on hygiene, with others the cycle can be interrupted by consequent diet restrictions. Of all nematodes the stomach worm of the cat is of greater importance as it is easily overlooked because of its small size, is difficult to diagnose and is occurring in our regions with an infestation rate of about 40%. "Larva migrans visceralis" and "Larva migrans cutanea" caused by ascaride and hookworm larvae are important in human medicine and demand therapeutic measures. The contamination of parks, playgrounds and beaches with these parasites caused by carnivores requires a critical evaluation of the human pathogen interests.
Kobylinski, Kevin C.; Alout, Haoues; Foy, Brian D.; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E.; Richardson, Jason H.
2014-01-01
Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998
Seroprevalence of Toxoplasma gondii in humans and pigs in North Sulawesi, Indonesia.
Tuda, Josef; Adiani, Sri; Ichikawa-Seki, Madoka; Umeda, Kousuke; Nishikawa, Yoshifumi
2017-10-01
Toxoplasma gondii, an intracellular protozoan parasite, is a major public health concern throughout the world. Importantly, toxoplasmosis has several adverse effects, including neurological and ocular diseases. There are currently no data on the prevalence of T. gondii infection in humans or animals in North Sulawesi, although Indonesia is known to have a high seroprevalence of this parasite. In this study, the prevalence of T. gondii was determined in samples of humans and pigs from North Sulawesi using the latex agglutination test. In total, 856 human were sampled and 58.5% of whom were positive for T. gondii. Although the antibody prevalence in male and female children aged 0-9years was <10%, the prevalence in individuals over 10years old was >40% in both sexes, suggesting that the transmission rate of the parasite to humans is extremely high in this area. However, the overall prevalence of T. gondii in pigs was only 2.3%. Our study indicates a high incidence of T. gondii infection in humans. Therefore, a survey of the prevalence of T. gondii among different infection sources is required to determine the major risk factors for infection in North Sulawesi. Copyright © 2017 Elsevier B.V. All rights reserved.
González-Bacerio, Jorge; Osuna, Joel; Ponce, Amaia; Fando, Rafael; Figarella, Katherine; Méndez, Yanira; Charli, Jean-Louis; Chávez, María de Los Á
2014-12-01
Plasmodium falciparum neutral metallo-aminopeptidase (PfAM1), a member of the M1 family of metallo proteases, is a promising target for malaria, a devastating human parasitic disease. We report the high-level expression of PfAM1 in Escherichia coli BL21. An optimized gene, with a codon adaptation index and an average G/C content higher than the native gene, was synthesized and cloned in the pTrcHis2B vector. Optimal expression was achieved by induction with 1mM IPTG at 37°C for 18h. This allowed obtaining 100mg of recombinant PfAM1 (rPfAM1) per L of culture medium; 19% of the E. coli soluble protein mass was from rPFAM1. rPfAM1, fused to an amino-terminal 6×His tag, was purified in a single step by immobilized metal ion affinity chromatography. The protein showed only limited signs of proteolytic degradation, and this step increased purity 27-fold. The kinetic characteristics of rPfAM1, such as a neutral optimal pH, a preference for substrates with basic or hydrophobic amino acids at the P1 position, an inhibition profile typical of metallo-aminopeptidases, and inhibition from Zn(2+) excess, were similar to those of the native PfAM1. We have thus optimized an expression system that should be useful for identifying new PfAM1 inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D; Ajami, Nadim J; Petrosino, Joseph F; Meneses, Claudio; Kirby, John R; Valenzuela, Jesus G; Kamhawi, Shaden; Wilson, Mary E
2017-01-17
The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans through the bite of the sand fly Lutzomyia longipalpis Development of the parasite to its virulent metacyclic state occurs in the sand fly gut. In this study, the microbiota within the Lu. longipalpis midgut was delineated by 16S ribosomal DNA (rDNA) sequencing, revealing a highly diverse community composition that lost diversity as parasites developed to their metacyclic state and increased in abundance in infected flies. Perturbing sand fly gut microbiota with an antibiotic cocktail, which alone had no effect on either the parasite or the fly, arrested both the development of virulent parasites and parasite expansion. These findings indicate the importance of bacterial commensals within the insect vector for the development of virulent pathogens, and raise the possibility that impairing the microbial composition within the vector might represent a novel approach to control of vector-borne diseases. Copyright © 2017 Kelly et al.
Invasion genetics of emerald ash borer (Agrilus planipennis Fairmaire)
Alicia M. Bray; Leah S. Bauer; Therese M. Poland; Bob A. Haack; James J. Smith
2011-01-01
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a devastating invasive pest of North American ash trees (Fraxinus spp.) that was first discovered outside of its native range of northeastern Asia in 2002 (Haack et al. 2002). With unintended assistance from human movement of infested ash material...
Three Campus Crises: Lessons for Administrators.
ERIC Educational Resources Information Center
Rothman, Michael
1992-01-01
In October 1989-October 1991, Mills College (California) faced three crises: an earthquake; a strike over plans to convert to a coeducational institution; and a devastating fire in the area. The college has learned to focus its structural, human, political, and symbolic frames of reference; communicate; plan; consider the public; and develop…
454 pyrosequencing project on expressed genes from the New World Screwworm, Cochliomyia hominivorax
USDA-ARS?s Scientific Manuscript database
The New World screwworm, Cochliomyia hominivorax, was a devastating pest of livestock and other animals, including humans, throughout the US, Mexico and Central America. Although eradicated from North America, the screwworm still is a pest in South America and the Caribbean. Reinfestation of North A...
Managing Abiotic Factors of Compost to Increase Soilborne Disease Suppression
ERIC Educational Resources Information Center
Griffin, Deirdre E.
2012-01-01
Soilborne pathogens can devastate crops, causing economic losses for farmers due to reduced yields and expensive management practices. Fumigants and fungicides have harmful impacts on the surrounding environment and can be toxic to humans. Therefore, alternative methods of disease management are important. The disease suppressive abilities of…
White snakeroot poisoning in goats: Variations in toxicity with different plant chemotypes
USDA-ARS?s Scientific Manuscript database
White Snakeroot is a toxic plant that causes human and livestock diseases known as the trembles and milk sickness and historically devastated entire settlements. White snakeroot toxins, which differ significantly in plant populations, were initially identified as tremetol which is thought to be mix...
Bigger than a Breadbox; Lighter than a Heavy Heart
ERIC Educational Resources Information Center
Hill, Robert V.
2009-01-01
Inexact measurements can have devastating effects in sciences where precision is of paramount importance. In contrast, morphological sciences rely heavily on description, comparison, and estimation to make meaningful inferences about the structure of humans and other animals. A review of the 1918 edition of "Gray's Anatomy" shows that the tendency…
Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi
NASA Astrophysics Data System (ADS)
Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.
2010-02-01
Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.
NASA Astrophysics Data System (ADS)
Wahlin, Birgitta; Wahlgren, Mats; Perlmann, Hedvig; Berzins, Klavs; Bjorkman, Anders; Patarroyo, Manuel E.; Perlmann, Peter
1984-12-01
IgG from a donor clinically immune to Plasmodium falciparum malaria strongly inhibited reinvasion in vitro of human erythrocytes by the parasite. When added to monolayers of glutaraldehyde-fixed and air-dried erythrocytes infected with the parasite, this IgG also displayed a characteristic immunofluorescence restricted to the surface of infected erythrocytes. Elution of the IgG adsorbed to such monolayers gave an antibody fraction that was 40 times more efficient in the reinvasion inhibition assay (50% inhibition titer, <1 μ g/ml) than the original IgG preparation. The major antibody in this eluate was directed against a parasite-derived antigen of Mr 155,000 (Pf 155) deposited by the parasite in the erythrocyte membrane in the course of invasion. A detailed study of IgG fractions from 11 donors with acute P. falciparum malaria or clinical immunity revealed the existence of an excellent correlation between their capacities to stain the surface of infected erythrocytes, their titers in reinvasion inhibition, and the presence of antibodies to Pf 155 as detected by immunoblotting. No such correlations were seen when the IgG fractions were analyzed for immunofluorescence of intracellular parasites or for the presence of antibodies to other parasite antigens as detected by immunoprecipitation of [35S]methionine-labeled and NaDodSO4/PAGE-separated parasite extracts. The results suggest that Pf 155 has an important role in the process of erythrocyte infection and that host antibodies to this antigen may efficiently interfere with this process.
Parčina, Marijo; Reiter-Owona, Ingrid; Mockenhaupt, Frank P; Vojvoda, Valerija; Gahutu, Jean Bosco; Hoerauf, Achim; Ignatius, Ralf
2018-02-01
Detection of intestinal protozoan parasites by light microscopy is cumbersome, needs experienced personnel, and may lack sensitivity and/or specificity as compared with molecular-based stool assays. Here, we evaluated the BD MAX™ Enteric Parasite Panel, i.e., a multiplex real-time PCR assay for simultaneous detection of Giardia duodenalis, Entamoeba histolytica, and cryptosporidia (Cryptosporidium parvum and C. hominis), by examining 200 positive human stool samples (138 × G. duodenalis, 27 × E. histolytica, 35 × Cryptosporidium spp.) and 119 controls including 18 samples with E. dispar. The majority of the samples, i.e., 153/200 (76.5%) positive samples and 66/119 (55.5%) controls, were confirmed by multiplex in-house PCR detecting the same parasites as the BD MAX™ Enteric Parasite Panel. The BD MAX™ assay did not yield false-positive results. Sensitivity and specificity were 97.8% (95% CI, 93.3-99.4%) and 100% (95% CI, 97.4-100%) for G. duodenalis, 100% (95% CI, 84.5-100%) and 100% (95% CI, 98.4-100%) for E. histolytica, and 100% (95% CI, 87.7-100%) and 100% (95% CI, 98.3-100%) for cryptosporidia, and similar data were obtained when only the 219 PCR-confirmed samples were analyzed. Thus, the BD MAX™ Enteric Parasite Panel provides a highly sensitive and specific tool for the laboratory diagnosis of three predominant protozoan parasites causing enteritis.
Studies on some fish parasites of public health importance in the southern area of Saudi Arabia.
Khalil, Mokhtar Ibrahim; El-Shahawy, Ismail Saad; Abdelkader, Hussein Saad
2014-01-01
The present study was the first attempt to survey the diversity of fish zoonotic parasites in the southern region of Saudi Arabia, particularly the Najran area, from October 2012 to October 2013. Approximately 163 fish representing seven species (two of freshwater fish and five of marine fish) were examined for fish-borne trematode metacercariae using the compression technique, and for zoonotic nematode larvae. Adult flukes were obtained from cats experimentally infected with the metacercariae on day 25 post-infection The prevalence of each parasite species was recorded. The parasites found belonged to two taxa: Digenea (Heterophyes heterophyes and Haplorchis pumilio) in muscle tissue; and nematodes (larvae of Capillaria sp.) in the digestive tract. The morphological characteristics of the fish-borne trematode metacercariae and their experimentally obtained adults were described. This is the first report of these parasites in fish in Saudi Arabia. Moreover, Myripristis murdjan presented higher prevalence of Capillaria sp. infection (22.7%), while Haplorchis pumilio was the dominant metacercarial species (7.9%). Although the number of documented cases continues to increase, the overall risk of human infection is slight. The increasing exploitation of the marine environment by humans and the tendency to reduce cooking times when preparing seafood products both increase the chances of becoming infected with these parasites. Furthermore, our results indicate that certain fish production systems are at risk of presenting fish zoonotic parasites, and that control approaches will benefit from understanding these risk factors.
Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José
2017-01-01
One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs. PMID:28125696
Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R
1994-03-01
Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.
Echinococcus multilocularis in North America: the great unknown
Massolo, Alessandro; Liccioli, Stefano; Budke, Christine; Klein, Claudia
2014-01-01
Over the last decade, studies have begun to shed light on the distribution and genetic characterization of Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), in North America. Recent findings indicate that the parasite is likely expanding its range in the central region of the United States and Canada and that invasions of European strains might have occurred. In our review, we present the available data on E. multilocularis infections in wild and domestic animals and humans in North America and emphasize the lack of knowledge on the distribution of the parasite in wild and domestic hosts. Furthermore, we stress the need to better understand the complexity of host communities and their roles in shaping the transmission and distribution of the parasite. We hypothesize that a lack of knowledge about AE by North American physicians might result in the misdiagnosis of cases and an underestimation of disease incidence. The endemic presence of the parasite in urban areas and a recent human case in Alberta, Canada, suggest that the scientific community may need to reconsider the local public health risks, re-assess past cases that might have been overlooked and increase surveillance efforts to identify new cases of human AE. PMID:25531581
Sensing parasites: Proteomic and advanced bio-detection alternatives.
Sánchez-Ovejero, Carlos; Benito-Lopez, Fernando; Díez, Paula; Casulli, Adriano; Siles-Lucas, Mar; Fuentes, Manuel; Manzano-Román, Raúl
2016-03-16
Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of host seeking by parasitic nematodes.
Gang, Spencer S; Hallem, Elissa A
2016-07-01
The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.
Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever.
Mire, Chad E; Cross, Robert W; Geisbert, Joan B; Borisevich, Viktoriya; Agans, Krystle N; Deer, Daniel J; Heinrich, Megan L; Rowland, Megan M; Goba, Augustine; Momoh, Mambu; Boisen, Mathew L; Grant, Donald S; Fullah, Mohamed; Khan, Sheik Humarr; Fenton, Karla A; Robinson, James E; Branco, Luis M; Garry, Robert F; Geisbert, Thomas W
2017-10-01
There are no approved treatments for Lassa fever, which is endemic to the same regions of West Africa that were recently devastated by Ebola. Here we show that a combination of human monoclonal antibodies that cross-react with the glycoproteins of all four clades of Lassa virus is able to rescue 100% of cynomolgus macaques when treatment is initiated at advanced stages of disease, including up to 8 d after challenge.
Technological Lessons from the Fukushima Dai-Ichi Accident
2016-06-01
for human consumption . Fish from the area are now being assessed using a non-destructive testing regimen developed by Tohoku University. Monitoring...radioactivity limits for human consumption , even though much of the rice was grown in con- taminated soil. Fish were contaminated both by the initial event...a devastating earth- quake and tsunami. One of the many secondary effects of these disas- ters was a loss of control of the Fukushima Dai-Ichi nuclear
The neurotropic parasite Toxoplasma gondii increases dopamine metabolism
USDA-ARS?s Scientific Manuscript database
The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...
An extensive comparison of the effect of anthelmintic classes on diverse nematodes
USDA-ARS?s Scientific Manuscript database
Soil-transmitted helminths are parasitic nematodes that inhabit the human intestine. These parasites, which include two hookworm species, Ancylostoma duodenale and Necator americanus, the whipworm Trichuris trichiura, and the large roundworm Ascaris lumbricoides, infect upwards of two billion people...
Capone, Aida; Ricci, Irene; Damiani, Claudia; Mosca, Michela; Rossi, Paolo; Scuppa, Patrizia; Crotti, Elena; Epis, Sara; Angeletti, Mauro; Valzano, Matteo; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Mandrioli, Mauro; Favia, Guido
2013-06-18
Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.
Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M
2016-11-01
Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Foodborne protozoan parasites.
Dawson, David
2005-08-25
This report addresses Cryptosporidium, Giardia, Cyclospora, and more briefly, Toxoplasma as the main parasitic protozoa of concern to food production worldwide. Other parasitic protozoa may be spread in food or water but are not considered as great a risk to food manufacture. The protozoan parasites Cryptosporidium, Giardia, and Cyclospora have proven potential to cause waterborne and foodborne disease. Toxoplasma gondii has been considered a risk in specific cases, but humans are not its primary host. Cryptosporidium and Giardia are widespread in the environment, particularly the aquatic environment, and major outbreaks of cryptosporidiosis and giardiasis have occurred as a result of contaminated drinking water. Large outbreaks of waterborne cyclosporiasis have not been identified. Cryptosporidium, Giardia, and Cyclospora have potential significance in the preparation and consumption of fresh produce and in catering practice, in which ready-to-eat foods may be served that have not received heat treatment. None of the three organisms Cryptosporidium, Giardia, and Cyclospora has been shown to be a problem for heat processed food or tap water that has undergone appropriate treatment at a water treatment works. All three are sensitive to standard pasteurisation techniques. Although humans are not a primary host for T. gondii, the potential exists for both waterborne and foodborne toxoplasmosis. Parasitic protozoa do not multiply in foods, but they may survive in or on moist foods for months in cool, damp environments. Their ecology makes control of these parasites difficult. For general control of parasitic protozoa in the food chain, the following steps are necessary: - Follow good hygienic practice in food service and catering industries.- Minimise dissemination of cysts and oocysts in the farming environment and via human waste management.- Include these microorganisms in Hazard Analysis Critical Control Point (HACCP) plans of water suppliers, industries or sectors that use fresh produce, and operations in which contaminated process or ingredient water could end up in the product (e.g., where water supplies may become contaminated).
Poulin, Robert; Lagrue, Clément
2017-01-01
The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156
Infection by Dipylidium caninum in an infant.
Molina, Claudia P; Ogburn, James; Adegboyega, Patrick
2003-03-01
Dipylidium caninum, the dog tapeworm, is a cosmopolitan parasite of dogs and cats and occasionally causes human infection in the United States. Diagnosis is made by observing the characteristic rice grain-like proglottids in stool specimens and the pathognomonic egg packets in the gravid uterus in histologic sections of the parasite. There have been few reported cases of human infection with this parasite, and very little information on the pathology of this zoonotic disease is available in the English language. This report of a case of D caninum infection in a 6-month-old infant highlights the diagnostic features of this disease. To our knowledge, this is the first case to be reported in the American pathology literature during the last 36 years (MEDLINE database, 1966-2002).
Mezioug, Dalila; Touil-Boukoffa, Chafia
2012-01-01
Hydatidosis is a parasitic disease caused by the development, in humans and other mammals, of the larval form of Taenia, Echinococcus granulosus. It is one of the world's major zoonotic infections. This study aimed to examine interleukin-6 (IL-6), interferon-γ (IFN-γ) and interleukin-17A (IL-17A) production in patients with cystic echinococcosis (CE), and the role of IL-17A in the modulation of the immune response against the extracellular parasite, E. granulosus. A relationship between IL-6, IL-17A production and C reactive Protein (CRP) levels was also assessed. IL-6, IFN-γ, IL-17A and CRP production were determined in serum from Algerian hydatid patients. Cytokine production was also measured in supernatants from cultures of peripheral blood mononuclear cells (PBMCs) from hydatid patients stimulated by a major parasitic antigen (antigen-5). The increased activity of IL-6, IFN-γ and IL-17A were observed in most serum samples from patients. In contrast, healthy controls showed only minor levels. Similarly, high levels of CRP were detected. Our in vitro results indicate a positive correlation between IL-6, IFN-γ and IL-17A production in PBMC culture supernatants. However, IL-6, IFN-γ and IL-17A activity was low in serum and supernatants of PBMC cultures from relapsing patients, and there was no evidence of an immune response against parasitic antigen. Collectively, our results show that IL-17A was produced during human cystic echinococcosis, and was involved in the host defense mechanisms against the extracellular parasite E. granulosus. Our data suggest that IL-17A plays an immunoprotective role in this parasitic, helminth infection.
Giraudeau, Mathieu; Mousel, Melanie; Earl, Stevan; McGraw, Kevin
2014-01-01
Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations. Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics. These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).
Giraudeau, Mathieu; Mousel, Melanie; Earl, Stevan; McGraw, Kevin
2014-01-01
Background Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations. Methodology/Principal Findings Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics. Conclusion/Significance These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional). PMID:24503816
Bernardo, Melissa A; Singer, Michael S
2017-08-15
Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.
Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.
2014-01-01
Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals. In addition, comparative analysis of biomarkers in PBMCs from asymptomatic or healed visceral leishmaniasis individuals in response to vaccine candidates including live attenuated parasites may provide clues about determinants of protective immunity and be helpful in shaping the final Leishmania vaccine formulation in the clinical trials. PMID:24904589